22.1.1 二次函数(教案)
22.1.1二次函数教学设计.doc
课题§22.1.1 二次函数的定义备课日期年月日课型新授1.能结合具体情景体会二次函数的意义, 理解二次函数的有关概念.知识与技能2.能够表示简单变量之间的二次函数关系.通过具体问题情境中的二次函数关系了解二次函数的一般表述式,在类比一教过程与方法次函数表达式时感受二次函数中二次项系数a≠0 的重要特征从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的学过程,进一步体验如何用数学的方法去描述变量之间的数量关系。
目情感态度把数学问题和实际问题相联系,使学生初步体会探索数学符号感的现实意与价值观义,并培养钻研精神。
标教学重点二次函数的概念和解析式教学难点会建立简单的二次函数的模型教学方法启发、引导、讲练结合教学用具多媒体、导学案课时安排 1教学内容师生活动设计意图复习旧知,加【图片欣赏,导入新课】教师提出问题,学多媒体演示生回顾旧知,两名学生口答深对函数定义【以旧引新】的理解.强调1.一元二次方程的一般形式是什么?2.什么是函数?我们学过哪些函数?k≠0 的条件,以备与二次函【自主学习合作探究】问题1:正方体的六个面是全等的正方形,如果正方形的棱数中的a 进行长为x,表面积为y,写出y 与x 的关系:问题2:n 个球队参加比赛,每两队之间进行一场比赛.比赛比较.的场次数m 与球队数n 有什么关系?通过具体事问题3:某种产品现在的年产量是20 t,计划今后两年增加三个问题学生先产量.如果每年都比上一年的产量增加 x 倍,那么两年后这种产品的产量 y 将随计划所定的 x 的值而确定,y 与 x 之间的独立思考完成 , 然 后合作交流 , 教师例,让学生列 关系怎样表示 ?1122+40x+202(2)(3)y=20xmn n (1)y=6x22思考:观察以上三个问题所写出来的三个函数关系式有什对个别 有困难 的 学生进行引导。
对于 “思考” 中提出关系式,启 发学生观察,思考,归纳出么共同特点 ?出的问题, 教师进归纳:二次函数的定义行如下 启发: 1.二次函数与一这几个 函数是 我 2+bx+c (a,b,ca 0)为常数,且 ≠ 的函数叫一般地,形如y=ax们已学 过的函 数二次函数 . 其中,x 是自变量,a,b,c 分别是函数解析式的二次次函数的联系吗? 2. 这些函数项系数、一次项系数和常数项.练习:1.下列函数表达式中, 哪些是二次函数?哪些不是?的自变量 x 的最高次数是多少? 若是二次函数,请指出各项对应项的系数.22+2x(1)y =1-3x (2)y =3x (3)y =x (x -5)+2 (4)y =3x3+2x 23. 比较三个式子, (1) 和(2)缺失了1 x(5)y =x +什么项, 你能补全 吗?4. 三个式 子2.函数 当a,y 2 ax bx c(其中 a,b, c 是常数 ), 可以统 一为什 么 形式? b,c满足什 么条 件时归纳定义, 叫一名(1) 它是二次函数 ? (2) 它是一次函数? (3) 它是正比例函 学生完成, 其他学 生进行补充数?【合作交流 展示讲解】例 1:若函数 y 2 (m 1)x2mm为二次函数,则 m 的值为学生自 主完成 巩 固练习, 教师提问理论学习完二多少?次函数的概念例2: 一个正方形的边长是12 cm,若从中挖去一个长为2xcm,宽为(x+1)cm 的小长方形,剩余部分的面积为y cm2.2.后,让学生在(1)出y 与x 之间的关系表达式,并指出y 是x 的什么实践中感悟什函数?(2)当小长方形中x 的值分别为 2 和4 时,相应的剩余部分的面积是多少?(3)当y=0 时,求自变量x 的值,并判断是否符合实际意义. 学生先自主完成,然后讨论交流. 教师在解题方法和么样的函数是二次函数,将【课堂检测】解题过程上进行引导理论知识应用基础达标:到实践操作1. 下列各式:例 2 中注意让学 生写出 自变量 的中.练习 2 题取值范围让学生进一步 2⑦y=(2x+1)( x ﹣2)﹣2x ;其中 y 是 x 的二次函数的有 体会二次函数__________(只填序号) . 1. 已知二次函数 y=1-3x+5x2,则二次项系数 a=_______,一与一次函数的次项系数 b=_______ ,常数项 c=_______.3.函数 y =(m -2)x2+mx -3(m 为常数). 联系(1)当 m__________时,该函数为二次函数; (2)当 m__________时,该函数为一次函数. 例 1 的教学目4. 在一定条件下,若物体运动的路段 s (米)与时间 t (秒)之间的关系为的是让学生进2+2t ,则当 t =4 秒时,该物体所经过的路程为s =5t ()A .28 米B .48 米C .68 米D .88 米学生自 主完成 练 习, 对本节课的知 识进行检测 . 教师巡视指导 , 帮一步巩固二次 函数的概念 .5. 已知函数 ,当 m=________时,它是二次函数.能力提升 :助有困难的学生, 集体存 在的问 题统一讲解例 2 的教学让 学生进一步学1. 二次函数 y=x ( ) 2+2x-7 的函数值是 8,那么对应的 x 的值是习表示简单变A.5B.3C.3 或-5D.-3 或 5量之间的二次2 2.已知 y 与 x成正比例,且当 x=3 时,y=﹣18,写函数关系的方出 y 与 x 之间的函数解析式,它是二次函数吗? [2+bx +3.当 x =2 时,y =3,求 这33. 已知二次函数 y =-x个二次函数解析式. 法,同时注意4. 已知,函数 y=(m+1)x23 2mm+(m-1)x(m 是常数 ).考虑自变量的①m 为何值时,它是二次函数? 取值,并巩固②m 为何值时,它是一次函数?5. 如图,在△ABC 中,∠B=90 ° ,AB=12 mm ,BC=24 mm ,函数值等知动点 P 从点 A 开始沿边 AB 向 B 以 2 mm/s 的速度移动 (不与 点 B 重合),动点 Q 从点 B 开始沿边 BC 向 C 以 4 mm/s 的速 识.度移动 (不与点 C 重合).如果 P 、Q 分别从 A 、B 同时出发,设运动的时间为 x s,四边形 APQC 的面积为 y mm 2. (1)求 y 与 x 之间的函数关系式;(2)求自变量x 的取值范围;巩固练习分层设置, 让不同层次的学生都有所获(3)四边形APQC 的面积能否等于172 mm 时间;若不能,说明理由. 2.若能,求出运动的让学生来谈本节课的收获,培养学生自我检查、自我小【小结与作业】这节课你有哪些收获?还有什么疑问吗 ?结的良好习作业: 1. 习题22.1 复习巩固第1、2 题惯,将知识进2. 完成同步训练行整理并系统安全提示:放学回家路上注意安全.化。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案
22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
湖南省九年级数学上册第二十二章二次函数22.1.1二次函数教案 新人教版
二次函数课题: 22.1.1 二次函数.课时 1 课时教学设计课标要求1.理解二次函数的概念,掌握二次函数的形式.2.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.教材及学情分析1、教材分析:二次函数”这一章是初中阶段所学的有关函数知识的重点内容之一,学生在学习了正比例函数、一次函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是今后学习其它初等函数的基础,因此,这部分对学生学习函数内容有着承上启下的作用,对培养和提高学生用函数模型(函数思想)来解决实际问题,逐步提高分析问题,解决问题的能力有着一定的作用。
2、学情分析九年级的学生,在讲本节课之前,已经学习了一次函数的概念、图像和性质,从知识结构上看他们已经具备了继续探究二次函数的图像和性质的基础。
学生自主探究和合作交流的能力较强,并且他们比较、分析、抽象和概括的能力也有较大提高。
但也有一些问题,求函数的解析式、由函数图象得出有用的信息的能力有待提高。
课时教学目标1.理解二次函数的概念,掌握二次函数的形式.2.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围. 3.让学生从实际问题情境中经历探索、分析和建立两个变量之间的二次函数关系模型的过程,发展概括及分析问题、解次问题的能力.4.通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.重点理解二次函数y=ax2+bx+c(a、b、c)是常数,且a≠0的概念.难点教材中涉及的实际问题有的较为复杂,要求学生有较强的抽象概括能力.教法学法指导启发法发现法练习法教具课件二、二次函数的概教师引导学生思考问题,列出方程.导入新场比赛.比赛的场次数m与球队数n有什么=2n=2n-2nax+bx+c(a,b,思考:函数y=6x、m=2n-2n、y=20x面积必S 与底面半径 r 之间的关系式是_________;(2) n 支球队参加比赛,每两队之间进行小结 1、二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.2、求函数解析式的步骤:设、列、解、写。
第22章 人教版数学九年级上册教案1 二次函数
22.1 二次函数的图象和性质22.1.1 二次函数课题22.1.1 二次函数授课人知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,让学生归纳二次函数的概念并能够根据函数特征识别二次函数.数学思考学生能对具体情境中的数学信息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系.问题解决通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来于生活,又服务于生活的辩证观点.教学目标情感态度通过观察、操作、交流、归纳等数学活动,加深对二次函数概念的理解,发展学生的数学思维,增强学生学好数学的愿望与信心.教学重点对二次函数的理解.教学难点由实际问题确定函数解析式和确定自变量的取值范围.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾1.我们学习过哪些函数呢?试着举例说明一下.2.下列函数是什么函数?有不认识的吗?能说说你所认识的函数的图象和性质吗?(1)y=2x+1;(2)y=-4x;(3)y=3x2+1.3.学习函数应从哪几个方面进行探究呢?师生活动:教师提出以上问题,引导学生回答,师生共同回顾、交流,适时做好总结.问题解析:1.学习过的函数有一次函数,正比例函数是其特殊形式.2.(2)是正比例函数;(1)(2)是一次函数.3.学习函数一般是从函数的定义、函数的一般形式、函数的图象及其性质、函数的实际应用等方面进行学习.由回顾旧知识入手,通过回顾已经学习过的函数的相关知识对要学习的新知识有明确的方向,通过类比进行延伸,符合学生的认知规律.活动一:创设情境导入新课【课堂引入】图22-1-5问题:如图22-1-5,正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y,则y与x以学生熟悉、感兴趣的问题作为课题引入,激发学生学习新知识的兴趣,同时为引入新课奠定基础.之间的函数解析式是什么?它是一次函数吗?有什么特点?学生思考后回答,教师点拨:这是我们今天需要学习和研究的“二次函数”数学模型.活动二:实践探究交流新知1.探究新知(1)n个球队参加比赛,每两个队之间都要进行一场比赛,场数m与球队数n之间有什么关系?每个队要与几个队各比赛一场?(2)某产品今年的年产量是20 t,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将由计划所定的x的值而确定,y与x之间的关系应怎样表示?教师提问:(1)以上问题中有哪些变量?其中哪些是自变量?列出问题中的函数解析式;(2)观察上面的函数解析式,分析解析式有什么特点.让学生独立思考完成解答,教师适当地引导与点拨,共同得到问题的结论.教师板书:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.2.解析新知教师指导学生观察二次函数的定义,交流、讨论二次由现实中的实际问题入手,给学生创设熟悉的问题情境,通过问题的解决为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲,学生通过分析、交流探究二次函数的概念,加深对概念的理解,为解决问题打下基础.函数的特征,并进行总结:①等式左边是函数y,右边是关于自变量的整式;②a,b,c都是常数,a≠0;③等式右边自变量的最高次数为2,一次项和常数项可以为0,但是必须保留二次项;④自变量x的取值范围是任意实数.教师做好归纳:二次函数的一般形式:y=ax2+bx+c(a,b,c是常数,a≠0),ax2叫做二次项,a叫做二次项系数,bx 叫做一次项,b叫做一次项系数,c是常数项.活动三:开放训练体现应用【应用举例】例1 下列函数中,属于二次函数的是( C )A.y=2x-3B.y=(x+1)2-x2C.y=2x2-7xD.y=-x例2 关于函数y=(500-10x)(40+x),下列说法不正确的是( C )A.y是x的二次函数B.二次项系数是-10C.一次项是100D.常数项是20000例3 若y=(m+1)xm2-6m-5是二次函数,则m的值为 7 .师生活动:学生自主进行解答问题后,分组展开讨论,待学生充分交流后,教师组织学生展示自己的答案,应用举例有利于学生对二次函数概念的理解,能起到及时巩固的作用.共同得到正确的结论,并获得解题的经验.【拓展提升】例4 李师傅要在一张长、宽分别为50 cm和30 cm 的矩形铁皮的四个角上,各剪去一个大小相同的小正方形,用剩余的部分制作一个无盖的长方体箱子,小正方形的边长为x cm,长方体箱子的底面积为ycm2.求:(1)y与x之间的函数解析式;(2)自变量x的取值范围;(3)当x=5 cm时,长方体箱子的底面积.教师重点关注:学生对已解问题与未解问题的对比分析能力;给予学生一定的时间去思考、充分讨论,争取让学生自己得到解答方法,并对学习有困难的学生适当引导、点拨.例4中的三个问题层层递进,在复习旧知识的同时获得解决新问题的经验,进一步内化新知、突破难点.活动四:课堂总结反思【达标测评】1.下列函数中是二次函数的是( B )A.y=x+12 B.y=3(x-1)2C.y=(x+1)2-x2D.y=3x-12.若函数y=(a-1)x2+2x+a2-1是关于x的二次函数,则( C )A.a=1B.a=±1C.a≠1D.a≠-13.已知关于x的函数y=(m2-1)xm2-m是二次函数,求m的值.从简单的应用开始,及时巩固新知,让学生获得对二次函数深层次的理解,从多个角度进行检测,达到学有所成的目的.4.已知二次函数y=2x2+x-3.(1)当x=1时,求它所对应的函数值y;(2)当y=0时,求它所对应的自变量x的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.1.课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?请同学们说一说.教师进行总结:二次函数的定义及各部分名称;根据实际问题列二次函数解析式及求函数值.2.布置作业:(1)教材第29页练习第1,2题.(2)教材第41页习题22.1第1,2题.学生归纳本节课学习的主要内容,让学生自觉对所学知识进行梳理,形成体系,养成良好的学习习惯.【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]在复习回顾环节中,教师引导学生复习一次函数和一反思教学过程和教师表现,进一步优化操作流程和提升自身素质.元二次方程的知识,为学习二次函数做好铺垫;在探究新知过程中,通过类比学习使知识简单化,思路清晰化,学习效果较好;在课堂训练环节中,选用例题典型且有思维深度,学生能够运用所学新知进行解答,能够圆满完成教学任务.②[讲授效果反思]对于二次函数的认识,强调几点:(1)一般形式中各项的名称;(2)二次项系数不能为0;(3)二次函数解析式的多种形式.③[师生互动反思]从课堂氛围和课堂效果分析,学生能够积极投入新知学习中,能够集中精力完成学习任务.④[习题反思]好题题号 错题题号 典案二导学设计学习目标:1、通过观察发现二次函数的特点,得出二次函数的定义,能区分二次函数;2、能够根据实际问题,熟练地列出二次函数关系式;3、通过解决实际问题的过程总结建立数学模型的方法,培养与他人交流的意识和提取合理见解的能力。
人教版九年级数学上册22.1.1《二次函数》教学设计
人教版九年级数学上册22.1.1《二次函数》教学设计一. 教材分析人教版九年级数学上册22.1.1《二次函数》是整个初中数学的重要内容,它不仅巩固了之前学习的函数知识,还为高中阶段的数学学习奠定了基础。
这一节主要介绍二次函数的定义、性质和图象。
教材通过实例引入二次函数,让学生从实际问题中感受到二次函数的存在,进而引导学生去探究、理解二次函数的性质。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念、性质有所了解。
但是,二次函数相对于一次函数和反比例函数,其性质更为复杂,图象也更为抽象。
因此,学生在学习本节内容时可能会感到困惑。
另外,学生的数学思维能力和探究能力参差不齐,需要教师在教学中进行针对性的引导和帮助。
三. 教学目标1.理解二次函数的定义,掌握二次函数的一般形式。
2.了解二次函数的性质,包括对称轴、顶点、开口方向等。
3.能够绘制二次函数的图象,从图象中观察和理解二次函数的性质。
4.能够运用二次函数解决实际问题,提高解决问题的能力。
四. 教学重难点1.二次函数的定义和一般形式。
2.二次函数的性质,尤其是对称轴、顶点、开口方向等。
3.二次函数图象的绘制和分析。
4.运用二次函数解决实际问题。
五. 教学方法1.情境教学法:通过实例引入二次函数,让学生从实际问题中感受到二次函数的存在。
2.探究教学法:引导学生通过小组合作、讨论的方式,探究二次函数的性质。
3.数形结合教学法:利用图象展示二次函数的性质,让学生从图象中观察和理解二次函数。
4.实践教学法:让学生通过解决实际问题,运用二次函数的知识。
六. 教学准备1.教学课件:制作课件,展示二次函数的图象和性质。
2.实例:准备一些实际问题,用于引入二次函数。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入二次函数的概念。
例如:一个物体从地面抛出,其高度与时间的关系可以表示为一个二次函数。
让学生思考:这个二次函数是什么样子?它的图象是什么样的?2.呈现(10分钟)利用课件,呈现二次函数的一般形式和图象。
22.1.1二次函数教案
《22.1.1二次函数》教学设计表任务一:掌握二次函数的定义并解决相关数学问题活动1:下列等式哪些是y关于x的函数?如果是,是什么函数?13)6(123)5()4(2)3(2)2(12)1(222+-=++====+=xyxxyxyxyxyxy(1)学生能快速判断出哪些等式是函数,是什么函数。
若不是函数能说出理由。
(2)能通过活动1中的(5)和(6)来猜想出二次函数的定义。
在质疑和思考中师生共同得出二次函数的一般表达式。
(2)明确二次函数中的二次项系数,一次项系数和常数项。
(4)通过例1学生能独立正确判断出那些函数是二次函数。
对于是二次函数的①⑥能快速正确的说出二次项系数,一次项系数和常数项。
(6)通过例1独立总结或同桌商讨后总结出一个函数是否为二次函数的识别要点。
活动2:利用二次函数的定义求字母的值活动3:二次函数的求值问题(1)能熟练地运用一次函数、正比例函数和二次函数的定义解决数学常考问题。
(3)最少有百分之80的学生能在规定时间(4分钟)书写格式规范并正确的解决第2题和第3题。
95%的学生能得出正确答案。
能快速正确地解决二次函数求值问题任务二:用二次函数解决简单实际应用问题活动1:实际问题中根据几何知识列二次函数解析式(1)95%的学生能准确找出题目中的等量关系。
(2)90%的学生能根据等量关系列出函数解析式并确定自变量的取值范围。
(3)明确解决这类型题目自变量取值范围的方法。
如图,用一段长为40 m的篱笆围成一个一边靠墙的矩形菜园ABCD,墙长为18 m,设AD的长为x m,菜园ABCD的面积为y m2,则y关于自变量x的函数关系式是 ,x的取值1.当m为何值时,函数y=(m-4)x m²-5m+6+mx是关于x的二次函数.2.()273.my m x-=+(1)m取什么值时,此函数是正比例函数?(2)m取什么值时,此函数是二次函数?3.已知函数(1)当k为何值时,该函数为一次函数?(2)当k为何值时,该函数为二次函数?运用:集成:设计:从各地市的月考、模拟考、期中、期末考试试题中精选和改编出能高效考查本节课知识的试题。
人教版二次函数优质教案
人教版二次函数优质教案22.1.1二次函数教学目标:一、知识与技能1、理解和掌握二次函数相关概念,能够表示简单的二次函数关系。
2、根据实际问题建立二次函数解析式,进一步体会数学建模思想。
二、过程与方法通过探讨函数概念的过程,建立学生数学模型思想。
三、情感、态度与价值观通过自主探讨的过程,让学生体会学习数学的快乐。
教学重点:二次函数的概念。
教学难点:理解变量之间关系,建立二次函数关系式。
教学方法:合作交流法,讨论法,引导------启发式课时安排:1课时教学过程:一、导入新课问:1、如果一个正方形的边长为5,那这个正方形的面积为什么?2、如果一个正方体的边长为4,那么这个正方体的表面积为多少?3、如果一个正方体的边长为x,这个正方体的表面积为y,你可以列出y关于x的表达式吗?像这种的式子就是我们今天所要学习的二次函数。
二、讲授新课下面让我们再来共同看几个问题:问题1:个球队参加比赛,每两队之间进行一场比赛,比赛的场次数与球队数有什么关系?教师提问:1、同学们能列出这个关系式吗?学生相互探讨交流,教师引导3、每个队要与其他的对比赛多少场?怎么用来表示?4、把每个队要比赛的场次数相加,是不是就是总场数?有重复场次吗?现在我们一起来思考一下这个关系式怎么去列。
提问学生,得出关系式:,整理可得:问题2:某种产品现在的年产量是20t,计划今后两年增加产量。
如果每年都比上一年的产量增加倍,那么两年后这种产品的产量将随计划所定的的值而确定,你能表示出与的关系式吗?教师引导学生共同思考,讨论,交流,提问:1、现在的年产量是20t,每年都比上一年增加倍,那么明年的年产量是多少?可以用表示吗?2、后年的年产量可以用来表示吗?3、你能找出这个问题的等量关系吗?那么这个等式该怎么列?是关于与的式子吗?由此我们可以列出一个等式:整理得:这样我们就把这两个问题解决了,也带来个这样几个式子:(1)(2)(3)请同学们观察一下这三个式子,你能看出这三个式子又什么特点吗?学生思考交流,教师从旁引导,并提问:1、这三个式子都是什么式子?2、它们有几个未知数?这些未知数是如何变化的?3、最高次为几次?4、如果把最高次换成一次,那它们是一次函数吗?如:,,5、这几个式子和我们上面的例子有什么区别?6、你还能回想起一次函数的定义吗?那你能仿照一次函数给上面的这三个式子下个定义吗?让学生回答,教师在学生回答后进行总结:一般地,形如的函数,叫做二次函数。
22.1.1二次函数-教案
人教版数学九年级上22.1.1二次函数第一课时教学设计课题22.1.1二次函数单元第二十一章学科数学年级九年级上学习目标情感态度和价值观目标体会数学与生活的联系,锻炼学生的理性思维,体会通过探究学习新知识的乐趣。
能力目标经历探索具体问题中数量关系和变化规律的过程,体会二次函数是刻画现实世界的一个有效的数学模型。
知识目标 1.结合具体情境体会二次函数的意义,理解二次函数的有关概念;2.能够表示简单变量之间的二次函数关系,能应用二次函数的相关知识解决简单的问题。
重点将简单的实际问题转化为二次函数的模型. 理解二次函数的有关概念,能应用二次函数的相关知识解决简单的问题。
难点将简单的实际问题转化为二次函数的模型。
学法自主思考、协作讨论、类比学习法教法引导发现法、合作交流、讨论以及讲练结合教学过程教学环节教师活动学生活动设计意图导入新课一、情境引入回忆:1.什么是函数?2.我们学过哪些函数?出示章前图,学生观察。
从喷头飞出的水珠,在空中走过一条美丽曲线,你想知道在这条曲线的各个位置上,水珠的竖直高度h与它距离喷头的水平距离x之间有什么关系吗?通过本章的学习,我们就可解开这一疑团。
引发学生兴趣,导入本课主题。
通过图片联系生活,从生活中发现问题,启发思考。
讲授新课二、探究新知【例题1】正方体的六个面是全等的正方形,如果正方体形的棱长为x,表面积为y,请你写出y与x的关系式。
分析:正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y.显然,对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为y=6x2. ①【例题2】n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?分析:每个队要与其他(n-1)支球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛是同一场比赛,所以比赛的场次数是y=1(1)2n n ②【例题3】某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x 之间的关系应怎样表示?分析:这种产品的原产量是20件,一年后的产量是件,再经过一年后的产量是______件,即两年后的产量为_________,教师出示问题,并给予一定的分析。
人教版九年级数学上册22.1.1二次函数一等奖优秀教学设计
人教版义务教育课程标准实验教科书九年级上册
22.1.1二次函数
一、教材分析
1、地位作用:函数是初中阶段数学知识的一个重要内容,也是数学的核心知识和思想,对培养学生的数学能力有重要的作用。
初中阶段主要研究一次函数、二次函数及反比例函数.本章的教学是在学生对函数有了一定的认识,具备了一定的函数的思想后设计的,符合学生的认知需求和整个函数体系的自然发展。
本章学生经历实际问题的建模,在深入理解把握二次函数的性质及应用,体会函数的本质的同时,有利于提高数学的应用意识和能力,能使学生进一步树立函数思想和数形结合思想,并能逐步将思想上升为一种意识,有意识的在思想的指导下解决问题,对培养学生的数学思维,学生的终身发展需求有着重要的作用。
2、教学目标:
(1)知道二次函数的一般表达式;(2)会利用二次函数的概念分析解题
(3)列二次函数表达式解实际问题.
3、教学重、难点
教学重点:1、掌握二次函数的概念
2、能通过简单实际问题情境中变量之间的关系确定函数关系式
教学难点:能通过对简单实际问题情境的分析,确定函数关系式,体会并初步具有一定的函数思想
突破难点的方法:利用类比、分析突破难点.
二、教学准备:多媒体课件,几何画板.
三、教学过程:。
22.1.1二次函数_教案
22.1.1 二次函数教学设计一、教学目标:1. 能结合具体情境体会二次函数的意义,理解二次函数的有关概念;2. 能够表示简单变量之间的二次函数关系.二、重点难点:重点:结合具体情境体会二次函数的意义,掌握二次函数的有关概念.难点:1.能通过生活中的实际问题情境,构建二次函数关系; 2.重视二次函数2=++中a≠0这一隐含条件.y ax bx c三、教学过程:(一).复习导入:导出22.1 二次函数的图象和性质22.1.1 二次函数回顾旧知:函数的定义:在变化过程中,有两个变量x和y,当x每确定一个值时,y都有唯一一个值与其对应,我们称x为自变量,y为x的函数我们学习过哪些函数?一次函数的一般形式是:下列函数:1、21y x=+2、2=3、4y x5=-4、y x1=+y ax其中,y是x的一次函数有:变量之间的关系→函数→一次函数概念图象和性质与相应方程的联系实际问题设计意图:使学生进一步认识数学是与实际问题密不可分,人们的需要产生数学。
通过这些实际问题,有利于加深学生对函数概念的理解,引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.(二).过程探究引言正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y.则y 关于x 的关系式为①式表示了正方体的表面积y 与棱长x 之间的关系,对于x 的每一个值,y 都有唯一的值与之对应,即y 是x 的函数.问题1 n 个球队参加比赛,每两队之间进行一场比赛. 比赛的场次数m 与球队数n 有什么关系?问题2 某种产品现在的年产量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而确定,y与x 之间的关系应怎样表示?观察:函数①,②,③有什么共同点?上面问题中,自变量的最高次幂是2.-------二次函数定义:一般地,形如2=++( a,b,c是常数,a≠0) 的函数,叫做二y ax bx c次函数。
教学设计 22.1.1二次函数
第 22章 二 次 函 数第一课时教学目标:1.知识与技能目标:⑴.使学生理解并掌握二次例函数的概念⑵.能判断一个给定的函数是否为二次例函数⑶.能根据二次函数的定义求相关字母的值2.过程与方法目标:通过“探究----感悟----练习”,采用探究、讨论等方法进行。
3.情感态度与价值观:通过对几个特殊的二次函数的讲解,向学生进行一般与特殊的辩证唯物主义教育 教学重、难点1.重点:理解二次例函数的概念2.难点:能根据二次函数的定义求相关字母的值教学过程1、出示学习目标(1)会判断一个函数是否为二次例函数(2)能根据二次函数的定义求相关字母的值2、合作学习,探索新知 :问题1:正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,那么y 与x 的关系可表示为?y=6x 2问题2:n 边形的对角线数d 与边数n 之间有怎样的关系? d=21n(n-3) 问题3:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示?y=20x 2+40x+20观察以上三个问题所写出来的三个函数关系式有什么特点?经化简后都具有y=ax²+bx+c 的形式,(a,b,c是常数,a≠0 ).我们把形如y=ax²+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数称:a为二次项系数,ax2叫做二次项;b为一次项系数,bx叫做一次项;c为常数项.3、例题讲解:例1.下列函数中,哪些是二次函数?(1) y=3(x-1)²+1 (2)y=x+1/x (3) s=3-2t² (4)y=1/(x2 -x)(5)y=(x+3)²-x² (6)v=10πr² (7) y=x²+x³+25 (8)y=2²+2x4、随堂练习:1.下列函数中,哪些是二次函数?(1)y=x2 (2)y= -1/x2 (3) y=x(x-1) (4)y=(x-1)2-x22、当m为何值时,函数y=(m-2)xm2-2+4x-5是x的二次函数3、y=(m+3)xm2+m-4+(m+2)x+3,当m为何值时,y是x的二次函数?5、课堂小结:同学们,你有哪些收获?你认为谁今天表现最优秀?你认为谁比以前有进步?6、作业:1、课本3页 1题、2题2、预习下节课内容7、板书设计。
22.1.1二次函数(教案)[修改版]
第一篇:22.1.1 二次函数(教案)第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数教学目标【知识与技能】1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系. 【过程与方法】通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征. 【情感态度】在探究二次函数的学习活动中,体会通过探究发现的乐趣. 教学重点结合具体情境体会二次函数的意义,掌握二次函数的有关概念. 教学难点1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件. 教学过程一、情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x之间的关系式可表示为,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?二、思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给1予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=n(n-1)而不2是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t,第三年产量为20(1+x)(1+x)t,得到y=20(1+x)2. 【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.11思考函数y=6x2,m=n2-n,y=20x2+40x+20有哪些共同点?22【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习. 【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫做二次函数.其中x是自变量,a、b、c分别是二次项系数,一次项系数和常数项. 【教学说明】针对上述定义,教师应强调以下几个问题:(1)关于自变量x的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax2,二次项系数则仅是指a的值;同样,一次项与一次项系数也不同. 教师在学生理解的情况下,引导学生做课本P29练习.三、运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2); (2)y=3x(2-x)+3x2; (3)y=1-2x+1; 2x(4)y=1-3x2. 2.若y=(m+1)xm2+1-2x+3是y关于x的二次函数,试确定m的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x(元)满足一次函数关系m=162-2x,试写出商场销售这种商品的日销售利润y(元)与每件商品的销售价x(元)之间的函数关系式,y是x的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n个图中,每一横行共有块瓷砖,每一竖列共有块瓷砖(均用含n的代数式表示);(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数关系式(不要求写自变量n的取值范围). 【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成. 【答案】1.解:(1)y=(x+2)(x-2)=x2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4. (2)y=3x(2-x)+3x2=6x,该函数不是二次函数. (3)该函数不是二次函数. (4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1. 2.解:∵y m1xm212x3是y关于x的二次函数. ∴m+1≠0且m2+1=2, ∴m≠-1且m2=1,∴m=1. 3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:y=(162-3x)(x-30) 即y=-3x2+252x-4860 由此可知y是x的二次函数. 4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n2+5n+6.四、师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件. 【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾. 课后作业1.布置作业:教材习题22.1第1、2、7题;2.完成创优作业中本课时练习的“课时作业”部分. 教学反思第二篇:22.1.1-二次函数(教案)第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数教案教学目标【知识与技能】1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系. 【过程与方法】通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征. 【情感态度】在探究二次函数的学习活动中,体会通过探究发现的乐趣. 教学重点结合具体情境体会二次函数的意义,掌握二次函数的有关概念. 教学难点1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件. 教学过程一、情境导入,初步认识展示执实心球图片,体验体育中的数学二、温故知新1. 什么叫做函数?(学生回顾)2. 我们学过哪些函数?(PPT展示)三、探究新知问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x之间的关系式可表示为,y是x的函数吗?问题2 多边形的对角线总数d与边数n有什么关系?可以想出,如果多边形有n条边,那么它有个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可以作条对角线,用n的式子表d为:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二章二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
教学目标
【知识与技能】
1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.
2.能够表示简单变量之间的二次函数关系.
【过程与方法】
通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.
【情感态度】
在探究二次函数的学习活动中,体会通过探究发现的乐趣.
教学重点
结合具体情境体会二次函数的意义,掌握二次函数的有关概念.
教学难点
1.能通过生活中的实际问题情境,构建二次函数关系;
2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.
教学过程
一、情境导入,初步认识
问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x 之间的关系式可表示为,y是x的函数吗?
问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?
问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?
二、思考探究,获取新知
全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给
予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=1
2
n(n-1)而不
是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t,第三年产量为20(1+x)(1+x)t,得到y=20(1+x)2.
【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.
思考函数y=6x2,m=1
2
n2-
1
2
n,y=20x2+40x+20有哪些共同点?
【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.
【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫做二次函数.其中x是自变量,a、b、c分别是二次项系数,一次项系数和常数项.
【教学说明】
针对上述定义,教师应强调以下几个问题:(1)关于自变量x的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax2,二次项系数则仅是指a的值;同样,一次项与一次项系数也不同.
教师在学生理解的情况下,引导学生做课本P29练习.
三、运用新知,深化理解
1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:
(1)y=(x+2)(x-2);
(2)y=3x(2-x)+3x 2; (3)y=21x
-2x+1; (4)y=1-3x 2.
2.若y=(m+1)xm 2+1-2x+3是y 关于x 的二次函数,试确定m 的值或取值范围.
3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x (元)满足一次函数关系m=162-2x ,试写出商场销售这种商品的日销售利润y (元)与每件商品的销售价x (元)之间的函数关系式,y 是x 的二次函数吗?
4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:
(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示);
(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式(不要求写自变量n 的取值范围).
【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.
【答案】1.解:(1)y=(x+2)(x-2)=x 2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.
(2)y=3x(2-x)+3x 2=6x,该函数不是二次函数.
(3)该函数不是二次函数.
(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.
2.解:∵()21123m y m x x +=+-+是y 关于x 的二次函数.
∴m+1≠0且m 2+1=2,
∴m ≠-1且m 2=1,
∴m=1.
3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得: y=(162-3x)(x-30)
即y=-3x 2+252x-4860
由此可知y 是x 的二次函数.
4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n 个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;
(2)y=(n+3)(n+2)即y=n 2+5n+6.
四、师生互动,课堂小结
1.二次函数的定义;
2.熟记二次函数y=ax 2+bx+c 中a ≠0,a 、b 、c 为常数的条件.
【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.
课后作业
1.布置作业:教材习题2
2.1第1、2、7题;
2.完成创优作业中本课时练习的“课时作业”部分.
教学反思。