匀变速直线运动规律2

合集下载

匀变速直线运动的规律

匀变速直线运动的规律

匀变速直线运动的规律一、匀变速直线运动的速度和时间的关系由得:v t=v0+at→单位时间速度的变化即速度的变化率;→匀变速直线运动一段时间末了时刻的速度公式。

1、公式中v t是时间t的一次函数变化关系,a是斜率。

2、公式中v t是匀速直线运动经任意时间t时的瞬时速度。

3、速度公式中,v0、v t、a都是矢量。

在直线运动中,首先要规定正方向,常以初速度v0方向为正方向。

4、先减速到速度为零后以相同加速度反向加速可视为一个过程的匀减速直线运动,v t=v0+at仍适用。

a=-2m/s2v=4-2×4=-4m/s例:一辆汽车以21m/s的初速度做匀减速刹车运动,若刹车过程的加速度大小为3m/s2,求8s后此汽车的运动速度。

解:规定v0方向为正方向,据题意:v0=21m/s,a=3m/s2,t=8s,设汽车刹车需t1,由v t=v0+at的:故汽车在8s之前已静止,在8s末速度v t=0。

二、匀变速直线运动位移和时间关系在时间t内的位移可以由与坐标轴围成的面积表示:1、匀变速直线运动2、s所求是指匀变速直线运动在时间t内的位移而不是路程。

3、公式适用于匀变速直线中加速度只要不变的任何一过程。

(例如适用于先作匀减速至速度为零,再反向匀加速直线运动的整个过程)4、位移公式是矢量式a.一般取v0方向为正方向,a与v0方向相同取正值。

a与v0方向取负值。

b.在中,v t与v0方向相同v t取正值,v t与v0方向相反,v t取负值。

c.位移s计算正值说明s方向与v0方向相同,计算出负值说明s与v0反向。

5、公式运算中单位要统一,最好全部用国际单位。

(数据在式中不带单位,最后结果带单位)6、若v0=0,7、对刹车制动后的匀减速直线运动,需先用判断实际运动时间。

例:以10m/s速度行驶的汽车,制动后以2m/s2的加速度大小做匀减速直线运动,求:(1)前4s内的平均速度;(2)第4s内通过的位移;(3)6s内通过的位移。

匀变速直线运动的规律(二)

匀变速直线运动的规律(二)

匀变速直线运动的规律(二)【知识点】 一、基本公式1、速度公式:2、位移公式: 2、速度-位移公式: 二、匀变速直线运动的重要推论1、平均速度==2/t v v ;适用条件:2、设物体做匀变速直线运动经过一段位移x 的初、末速度分别为0v 、t v ,中点位置的速度为=2/x v∆ 一段匀变速直线运动中点位置的速度与中点时刻的速度关系:2/t v 2/x v3、逐差相等:在任意两个连续相等的时间间隔T 内,位移差是一个常量 数学表达式:三、初速度为零的匀加速直线运动的几个重要比例关系 1、等分位移(1)通过前x 1、前x 2、前x 3、……、前nx 位移时所用速度之比=⋯n v v v v ::::321(2)通过前x 1、前x 2、前x 3、……、前nx 位移时所用时间之比=⋯n t t t t ::::321(3)通过连续相等的位移所用的时间之比:=⋯n t t t t ::::III II I2、等分时间(1)T 1末、T 2末、T 3末、……、nT 末的速度之比=⋯n v v v v ::::321(2)T 1内、T 2内、T 3内、……、nT 内的位移之比=⋯n x x x x ::::321(3)第一个T 内、第二个T 内、第三个T 内、……、第N 个T 内的位移之比=⋯n x x x x ::::III II I【例题讲解】例1、一个做匀加速直线运动的质点,在连续相等的两个时间间隔内,通过的位移分别是m s 241=,m s 642=,每一个时间间隔为4s ,求质点的初速度和加速度。

解法Ⅰ:解法Ⅱ:解法Ⅲ:例2、某市规定,车辆在市区内行驶的速度不得超过40 km/h ,有一辆车遇到情况紧急刹车后,经时间s t 5.1 停止,量得路面刹车的痕迹长为s=9m ,问这辆车是否违章(刹车后做匀减速运动)?例3、从斜面上某一位置,每隔0.1 s 释放一颗小球,在连续释放几颗后,对在斜面上滑动的小球拍下照片,如图所示,测得s AB =15cm ,s BC =20cm ,试求:(1)小球的加速度(2)拍摄时B 球的速度v B =? (3)拍摄时s CD =?(4)A 球上面滚动的小球还有几颗?例4、一滑块自静止开始,从斜面顶端匀加速下滑,第5 s 末的速度是6 m /s ,试求(1)第4 s 末的速度;(2)运动后7 s 内的位移;(3)第3 s 内的位移例5、一物体沿斜面顶端由静止开始做匀加速直线运动,最初3 s 内的位移为s 1 ,最后3s 内的位移为s 2,已知s 2-s 1=6 m ;s 1∶s 2=3∶7,求斜面的总长.例6、一列车由等长的车厢连接而成. 车厢之间的间隙忽略不计,一人站在站台上与第一节车厢的最前端相齐。

匀变速直线运动的规律及应用

匀变速直线运动的规律及应用
S1:S2:S3:…:Sn=1:4:9:…:n2
(3)第1s内、第2s内、第3s内、…第ns内的位移之比
SI:SII:SIII:…:SN=1:3:5:…:(2n-1)
注意:(1)如何描述这几个规律 (2)时间间隔可扩展到任意t秒
5、做匀变速直线运动的物体,在任意相邻相等时间间隔
例3、一汽车在水平路面上行驶时以v=20m/s,遇到障碍刹车, 加速度的大小为4m/s2,求汽车在6s内通过的位移为多少? (汽车距刹车点多远)
解: S=v0t+ at2=20×6+ ×(-4)×36=48m
注意,以上解法是错误的。原因是刹车过程的最后状态是停下 来,即:vt=0。这类题在解的过程中,应首先判断在所给时 间内,物体是否停下来。如果物体没有停下来,所求过程为匀 变速直线运动,直接代公式求解;如果已经停下来了,过程应 该分为两部分:匀变速过程(停下来以前)和静止过程(停下 来以后),整个过程不再是匀变速直线运动。这种情况下,直 接代公式就不行了。但是前一个过程还是匀变速,可以代公式 求前一个过程的位移(注意这时所代时间不再是全部时间而是 匀变速过程的时间)。我们又知道,后一个过程的位移为0, 所以前一个过程的位移与整个过程的位移相同
设物体运动的初速度为v0,加速度为a,则由位移公式有:
S1=v0t1+
at12
7.2=3v0+ a×32 ①
对后3s,v2=v0+at=v0+2a

S2=v2t2+
at22
16.8=3v2+ a×32 ③
三式联立可求得:v0=0 a=1.6m/s2 ∴由S= at2有S总= ×1.6×52=20(m)
可以求出a=-2.5m/s2

匀变速直线运动规律

匀变速直线运动规律

匀变速直线运动规律匀变速直线运动规律:匀变速直线运动是物体沿直线运动,速度恒定不变的一种运动规律。

它包括物体在任意时刻应具有恒定的速度,且连续变化。

1、位移s与时间t的关系:在匀变速直线运动中,物体在每一小段时间内的位移都是一样的,比如说物体的速度为v(m/s),那么每一小段的速度也是一样的。

所以,在某一时刻t的位移s等于t时刻之前的位移s0 加上t时刻之间时间内的位移,即:s = s0 + v*t 。

2、速度v与时间t的关系:关于速度与时间的关系可以从第一条关系s = s0 + v*t 来理解,由于物体在每一小段时间内的位移都是一样的,而这一小段时间的位移取决于当前的速度与时间的乘积,所以我们可以推出速度与时间的关系v = (s-s0) / t。

3、加速度a与时间t的关系:加速度a与时间t的关系也是可以从第一条关系s = s0 + v*t 来推出的,我们可以将该关系展开后得到:s = s0 + v0*t + 1/2 * a*t^2 ,这里的a就是物体变化的加速度,因此可以推出:a = 2*(s-s0 - v0*t)/t^2 。

4、位移s与速度v的关系:在匀变速直线运动中,物体的速度恒定不变,所以可以简单得知:s = s0 + v*t 。

5、加速度a与速度v的关系:从加速度a与时间t的关系可以得到:a = 2*(s-s0 - v0*t)/t^2 ,因此可以推出:v = v0 + a*t 。

总结而言,匀变速直线运动的规律就是:物体的速度是恒定的,其位移、速度、加速度之间存在着密切的关系,利用上述关系可以得出物体的位移、速度、加速度随时间的变化情况,从而得出物体的完整的运动轨迹。

匀变速直线运动的规律

匀变速直线运动的规律

第二节 匀变速直线运动的规律【规律及公式】1、匀变速直线运动的基本公式 速度公式:v t =v 0+at ①位移公式:2021at t v x += ②速度位移公式:ax v v2202=- ③平均速度公式:0t/20+===+22v v t v v atv ④ tx=(任何运动都适用) 注意:①匀变速直线运动中涉及到v 0、v t 、a 、s 、t 五个物理量,其中只有t 是标量,其余都是矢量。

上述四个公式都是矢量式。

通常选定v 0的方向为正方向,其余矢量的方向依据其与v 0方向相同或是相反分别用正、负号表示。

如果某个矢量是待求的,就假设其为正,最后根据结果的正负确定其实际方向。

②解题中常选用公式=s vt 及只有匀变速直线运动才成立的平均速度公式0+=2tv v v ,会使计算大为简化。

2、匀变速直线运动的三个推论(1)在连续相等的时间间隔(T)内的位移之差等于一个恒量,即Δx=aT 2(或者2)(aT n m x x n m -=-) ⑤(2)某段时间内中间时刻的瞬时速度等于这段时间内的平均速度,即:02+==2ttv v v v ⑥ (3)某段位移内中间位置的瞬时速度v 中与这段位移初、末速度v 0和v t 关系:220=2t v v v +中 ⑦注意:无论匀加速还是匀减速总有2tv =v =20t v v +<2x v =2220t v v +4、初速度为零的匀加速直线运动的一些特殊比例式(从t =0开始),设T 为时间单位,则有: ①1T 末、2T 末、3T 末……瞬时速度之比为v 1∶v 2∶v 3∶……=1∶2∶3∶……②第一个T 内,第二个T 内,第三个T 内……位移之比:x Ⅰ∶x Ⅱ∶x Ⅲ∶……=1∶3∶5∶…… ③1T 内、2T 内、3T 内……位移之比为x 1∶x 2∶x 3∶……=12∶22∶32…… ④通过连续相同的位移所用的时间之比:t 1∶t 2∶t 3……=5、应用速度或位移公式应注意的几个问题: (1)速度公式v t =v 0+at 和位移公式2021at t v x +=的适用条件必须是物体做匀变速直线运动,否则不能应用上述公式,所以,对以上两公式应用时,必须首先对运动性质和运动过程进行判断和分析。

第二章匀变速直线运动公式规律总结

第二章匀变速直线运动公式规律总结

第二章匀变速直线运动公式规律总结匀变速直线运动是物体在一条直线上运动,并且加速度恒定的运动。

在这种类型的运动中,物体的速度随着时间均匀地改变,即加速度为常量。

本文将会总结匀变速直线运动的公式和规律。

一、匀变速直线运动的基本公式匀变速直线运动的基本公式可以用来描述物体在不同时刻的运动情况。

1.位移公式位移(S)表示物体从初始位置到一些时刻的位置之间的距离。

位移公式可以用来计算物体在一些时刻的位置。

S = v0t + (1/2)at^2其中,v0表示物体的初始速度,t表示时间,a表示加速度。

2.速度公式速度(v)表示物体在一些时刻的移动快慢和方向。

速度公式可以用来计算物体在一些时刻的速度。

v = v0 + at其中,v0表示物体的初始速度,t表示时间,a表示加速度。

3.加速度公式加速度(a)表示物体在单位时间内速度的增加量。

加速度公式可以用来计算物体在一些时刻的加速度。

a=(v-v0)/t其中,v表示物体在一些时刻的速度,v0表示物体的初始速度,t表示时间。

4.时间公式时间(t)表示物体从初始位置到一些位置所经过的时间。

时间公式可以用来计算物体在一些位置所经过的时间。

t=(v-v0)/a其中,v表示物体在一些位置的速度,v0表示物体的初始速度,a表示加速度。

二、匀变速直线运动的规律总结在匀变速直线运动中,物体的速度和位移在不同时间之间有一定的关系,可以总结出如下规律:1.加速度与速度的关系加速度的单位是m/s^2,表示物体在单位时间内速度的增加量。

当加速度为正时,物体的速度增加;当加速度为负时,物体的速度减小。

当物体加速度恒定时,速度的变化呈线性关系。

2.加速度与位移的关系加速度为常量时,物体的位移与时间的平方成正比。

也就是说,当加速度恒定时,位移的变化与时间的平方成正比。

3.速度与位移的关系在匀变速直线运动中,速度与位移之间存在以下关系:当速度恒定时,位移与时间成正比。

当加速度为正时,速度随时间的增加而增加,位移随时间的增加而增加。

2021学年高考物理一轮复习核心考点专题2匀变速直线运动的规律含解析

2021学年高考物理一轮复习核心考点专题2匀变速直线运动的规律含解析

核心考点专题2 匀变速直线运动的规律知识一 匀变速直线运动的规律 1.匀变速直线运动沿一条直线且加速度不变的运动. 2.匀变速直线运动的基本规律 (1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2.(3)速度—位移关系式:v 2-v 20=2ax .在不涉及时间的匀变速直线运动问题中,选用速度—位移公式比较方便. 知识二 匀变速直线运动的推论 1.三个推论(1)连续相等的相邻时间间隔T 内的位移差相等, 即x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.(2)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度. 平均速度公式:v =v 0+v2=v t2. (3)位移中点速度v x2=v 20+v22.2.初速度为零的匀加速直线运动的四个重要推论(1)T 末、2T 末、3T 末、…、nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)前T 内、前2T 内、前3T 内、…、前nT 内的位移之比为x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2. (3)第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶(2-3)∶…∶(n -n -1).这些比例式只适用于初速度为0的匀加速直线运动.对于减速到0的匀减速直线运动可以利用逆向思维法看成反方向的初速度为0的匀加速直线运动,便可以使用这些比例式.知识三 自由落体运动(1)条件:物体只受重力,从静止开始下落.(2)基本规律 ①速度公式:v =gt . ②位移公式:x =12gt 2.③速度位移关系式:v 2=2gx . (3)伽利略对自由落体运动的研究①伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论.②伽利略对自由落体运动的研究方法是逻辑推理―→猜想与假设―→实验验证―→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)结合起来. 伽利略与亚里士多德知识四 竖直上抛运动(1)运动特点:加速度为g ,上升阶段做匀减速运动,下降阶段做自由落体运动. (2)运动性质:匀变速直线运动. (3)基本规律①速度公式:v =v 0-gt ; ②位移公式:x =v 0t -12gt 2;③速度—位移公式:v 2-v 20=-2gx . 竖直上抛运动的几个特殊量上升的最大高度H =v 202g ,上升到最高点所用的时间T =v 0g ,从抛出到回到抛出点所用的时间t =2v 0g,回到抛出点时的速度v =-v 0. 对点练习1. 甲、乙两个物体在同一直线上沿正方向运动,a 甲=4 m/s 2,a 乙=-4 m/s 2,那么对甲、乙两物体的运动判断正确的是 ( ) A .甲的加速度大于乙的加速度B .甲做加速直线运动,乙做减速直线运动C .甲的速度比乙的速度变化快D .甲、乙在相等时间内速度变化可能相同 【答案】B【解析】加速度的正、负表示方向,绝对值表示大小,加速度大小表示速度变化的快慢,甲、乙加速度大小相等,甲、乙速度变化一样快,由Δv =a Δt 可知在相等时间内,甲、乙速度变化大小相等,方向相反,A 、C 、D 错;甲的加速度与速度方向相同,所以做加速运动,乙的加速度与速度方向相反,所以做减速运动,B 对.2. 2018年7月19日上午,贵州铜仁市与美国超级高铁公司Hyperloop Transportation Technologies(简称HTT)在贵阳市举行《超级高铁体验线项目合作框架协议》签约仪式,此项协议为HTT 与中国签署的第一份Hyperloop 超级高铁线路协议。

第2讲 匀变速直线运动的规律

第2讲  匀变速直线运动的规律

v20+2 v2t 。
(4)初速度为零的匀加速直线运动的比例:
①1T 末,2T 末,3T 末,…,nT 末的瞬时速度之比:
v1∶v2∶v3∶…∶vn= 1∶2∶3∶…∶n 。 ②第 1 个 T 内,第 2 个 T 内,第 3 个 T 内,…,第 n 个 T 内的位移之比:
x1∶x2∶x3∶…∶xn= 1∶3∶5∶…∶(2n-1) 。 ③通过连续相等的位移所用时间之比:
为零的匀加速直线运动。 2.双向可逆类问题 (1)示例:如沿光滑斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,
全过程加速度大小、方向均不变。 (2)注意:求解时可分过程列式也可对全过程列式,但必须注意 x、v、a 等矢
为 1∶2∶3∶…∶n。
(√ )
(4)水滴滴在屋檐下的石板上后,又竖直向上溅出,水滴到达最高点时处于静
止状态。
(× )
提能点(一) 匀变速直线运动规律(题点精研) 研微点
1.[匀加速类问题] (2021·保定高三月考)一物体由静止开始做匀加速直线运动,在某段时间 t 内位移为 x0,物体在前一半时间和后一半时间的位移之比为 2∶3。求: (1)物体加速度的大小; (2)物体在这段时间之前已经发生位移的大小。
解析:取初速度方向为正方向,
则 v0=10 m/s,a=-5 m/s2, 由 v=v0+at 可得,当 t=3 s 时, v=-5 m/s,“-”表示物体在 t=3 s 时速度方向沿斜面向下,
故 B 选项正确。 答案:B
对点清 两类特殊的匀减速直线运动对比
1.刹车类问题 (1)其特点为匀减速到速度为零后即停止运动,加速度 a 突然消失。 (2)求解时要注意确定其实际运动时间。 (3)如果问题涉及最后阶段(到停止运动)的运动,可把该阶段看成反向的初速度

专题02 匀变速直线运动的规律(Word版,含答案)

专题02 匀变速直线运动的规律(Word版,含答案)

2020年高三物理寒假攻关---备战一模第一部分考向精练 专题02 匀变速直线运动的规律一、匀变速直线运动的基本规律 1.匀变速直线运动的条件物体所受合力为恒力,且与速度方向共线. 2.匀变速直线运动的基本规律 速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.速度和位移公式的推论:v 2-v 02=2ax . 中间时刻的瞬时速度:2t v =x t =v 0+v2.任意两个连续相等的时间间隔内的位移之差是一个恒量,即Δx =x n +1-x n =a ·(Δt )2. 二、匀变速直线运动的基本规律应用的技巧方法(1)匀变速直线运动的基本公式(v -t 关系、x -t 关系、x -v 关系)原则上可以解决任何匀变速直线运动问题.因为那些导出公式是由它们推导出来的,在不能准确判断用哪些公式时可选用基本公式. (2)未知量较多时,可以对同一起点的不同过程列运动学方程.(3)运动学公式中所含x 、v 、a 等物理量是矢量,应用公式时要先选定正方向,明确已知量的正负,再由结果的正负判断未知量的方向.(3)v=ΔxΔt=v0+v2=vt2.(2)已知某段时间内的位移、初末速度可求平均速度,应用平均速度公式往往会使解题过程变的非常简捷.(4)多过程问题一般是两段或多段匀变速直线运动的组合.各阶段运动之间的“转折点”的速度是关键物理量,它是前一段的末速度,又是后一段的初速度,是两段运动共有的一个物理量,用它来列方程能减少解题的复杂程度.【例1】(2019·广东揭阳市第二次模拟)瑞士阿尔卑斯山的劳特布伦嫩跳伞区是全球最美的跳伞地之一,每年都吸引了无数跳伞爱好者汇聚此地.某日一跳伞爱好者以5 m/s的速度竖直匀速降落,在离地面h=10 m时掉了一颗扣子,则跳伞爱好者比扣子晚着陆的时间为(扣子受到的空气阻力可忽略,g取10 m/s2)() A.2 s B. 2 s C.1 s D.(2-2) s【答案】 C【解析】由题意知,扣子做初速度为5 m/s、加速度为重力加速度的匀加速直线运动,落地时位移为10 m,根据位移时间关系x=v0t+12gt2,代入数据有:10 m=5 m/s·t1+12×10 m/s2×t12,求得扣子落地时间:t1=1 s;跳伞爱好者匀速运动,根据位移时间关系知,跳伞爱好者落地时间t2=hv=105s=2 s,所以跳伞爱好者比扣子晚着陆的时间为Δt=t2-t1=1 s,故选C.【例2】(2019·广东惠州二模)近几年,国家取消了7座及以下小车在法定长假期间的高速公路收费,给自驾出行带来了很大的实惠,但车辆的增多也给道路的畅通增加了压力,因此交管部门规定,上述车辆通过收费站口时,在专用车道上可以不停车拿(交)卡而直接减速通过。

匀变速直线运动的规律及应用

匀变速直线运动的规律及应用

第二讲:匀变速直线运动的规律及应用【基础概述】一、匀变速直线运动规律1.(1)描述物体运动的基本概念:质点、参考系、时间、路程和位移、速率和速度、加速度①位移、速度和加速度是矢量;②位移大速度不一定大;③位移为零速度不一定为零;④物体做直线运动,若速度的方向不变,则位移的大小增加;(2)速度为零加速度不一定为零①加速度与速度的方向一致,则速度增大②加速度与速度的方向相反速度都减小(3)平均速度、平均速率、瞬时速度2. 匀变速直线运动规律与推论(1) 三个基本公式①速度-时间关系式:②位移-时间关系式:③速度-位移关系式:(2) 两个常用的推论(纸带推论)①平均速度关系式:②位移差公式:则【考点、考法突出】考法1 匀变速直线运动规律的应用方法1 基本公式的应用重点(1) 位移公式或位移与速度关系式①x=v0t+1/2at2 (用于知道运动时间或者求解运动时间问题)②v2-v1=2ax (用于运动时间未知的问题)(2)速度与时间的关系:用于计算初、末速度和加速度方法2 中间时刻速度公式应用重点(1)匀变速运动,时间段t中间时刻的瞬时速度等于时间t内的平均速度①应用一:已知瞬时速度,能迅速解出以这个时刻为中间时刻的一段时间里物体运动的位移或时间。

②应用二:已知两段时间的位移,可分别求出两段时间的中间时刻瞬时速度应用速度公式v=v0+at,求出加速度或者运动时间先求出Δt1及Δt2中间时刻速度: v1=,v2= .(2)再找出这两个中间时刻时间间隔Δt=Δt1+t+Δt2.(3)得该匀变速直线运动的加速度a=方法3 推论——位移差公式应用难点(1)匀变速直线运动中,连续相等的时间T内的位移之差为一恒量:Δx=xn+1-xn=aT2已知条件中出现相等的时间间隔,优先考虑用Δx=aT2求解①应用一:在连续相等的时间T内的位移之差是否相等;判断是否做匀变速直线运动②应用二:已知匀变速直线运动,根据在相等的时间T内的位移之差,求解加速度或时间方法4 初速度为零的匀加速直线运动中的比例规律应用(1)初速度为零的匀加速直线运动过程满足下列比例关系:①1t末、2t末、3t末、…、nt末的瞬时速度之比为v1∶v2∶v3∶…∶vn=1∶2∶3∶…∶n②前1t、前2t、前3t、…、前nt时间内的位移之比为x1∶x2∶x3∶…∶xn =1∶4∶9∶…∶n2(注意是零点起的不同时间内的位移之比) ③第一个t内、第二个t内、第三个t内、…、第N个连续相等时间t内的位移之比为xⅠ∶xⅡ∶xⅢ∶…∶xN=1∶3∶5∶…∶(2N-1).(注意是相等时间内的位移之比) 方法5 应用运动图像分析运动问题:①匀变速直线运动图像②根据图像分析物体运动情况③根据题设情景判断或作出运动图像考法2 根据图像分析物体的运动情况1.单个物体的运动图像的分析(1)无论是x-t图像还是v-t图像都只能描述直线运动(2)x-t图像和v-t图像不表示物体运动的轨迹(3)关键点:根据斜率判断物体的运动状况根据位移图像斜率判断速度变化情况根据速度图像斜率判断加速度变化情况(4)a-t图像阴影面积表示速度的变化量2.两个物体运动图像的分析:运动性质、位移大小、速度大小或方向、相遇点或距离等比较考法3 根据题设情景判断或作出物体的运动图像两种形式:一、给出初始条件和受力条件,判断或作出运动图像,选择题二、给出某一物理量(非速度)随时间变化的图像关系,据此解答问题(1)本质是将非速度的图像关系转化成速度—时间关系;(2)判断物体起始时刻的物理状态,即不同图像的起点;(3)根据初始状态及分析出的物体运动规律判断或作出所求图像;【考点拓展练习】一、单项选择题1.某驾驶员手册规定具有良好刹车性能的汽车在以80 km/h的速率行驶时,可以在56 m的距离内被刹住;在以48 km/h的速率行驶时,可以在24 m的距离内被刹住。

匀变速直线运动公式

匀变速直线运动公式

匀变速直线运动公式、规律总结一.基本规律: 二.匀变速直线运动的两个重要规律:1.匀变速直线运动中某段时间内中间时刻的瞬时速度等于这段时间内的平均速度:即2tv =v ==t s 20t v v + 2.匀变速直线运动中连续相等的时间间隔内的位移差是一个恒量:设时间间隔为T ,加速度为a ,连续相等的时间间隔内的位移分别为 S 1,S 2,S 3,……S N ;则∆S=S 2-S 1=S 3-S 2= …… =S N -S N -1= aT 2 注意:设在匀变速直线运动中物体在某段位移中初速度为0v ,末速度为t v ,在位移中点的瞬时速度为2s v ,则中间位置的瞬时速度为2s v =2220t v v +无论匀加速还是匀减速总有2t v =v =20t v v +<2s v =2220t v v +三.初速度为零的匀加速直线运动规律:(1)1s 末、2s 末、3s 末、…… ns 末的瞬时速度之比为:v1∶v2∶v3∶…… :vn =1∶2∶3∶… ∶n (2)1s 内、2s 内、3s 内…… ns 内位移之比为:S 1∶S 2∶S 3∶…… :S n =12∶22∶32∶…… ∶n 2 (3)第一个1s 内,第二个2s 内,第三个3s 内,…… 第n 个1s 内的位移之比为: S Ⅰ∶S Ⅱ∶S Ⅲ∶…… :S N =1∶3∶5∶…… ∶(2n -1) (4)通过连续相等的位移所用时间之比为: t 1∶t 2∶t 3∶…… :t n =1∶(12-)∶(23-)∶……… ∶(1--n n )[例1]:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2的加速度开始加速行驶,恰在这时一辆自行车以6m/s 的速度匀速驶来,从后边超过汽车。

试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析]:[方法一]:临界状态法汽车在追击自行车的过程中,由于汽车的速度小于自行车的速度,汽车与自行车之间的距离越来越大;当汽车的速度大于自行车的速度以后,汽车与自行车之间的距离便开始缩小,很显然,当汽车的速度与自行车的速度相等时,两车之间的距离最大。

1-2 匀变速直线运动的规律

1-2  匀变速直线运动的规律

第2讲 匀变速直线运动的规律匀变速直线运动 Ⅱ(考纲要求)1.定义:沿着一条直线,且加速度不变的运动.2.分类⎩⎪⎨⎪⎧匀加速直线运动:a 与v 同向匀减速直线运动:a 与v 反向匀变速直线运动的公式 Ⅱ(考纲要求) 1.三个基本公式速度公式:0t v v at =+;位移公式:2012x v t at =+;位移速度关系式:2202t ax v v =-; 【特别提醒】匀变速直线运动规律公式的三性(1)条件性:速度公式和位移公式的适应条件必须是物体做匀变速直线运动。

(2)矢量性:位移公式和速度公式都是矢量式。

(3)可逆性:由于物体运动条件的不同,解题时可进行逆向转换。

2.三个推论(1)连续相等的相邻时间间隔T 内的位移差等于恒量,即x 2-x 1=x 3-x 2=…=x n -x (n -1)=aT 2。

(2)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初末时刻速度矢量和的一半,还等于中间时刻的瞬时速度; 平均速度公式:0/22t t v v v v +== (3)匀变速直线运动的某段位移中点的瞬时速度:220/22t x v v v +=; 3.初速度为零的匀加速直线运动的特殊规律(1)在1T 末,2T 末,3T 末,…nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)在1T 内,2T 内,3T 内,…,nT 内的位移之比为x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2.(3)在第1个T 内,第2个T 内,第3个T 内,…,第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1).(5)从静止开始通过连续相等的位移时的速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .【基础自测】1.某物体做匀变速直线运动,其位移与时间的关系为x =0.5t +t 2(m),则当物体速度为3 m/s 时,物体已运动的时间为( )A .1.25sB .2.5sC .3 sD .6 s2.(2011·汕头高三检测)做匀减速直线运动的质点,它的加速度大小为a ,初速度大小为v 0,经过时间t 速度减小到零,则它在这段时间内的位移大小可用下列哪些式子表示( )A .v 0t +12at 2B .v 0t C.v 0t 2 D.12at 2 3.某做匀加速直线运动的物体初速度为2 m/s ,经过一段时间t 后速度变为6 m/s ,则t 2时刻的速度为( )A .5 m/sB .4 m/sC .由于t 未知,无法确定t 2时刻的速度 D .由于加速度a 及时间t 未知,无法确定t 2时刻的速度 4.在一次交通事故中,交通警察测量出肇事车辆的刹车痕迹是30 m ,该车辆最大刹车加速度是15 m/s 2,该路段的限速为60 km/h 。

知识点匀变速直线运动的规律

知识点匀变速直线运动的规律

匀变速直线运动的规律一.考点整理匀变速直线运动规律1.匀变速直线运动:沿着一条直线,且加速度的运动.分为匀加速直线运动〔a与v方向〕和匀减速直线运动〔a与v向〕.2.三个根本规律:①速度公式:v = ;②位移公式:x = ;③位移速度关系式:v2t–v02 = .3.三个推论:①做匀变速直线的物体在连续相等的相邻时间间隔T内的位移差等于恒量,即x2–x1 = x3–x2 =……= x n–x n – 1 = ;②做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初末时刻速度矢量和的一半,还等于中间时刻的瞬时速度,即v平均= v t/2= ;③匀变速直线运动的某段位移中点的瞬时速度v x/2 = .4.初速度为零的匀加速直线运动的特别规律:⑴在1T末,2T末,3T末,…,n T末的瞬时速度之比为v1∶v2∶v3∶…∶v n = ;⑵在1T内,2T内,3T内,…,n T内的位移之比为x1∶x2∶x3∶…∶x n = ;⑶在第1个T内,第2个T内,第3个T内,…,第n个T内的位移之比为:xⅠ∶xⅡ∶xⅢ∶…∶x N =____________________________________;⑷从静止开始通过连续相等的位移所用时间之比为t1∶t2∶t3∶…∶t n = ;⑸从静止开始通过连续相等的位移时的速度之比为v1∶v2∶v3∶…∶v n = ;5.自由落体运动:物体只在作用下,从开始下落的运动叫自由落体运动.⑴根本特征:只受,且初速度为、加速度为的匀加速直线运动.⑵根本规律:由于自由落体运动是直线运动,所以匀变速直线运动的根本公式及其推论都适用于自由落体运动.①速度公式:v = ;②位移公式:h = ;③位移与速度的关系:v2 = .⑶推论:①平均速度等于中间时刻的瞬时速度,也等于末速度的一半,即v平均= v/2 = ;在相邻的相等时间内下落的位移差Δh = 〔T为时间间隔〕.二.思考与练习思维启动1.依据给出的速度和加速度的正负,对物体运动性质的推断正确的选项是〔〕A.v > 0,a < 0,物体做加速运动B.v < 0,a < 0,物体做加速运动C.v < 0,a > 0,物体做减速运动D.v > 0,a >0,物体做加速运动2.一物体由静止开始沿光滑斜面做匀加速直线运动,运动6秒到达斜面底端,斜面长为18米,则:⑴物体在第3秒内的位移多大?⑵前3秒内的位移多大?3.甲物体的质量是乙物体质量的5倍,甲从H高处自由下落,同时乙从2H高处自由下落,以下说法中正确的选项是〔高度H远大于10 m〕〔〕A.两物体下落过程中,同一时刻甲的速率比乙的大B.下落1 s末,它们的速度相等C.各自下落1 m,它们的速度相等D.下落过程中甲的加速度比乙的大三.考点分类探讨典型问题〖考点1〗匀变速直线运动规律的应用【例1】珠海航展现场空军八一飞行表演队两架“歼-10〞飞机表演剪刀对冲,上演精彩空中秀.质量为m的“歼-10〞飞机表演后返回某机场,降落在跑道上减速过程简化为两个匀减速直线运动.飞机以速度v0着陆后马上翻开减速阻力伞,加速度大小为a1,运动时间为t1;随后在无阻力伞情况下匀减速直至停下.在平直跑道上减速滑行总路程为x.求:第二个减速阶段飞机运动的加速度大小和时间.【变式跟踪1】如下列图,是某型号全液体燃料火箭发射时第—级发动机工作时火箭的a– t图象,开始时的加速度曲线比较平滑,在120 s的时候,为了把加速度限制在4g以内,第—级的推力降至60%,第—级的整个工作时间为200s.由图线可以看出,火箭的初始加速度为15 m/s2,且在前50 s内,加速度可以看做均匀变化,试计算:⑴t = 50 s时火箭的速度大小;⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t =10 s时离地面的高度是多少?如果此时有一碎片脱落,不计空气阻力,碎片将需多长时间落地?〔取g = 10 m/s2,结果可用根式表示〕〖考点2〗自由落体运动和竖直上抛运动例2某人在高楼的平台边缘,以20 m/s的初速度竖直向上抛出一石子.不考虑空气阻力,取g=10 m/s2,求:⑴物体上升的最大高度;回到抛出点所用的时间;⑵石子抛出后通过距抛出点下方20 m处所需的时间.【变式跟踪2】在塔顶上将一物体竖直向上抛出,抛出点为A,物体上升的最大高度为20m,不计空气阻力,设塔足够高,则物体位移大小为10 m时,物体通过的路程可能为〔〕A.10 m B.20 m C.30 m D.50 m考点3:实际应用:汽车的“刹车〞问题.汽车刹车问题的实质是汽车做单方向匀减速直线运动问题.汽车在刹车过程中做匀减速直线运动,速度减为0后,车相对地面无相对运动,加速度消逝,汽车停止不动,不再返回.汽车运动时间满足t≤v0/a,发生的位移满足x≤v02/2a〔停止时取“=〞号〕.例3一辆汽车以10 m/s的速度沿平直的公路匀速前进,因故紧急刹车,加速度大小为0.2 m/s2,则刹车后汽车在1 min内通过的位移大小为〔〕A.240 m B.250 m C.260 m D.90 m【变式跟踪3】一辆公共汽车进站后开始刹车,做匀减速直线运动,开始刹车后的第1 s内和第2 s内位移大小依次为9 m和7 m,则刹车后6 s内的位移是〔〕C.25 m D.75 m四.考题再练高考真题1.〔202xX高考〕某航母跑道长200m,飞机在航母上滑行的最大加速度为6m/s2,起飞需要的X速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为〔〕A.5m/s B.10m/s C.15m/s D.20m/s【预测1】中国首架空客A380大型客机在最大重量的状态下起飞需要滑跑距离约3000m,着陆距离大约为202xm.设起飞滑跑和着陆时都是匀变速运动,起飞时速度是着陆时速度的1.5倍,则起飞滑跑时间和着陆滑跑时间之比是〔〕A.3∶2 B.1∶1 C.1∶2 D.2∶12.〔202x全国卷大纲版〕一客运列车匀速行驶,其车轮在铁轨间的接缝处会产生周期性撞击.坐在该客车中的某旅客测得从第1次到第16次撞击声之间的时间间隔为10.0s.在相邻的平行车道上有一列货车,当该旅客经过货车车尾时,货车恰好从静止开始以恒定加速度沿客车行进方向运动.该旅客在此后的20.0s内,看到恰好有30节货车车厢被他连续超过.每根铁轨的长度为25.0m,每节货车车厢的长度为16.0m,货车车厢间距忽略不计.求:⑴客车运行速度的大小;⑵货车运行加速度的大小【预测2】小明同学乘坐“和谐号〞动车组,觉察车厢内有速率显示屏.当动车组在平直轨道上经历匀加速、匀速与再次匀加速运行期间,他记录了不同时刻的速率,局部数据列于表格中.动车组的总质量M = 2.0×105kg,假设动车组运动时受到的阻力是其重力的0.1倍,取g = 10m/s2.在小明同学记录动车组速率这段时间内,求:⑴动车组的加速度值;⑵动车组牵引力的最大值;⑶动车组位移的大小.五.课堂演练自我提升t/s v/m·s-1 0 30 100 40 300 50 400 50 500 60 550 70 600 801.一个物体从静止开始做匀加速直线运动.它在第1 s内与第2 s内的位移之比为x1∶x2,在走完第1 m时与走完第2 m时的速度之比为v1∶v2.以下说法正确的选项是〔〕A.x1∶x 2 = 1∶3,v1∶v2 = 1∶2 B.x1∶x2 = 1∶3,v1∶v2 = 1∶ 2C.x1∶x2 = 1∶4,v1∶v2 = 1∶2 D.x1∶x2 = 1∶4,v1∶v2 = 1∶ 22.某做匀加速直线运动的物体初速度为2 m/s,经过一段时间t后速度变为6 m/s,则t/2时刻的速度为〔〕A.由于t未知,无法确定t/2时刻的速度B.5 m/sC.由于加速度a及时间t未知,无法确定t/2时刻的速度D.4 m/s3.科技馆里有一个展品,该展品放在暗处,顶部有一个不断均匀向下喷射水滴的装置,在频闪光源的照耀下,可以看到水滴好似静止在空中固定的位置不动,如下列图.某同学为计算该装置喷射水滴的时间间隔,用最小刻度为毫米的刻度尺测量了空中几滴水间的距离,由此可计算出该装置喷射水滴的时间间隔为〔g取10 m/s2〕〔〕A.0.01 s B.0.02 s C.0.1 s D.0.2 s4.做匀减速直线运动的物体经4 s后停止,假设在第1 s内的位移是14 m,则最后1 s内的位移是〔〕A.3.5 m B.2 m C.1 m D.05.沙尘暴天气会严峻影响交通.有一辆卡车以54 km/h的速度匀速行驶,司机突然模糊看到正前方十字路口一个老人跌倒〔假设没有人扶起他〕,该司机刹车的反响时间为0.6 s,刹车后卡车匀减速前进,最后停在老人前1.5 m处,预防了一场事故.刹车过程中卡车加速度大小为5 m/s2,则〔〕A.司机觉察情况后,卡车经过3 s停下B.司机觉察情况时,卡车与该老人的距离为33 mC.从司机觉察情况到停下来的过程,卡车的平均速度为11 m/sD.假设卡车的初速度为72 km/h,其他条件都不变,则卡车将撞到老人6.从地面竖直上抛一物体A,同时在离地面某一高度处有一物体B自由下落,两物体在空中同时到达同一高度时速度大小均为v,则以下说法正确的选项是〔〕A.A上抛的初速度与B落地时速度大小相等,都是2vB.两物体在空中运动的时间相等C.A上升的最大高度与B开始下落时的高度相同D.两物体在空中同时到达的同一高度处肯定是B开始下落时高度的中点7.一条东西方向的平直公路边上有两块路牌A、B,A在西B在东,一辆匀速行驶的汽车自东向西经过B路牌时,一只小鸟恰自A路牌向B匀速飞去,小鸟飞到汽车正上方马上折返,以原速率飞回A,过一段时间后,汽车也行驶到A.以向东为正方向,它们的位移-时间图像如下列图,图中t2 = 2t1,由图可知〔〕A.小鸟的速率是汽车速率的两倍B.相遇时小鸟与汽车位移的大小之比是3:1C.小鸟飞行的总路程是汽车的1.5倍D.小鸟和汽车在0-t2 时间内位移相等8.汽车刹车后,停止转动的轮胎在地面上发生滑动产生明显的滑动痕迹,即常说的刹车线.由刹车线长短可以得知汽车刹车前的速度大小,因此刹车线的长度是分析交通事故的一个重要依据.假设某汽车刹车后至停止的加速度大小为7 m/s2,刹车线长为14 m,求:⑴该汽车刹车前的初始速度v0的大小;⑵该汽车从刹车至停下来所用的时间t0;⑶在此过程中汽车的平均速度.参考答案:一.考点整理匀变速直线运动规律1.保持不变同反2.v0 + at v0t + at2/2 2ax 3.aT2(v0 + v t)/22220tvv4.1∶2∶3∶…∶n 12∶22∶32∶…∶n21∶3∶5∶…∶(2n–1) 1∶(2–1)∶(3–2)∶…∶(n–n-1) 1∶2∶3∶…∶n5.重力静止重力零g初速度为零的匀加速gt gt2/2 2gh gt/2 gT2二.思考与练习思维启动1.BCD;速度和加速度都是矢量,假设二者符号相同,物体就做加速运动,故B、D正确;假设二者符号相反,物体就做减速运动,故A错误,C正确.2.⑴第1 s,第2 s,第3 s……第6 s内的位移之比为1∶3∶5∶7∶9∶11,因此第3秒内的位移xⅢ=51+3+5+7+9+11×18 m = 2.5 m,⑵将6 s的时间分成2个3 s,前3 s内的位移x3=11+3×18 m=4.5 m.3.BC三.考点分类探讨典型问题例1如图,A为飞机着陆点,AB、BC分别为两个匀减速运动过程,C点停下.A到B过程,依据运动学规律有:x1 = v0t1–12a1t12,v B = v0–a1t1,B到C过程,依据运动学规律有:x2 = v B t2–12a2t22,0 = v B–a2t2,A到C过程,有:x = x1 + x2,联立解得:a2 = (v 0–a1t1)2/(2x + a1t12– 2 v0t1) t2 = (2x + a1t12– 2v0t1)/( v 0–a1t1)变式1 ⑴因为在前50 s内,加速度可以看做均匀变化,则加速度图线是倾斜的直线,它与时间轴所围的面积就表示该时刻的速度大小,所以有:v = (1/2)(15+20)×50 m/s = 875 m/s.⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t = 10 s时离地面的高度是h=at2/2 =(1/2)×15×102 m = 750 m,如果有一碎片脱落,它的初速度v1=at=150 m/s,离开火箭后做竖直上抛运动,有-h = v1t-12gt2,代入数据解得t=5(3+15) s,t′=5(3-15) s舍去.例2 法1:⑴上升过程,匀减速直线运动,取竖直向上为正方向,v0 = 20 m/s,a1 = –g,v = 0,依据匀变速直线运动公式:v2–v02 = 2ax,v= v0 + at,得物体上升的最大高度:H = v02/2a1 = v02/2g = 20 m;上升时间:t1 = v0/g = 2 s;下落过程,自由落体运动,取竖直向下为正方向.v02 = 0,a2 = g,回到抛出点时,x1 = H,到抛出点下方20 m处时,x2 = 40 m,依据自由落体公式,得下落到抛出点的时间:t2=2x1g =2×2010s=2 s,回到抛出点所用的时间为t = t1+t2 = 4 s.⑵下落到抛出点下方20 m处的时间:t2′=2x2g=2×4010s = 2 2 s;从抛出到落到抛出点下方20 m处所经历时间为t′ = t1 + t2′= 2(1+2) s.法2:⑴全过程分析,取向上为正方向,v0 = 20 m/s,a= –g,最大高度时v = 0,回到原抛出点时x1 =0 m,由匀变速运动公式得最大高度:H = v02/2g = 20 m,回到原抛出点:x1 = v0t–12gt2,t = 2 v0/g =4 s.⑵落到抛出点下方20 m处时,x = – 20 m:x = v0t2–12gt22,代入数据得:–20 = 20t2–12×10t22,解得⎩⎨⎧t2=〔2+22〕 s t2′=〔2-22〕 s.舍去.所以石子落到抛出点下方20 m 处所需时间t 2=2(1+2) s 变式2 A CD ;物体在塔顶上的A 点抛出,位移大小为10 m 的位置有两处,如下列图,一处在A 点之上,另一处在A 点之下,在A 点之上时,通过位移为10 m 处又有上升和下降两种过程,上升通过时,物体的路程s 1等于位移x 1的大小,即s 1=x 1=10 m ;下落通过时,路程s 2=2H -x 1=2×20 m -10 m =30 m ,在A 点之下时,通过的路程s 3=2H +x 2=2×20 m +10 m =50 m .故A 、C 、D 正确例3 B ;因汽车刹车后一直做匀减速直到运动速度为零为止,所以t = v 0/a = 50 s ,所以汽车刹车后在1 min内通过的位移为x = v 0t /2 = 250 m . 变式3 C ;因汽车做匀减速直线运动.由x = v 0t +12at 2得 9=v 0×1-12a ×12,9+7=v 0×2-12a ×22,解得v 0 = 10 m/s ,a = 2 m/s 2.汽车从刹车到停止所需时间t = v 0/a = 5s ;刹车后6 s 内的位移即5 s 内的位移x = v 0t – 12at 2,代入数据解得x = 25 m .四.考题再练 高考真题 1.B预测1:B ;由x = v t /2解得起飞滑跑时间和着陆滑跑时间之比是 t 1:t 2 =(x 1/x 2)(v 2/v 1) =1∶1,选项B 正确. 2.⑴ 设连续两次撞击铁轨的时间间隔为Δt ,每根铁轨长度为l ,则客车速度为v = l /Δt ,其中l = 25.0m 、Δt = 10.0/(16–1) s 得 v = 37.5m/s .⑵ 设从货车开始运动后t = 20.0s 内客车行驶了s 1米,货车行驶了s 2米,货车加速度为a ,30节货车车厢的总长度为L = 30×16.0m .由运动学公式有 s 1 = v t 、s 2 = at 2/2,由题给条件有L = s 1 – s 2,联立上述各式,并代入数据解得a = 1.35m/s 2.预测2:⑴ 通过记录表格可以看出,动车组有两个时间段处于加速状态,设加速度分别为a 1、a 2,由 a =Δv /Δt 代入数据后得a 1 = 0.1m/s 2、a 2 = 0.2m/s 2.⑵ 由牛顿第二定律 F - F f = Ma ,F f = 0.1Mg 当加速度大时,牵引力也大.代入数据得 F = F f + Ma 2 =2.4×105N .⑶ 通过作出动车组的 v – t 图可知,第—次加速运动的结束时刻是200s ,第二次加速运动的开始时刻是450s .x 1 = (v 1 + v 2)/2]t 1、x 2 = v 2t 2、x 3 = (v 2 + v 3)/2]t 3、x = x 1 + x 2 + x 3,代入数据解得x = 30250m .五.课堂演练 自我提升1.B ;由x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶xn =1∶3∶5∶…∶(2n – 1)知x 1∶x 2=1∶3,由x =12at 2知t 1∶t 2=1∶2,又v=at 可得v 1∶v 2=1∶2,正确.2.D ;中间时刻的速度等于这段时间内的平均速度,即v t/2 = (v 0 + v )/2 = 4 m/s3.C ;自上而下第—、二和三点之间的距离分别为x 1 = (10.00 – 1.00)×10-2 m = 9.00×10-2 m ,x 2 = (29.00 –10.00)×10-2 m =19.00×10-2 m ,依据公式Δx = aT 2得x 2–x 1 = gT 2,故T = 0.1 s . 4.B ;设加速度大小为a ,则开始减速时的初速度大小为v 0=at =4a ,第1 s 内的位移是x 1=v 0t 1-12at 12=3.5a = 14 m ,所以a =4 m/s 2,物体最后1 s 的位移是x =12at 22=2 m .此题也可以采纳逆向思维的方法,把物体的运动看做是初速度为零的匀加速直线运动,其在连续相邻相等时间内的位移之比为1∶3∶5∶7,第4 s 内的位移是14 m ,所以第1 s 内的位移是2 m .5.BD ;v 0=15 m/s ,故刹车后卡车做匀减速运动的时间t 2 = v 0/a = 3 s ,故卡车经过3.6 s 停下来,A 错误;卡车与该老人的距离x =v 0t 1 + v 02/2a +Δx =33 m ,B 正确;v 平 = (x –Δx )/(t 1 + t 2) =8.75 m/s ,C 错误;x ′ = v ′t 1 + v ′2/2a = 52 m > 33 m ,所以D 正确.6.AC ;设两物体从下落到相遇的时间为t ,竖直上抛物体初速度为v 0,由题gt = v 0 – gt = v 得v 0=2v .故A 正确.依据竖直上抛运动的对称性可知,B 自由落下到地面的速度为2v ,在空中运动时间为t B = 2v /2g ,A 竖直上抛,在空中运动时间t A = 2×(2v /g ) = 4v /g .故B 错误.物体A 能上升的最大高度h A = (2v )2/2g ,B 开始下落的高度h B =g (2v /g )2/2,显然两者相等.故C 正确.两物体在空中同时到达同一高度为h = gt 2/2 = g (v /g )2/2 = v 2/2g = h B /4.故D 错误.应选AC7.BC ;设AB 之间的距离为L ,小鸟的速率是v 1,汽车的速率是v 2,小鸟从出发到与汽车相遇的时间与返回的时间相同,故它们相向运动的时间为t 1/2,则在小鸟和汽车相向运动的过程中有v 1t 1/2 + v 2t 1/2 = L ,即〔v 1 + v 2〕t 1/2 = L ,对于汽车来说有v 2t 2 = L ;联立以上两式可得v 1 =3 v 2,故A 错误B 正确.汽车通过的总路程为x 2 = v 2t 2,小鸟飞行的总路程为x 1 = v 1t 1=3 v 2×(t 2/2) = (3/2)x 2,故C 正确.小鸟回到出发点,故小鸟的位移为0,故D 错误.应选BC .8.⑴ 由题意依据运动学公式v 2 – v 20 = 2ax 得– v 20 = 2ax 代入数据解得v 0 = 14 m/s . ⑵ 法1:由v = v 0 + at 0得t 0 = (v – v 0)/a = 2s ;法2:(逆过程) 由x = 12at 02 得t 0 =2xa= 2 s . ⑶ 法1:v 平均 = x /t = 7 m/s ;法2:v 平均 = (v 0 + v )/2 = 7 m/s .附:9.物体以肯定的初速度v 0冲上固定的光滑斜面,到达斜面X 点C 时速度恰为零,如下列图.物体第—次运动到斜面长度3/4处的B 点时,所用时间为t ,求物体从B 滑到C 所用的时间. 法1〔比例法〕:对于初速度为0的匀加速直线运动,在连续相等的时间里通过的位移之比为 x 1∶x 2∶x 3∶…∶x n = 1∶3∶5∶…∶(2n – 1),现有x BC ∶x AB = (x AC /4)∶(3x AC /4) = 1∶3,通过x AB 的时间为t ,故通过x BC 的时间t BC = t . 法2〔中间时刻速度法〕:中间时刻的瞬时速度等于这段位移的平均速度.v AC = (v 0 + 0)/2 = v 0/2,又v 02 =2ax AC ① v B 2 = 2ax BC ② x BC = x AC /4 ③ 解①②③得:v B = v 0/2,可以看出v B 正好等于AC 段的平均速度,因此B 点是中间时刻的位置.因此有t BC = t . 法3〔利用有关推论〕:对于初速度为0的匀加速直线运动,通过连续相等的各段位移所用的时间之比为 t 1∶t 2∶t 3∶…∶t n = 1∶(2-1)∶(3-2)∶(4-3)∶…∶(n-n -1).现将整个斜面分成相等的四段,如下列图.设通过BC段的时间为t x ,那么通过BD ,DE ,EA 的时间分别为:t BD = (2-1)t x ,t DE = (3-2)t x ,t EA = (2-3)t x ,又t BD + t DE + t EA = t ,得t x = t .v /m·s -1t/s100 200 300 400 500 600 20406080。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v +v = 5m/s 解:v 中 = 2
2 0 2 t
4
练习3: 练习 : v0=1m/s
a=2.5m/s2
有一个做匀变速直线运动的质点, 有一个做匀变速直线运动的质点, 它在相邻的相等时间内通过位移分别是 24m和64m,连续相等的时间为 ,求 和 ,连续相等的时间为4s, 质点的初速度和加速度大小。 质点的初速度和加速度大小。
练习2: 练习 : 做匀加速直线运动的列车出站时, 做匀加速直线运动的列车出站时,车 头经过站台上的某人时速度为1m/s,车 头经过站台上的某人时速度为 , 尾经过此人时速度为7m/s,若此人站着 尾经过此人时速度为 , 一直未动,则车身中部(中点) 一直未动,则车身中部(中点)经过此人 面前时的速度是多少? 面前时的速度是多少?
2
3.初速度为零的匀变速直线运动的 物体在连续相同时间内位移之比为 奇数比,即: …… s :s :s :
Ⅰ Ⅱ Ⅲ
=1: 3: 5:L L
4.速度为零的匀加速直线运动的物体经历连续相 . 同的位移所需时间之比, 同的位移所需时间之比,即 :
t1 : t2 : t3 :L=1: ( 2 −1 : ( 3 − 2) :L )
5.做匀变速直线运动的物体,在某 段时间中点时刻的瞬时速度等于物 体在这段时间的平均速度,即:
v0 +vt v时中 = =v 2
6.匀变速直线运动的物体,在某段位移中点位置 .匀变速直线运动的物体, 的瞬时速度等于这段位移始末瞬时速度的方均 根速度, 根速度,即:
v +v v位中 = 2
2 0
2 t
1.初速度为零的匀加速直线运动的物体的速度与 时间成正比, 时间成正比,即:
v1 : v2 : v3 :L n =1: 2: 3:Ln v
2.初速度为零的匀加速运动,物体在第1、2……ns 初速度为零的匀加速运动,物体在第1 内位移之比为时间的平方比, 内位移之比为时间的平方比,即
s1 : s2 : s3 :L: sn =1: 4: 9:Ln
一个滑雪的人, 一个滑雪的人,从85m长的山坡上匀变速 长的山坡上匀变速 滑下,初速度是1.8m/s,末速度是5.0m/s,它 滑下,初速度是 ,末速度是 , 通过这段山坡需要多长时间? 通过这段山坡需要多长时间? 解:选滑雪的人的运动方向为 正方向, 正方向,则v0、vt、s皆为正值 皆为正值
2s 2 × 85m ∴t = = = 25s v 0 + v t 1.8m/s + 50m/s
1 2 选s = v 0t + at 的变形 2
t1 = 10s − v 0 ± v 2 + 2as 0 ⇒ t= 1 t 2 = 40s (舍掉) 舍掉) 2× a 2 v1=v0+at1=15m/s-0.6×10m/s=9m/s - ×
求t 物理情景图
v2=v0+at2=15m/s-0.6×40m/s=-9m/s (舍掉) - × 舍掉)
一辆汽车以10m/s的速度开始下坡, 的速度开始下坡, 例 一辆汽车以 的速度开始下坡 下坡时的加速度为0.04m/s2,到达坡底的速 下坡时的加速度为 度为14m/s,则这个坡的长度是多少? 度为 ,则这个坡的长度是多少? 解:选v0方向为正 用2as=vt2-v02求解
Hale Waihona Puke vt − v0 s= 2a 2 2 (14m/s) −(10m/s) = 2 2 × 0.04m/s = 1200m
7、匀变速直线运动中,在连 续相等的时间间隔T内位移之 差都相等,等于加速度a和时 间的平方T2的乘积,即
• sⅡ-sⅠ=sⅢ-sⅡ=sⅣ- sⅢ……=aT2
下面说法正确的是( A、B) 下面说法正确的是( 、 A.若取 0为正方向,匀加速直线 若取V 为正方向, 若取 运动中a取正值 运动中 取正值 B.若取 0为正方向,匀减速直线 若取V 为正方向, 若取 运动中a取负值 运动中 取负值 C.无论匀加速直线运动还是匀减 无论匀加速直线运动还是匀减 速直线运动a都取正值 速直线运动 都取正值
2
2
求s 物理情景图
练习1: 练习 : 一滑块由静止开始, 一滑块由静止开始,从斜面顶端匀加速下 末的速度是6m/s,求: 滑,第5s末的速度是 末的速度是 , 4V5 4×6m/ s V4 4 (1)第4s末的速度 = ⇒V4 = = ) 末的速度 = 4.8m/ s 5 5 V5 5 a=V5/t5=6m/5s=1.2m/s2 (2)头7s内的位移 ) 内的位移 S=at2/2=29.4m (3)第3s内的位移 S3=at32/2-at22/2=3m ) 内的位移
归纳:解决匀变速直线问题的要点: 归纳:解决匀变速直线问题的要点: (1)弄清题意,建立正确的物理情景, )弄清题意,建立正确的物理情景, (2)选择正方向,选定合适公式或其变形公式 )选择正方向, (3)代入运算,有些要检查结果是否符合题意 )代入运算,
求t 物理情景图
思考题: 思考题: 一辆汽车以15m/s的初速度冲上长为 的初速度冲上长为120m的斜 一辆汽车以 的初速度冲上长为 的斜 设汽车做匀变速直线运动, 坡,设汽车做匀变速直线运动,加速度的大小 求汽车到达坡顶需用多长时间? 为0.6m/s2,求汽车到达坡顶需用多长时间? 解:选v0为正方向
v0 + vt 2s 变形 → 选 s= 择 t t = 求 解 2 v0 + vt
(3)选择哪个公式求解时间 ? )选择哪个公式求解时间t
第二章 直线运动
匀变速直线运动规律的特殊推论
一、位移和速度 的关系
1.推导:由速度公式 推导:
vt = v0 + at
vt −v0 得: t = a
代入位移公式
1 2 s = v0t + at 2
2 0
整理后得位移和速度的关系式: 整理后得位移和速度的关系式:
v −v = 2as
2 t
二、匀变速直线运动的一 些特殊规律
SC − SI 64m−24m a= 2 = = 2.5m/ s2 2 T (4s) 1 2 1 2 S − aT 24− ×2.5×4 1 2 2 S =V0T + aT ⇒V0 = 2 = =1m/ s 2 T 4 4
练习4: 练习 : 甲、乙两车同时从同一地点出发,向同一 乙两车同时从同一地点出发, 方向运动,其中,甲以10m/s的速度匀速行驶, 的速度匀速行驶, 方向运动,其中,甲以 的速度匀速行驶 乙以2m/s2的加速度由静止启动,求: 的加速度由静止启动, 乙以 (1)经多长时间乙车追上甲车,此时甲、乙 )经多长时间乙车追上甲车,此时甲、 两车速度有何关系? 两车速度有何关系? (2)追上前多长时间两者相距最远,此时二 )追上前多长时间两者相距最远, 者的速度有何关系? 者的速度有何关系?
(1)t=10s v2=2v1 (2)t=5s时,二者相距最远,此时两者速度相等 时 二者相距最远,
一个滑雪的人, 一个滑雪的人,从85m长的山坡上匀变速 长的山坡上匀变速 滑下,初速度是1.8m/s,末速度是 滑下,初速度是 ,末速度是5.0m/s,它 , 通过这段山坡需要多长时间? 通过这段山坡需要多长时间? 请同学们画草图思考: 请同学们画草图思考: (1)该滑雪的人的运动可当做哪一种匀变速 ) 直线运动? 直线运动? 匀加速直线运动 (2)明确题中的已知条件是五个量中的哪一 ) 些? 已知v 已知 0 vt s
相关文档
最新文档