高中数学必修3 教案 章节算法案例分析

合集下载

【数学】1.3《算法案例》教案(新人教A版必修3)

【数学】1.3《算法案例》教案(新人教A版必修3)

1.3算法案例(1)教学目标(a)知识与技能1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。

2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。

(b)过程与方法在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。

(c)情态与价值1.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

2.在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力。

(2)教学重难点重点:理解辗转相除法与更相减损术求最大公约数的方法。

难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。

(3)学法与教学用具学法:在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。

教学用具:电脑,计算器,图形计算器(4)教学设想(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?2.接着教师进一步提出问题,我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?这就是我们这一堂课所要探讨的内容。

(二)研探新知1.辗转相除法例1 求两个正数8251和6105的最大公约数。

(分析:8251与6105两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数)解:8251=6105×1+2146显然8251的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。

最新人教版高中数学必修3第一章算法案例

最新人教版高中数学必修3第一章算法案例

1.3算法案例一、本节知识结构二、教学重点与难点重点:通过3个典型的算法案例,使学生通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程,以及将程序框图转化为程序语句的过程,帮助学生进一步体会算法的基本思想,以及算法在解决问题的过程中所体现的特点.难点:理解算法案例的内容以及具体算法的关键步骤.三、编写意图与教学建议教科书选择了3个有典型性的、又有一定难度的算法案例,这些案例的教学都不要求画完整的程序框图以及编写完整的算法程序,也不要求学生记忆它们的具体步骤,教学中要注意把握这种要求,适当控制教学难度.辗转相除法是西方古代数学中的一个典型算法,更相减损术和秦九韶算法都是我国古代数学中的著名算法,而排序法和进位制算法则是计算机科学中普遍使用的算法.与前面介绍的算法相比,这3个算法较为复杂,其中蕴涵的算法思想更为深刻,也更能体现算法的重要性和有效性.教学中,要注意抓住这3个算法的关键步骤,引导学生理解其中的“算理”.教师可以通过讲解、画程序框图、举简单例子说明、让学生自己归纳等多种手段,帮助学生克服理解上的困难.1.“辗转相除法与更相减损术”的设计意图与教学建议.“辗转相除法”是欧几里得《原本》中记录的一个算法:“设有不相等的二数,若依次从大数中不断地减去小数,若余数总是量不尽它前面一个数,直到最后的余数为一个单位,则该二数互质.”这个算法的关键步骤是做带余除法1111r q n m +=(0≤1r <1n )由上式可以看出,1m 、1n 和1n 、1r 有相同的公约数,因此也有相同的最大公约数,可表示为gcd(1m ,1n )=gcd(1n ,1r )(gcd 是greatest common divisor 的简写).当1r =0时,gcd(1m ,1n )=1n .当1r >0,令12n m =,12r n =,继续做带余除法:2222r q n m +=(0≤2r <2n ),3333r q n m +=(0≤3r <3n ),……由于1r >2r >3r >…因此r 在有限次地减小之后,总可以达到0.设0=k r ,则有k k k q n m =.故gcd(1m ,1n )=gcd(2m ,2n )=gcd(3m ,3n )=…= gcd(k m ,k n )=k n .以上是辗转相除法的“算理”.教师可以在求两个具体数(如8 251与6 105)的最大公约数的过程中,讲述上面的“算理”,突出递归的作用.教师可以多举几个例子,通过具体例子来说“理”,以利于学生更好地把握“算理”,而不要把上述抽象的式子和符号直接地呈现给学生.教科书在这部分安排了一个“思考”栏目:“你能把辗转相除法编成一个计算机程序吗?”教学时可以先引导学生思考:“辗转相除法中的关键步骤是哪种逻辑结构?”然后,帮助学生认识在这一算法中,带余除法是一个反复执行、直到余数等于0停止的步骤,这实际上是一个循环结构.教科书还画出了这个循环结构的程序框图(图1),以帮助学生进一步地、直观地理解这一步骤.有了上面的准备,就可以让学生自己写出辗转相除法的程序了.教科书在这部分还介绍了中国古代算法中的“更相减损术”,与辗转相除法形成对比.尽管这两种算法分别来源于东西方古代数学名著,但二者的算理却是相似的,有异曲同工之妙.主要区别在于辗转相除法进行的是除法运算,即辗转相除;而更相减损术进行的是减法运算,即辗转相减,但实质都是一个不断的递归过程.教科书如此设计的意图是想让学生在比较两种算法的过程中,使学生对递归思想能有一个初步的认识.例1的教学中,教师可以先让学生自己按照更相减损术的步骤,逐步求出98与63的最大公约数.然后,再引导学生思考在第一步98-63=35中,98与63和63与35有相同的约数,因此也有相同的最大公约数,可表示为gcd(98,63)=gcd(63,35).由于63≠35,继续做减法.由于每一步中得到的减数及差都是正数,且它们的值在逐渐减小,所以经过有限步后,总会出现减数与差相等的情况.在本例中,我们可以得到gcd(98,63)=gcd(63,35)=gcd(35,28)=gcd(28,7)=gcd(21,7)=gcd(14,7)=gcd(7,7),所以98和63的最大公约数等于7.讲解完本例后,可以让学生做35页的练习第1题.2.“秦九韶算法”的设计意图与教学建议.秦九韶算法是求一元多项式的值的一种方法.在初中,学生已经学习了多项式的有关知识,那里是把多项式看作代数表达式.因此在本段内容的教学之前,应当先向学生说明,这里是用函数的观点考察多项式,因此,求自变量取某个实数时的函数值问题,即求多项式的值就是一个常规问题.实际上,在解决数学问题和实际问题中,常需要求多项式的值.教科书在正式介绍秦九韶算法之前,先让学生自己求一元多项式,1)(2345+++++=x x x x x x f 当x=5时的值,学生可能会想到很多算法.教科书对两种算法的运算效率进行了比较与分析,这样做的目的是为了使学生了解,解决同一个问题的算法可能有很多种,但算法有“好”“坏”之分,其判断标准之一是运算的效率.这里通过统计乘法和加法的运算次数来衡量算法的好坏,并为下面说明秦九韶算法的有效性做铺垫.但是关于计算的复杂性问题,在教学中不宜过多涉及.教科书也只是从“讲故事”的角度说明了某些算法计算机是无法执行的,以提高学生学习的兴趣.接着,教科书引入了秦九韶算法,这个算法的特点在于把求一个n 次多项式的值转化为求n 个一次多项式的值,即把求0111...)(a x a x a x a x f n n n n ++++=--的值转化为求递推公式⎩⎨⎧=+==--).,....,2,1(,10n k a x v v a v k n k kn 中n v 的值.通过这种转化,把运算的次数由至多2)1(n n +次乘法运算和n 次加法运算,减少为至多n 次乘法运算和n 次加法运算,大大提高了运算效率.教师可以使用几个具体的例子,即对具体多项式的分解、转化求值来讲解秦九韶算法,然后再归纳出教科书上用一般形式给出的算法.这时还可以提醒学生,用递推公式表示的步骤都可以用循环结构来实现.下面介绍一种表示秦九韶算法的直观方法.例如计算当5=x 时,多项式64562)(234-+--=x x x x x f 的值.由于 64562)(234-+--=x x x x x f,6)4)5)62(((6)4562(223-+--=-+--=x x x x x x x x 根据秦九韶算法,我们有,465262=-⨯=-x,1555454=-⨯=-x,794515415=+⨯=+x3896579679=-⨯=-x .列成表表示为教科书在这部分的最后,还画出了程序框图帮助学生进一步熟悉算法步骤.教师可以在总结这部分内容时,要求学生自己画出求4=n 或5的一元多项式的秦九韶算法的程序框图.教学中,可以结合《九章算术》、秦九韶的生平和他的著作《数书九章》,向学生介绍中国古代数学的特点、成就和对世界数学发展的贡献.例如,尽管秦九韶算法是距今700多年前提出的,但现在仍然是多项式求值的比较先进的算法;秦九韶是享誉世界的数学家,美国当代数学史家萨顿(G .Sarton)说,秦九韶是“他那个民族、他那个时代、并且确实也是所有时代最伟大的数学家之一”.3.“进位制”的设计意图与教学建议.由于在不同的进位制转换中存在有趣的算法,而且进位制本身及其转换属于计算机的基础知识,有助于了解计算机的工作原理,因此教科书选择了“进位制”作为第4个算法案例,同时还介绍了进位制数的表示方法等相关知识.在内容编排上,教科书首先介绍了进位制的定义和进位制数的形式表示.一个点进制数可以表示成一般形式:)(011.....k n n a a a a -(0<k a n <,0≤1-n a ,…,1a ,0a <k ),对于这种表示的理解学生可能有一定的困难,教学中应当让学生明确两个要点,一是第1个数字n a 不能等于0,二是每一个数字n a ,1-n a ,…,0a 都必须小于k .除了十进制数和二进制数,常见的还有16进制数,由于其中需要表示超过10的数字,规定字母A ~E 对应10~16,例如C7A16HEX =12×164+7×163+10×162+1×161+6×160=817 686.教科书设计了一个思考栏目,要求学生把一般形式①写成各位上数字与k 的幂的乘积之和的形式.教师可以让学生先把十进制数、二进制数等表示成各位上数字与志的幂的乘积之和的形式,再对一般的形式进行操作就不难了,即有)(011.....k n n a a a a -=+⨯+⨯--111010n n n n a a …0011010⨯+⨯+a a关于进位制之间的转换,教科书以十进制和二进制之问的转换为例进行讲解,并推广到十进制和其他进制之间的转换.这样做的原因是,计算机是以二进制形式来存储和计算数据的,而一般我们输入给计算机的数据是十进制数,因此计算机必须将十进制数转换为二进制数,而把运算结果由二进制数转换为十进制数输出.非十进制数转换为十进制数比较简单,只要计算②式中等号右边的值,就得到了相应的十进制数.描述为算法步骤是:第一步,从左到右依次取k 进制数)(011.....k n n a a a a -各位上的数字,乘以相应k 的幂,k 的幂从n 开始取值,每次递减l ,递减到0,即n n k a ⨯,11--⨯n n k a ,…,11k a ⨯,00k a ⨯;第二步,把所得到的乘积加起来,所得的结果就是相应的十进制数. 在教科书提供的一个把k 进制数口(共有n 位)转化成十进制数b 的程序中,就使用了这个算法.其中的语句“a :a \10”“t=a MOD 10”用于取出走进制数各位上的数字.把十进制数转换为二进制数可用教科书上提供的“除2取余法”,教师可以展示算法过程,让学生来总结算法步骤.“除k 取余法”是把十进制数转换为k 进制数的算法,如例6把十进制数转换为五进制数.另外,教师还可以引导学生思考,怎样在非十进制之间实现转换,一个自然的想法是利用十进制作桥梁.这里提供一种二进制与16进制之间互化的方法,这也是实际使用的方法之一.下表是16进制数与二进制数的对照表,利用这个表,就可以逐段进行转换了.例如,C7A16(16)=1100 0111 1010 0001 0110(2).4.阅读与思考“割圆术”的教学建议.教科书设计本阅读材料的意图是:(1)“割圆术”这个算法本身很有趣,操作性强,“算理”明确,借助图形来讲解易懂易学;(2)“割圆术”是由中国古代的数学家刘徽提出的,是当时计算圆周率的比较先进的算法,至今仍具有一定的应用价值;(3)“割圆术”能被翻译成计算机程序上机运行,这体现了中国古代数学的算法特征;(4)围绕着圆周率的计算这个问题有很多有趣的故事,例如可以讲述从古至今许多数学家孜孜不倦地计算圆周率的故事,还可以介绍一些经典而有趣的算法,等等,这些都会对学生有一定的吸引力.教科书首先介绍了“割圆术”的算法步骤,这个算法的关键思想是用内接正多边形和外切正多边形“内外夹逼”圆,则圆的面积值在二者的面积值中间,而圆的半径是“1”,因此圆的面积值即为圆周率的值.接着,教科书选取了“割圆术”的一部分,即用内接正多边形逼近圆周率,经分析整理后,确定了其中的递归关系,并写出了相应的计算机程序.这个程序输入的是用于逼近圆的内接正多边形的边数k n 6=(*N k ∈,且k ≥2),输出的是内接正多边形的边数和它的面积(即圆周率的近似值).学生在学习本材料时可能遇到的困难是理解“割圆术”中的“内外夹逼”的思想和递推关系,教师可在这两个环节加以指导.。

人教A版高中数学必修三算法案例教案(1)(1)

人教A版高中数学必修三算法案例教案(1)(1)

算法案例(3)教学目标:(1)二分法主要是采用了循环结构处理问题要会分析类似的问题;(2)GoTo 语句的认识及其他语句的进一步熟悉;(3)能由流程图分析出期所含有的结构并用为代码表示出相应的算法.教学重点:二分法的算法思想和算法表示.教学过程:一、问题情境:必修1中我们学习了二分法求方程的近似解,大家还能想起二分法的求解步骤吗?二、案例讲解:案例:写出用区间二分法求解方程310x x --=在区间[1,1.5]内的一个近似解(误差不超过0.001)的一个算法.(1)算法设计思想:如图,如果估计出方程()0f x =在某区间[,]a b 内有一个根*x ,就能用二分法搜索求得符合误差限制c 的近似解.(2)算法步骤可以表示为:1S 取[,]a b 的中点02a b x +=,间区间一分为二; 2S 若0()0f x =,则0x 就是方程的根,否则判断根*x 在0x 的左侧还是后侧;若0()()0f a f x >,则*0(,)x x b ∈,以0x 代替a ;若0()()0f a f x <,则*0(,)x a x ∈,以0x 代替b ;3S 若||a b c -<,计算终止,此时*0x x ≈,否则转1S .(3)流程图:(4)伪代码1:R ea d a ,b ,c02a b x +←30010x x --≠ While ||a b c -≥ AndIf 3(1)a a --⨯300(1)x x --<0Then 0b x ←Else0a x ←End If02a bx +←End WhilePrint 0x伪代码2:10Read ,,a b c20 0()2a b x +←30 3()1f a a a ←--40 3000()1f x x x ←--50 If 0()0f x = Then GoTo 12060 If 0()()0f a f x < Then 结束 开始70 0b x ←80 Else90 0a x ←100 End If110 If ||a b c -≥ Then GoTo 20120 Print 0x二分搜索的过程是一个多次重复的过程,故可以用循环结构来处理(代码1),课本解法是采用GoTo 语句实现的(代码2)。

高中数学算法案例-进位制(公开课)教案 新人教A版必修3

高中数学算法案例-进位制(公开课)教案 新人教A版必修3

必修3第一章1.3算法案例:案例3进位制[教学目标]:(1)了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换。

(2)学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律。

[教学重点]各进位制表示数的方法及各进位制之间的转换[教学难点]除k取余法的理解[情感态度价值观] 学生通过合作完成任务,领悟十进制,二进制的特点,了解计算机与二进制的联系,进一步认识到计算机与数学的联系,培养他们的合作精神和严谨的态度。

[教学方法] 讲解法、尝试法、归纳法、讨论法、[教学用具]多媒体电脑[学法] 学习各种进位制特点的同时探讨进位制表示数与十进制表示数的区别与联系,熟悉各种进位制表示数的方法,从而理解十进制转换为各种进位制的除k取余法。

[教学过程]一、创设情景,揭示课题辗转相除法和更相减损术,是求两个正整数的最大公约数的算法,秦九韶算法是求多项式的值的算法,将这些算法转化为程序,就可以由计算机来完成相关运算。

人们为了计数和运算方便,约定了各种进位制,本节课我们来共同学习《进位制》你都了解那些进位制?比如说?在日常生活中,我们最熟悉、最常用的是十进位制,据说这与古人曾以手指计数有关;由于计算机的计算与记忆元件特点,计算机上通用的是二进位制;一周七天是七进位;一年十二个月〔生肖、一打〕是十二进制;旧式的称是十六进制;〔老称一斤为16两,故而有了半斤八两之说〕、24进制〔节气〕一小时六十分、角度的单位是六十进位制。

二进制是有德国数学家莱布尼兹发明的。

第一台计算机ENIAC〔埃尼阿克〕用的就是十进制。

计算机之父冯·诺伊曼研究后,提出改进意见,用二进制替代十进制。

主要原因①二进制只有0和1两个数字,要得到两种不同稳定状态的电子器件很容易,而且制造简单,可靠性高;②各种计数法中,二进制运算规那么简单。

如:十进 制乘法叫九九表,二进制只有4句。

人教A版高中数学必修三算法案例教案(3)

人教A版高中数学必修三算法案例教案(3)

算法案例(1)教学目标:(1)介绍中国古代算法的案例-韩信点兵-孙子问题;(2)用三种方法熟练的表示一个算法;(3)让学生感受算法的意义和价值.教学重点、难点:不定方程解法的算法.教学过程:一、问题情境(韩信点兵-孙子问题):韩信是秦末汉初的著名军事家。

据说有一次汉高祖刘邦在卫士的簇拥下来到练兵场,刘邦问韩信有什么方法,不要逐个报数,就能知道场上的士兵的人数。

韩信先令士兵排成3列纵队,结果有2个人多余;接着立即下令将队形改为5列纵队,这一改,又多出3人;随后他又下令改为7列纵队,这次又剩下2人无法成整行。

在场的人都哈哈大笑,以为韩信不能清点出准确的人数,不料笑声刚落,韩信高声报告共有士兵2333人。

众人听了一愣,不知道韩信用什么方法这么快就能得出正确的结果的。

同学们,你知道吗?背景说明:1.类似的问题最早出现在我国的《算经十书》之一的《孙子算经》中原文是:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?答曰:「二十三」”2.孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之後,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理(孙子定理)。

中国剩余定理在近代抽象代数学中占有一席非常重要的地位;3.该问题的完整的表述,后来经过宋朝数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。

在中国还流传着这么一首歌诀:三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。

它的意思是说:将某数(正整数)除以3所得的余数乘以70,除以5所得的余数乘以21,除以7所得的余数乘以15,再将所得的三个积相加,并逐次减去105,减到差小于105为止。

所得结果就是某数的最小正整数值。

用上面的歌诀来算《孙子算经》中的问题,便得到算式:2×70+3×21+2×15=233,233-105×2=23,即所求物品最少是23件。

人教版高中数学必修三 第一章 算法初步算法案例分析

人教版高中数学必修三 第一章 算法初步算法案例分析

人教版高中数学必修三第一章算法初步算法案例分析算法案例分析自主学习1.算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。

后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。

广义地说,算法就是做某一件事的步骤或程序。

菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。

在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。

比如解方程的算法、函数求值的算法、作图的算法,等等。

2. 2.算法的重要特征:(1)有限性:一个算法在执行有限步后必须结束;(2)确定性:算法的每一个步骤和次序必须是确定的;(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.师生互动例1解:算法如下:第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。

第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。

这是判断一个大于1的整数n是否为质数的最基本算法。

点评:通过例1明确算法具有两个主要特点:有限性和确定性。

练1解:第一步:把水注入电锅;第二步:打开电源把水烧开;第三步:把烧开的水注入热水瓶.点评:在日常生活中做任何一件事情,者是按照一定规则,一步一步进行,比如在工厂中生产一部机器,先把零件一道道工序进行加工,多面手一,又把各种零件按一定法则组装成一产,了完整机器,它们的工艺流程就是算法;在农村,种庄稼有耕地、播种、育苗、施肥、中耕、收割等各个环节,这些栽培技术也是算法。

总之,在任何这些数值计算或非数值计算的过程中所采取的方法和步骤,都称之为算法。

例2。

解:8251=6105×1+2146显然8251的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。

高中数学北师大版必修三《第二章算法初步算法案例分析》课件

高中数学北师大版必修三《第二章算法初步算法案例分析》课件

消元和加减消元两种消元的方法,下面用加减消元法写出它
的求解过程.
解:第一步:② - ①×2,得: 5y=3; ③
第二步:解③得
代入①,得
x1 5
y 3 5

第三步:将
y 3 5
.
学生探究:对于一般的二元一次方程组来说,上述步骤应该
怎样进一步完善?
老师评析:本题的算法是由加减消元法求解的,这个算法
也合适一般的二元一次方程组的解法。
参与者:800元 主持人:高了 参与者:400元
1、首次报价 2、根据主持人的回答确
主持人:低了
定价格区间
参与者:600元 主持人:低了 接下来,你会怎么猜?
3、没猜中,选中点继续 直至猜中为止。
3
例1:解二元一次方程组:
x 2 2x
y y
1 1
① ②
分析:解二元一次方程组的主要思想是消元的思想,有代入
3.2
算法案例分析
北师大版 高中数学
教学内容:算法的基本内容 教学目标:通过对具体实例的解决过程与
步骤的分析,体会算法的思 想,了解算法的含义 教学重难点:1、算法的思想和含义 2、了解算法的具体过程
2
引例:《荣幸52》中的一个环节 - 猜价格
主持人出示一台价值在1000元内的随身
听,进行竟猜
过程:
4
对于一般的二元一次方程组
a1x b1 y c1 a2 x b2 y c2
其中 a1b2 a2b1 0 也可以按照上述步骤求解.
练习:写出一元二次方程2x2 3x 4 0 的求解过程。
5
例2:给定素数表,设计算法,将936分解成质 因数的乘积。
判断936是否为素数 否 确定936的最小素因数 2 936=468 ×2

新人教A版必修三1.3《算法案例》word教案

新人教A版必修三1.3《算法案例》word教案

基础教育课程改革实验学科教案一、新课引入从我们出生后初步接触数到现在,我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的•比如时间和角度的单位用六十进位制,电子计算机用的是二进制等等•那么不同的进位制之间又有什么联系呢?二、新课讲解(一)进位制与基数进位制是人们为了计数和运算方便而约定的记数方式,用有限的数字在不同的位置表示不同的数值。

处理:直接给出进位制的概念和意义。

(1)利用二进制,十进制,十二进制,引导学生理解进位制。

(二进制就是满二进一,它只用两个数字0和1,如3在二进制中要表示为11 ; 4在二进制中要表示为 100;同理,十进制就是满十进一,它只用 10个数字0和9;十进制就是满十进一,它只用10个数字0和9;十二进制就是满十二进一,它只用 12个符号0和9及A,B,如18在十二进制中要表示为A6)(2)可使用数字符号的个数称为基数,基数为 n,则称n进位制(n进制)(对于任何一个数,我们可以用不同的进位制来表示。

比如:十进数57,可以用八进制表示为 71、用十六进制表示为 39,它们所代表的数值都是一样的。

表示各种进位制数一般在数字右下脚加注来表示,如111001⑵表示二进制数,34(5)表示5进制数)(二)以k为基数的k进制数的表示:a n a nJ a n^ ■■■a1a0(k)说明:(1)利用与十进制类比的方法说明:0 a n < k,0 Ea n」,a n?•…,a1,a° :: k(2)利用与十进制类比的方法说明:时间教学过程设计意图n n」虫门_2……aa ow二a n k ■k ■.・・■ a i k a o尝试练习:(1 )把二进制数110011 (2)化为十进制数;(2)把三进制数10212(3)化为十进制数;(三)设计一个算法,将k进制数a(共有n位)化为十进制数b算法步骤、程序框图、程序见教材P41— P42.(四)如何将十进制数转化为k进制数;1、把89化为二进制数.解:根据二进制数满二进一的原则,可以用2连续去除89或所得商,然后去余数.具体的计算方法如下:89=2*44+1 ; 44=2*22+0 ; 22=2*11+0 ; 11=2*5+1 ; 5=2*2+1 ; 2=2*1+0 1= 2*0+1所以:89=2*(2*(2*(2*(2*2+1)+1)+0)+0)+1=1*2 6+0*2 5+1*24+1*23+0*22+0*21+1*2 0=1011001 ⑵这种算法叫做除2取余法.此外,还可以用右边的除法算式表示尝试练习:将十进制数2008转化为二进制数变式:上述方法也可以推广为把十进制化为k进制数的算法,这种算法称为除k取余法.变式练习:将十进制数2008转化为八进制数(五)设计一个程序,实现“除k取余法” (k・N,2乞k乞9)算法步骤、程序框图、程序见教材P43— P45.三、课堂小结:(1)进位制的概念及表示方法(2)十进制与二进制之间转换的方法及计算机程序四、作业布置:补充:设计程序框图把一个八进制数23456( 8)转换成十进制数2 89余数44 12 22 02 11 02 5 12 2 12 11时间教学过程设计意图。

人教版高中数学必修三 算法案例(进位制)优质教案

人教版高中数学必修三 算法案例(进位制)优质教案

第3课时案例3 进位制(一)导入新课情境导入在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.今天我们来学习一下进位制.(二)推进新课、新知探究、提出问题(1)你都了解哪些进位制?(2)举出常见的进位制.(3)思考非十进制数转换为十进制数的转化方法.(4)思考十进制数转换成非十进制数及非十进制之间的转换方法.活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)进位制是人们为了计数和运算方便而约定的计数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十二进一,就是十二进制;满六十进一,就是六十进制等等.也就是说:“满几进一”就是几进制,几进制的基数(都是大于1的整数)就是几.(2)在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.(3)十进制使用0~9十个数字.计数时,几个数字排成一行,从右起,第一位是个位,个位上的数字是几,就表示几个一;第二位是十位,十位上的数字是几,就表示几个十;接着依次是百位、千位、万位……例如:十进制数3 721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一.于是,我们得到下面的式子:3 721=3×103+7×102+2×101+1×100.与十进制类似,其他的进位制也可以按照位置原则计数.由于每一种进位制的基数不同,所用的数字个数也不同.如二进制用0和1两个数字,七进制用0~6七个数字.一般地,若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式a n a n-1…a1a0(k)(0<a n<k,0≤a n-1,…,a1,a0<k).其他进位制的数也可以表示成不同位上数字与基数的幂的乘积之和的形式,如110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20,7 342(8)=7×83+3×82+4×81+2×80.非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:a n a n-1…a1a0(k)=a n×k n+a n-1×k n-1+…+a1×k+a0.第一步:从左到右依次取出k进制数a n a n-1…a1a0(k)各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即a n×k n,a n-1×k n-1,…,a1×k,a0×k0;第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数.(4)关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其他进制之间的转换.这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时计算机又把运算结果由二进制数转换成十进制数输出.1°十进制数转换成非十进制数把十进制数转换为二进制数,教科书上提供了“除2取余法”,我们可以类比得到十进制数转换成k进制数的算法“除k取余法”.2°非十进制之间的转换一个自然的想法是利用十进制作为桥梁.教科书上提供了一个二进制数据与16进制数据之间的互化的方法,也就是先由二进制数转化为十进制数,再由十进制数转化成为16进制数.(三)应用示例思路1例1 把二进制数110 011(2)化为十进制数.解:110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20=1×32+1×16+1×2+1=51.点评:先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果.变式训练设计一个算法,把k进制数a(共有n位)化为十进制数b.算法分析:从例1的计算过程可以看出,计算k进制数a的右数第i位数字a i与k i-1的乘积a i·k i-1,再将其累加,这是一个重复操作的步骤.所以,可以用循环结构来构造算法.算法步骤如下:第一步,输入a,k和n的值.第二步,将b的值初始化为0,i的值初始化为1.第三步,b=b+a i·k i-1,i=i+1.第四步,判断i>n是否成立.若是,则执行第五步;否则,返回第三步.第五步,输出b的值.程序框图如下图:程序:INPUT “a,k,n=”;a,k,nb=0i=1t=a MOD 10DOb=b+t*k^(i-1)a=a\\10t=a MOD 10i=i+1LOOP UNTIL i>nPRINT bEND例2 把89化为二进制数.解:根据二进制数“满二进一”的原则,可以用2连续去除89或所得商,然后取余数.具体计算方法如下:因为89=2×44+1,44=2×22+0,22=2×11+0,11=2×5+1,5=2×2+1,2=2×1+0,1=2×0+1,所以89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1=2×(2×(2×(2×(22+1)+1)+0)+0)+1=…=1×26+0×25+1×24+1×23+0×22+0×21+1×20=1 011 001(2).这种算法叫做除2取余法,还可以用下面的除法算式表示:把上式中各步所得的余数从下到上排列,得到89=1 011 001(2).上述方法也可以推广为把十进制数化为k进制数的算法,称为除k取余法.变式训练设计一个程序,实现“除k取余法”.算法分析:从例2的计算过程可以看出如下的规律:若十制数a除以k所得商是q0,余数是r0,即a=k·q0+r0,则r0是a的k进制数的右数第1位数.若q0除以k所得的商是q1,余数是r1,即q0=k·q1+r1,则r1是a的k进制数的左数第2位数.……若q n-1除以k所得的商是0,余数是r n,即q n-1=r n,则r n是a的k进制数的左数第1位数.这样,我们可以得到算法步骤如下:第一步,给定十进制正整数a和转化后的数的基数k.第二步,求出a除以k所得的商q,余数r.第三步,把得到的余数依次从右到左排列.第四步,若q≠0,则a=q,返回第二步;否则,输出全部余数r排列得到的k进制数.程序框图如下图:程序:INPUT “a,k=”;a,kb=0i=0DOq=a\\kr=a MOD kb=b+r*10^ii=i+1a=qLOOP UNTIL q=0PRINT bEND思路2例1 将8进制数314 706(8)化为十进制数,并编写出一个实现算法的程序.解:314 706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104 902.所以,化为十进制数是104 902.点评:利用把k进制数转化为十进制数的一般方法就可以把8进制数314 706(8)化为十进制数.例2 把十进制数89化为三进制数,并写出程序语句.解:具体的计算方法如下:89=3×29+2,29=3×9+2,9=3×3+0,3=3×1+0,1=3×0+1,所以:89(10)=10 022(3).点评:根据三进制数满三进一的原则,可以用3连续去除89及其所得的商,然后按倒序的顺序取出余数组成数据即可.(四)知能训练将十进制数34转化为二进制数.分析:把一个十进制数转换成二进制数,用2反复去除这个十进制数,直到商为0,所得余数(从下往上读)就是所求.解:即34(10)=100 010(2)(五)拓展提升把1 234(5)分别转化为十进制数和八进制数.解:1 234(5)=1×53+2×52+3×5+4=194.则1 234(5)=302(8)所以,1 234(5)=194=302(8)点评:本题主要考查进位制以及不同进位制数的互化.五进制数直接利用公式就可以转化为十进制数;五进制数和八进制数之间需要借助于十进制数来转化.(六)课堂小结(1)理解算法与进位制的关系.(2)熟练掌握各种进位制之间转化.(七)作业习题1.3A组3、4.。

高中数学人教A版必修3第一章1.3算法案例课件

高中数学人教A版必修3第一章1.3算法案例课件


9- 3= 6
6 - 3 = 3 减数与差相等
3×2=6
78与36的最大公约数为6.
更相减损术
问题6.根据更相减损术的过程,设计求两个正整数m,n最 大公约数的算法,需要用到什么逻辑结构?为什么?
第一步:任意给定两个正整 算法分析:
数,判断它们是否都是偶数。第一步,给定两个正整数m,n(m>n).
更相减损术
例2. 用更相减损术求78与36的最大公约数.
解: 78与36都是偶数
“可半”
78 ÷ 2 = 39 36 ÷ 2 = 18
“可半者半之”
除 完
39 - 18 = 21 大减小 21 - 18 = 3

18 - 3 = 15

15 - 3 = 12
“更相减损”(辗转相减)

12 - 3 = 9
2 18 30 3 9 15 35
18与30的最大公约数为2 3 6 .
问题1. 求8251与6105的最大公约数. 可以使用短除法吗?
困难:两数比较大、公约数不易视察。 (辗转相除法、更相减损术)
知问
思考1:辗转相除法与更相减损术可以用来解 决什么问题? 可以解决求两个正整数最大公约数的任何问题。
《九章算术》——更相减损术
“可半者半之,不可半者,副置分母、子之数,以少 减多,更相减损,求其等也,以等数约之。”
《九章算术》
刘徽
《九章算术》其作者已不可 考,现今流传的大多是在三 国时期刘徽为《九章》所作 的注本。它是中国古代第一 部数学专著,系统总结了战 国、秦、汉时期的数学成绩, 收录了246个数学问题及其 解法,是当时世界上最简练 有效的应用数学,它的出现 标志中国古代数学形成了完 整的体系。

最新人教版高中数学必修3第一章“算法案例”教案2

最新人教版高中数学必修3第一章“算法案例”教案2

1.3算法案例秦九韶算法(1)教学目标(a )知识与技能了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。

(b )过程与方法模仿秦九韶计算方法,体会古人计算构思的巧妙。

能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。

(c )情态与价值通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。

通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。

(2)教学重难点重点:秦九韶算法的特点难点:秦九韶算法的先进性理解(3)学法与教学用具学法:探究秦九韶算法对比一般计算方法中计算次数的改变,体会科学的计算。

教学用具:电脑,计算器,图形计算器(4)教学设想(一)创设情景,揭示课题我们已经学过了多项式的计算,下面我们计算一下多项式1)(2345+++++=x x x x x x f 当5=x 时的值,并统计所做的计算的种类及计算次数。

根据我们的计算统计可以得出我们共需要10次乘法运算,5次加法运算。

我们把多项式变形为:1)))1(1(1()(2+++++=x x x x x x f 再统计一下计算当5=x 时的值时需要的计算次数,可以得出仅需4次乘法和5次加法运算即可得出结果。

显然少了6次乘法运算。

这种算法就叫秦九韶算法。

(二)研探新知1.秦九韶计算多项式的方法1210123120132211012211)))((())(()()(a a x a x a x a a x a x a x a x a a x a x a x a x a a x a x a x a x a x f n n n n n n n n n n n n n n n n n n n +++++==+++++=+++++=+++++=--------------例1 已知一个5次多项式为8.07.16.25.325)(2345-+-++=x x x x x x f 用秦九韶算法求这个多项式当5=x 时的值。

最新人教版高中数学必修3第一章《第一章算法初步》示范教案

最新人教版高中数学必修3第一章《第一章算法初步》示范教案

示范教案整体设计教学分析前面学习了算法、程序框图与几种算法语句,本节课作为本章的小结,旨在和学生一起站在全章的高度,以算法思想为灵魂,以问题解决为主线,以典型例题为操作平台,以巩固知识、发展能力、提高素养为目的对本章作全面的复习总结,帮助学生进一步提高对算法的理解和认识,优化知识结构.三维目标1.对本章知识形成知识网络,提高学生的逻辑思维能力,培养学生的归纳能力.2.熟练应用算法、程序框图与基本算法语句来解决问题,培养学生的分析问题和解决问题的能力,逐步学会用数学方法去认识世界、改造世界.重点难点教学重点:应用算法、程序框图与基本算法语句解决问题.教学难点:形成知识网络.课时安排1课时教学过程导入新课思路1(情境导入).大家都熟悉围棋高手“石佛”李昌镐吧,他曾经打遍天下无敌手,你知道他最令人可怕的地方吗?他的技术很全面,但他最厉害的技术是“官子”,他的“官子”层次分明,可以说滴水不漏,堪称世界第一.我们的这次复习也要像围棋中的“官子”,也要做到层次分明、滴水不漏.思路2(直接导入).前面我们学习了算法、程序框图与基本算法语句等内容,今天我们对本章知识、方法、数学思想进行全面、系统的总结与复习.推进新课新知探究提出问题(1)请同学们自己梳理本章知识结构.(2)回顾算法的定义及特征.(3)回忆程序框图的三种逻辑结构.(4)总结算法语句.讨论结果:(1)本章知识结构如下图.(2)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.算法的特征:①确定性:算法的每一步都应当做到“准确无误、不重不漏”“不重”是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣、分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(3)顺序结构、条件分支结构、循环结构.(4)赋值语句:变量=表达式.输入语句:变量=input.输出语句:print(%io(2),变量).条件语句:格式1:if表达式语句序列1;else语句序列2;end格式2:if表达式语句序列1;end循环语句:for语句:for循环变量=初值:步长:终值循环体;endwhile语句:while表达式循环体;end应用示例例1如下图所示,该程序框图输出的结果为________.解:该程序框图的运行过程是:A=1;S=1;S=1+9=10;A=1+1=2;A≤2,成立;S=10+9=19;A=2+1=3;A=3≤2,不成立;输出S=19.答案:19点评:解决同一个问题,可以有多种算法,那么就有多种程序框图和语句,再就是不同版本的教材算法语句的语言形式也不相同,因此高考试题中通常不会考查画程序框图或编写程序.由于学习本章的目的是体会算法的思想,所以已知程序框图或程序,判断其结果是高考考查本章知识的主要形式,这也是课程标准和考试说明对本章的要求.其判断方法是具体∴y =π2×2-5=π-5. 例2到银行办理个人异地汇款(不超过100万元),银行收取一定的手续费.假设汇款额不超过100元,收取1元手续费;超过100元但不超过5 000元,按汇款额的1%收取;超过5 000元,一律收取50元手续费.试用程序框图描述汇款额为x 元时,银行收取手续费y 元的过程.分析:这是一个实际问题,故应先建立数学模型,y =⎩⎪⎨⎪⎧ 1(0<x ≤100),0.01x (100<x ≤5 000),50(5 000<x ≤1 000 000).由此看出,要求手续费,需先判断x 的范围.解:程序框图如下图:点评:条件分支结构经常与分段函数有密切的关联;判断框里要写明分支的条件,从而决定下一步该作出怎样的选择.例3已知函数y =⎩⎪⎨⎪⎧ 2x -1,x ≤-1,log 3(x +1),-1<x<2,x 4,x ≥2,试设计一个算法,输入x 的值,求对应的函数值.分析:对输入x 的值与-1和2比较大小,即分类讨论.解:算法如下:S1 输入x 的值;S2 当x ≤-1时,计算y =2x -1,否则执行下一步;S3 当x ≥2时,计算y =x 4,否则执行下一步;S4 计算y =log 3(x +1);S5 输出y.点评:分段函数是高考考查的重点,在考虑算法步骤时,要用到分类讨论思想,这为复习程序框图和算法语句打好了基础.知能训练1.下面程序框图输出的结果是( )A .11B .12C .132D .1 320分析:该程序框图的运行过程是:i =12;s =1;i =12≥10,成立;s =1×12=12;i =12-1=11;i =11≥10,成立;s =12×11=132;i =11-1=10;i =10≥10,成立;s =132×10=1 320;i =10-1=9;i =9≥10,不成立;输出s =1 320.答案:D2.下图是表示求解方程x 2-(a +1)x +a =0(a ∈R ,a 是常数)过程的程序框图.请在标有序号(1)(2)(3)(4)处填上你认为合适的内容将框图补充完整.(1)____________;(2)____________;(3)____________;(4)____________.解析:所解方程是一元二次方程,先计算判别式Δ=(a +1)2-4a =(a -1)2,所以(1)处填(a -1)2;计算判别式Δ的大小后,再判断其符号,由于Δ=(a -1)2,则只需判断a 是否等于1即可,则(2)有两种填法a =1或a ≠1,当(2)处填a =1时,(3)处填x 1=x 2=1,(4)处填x 1=a ,x 2=1;当(2)处填a ≠1时,(3)处填x 1=a ,x 2=1,(4)处填x 1=x 2=1.答案:(1)(a -1)2 (2)a =1 (3)x 1=x 2=1 (4)x 1=a ,x 2=1或(1)(a -1)2 (2)a ≠1(3)x 1=a ,x 2=1 (4)x 1=x 2=13.下列程序的功能是________.s =0;for i =1:1:100s =s +1/i ;endprint(%io(2),s);解析:该程序的执行过程是:s =0;i =1,s =0+11=1; i =2,s =1+12;i =3,s =1+12+13; ……i =100,s =1+12+13+…+1100. 答案:计算1+12+13+…+1100的值 拓展提升数学的美是令人惊异的!如三位数153,它满足153=13+53+33,即这个整数等于它各位上的数字的立方的和,我们称这样的数为“水仙花数”.请您设计一个算法,找出大于100,小于1 000的所有“水仙花数”.(1)写出算法步骤;(2)画出程序框图.分析:由于需要判断大于100,小于1 000的整数是否满足等于它各位上的数字的立方的和,所以需要用循环结构.解:(1)算法步骤如下:S1 i =101;S2 如果i 不大于999,则执行第3步,否则算法结束;S3 若这个数i 等于它各位上的数字的立方的和,则输出这个数;S4 i =i +1,返回第2步.(2)程序框图如下图所示.课堂小结(1)复习了本章知识,形成了知识网络.(2)判断算法的功能或输出结果.作业本章小结Ⅲ.巩固与提高 4、5.设计感想本节通过大量生动活泼的例题对本章进行系统的总结,通过精彩的点评渗透算法的基本思想,使学生的知识得到进一步巩固,使学生的思想方法不断升华.备课资料人机大战的启示人类的许多进步之所以产生,多半是发明了一个更好、更有力的工具.物质工具使工作速度加快并使人们从重体力劳动中解脱出来,而信息工具则扩大人们的智力.物质工具如犁、起重机、推土机、内燃机、电动机等等,是人的四肢的延伸,而计算机是人的大脑的延伸.它最初只能进行数值计算,但随着其发展,应用范围不断扩大.它不仅能够进行计算,还能进行记忆、判断、推理、设计、控制、自动化处理等等.一句话,只要是能输入计算机里的信息,它都能按照人的要求对信息进行迅速而圆满的处理.因此,计算机也被称为电脑.在短短十几年的时间里,我们经历了计算机深入生活每一个角落的过程,深深感受到了计算机多方面的强大的功能.其中,国际象棋大师卡斯帕罗夫与IBM“深蓝”的人机大战的结果曾引起世人瞩目和激烈讨论,留下了有关计算机与人的关系的种种思考.1989年,美国IBM公司成立了“深蓝”(Deep Blue)项目小组,开始着手研究有关计算机下棋方面的技术,其实就是设计下棋的算法.其目的是证明它具有能够处理复杂博弈模式的能力,而真正的意图是,以此作为一个模型,将并行技术深入到其他各种复杂应用领域.1988年,“深蓝”的前身“深思”(Deep Thought)在华裔科学家许峰雄等人的开发下,已经具备与人进行国际象棋比赛的能力.“深蓝”在开始设计时就以超越“深思”为目的,特别在运算速度与处理能力部分.经过不断的努力,1996年2月,当今最优秀的国际象棋棋手、世界冠军卡斯帕罗夫与“深蓝”计算机展开了第一次真正的角逐.比赛为六局对抗赛.虽然卡斯帕罗夫最终以4∶2的比分取胜,但今天计算机所达到的能力,也着实让全世界吃了一惊.尤其是第一局,“深蓝”以获胜来了个“开门红”.卡斯帕罗夫在赛后承认,“深蓝”是必须认真对待的劲敌,他说:“我没有料到它如此难以对付,我输掉第一局非常幸运,因为那是给我发出的最严重警告.”由于卡斯帕罗夫战胜“深蓝”,他预言“在严肃、经典的比赛中,计算机在本世纪没有赢棋的机会.”然而,卡斯帕罗夫对计算机技术的飞速发展估计错了.仅仅一年后,“深蓝”就战胜了这位大师.1997年5月人机大战重开.前五局战平,5月11日第六局决胜局的比赛,卡斯帕罗夫仅走了19步便向“深蓝”认输.“深蓝”的重量达1.4吨,拥有32个节点,每一节点有8块专门为进行国际象棋对弈设计的处理器,从而拥有每秒运算超过2亿步的惊人速度.为了使“深蓝”能拥有更多的资源规划棋步,开发小组汇集了一个开放棋局的数据库,输入了100年来世界顶级棋手的棋局,此外还有残局数据库,即最后五步时的走法,形成了汇集10亿个棋局的数据库.自1996年在输给卡斯帕罗夫之后,美国特级大师本杰明加盟“深蓝”,将他对象棋的理解编成语句输入“深蓝”,且在1997年的比赛中,每场对局结束后,小组都会根据卡斯帕罗夫的情况相应地修改特定的参数.“深蓝”在比赛中,不会疲倦、不会有心理和情绪上的起伏,只是不动声色地进行高速准确的运算.因此,卡斯帕罗夫的对手并不是“深蓝”主机,而是一群人如何运用电脑的硬、软件来向一个人的智慧和反应挑战.电脑的胜利说到底是人脑的胜利.但是“深蓝”的这次胜利,毕竟标志着计算机技术又上了一个新台阶,更准确地说,这次“深蓝”胜利,是人脑经过电脑胜过人脑.它也反过来让人们思考,什么是思维的本质?它第一次让人类如此真切地感受到了电脑与人的相异却又能够与人对抗的能力,这种力量还会从人们今后的努力中得到滋养从而不断壮大.有人曾将人机大战称为捍卫人类尊严的比赛,此次“深蓝”获胜,绝不意味人类的尊严丧失殆尽.许峰雄博士说得好:“棋王卡斯帕罗夫的胜利是为人类的过去赢了一盘棋;今年,‘深蓝’胜卡斯帕罗夫,是为人类的未来赢了一盘棋.”另外,深具意义的是,“深蓝”证明了人类的极限.超越人类的极限是一件很大的事情,人类就是在不断超越自己的极限中而进步的.。

最新人教版普通高中课程标准实验教科书必修3《算法案例——辗转相除法和更相减损术》说课稿

最新人教版普通高中课程标准实验教科书必修3《算法案例——辗转相除法和更相减损术》说课稿

课题:算法案例——辗转相除法和更相减损术教材:人教版普通高中课程标准实验教科书必修3第一章第1.3节1、教材分析与传统教学内容相比,《算法初步》为新增内容,算法是计算机科学的重要基础,算法思想已经渗透到社会的方方面面,算法思想也逐渐成为每个现代人应具有的数学素养。

算法思想即体现了时代的特点,也是中国古代数学灿烂的历史和巨大的贡献在新层次上的复兴。

本节内容是探究古代算法案例――辗转相除法和更相减损术,经历设计算法解决问题的全过程,体会算法在解决问题中的重要作用,体会算法的基本思想,提高逻辑思维能力,发展有条理的思考和数学表达能力,巩固算法三种描述性语言(自然语言、图形语言和程序语言),提高学生分析和解决问题的能力。

2、教学目标分析:(1)知识目标:①理解辗转相除法和更相减损术求两个正数的最大公约数的原理;②能用写算法步骤、画流程图和编程序表达辗转相除法;说明:在这里,理解案例中的新的知识是理解算法的必要的前提,但重要的是理解案例中的算法核心思想,而不是强调对案例中新知识的记忆和灵活运用。

(2)能力目标:①培养学生把具体问题抽象转化为算法语言的能力;②培养学生自主探索和合作学习的能力。

(3)情感目标:①使学生进一步了解从具体到一般思想方法。

②体会中国古代数学对世界数学的巨大贡献,培养爱国思想和学习数学的积极性。

3、教学重点与难点分析:(1)教学重点:能用写算法步骤、画流程图和编程序表达辗转相除法及更相减损术。

(体会算法解决问题的全过程)(2)教学难点:用不同逻辑结构的程序框图表达算法;4、教学方法与手段(1)、教法:阅读指导,以问题为载体,有引导的对话,让学生经历知识的形成过程和发展过程,有利于学生活动的充分展开。

(2)、学法:以观察、讨论、思考、分析、动手操作、自主探索、合作学习多种形式相结合,引导学生多角度、多层面认识事物,突破教学难点。

5、教学过程设计分析:辅助工具:ppt课件知识准备:带余除法6、评价分析:(1)、指导思想:①新知识与旧知识相结合的原则;②掌握知识与发展智力、能力相统一的原则;③教师的主导作用与学生的主体作用相结合的原则。

高中数学新北师大版精品教案《北师大版高中数学必修3 1.1算法案例分析》1

高中数学新北师大版精品教案《北师大版高中数学必修3 1.1算法案例分析》1
2典例讲解
例1现在一商品,价格在4000~5000元之间,采取怎样的策略,说出正确的答案呢?
实际上,我们可以把二分法求方程近似解的思想方法判断,概括如下:(在给定区间为(a,b)的前提下)
1;
2根据老师的回答确定价格区间:
(1)若报价T1小于商品价格P,则商品的价格所在区间为(T1,b);
(2)若报价T1大于商品价格P,则商品的价格所在区间为(a,T1);
(3)若报价等于商品价格P,则游戏结束。
3如果游戏没有结束,则报出上面确定的价格区间的中点T2,这个确定的价格区间就是新一轮报价的给定区间了。
按照这种方法,继续判断,直到游戏结束。
上述的这一系列的步骤就是解决实际问题的一个算法。
教师总结算法是要解决一类问题而不是一个问题,把它一般化就成为一个算法。而且从第一步到最后一步做到环环相扣,分工明确。
2算法的基本思想就是我们分析问题时的想法。由于想法不同思考
的角度不同,着手点不一样,同一问题存在不同的算法,算法有优劣之分。
算法主要具有以下特征:
1.普遍性:必须能解决一类问题,并且能重复使用
2.顺序性:算法具有正确性和顺序性,并且每一步都具有确切的含义,从而组成一个很强逻辑性的序列
3.有限性:一个算法在执行有限的步骤后结束且有正确的输出
3.情感态度与价值观
通过本节的学习,使学生对算法的思想有一个初步的认识,体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力,从而进一步体会算法与现实世界的密切关系。
二、教学重难点
重点:体会算法的思想,了解算法的含义;
难点:能够用语言来叙述算法。
三、学法与教学用具
学法:学生通过对具体问题的感受,主动思考,互相交流,共同讨论,总结概括,从而更好地完成本节课的教学目标

高一数学必修3--1.3 算法案例整体设计教案

高一数学必修3--1.3  算法案例整体设计教案

1.3 算法案例整体设计教学分析在学生学习了算法的初步知识,理解了表示算法的算法步骤、程序框图和程序三种不同方式以后,再结合典型算法案例,让学生经历设计算法解决问题的全过程,体验算法在解决问题中的重要作用,体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.三维目标1.理解算法案例的算法步骤和程序框图.2.引导学生得出自己设计的算法程序.3. 体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.重点难点教学重点:引导学生得出自己设计的算法步骤、程序框图和算法程序.教学难点:体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.课时安排3课时教学过程第1课时案例1 辗转相除法与更相减损术导入新课思路1(情境导入)大家喜欢打乒乓球吧,由于东、西方文化及身体条件的不同,西方人喜欢横握拍打球,东方人喜欢直握拍打球,对于同一个问题,东、西方人处理问题方式是有所不同的.在小学,我们学过求两个正整数的最大公约数的方法:先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来. 当两个数公有的质因数较大时(如8 251与6 105),使用上述方法求最大公约数就比较困难.下面我们介绍两种不同的算法——辗转相除法与更相减损术,由此可以体会东、西方文化的差异.思路2(直接导入)前面我们学习了算法步骤、程序框图和算法语句.今天我们将通过辗转相除法与更相减损术来进一步体会算法的思想.推进新课新知探究提出问题(1)怎样用短除法求最大公约数?(2)怎样用穷举法(也叫枚举法)求最大公约数?(3)怎样用辗转相除法求最大公约数?(4)怎样用更相减损术求最大公约数?讨论结果:(1)短除法求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来.(2)穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数.(3)辗转相除法辗转相除法求两个数的最大公约数,其算法步骤可以描述如下:第一步,给定两个正整数m,n.第二步,求余数r:计算m除以n,将所得余数存放到变量r中.第三步,更新被除数和余数:m=n,n=r.第四步,判断余数r是否为0.若余数为0,则输出结果;否则转向第二步继续循环执行.如此循环,直到得到结果为止. 这种算法是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.(4)更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术. 《九章算术》是中国古代的数学专著,其中的“更相减损术”也可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步.第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.应用示例例1 用辗转相除法求8 251与6 105的最大公约数,写出算法分析,画出程序框图,写出算法程序.解:用两数中较大的数除以较小的数,求得商和余数:8 251=6 105×1+2 146.由此可得,6 105与2 146的公约数也是8 251与6 105的公约数,反过来,8 251与6 105的公约数也是6 105与2 146的公约数,所以它们的最大公约数相等.对6 105与2 146重复上述步骤:6 105=2 146×2+1 813.同理,2 146与1 813的最大公约数也是6 105与2 146的最大公约数.继续重复上述步骤:2 146=1 813×1+333,1 813=333×5+148,333=148×2+37,148=37×4.最后的除数37是148和37的最大公约数,也就是8 251与6 105的最大公约数.这就是辗转相除法.由除法的性质可以知道,对于任意两个正整数,上述除法步骤总可以在有限步之后完成,从而总可以用辗转相除法求出两个正整数的最大公约数.算法分析:从上面的例子可以看出,辗转相除法中包含重复操作的步骤,因此可以用循环结构来构造算法. 算法步骤如下:第一步,给定两个正整数m,n.第二步,计算m除以n所得的余数为r.第三步,m=n,n=r.第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.程序框图如下图:程序:INPUT m,nDOr=m MOD nm=nn=rLOOP UNTIL r=0PRINT mEND点评:从教学实践看,有些学生不能理解算法中的转化过程,例如:求8 251与6 105的最大公约数,为什么可以转化为求6 105与2 146的公约数.因为8 251=6 105×1+2 146,可以化为8 251-6 105×1=2 164,所以公约数能够整除等式两边的数,即6 105与2 146的公约数也是8 251与6 105的公约数.变式训练你能用当型循环结构构造算法,求两个正整数的最大公约数吗?试画出程序框图和程序.解:当型循环结构的程序框图如下图:程序:INPUT m,nr=1WHILE r>0r=m MOD nm=nn=rWENDPRINT mEND例2 用更相减损术求98与63的最大公约数.不是偶数,把98和63以大数减小数,并辗转相减,如下图所示.63的最大公约数等于7.点评:更相减损术与辗转相除法的比较:尽管两种算法分别来源于东、西方古代数学名著,但是二者的算理却是相似的,有异曲同工之妙.主要区别在于辗转相除法进行的是除法运算,即辗转相除;而更相减损术进行的是减法运算,即辗转相减,但是实质都是一个不断的递归过程.变式训练用辗转相除法或者更相减损术求三个数324,243,135的最大公约数.解:324=243×1+81,243=81×3+0,则324与243的最大公约数为81.又135=81×1+54,81=54×1+27,54=27×2+0,则81 与135的最大公约数为27.所以,三个数324、243、135的最大公约数为27.另法:324-243=81,243-81=162,162-81=81,则324与243的最大公约数为81.135-81=54,81-54=27,54-27=27,则81与135的最大公约数为27.所以,三个数324、243.135的最大公约数为27.例3 (1)用辗转相除法求123和48的最大公约数.(2)用更相减损术求80和36的最大公约数.解:(1)辗转相除法求最大公约数的过程如下:123=2×48+27,48=1×27+21,27=1×21+6,21=3×6+3,6=2×3+0,最后6能被3整除,得123和48的最大公约数为3.(2)我们将80作为大数,36作为小数,因为80和36都是偶数,要除公因数2.80÷2=40,36÷2=18.40和18都是偶数,要除公因数2.40÷2=20,18÷2=9.下面来求20与9的最大公约数,20-9=11,11-9=2,9-2=7,7-2=5,5-2=3,3-2=1,2-1=1,可得80和36的最大公约数为22×1=4.点评:对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等. 变式训练分别用辗转相除法和更相减损术求1 734,816的最大公约数.解:辗转相除法:1 734=816×2+102,816=102×8(余0),∴1 734与816的最大公约数是102.更相减损术:因为两数皆为偶数,首先除以2得到867,408,再求867与408的最大公约数.867-408=459,459-408=51,408-51=357,357-51=306,306-51=255,255-51=204,204-51=153,153-51=102,102-51=51.∴1 734与816的最大公约数是51×2=102.利用更相减损术可另解:1 734-816=918,918-816=102,816-102=714,714-102=612,612-102=510,510-102=408,408-102=306,306-102=204,204-102=102.∴1 734与816的最大公约数是102.知能训练求319,377,116的最大公约数.解:377=319×1+58,319=58×5+29,58=29×2.∴377与319的最大公约数为29,再求29与116的最大公约数.116=29×4.∴29与116的最大公约数为29.∴377,319,116的最大公约数为29.拓展提升试写出利用更相减损术求两个正整数的最大公约数的程序.解:更相减损术程序:INPUT “m,n=”;m,nWHILE m<>nIF m>n THENm=m-nELSEm=n-mEND IFWENDPRINT mEND课堂小结(1)用辗转相除法求最大公约数.(2)用更相减损术求最大公约数.思想方法:递归思想.作业分别用辗转相除法和更相减损术求261,319的最大公约数.分析:本题主要考查辗转相除法和更相减损术及其应用.使用辗转相除法可依据m=nq+r,反复执行,直到r=0为止;用更相减损术就是根据m-n=r,反复执行,直到n=r为止.解:辗转相除法:319=261×1+58,261=58×4+29,58=29×2.∴319与261的最大公约数是29.更相减损术:319-261=58,261-58=203,203-58=145,145-58=87,87-58=29,58-29=29,∴319与261的最大公约数是29.设计感想数学不仅是一门科学,也是一种文化,本节的引入从东、西方文化的不同开始,逐步向学生渗透数学文化.从知识方面主要学习用两种方法求两个正整数的最大公约数,从思想方法方面,主要学习递归思想.本节设置精彩例题,不仅让学生学到知识,而且让学生进一步体会算法的思想,培养学生的爱国主义情操.第2课时案例2 秦九韶算法导入新课思路1(情境导入)大家都喜欢吃苹果吧,我们吃苹果都是从外到里一口一口的吃,而虫子却是先钻到苹果里面从里到外一口一口的吃,由此看来处理同一个问题的方法多种多样.怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?方法也是多种多样的,今天我们开始学习秦九韶算法.思路2(直接导入)前面我们学习了辗转相除法与更相减损术,今天我们开始学习秦九韶算法.推进新课新知探究提出问题(1)求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值有哪些方法?比较它们的特点.(2)什么是秦九韶算法?(3)怎样评价一个算法的好坏?讨论结果:(1)怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?一个自然的做法就是把5代入多项式f(x),计算各项的值,然后把它们加起来,这时,我们一共做了1+2+3+4=10次乘法运算,5次加法运算.另一种做法是先计算x2的值,然后依次计算x2·x,(x2·x)·x,((x2·x)·x)·x的值,这样每次都可以利用上一次计算的结果,这时,我们一共做了4次乘法运算,5次加法运算.第二种做法与第一种做法相比,乘法的运算次数减少了,因而能够提高运算效率,对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以采用第二种做法,计算机能更快地得到结果. (2)上面问题有没有更有效的算法呢?我国南宋时期的数学家秦九韶(约1202~1261)在他的著作《数书九章》中提出了下面的算法:把一个n次多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0改写成如下形式:f(x)=a n x n+a n-1x n-1+…+a1x+a0=(a n x n-1+a n-1x n-2+…+a 1)x+ a 0=((a n x n-2+a n-1x n-3+…+a 2)x+a 1)x+a 0=…=(…((a n x+a n-1)x+a n-2)x+…+a 1)x+a 0.求多项式的值时,首先计算最内层括号内一次多项式的值,即v 1=a n x+a n-1,然后由内向外逐层计算一次多项式的值,即v 2=v 1x+a n-2,v 3=v 2x+a n-3,…v n =v n-1x+a 0,这样,求n 次多项式f (x )的值就转化为求n 个一次多项式的值.上述方法称为秦九韶算法.直到今天,这种算法仍是多项式求值比较先进的算法.(3)计算机的一个很重要的特点就是运算速度快,但即便如此,算法好坏的一个重要标志仍然是运算的次数.如果一个算法从理论上需要超出计算机允许范围内的运算次数,那么这样的算法就只能是一个理论的算法.应用示例例1 已知一个5次多项式为f (x )=5x 5+2x 4+3.5x 3-2.6x 2+1.7x-0.8,用秦九韶算法求这个多项式当x=5时的值.解:根据秦九韶算法,把多项式改写成如下形式:f(x)=((((5x+2)x+3.5)x-2.6)x+1.7)x-0.8,按照从内到外的顺序,依次计算一次多项式当x=5时的值:v 0=5;v 1=5×5+2=27;v 2=27×5+3.5=138.5;v 3=138.5×5-2.6=689.9;v 4=689.9×5+1.7=3 451.2;v 5=3 415.2×5-0.8=17 255.2;所以,当x=5时,多项式的值等于17 255.2.算法分析:观察上述秦九韶算法中的n 个一次式,可见v k 的计算要用到v k-1的值,若令v 0=a n ,我们可以得到下面的公式:⎩⎨⎧=+==--).,,2,1(,10n k a x v v a v k n k kn 这是一个在秦九韶算法中反复执行的步骤,因此可用循环结构来实现.算法步骤如下:第一步,输入多项式次数n 、最高次的系数a n 和x 的值.第二步,将v 的值初始化为a n ,将i 的值初始化为n-1.第三步,输入i 次项的系数a i .第四步,v=vx+a i ,i=i-1.第五步,判断i 是否大于或等于0.若是,则返回第三步;否则,输出多项式的值v.程序框图如下图:程序:INPUT “n=”;nINPUT “an=”;aINPUT “x=”;xv=ai=n-1WHILE i>=0PRINT “i=”;iINPUT “ai=”;av=v*x+ai=i-1WENDPRINT vEND点评:本题是古老算法与现代计算机语言的完美结合,详尽介绍了思想方法、算法步骤、程序框图和算法语句,是一个典型的算法案例.变式训练请以5次多项式函数为例说明秦九韶算法,并画出程序框图.解:设f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0首先,让我们以5次多项式一步步地进行改写:f(x)=(a5x4+a4x3+a3x2+a2x+a1)x+a0=((a5x3+a4x2+ a3x+a2)x+a1)x+a0=(((a5x2+a4x+ a3)x+a2)x+a1)x+a0=((((a5x+a4)x+ a3)x+a2)x+a1)x+a0.上面的分层计算,只用了小括号,计算时,首先计算最内层的括号,然后由里向外逐层计算,直到最外层的括号,然后加上常数项即可.程序框图如下图:例2 已知n次多项式P n(x)=a0x n+a1x n-1+…+a n-1x+a n,如果在一种算法中,计算k x0(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x0)的值共需要9次运算(6次乘法,3次加法),那么计算P10(x0)的值共需要__________次运算.下面给出一种减少运算次数的算法:P0(x)=a0,P k+1(x)=xP k(x)+a k+1(k=0,1,2,…,n -1).利用该算法,计算P3(x0)的值共需要6次运算,计算P10(x0)的值共需要___________次运算.答案:65 20点评:秦九韶算法适用一般的多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的求值问题.直接法乘法运算的次数最多可到达2)1(nn,加法最多n次.秦九韶算法通过转化把乘法运算的次数减少到最多n次,加法最多n次. 例3 已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,求当x=5时的函数的值.解析:把多项式变形为:f(x)=2x5-5x4-4x3+3x2-6x+7=((((2x-5)x-4)x+3)x-6)x+7.计算的过程可以列表表示为:最后的系数2 677即为所求的值.算法过程:v0=2;v1=2×5-5=5;v2=5×5-4=21;v3=21×5+3=108;v4=108×5-6=534;v5=534×5+7=2 677.点评:如果多项式函数中有缺项的话,要以系数为0的项补齐后再计算.知能训练当x=2时,用秦九韶算法求多项式f(x)=3x5+8x4-3x3+5x2+12x-6的值.解法一:根据秦九韶算法,把多项式改写成如下形式:f(x)=((((3x+8)x-3)x+5)x+12)x-6.按照从内到外的顺序,依次计算一次多项式当x=2时的值.v0=3;v1=v0×2+8=3×2+8=14;v2=v1×2-3=14×2-3=25;v3=v2×2+5=25×2+5=55;v4=v3×2+12=55×2+12=122;v5=v4×2-6=122×2-6=238.∴当x=2时,多项式的值为238.解法二:f(x)=((((3x+8)x-3)x+5)x+12)x-6,则f(2)=((((3×2+8)×2-3)×2+5)×2+12)×2-6=238.拓展提升用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.解:f(x)=((((((7x+6)+5)x+4)x+3)x+2)x+1)xv0=7;v1=7×3+6=27;v2=27×3+5=86;v3=86×3+4=262;v4=262×3+3=789;v5=789×3+2=2 369;v6=2 369×3+1=7 108;v7=7 108×3+0=21 324.∴f(3)=21 324.课堂小结1.秦九韶算法的方法和步骤.2.秦九韶算法的计算机程序框图.作业已知函数f(x)=x3-2x2-5x+8,求f(9)的值.解:f(x)=x3-2x2-5x+8=(x2-2x-5)x+8=((x-2)x-5)x+8∴f(9)=((9-2)×9-5)×9+8=530.设计感想古老的算法散发浓郁的现代气息,这是一节充满智慧的课.本节主要介绍了秦九韶算法.通过对秦九韶算法的学习,对算法本身有哪些进一步的认识?教师引导学生思考、讨论、概括,小结时要关注如下几点:(1)算法具有通用的特点,可以解决一类问题;(2)解决同一类问题,可以有不同的算法,但计算的效率是不同的,应该选择高效的算法;(3)算法的种类虽多,但三种逻辑结构可以有效地表达各种算法等等.第3课时案例3 进位制导入新课情境导入在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.今天我们来学习一下进位制.推进新课新知探究提出问题(1)你都了解哪些进位制?(2)举出常见的进位制.(3)思考非十进制数转换为十进制数的转化方法.(4)思考十进制数转换成非十进制数及非十进制之间的转换方法.活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)进位制是人们为了计数和运算方便而约定的计数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十二进一,就是十二进制;满六十进一,就是六十进制等等.也就是说:“满几进一”就是几进制,几进制的基数(都是大于1的整数)就是几.(2)在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.(3)十进制使用0~9十个数字.计数时,几个数字排成一行,从右起,第一位是个位,个位上的数字是几,就表示几个一;第二位是十位,十位上的数字是几,就表示几个十;接着依次是百位、千位、万位……例如:十进制数3 721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一.于是,我们得到下面的式子:3 721=3×103+7×102+2×101+1×100.与十进制类似,其他的进位制也可以按照位置原则计数.由于每一种进位制的基数不同,所用的数字个数也不同.如二进制用0和1两个数字,七进制用0~6七个数字.一般地,若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式a n a n-1…a1a0(k)(0<a n<k,0≤a n-1,…,a1,a0<k).其他进位制的数也可以表示成不同位上数字与基数的幂的乘积之和的形式,如110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20,7 342(8)=7×83+3×82+4×81+2×80.非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:a n a n-1…a1a0(k)=a n×k n+a n-1×k n-1+…+a1×k+a0.第一步:从左到右依次取出k进制数a n a n-1…a1a0(k)各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即a n×k n,a n-1×k n-1,…,a1×k,a0×k0;第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数.(4)关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其他进制之间的转换.这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时计算机又把运算结果由二进制数转换成十进制数输出.1°十进制数转换成非十进制数把十进制数转换为二进制数,教科书上提供了“除2取余法”,我们可以类比得到十进制数转换成k进制数的算法“除k取余法”.2°非十进制之间的转换一个自然的想法是利用十进制作为桥梁.教科书上提供了一个二进制数据与16进制数据之间的互化的方法,也就是先由二进制数转化为十进制数,再由十进制数转化成为16进制数.应用示例思路1例1 把二进制数110 011(2)化为十进制数.解:110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20=1×32+1×16+1×2+1=51.点评:先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果. 变式训练设计一个算法,把k进制数a(共有n位)化为十进制数b.算法分析:从例1的计算过程可以看出,计算k进制数a的右数第i位数字a i与k i-1的乘积a i·k i-1,再将其累加,这是一个重复操作的步骤.所以,可以用循环结构来构造算法.算法步骤如下:第一步,输入a,k和n的值.第二步,将b的值初始化为0,i的值初始化为1.第三步,b=b+a i·k i-1,i=i+1.第四步,判断i>n是否成立.若是,则执行第五步;否则,返回第三步.第五步,输出b的值.程序框图如下图:程序:INPUT “a,k,n=”;a,k,nb=0i=1t=a MOD 10DOb=b+t*k^(i-1)a=a\\10t=a MOD 10i=i+1LOOP UNTIL i>nPRINT bEND例2 把89化为二进制数.解:根据二进制数“满二进一”的原则,可以用2连续去除89或所得商,然后取余数.具体计算方法如下:因为89=2×44+1,44=2×22+0,22=2×11+0,11=2×5+1,5=2×2+1,2=2×1+0,1=2×0+1,所以89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1=2×(2×(2×(2×(22+1)+1)+0)+0)+1=…=1×26+0×25+1×24+1×23+0×22+0×21+1×20=1 011 001(2).这种算法叫做除2取余法,还可以用下面的除法算式表示:把上式中各步所得的余数从下到上排列,得到89=1 011 001(2).上述方法也可以推广为把十进制数化为k进制数的算法,称为除k取余法.变式训练设计一个程序,实现“除k取余法”.算法分析:从例2的计算过程可以看出如下的规律:若十制数a除以k所得商是q0,余数是r0,即a=k·q0+r0,则r0是a的k进制数的右数第1位数.若q0除以k所得的商是q1,余数是r1,即q0=k·q1+r1,则r1是a的k进制数的左数第2位数.……若q n-1除以k所得的商是0,余数是r n,即q n-1=r n,则r n是a的k进制数的左数第1位数.这样,我们可以得到算法步骤如下:第一步,给定十进制正整数a和转化后的数的基数k.第二步,求出a除以k所得的商q,余数r.第三步,把得到的余数依次从右到左排列.第四步,若q≠0,则a=q,返回第二步;否则,输出全部余数r排列得到的k进制数.程序框图如下图:程序:INPUT “a,k=”;a,kb=0i=0DOq=a\\kr=a MOD kb=b+r*10^ii=i+1a=qLOOP UNTIL q=0PRINT bEND思路2例1 将8进制数314 706(8)化为十进制数,并编写出一个实现算法的程序.解:314 706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104 902.所以,化为十进制数是104 902.点评:利用把k进制数转化为十进制数的一般方法就可以把8进制数314 706(8)化为十进制数.例2 把十进制数89化为三进制数,并写出程序语句.解:具体的计算方法如下:89=3×29+2,29=3×9+2,9=3×3+0,3=3×1+0,1=3×0+1,所以:89(10)=10 022(3).点评:根据三进制数满三进一的原则,可以用3连续去除89及其所得的商,然后按倒序的顺序取出余数组成数据即可.知能训练将十进制数34转化为二进制数.分析:把一个十进制数转换成二进制数,用2反复去除这个十进制数,直到商为0,所得余数(从下往上读)就是所求.解:即34(10)=100 010(2)拓展提升把1 234(5)分别转化为十进制数和八进制数.解:1 234(5)=1×53+2×52+3×5+4=194.则1 234(5)=302(8)所以,1 234(5)=194=302(8)点评:本题主要考查进位制以及不同进位制数的互化.五进制数直接利用公式就可以转化为十进制数;五进制数和八进制数之间需要借助于十进制数来转化.课堂小结(1)理解算法与进位制的关系.(2)熟练掌握各种进位制之间转化.作业习题1.3A组3、4.设计感想计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时,计算机又把运算结果由二进制数转换成十进制数输出.因此学好进位制是非常必要的,另外,进位制也是高考的重点,本节设置了多种题型供学生训练,所以这节课非常实用.第2课时导入新课思路1客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说.事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.为表示这种相关关系,我们接着学习两个变量的线性相关——回归直线及其方程.思路2某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的这个问题我们接着学习两个变量的线性相关——回归直线及其方程.推进新课新知探究提出问题(1)作散点图的步骤和方法?(2)正、负相关的概念?(3)什么是线性相关?(4)看人体的脂肪百分比和年龄的散点图,当人的年龄增加时,体内脂肪含量到底是以什么方式增加的呢?(5)什么叫做回归直线?(6)如何求回归直线的方程?什么是最小二乘法?它有什么样的思想?(7)利用计算机如何求回归直线的方程?(8)利用计算器如何求回归直线的方程?活动:学生回顾,再思考或讨论,教师及时提示指导.讨论结果:(1)建立相应的平面直角坐标系,将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)(2)如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系.(4)大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.(5)如下图:从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(regression line).如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.(6)从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线.那么,我们应当如何具体求出这个回归方程呢?有的同学可能会想,我可以采用测量的方法,先画出一条直线,测量出各点与它的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就可得到回归方程了.但是,这样做可靠吗?有的同学可能还会想,在图中选择这样的两点画直线,使得直线两侧的点的个数基本相同.同样地,这样做能保证各点与此直线在整体上是最接近的吗?还有的同学会想,在散点图中多取几组点,确定出几条直线的方程,再分别求出各条直线的斜率、截距的平均数,将这两个平均数当成回归方程的斜率和截距.同学们不妨去实践一下,看看这些方法是不是真的可行?(学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.)教师:分别分析各方法的可靠性.如下图:。

高中数学人教A版必修三教案:第1章1-4算法案例

高中数学人教A版必修三教案:第1章1-4算法案例

高中数学人教A版必修三教案第1章算法初步教学目标:1.理解不定方程的算法中蕴含的数学原理,并能根据这些原理进行2.理解不定方程的算法的方法与步骤.3.能根据算法语句与伪代码语句的知识设计完整的流程图并写出伪代码语句算法程序.4.使学生初步掌握不定方程的算法设计和列举法的基本思想.教学方法:1.通过讲解中国古代的一个有趣的故事的方法引入新知识,可以使学生容易接受,易于激发学生的求知欲.2.教学中利用探索性教学法,可以加深学生对不定方程的算法的理解,有利于培养学生的理性思维和实践能力.3.通过本节课的学习,使学生进一步体会观察、比较、归纳、分析等一般科学方法的运用.教学过程:一、问题情境情境:韩信是秦末汉初的著名军事家.据说有一次汉高祖刘邦在卫士的簇拥下来到练兵场,刘邦问韩信有什么方法,不要逐个报数,就能知道场上的士兵的人数.韩信先令士兵排成3列纵队,结果有2个人多余;接着立即下令将队形改为5列纵队,这一改,又多出3人;随后他又下令改为7列纵队,这次又剩下2人无法成整行.二、学生活动1.同学们想一想,韩信是如何得出正确的人数的?2.类似的问题最早出现在我国的《算经十书》之一的《孙子算经》中原文是:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?答曰:「二十三」”3.孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之後,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理.中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位;4.该问题的完整的表述,后来经过宋朝数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”.在中国还流传着这么一首歌诀:三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知.它的意思是说:将某数(正整数)除以3所得的余数乘以70,除以5所得的余数乘以21,除以7所得的余数乘以15,再将所得的三个积相加,并逐次减去105,减到差小于105为止.所得结果就是某数的最小正整数值.用上面的歌诀来算《孙子算经》中的问题,便得到算式:2×70+3×21+2×15=233,233-105×2=23,即所求物品最少是23件.三、建构教学“孙子问题”相当于求关于,,x y z 的不定方程组的325372m x m y mz =+=+ =+ 的正整数解;设所求的数为m ,根据题意m 应该同时满足下列三个条件:①m 被3除后余2,即mod(,3)2m =; ②m 被5除后余3,即mod(,5)3m =; ③m 被7除后余2,即mod(,7)2m =; 用自然语言可以将算法写为:1S 1m ← 2S 1m m ←+3S 如果mod(,3)2m =且mod(,5)3m =且mod(,7)2m =则执行4S ,否则执行2S ;4S 输出m伪代码:1m ← DO1m m ←+Loop Until mod(,3)2m =且mod(,5)3m =且mod(,7)2m = Print m流程图为:四、数学运用例题有3个连续的自然数,其中最小的能被15整除,中间的能被17整除,最大的能被19整除,求满足要求的一组三个连续的自然数.伪代码:思考:以下伪代码是否可行?k←1a←15kWhile Mod(a+1,17)≠0 orMod(a+2,19)≠0k←k+1a←15kEnd WhilePrint a,a+1,a+2五、要点归纳与方法小结本节课学习了以下内容:1.中国数学在世界数学史上的巨大贡献;2.实际问题的分析和解决问题过程;3.算法的表示及语句的运用.教学目标:1.理解欧几里得辗转相除法的数学原理,并能根据这些原理进行算法分析.2.理解用欧几里得辗转相除法求两个数的最大公约数的方法与步骤.3.能根据算法语句与流程图的知识设计完整的流程图并写出其伪代码.教学重点:1.理解欧几里得辗转相除法求两个数的最大公约数的方法与步骤.2.能写出欧几里得辗转相除法的流程图和伪代码.教学难点:1.利用计算机编程来实现求两个数的最大公约数.2.欧几里得辗转相除法的流程图和伪代码程序.教学方法:1.通过复习小学学过的求两个数的最大公约数的方法引入新知识,可以使学生容易接受,易于理解.2.教学中利用类比教学法,可以加深学生对欧几里得辗转相除法的理解,有利于培养学生的理性思维和实践能力.3.通过数学与计算机编程的结合,有利于学生理解构造性数学,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤,培养学生综合应用知识解决有关问题的能力.教学过程:一、问题情境在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗? 我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?这就是我们这一堂课所要探讨的内容.二、学生活动解:8251=6105×1+2146显然8251和的2146最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数.6105=2146×2+1813 2146=1813×1+333 1813=333×5+148 333=148×2+37 148=37×4+0则37为8251与6105的最大公约数. 三、建构教学以上我们求最大公约数的方法就是辗转相除法.也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的.利用辗转相除法求最大公约数的步骤如下:第一步:用较大的数m 除以较小的数n 得到一个商0q 和一个余数0r ; 第二步:若00r =,则n 为,m n 的最大公约数;若00r ≠,则用除数n 除以余数0r 得到一个商1q 和一个余数1r ;第三步:若10r =,则1r 为,m n 的最大公约数;若10r ≠,则用除数0r 除以余数1r 得到一个商2q 和一个余数2r ;……依次计算直至0n r =,此时所得到的1n r −即为所求的最大公约数. 四、数学运用利用辗转相除法与更相减损术的计算算法,图以及BSAIC 大公约数,性,并在计算机上验证自己的结果.(1)辗转相除法的程序框图及程序 程序框图: 伪代码:用较大的数除以较小的数,得到除式r nq m +=)0(n r <≤,直到0=r .五、要点归纳与方法小结 本节课学习了以下内容:1.辗转相除法中蕴含的数学原理及算法语言的表示; 2.函数Mod(,)a b 的含义.教学目标:1.了解这种方法是求方程近似解的一般方法,能利用计算器求精确到0.01的实数解.2.理解二分法求方程近似解的算法,进一步理解函数与方程的关系. 3. 能根据算法语句与程序框图的知识设计完整的二分法求方程近似解的流程图并写出其伪代码.4.培养学生利用计算工具的能力.教学重点:1.利用二分法求给定精确度的方法近似解.2.能写出二分法求方程近似解的流程图和伪代码.教学难点:1.利用二分法求方程的近似解.2.二分法求方程近似解的流程图和伪代码.教学方法:教学过程:一、问题情境在前面一节课中,我们已经学习了一些简单的算法,如不定方程的解、欧几里得辗转相除法求两个正整数的最大公约数等问题,对算法已经有了较为深刻的了解,下面,我们还将通过一个具体的算法案例,继续体会算法的思想.这就是我们本节课所要研究的问题—二分法求方程近似解.二、学生活动x x−−=在区间[1,1.5]内的一个近似解(误差不写出用区间二分法求解方程310超过0.001)的一个算法.(1)算法设计思想:如图,如果估计出方程()0f x=在某区间[,]a b内有一个根*x,就能用二分法搜索求得符合误差限制c的近似解.(2)算法步骤可以表示为: 1S 取[,]a b 的中点20ba x +=,将区间一分为二; 2S 若0()0f x =,则0x 就是方程的根,否则判断根*x 在0x 的左侧还是右侧;若0()()0f a f x >,则*0(,)x x b ∈,以0x 代替a ; 若0()()0f a f x <,则*0(,)x a x ∈,以0x 代替b ;3S 若||a b c −<,计算终止,此时*0x x ≈,否则转1S . 三、建构教学 伪代码1:R ea d a ,b ,c02a bx +←While ||a b c −≥ And 30010x x −−≠ If 3(1)a a −−×300(1)x x −−<0 Then 0b x ← Else 0a x ← End If 02a bx +←End While Print 0x伪代码2:Read ,,a b c0()2a b x +←3()1f a a a ←−−3000()1f x x x ←−−If 0()0f x = Then GoTo 120If 0()()0f a f x < Then 0b x ← Else 0a x ← End IfIf ||a b c −≥ Then GoTo 20 Print 0x二分搜索的过程是一个多次重复的过程,故可以用循环结构来处理(代码1),课本解法是采用GoT o 语句实现的(代码2).四、要点归纳与方法小结 本节课学习了以下内容:1.二分法的算法和用伪代码表示该算法; 2.GoT o 语句的使用;3.解决实际问题的过程:分析-画流程图-写伪代码.。

人教版数学必修三教案:算法案例(辗转相除法与更相减损术)

人教版数学必修三教案:算法案例(辗转相除法与更相减损术)

§1.3 算法案例一、教材分析在学生学习了算法的初步知识,理解了表示算法的算法步骤、程序框图和程序三种不同方式以后,再结合典型算法案例,让学生经历设计算法解决问题的全过程,体验算法在解决问题中的重要作用,体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.二、教学目标1、知识与技能(1)理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。

(2)基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。

(3)了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。

(4)掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。

(5)了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换。

2、过程与方法(1)在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。

(2)模仿秦九韶计算方法,体会古人计算构思的巧妙。

能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。

(3)学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律。

3、情态与价值观(1)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

(2)在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力。

(3)通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案、学案
丰城九中教案、学案
1. 写出求方程组()01221222111≠-⎩⎨
⎧=+=+b a b a ②c y b x a ①c y b x a 的解的算法.
2. 二分法求解多项式方程在区间[,]a b 的一种常用方法.算法步骤是。

3.两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们四人都会划船,但都不会游泳.同学们现在想一想,他们怎样渡过河去?请写一写你的渡河方案.
+的一个算法100
丰城九中教案、学案
丰城九中教案、学案
例1已知梯形两底a、b和高h,设计一个求梯形面积的算法,并画出流程图。

例2、设计一个算法,输出a,b,c中的最大值。

练习.就逻辑结构,说出其算法功能
开始
max=a
输入b
max>b
输出结束max


丰城九中教案、学案
丰城九中教案、学案
丰城九中教案、学案
丰城九中教案、学案
step
四课后反思
五课后巩固练习
1.执行右边的程序框图,若p=0.8,则输出的n=.
2.阅读下图(右)程序框图,该程序输出的结果是.。

相关文档
最新文档