2021-2022年高中数学《生活中的变量关系》说课稿 北师大版必修1

合集下载

北师大版高中数学必修一课件第二章第一节《生活中的变量关系》(共17张PPT)

北师大版高中数学必修一课件第二章第一节《生活中的变量关系》(共17张PPT)
(1)、依赖关系不一定是函数关系,但函数关系一 定是依赖关系.
(2)、若两个变量间存在依赖关系,且对于其中一
个变量的每一个值都有另一个变量的唯一值和
它对应,则两个变量间有函数关系.
(3)、研究函数关系时,通常要指明自变量和因变 量,因为两者交换位置不一定还存在函数关系.
三、议一议
骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较 大的变化.如图
收入和台数之间存在函数关系
y (2100 2000)x
⑵在一定量的水中加入蔗糖,在未到达饱和之前糖水 的质量浓度与所加蔗糖的质量之间存在怎样的依赖关 系?如果是函数关系,指出自变量和因变量。
存在函数关系.蔗糖的质量是自变量,糖水的质量浓 度为因变量.反之也成立.

大家一起来
函数关系和依赖关系. 若两个变量间存在依赖关系,且由对于其中一个变
量的每一个值都有另一个变量的唯一值和它对应,则 两个变量间有函数关系.
六故知新
2、下图为匀速行驶中的汽车,它行驶的路程S是时间t的函数吗? 3、右图为运行中的电梯, 它离地面的高度h是时间t的 函数吗?
二、合作探究
这是我国高速公路网的一角
二、合作探究
实例分析:阅读课文23—24页,回答下列问题
(1)课本高速公路的情景下研究了哪些函数关系?请 指出它们的自变量与因变量.
解:由图3知0≤t≤10,每毫升血液 中含药量的变化范围为 0≤y≤6,对 于0至10中的每一个时间t,在0 至6中都有唯一确定的y值与之对 应,因此每毫升血液中的含药量 y(毫克)与时间t(小时)构成 函数关系.
随堂练习
⑴某电器商店以2000元一台的价格进了一批电视机, 然后以2100元一台的价格售出,随着售出台数的变化, 商店获得的收入是怎样变化的?其收入和售出的台数 之间存在函数关系吗?

高中数学必修一北师大版本《2.1 生活中的变量关系》教学课件

高中数学必修一北师大版本《2.1 生活中的变量关系》教学课件

23:00~0:00 700 800 850 900 1 000 1 500 2 000
试问:广告价格与播出时间之间的关系是否是函数关系?
解析:不是函数关系,因为广告价格既与播出时间段有关,也 与播出时长有关.
题型三 根据图象分析两个变量之间的关系——师生共研 例2 如图,小明某天上午9时骑自行车离开家,15时回到 家,他有意描绘了离家的距离与时间的变化情况. (1)图象表示哪两个变量之间的关系? 哪个是自变量?哪个是因变量? (2)在10时和13时,他离家分别有多远? (3)他在什么时间段离家最远? (4)小明离家的时刻是离家的距离的函 数吗?
答案:C
2.下列各变量之间是否存在依赖关系?若存在依赖关系,则 其中哪些是函数关系?
(1)人的身高与体重的关系; (2)一枚炮弹发射后,飞行高度与时间的关系; (3)在高速公路上行驶的汽车所走的路程与时间的关系.
解析:(1)人的身高与体重之间具有依赖关系,但不具有函数 关系.人的身高越高,其体重不一定越重.
答案:D
3.下列两个变量之间的关系是函数关系的是( ) A.光照时间和果树产量 B.降雪量和交通事故的发生率 C.人的年龄和身高 D.正方形的边长和面积
解析:对于正方形来说,对于它的某一确定的边长的值,其 面积的值是唯一确定的,故正方形的边长与面积之间是函数关 系.
答案:D
4.从市场中了解到,饰用K金的含金量如下表:
K数
24K 22K 21K 18K 14K
含金量% 99以上 91.7 87.5 75 58.5
K数
12K 10K 9K 8K 6K
含金量% 50 41.66 37.5 33.34 25
饰用K金的K数与含金量之间是___函__数___关系,K数越大,含

《生活中的变量关系》示范公开课教案【高中数学必修第一册北师大】

《生活中的变量关系》示范公开课教案【高中数学必修第一册北师大】

第二章 函数2.1生活中的变量关系1.从实际生活中的例子出发,让学生认识到日常生活中各种变量之间的依赖关系,能利初中对函数的认识,了解依赖关系与函数关系的联系与区别.2.在观察事物的变量间关系过程中,培养学生发现问题、提出问题的能力,发展数学应用意识.重点:感受生活中处处有变量,加深理解初中的函数概念.难点:依赖关系和函数关系的差别. 一、新课导入 生活中变化的事物无处不在,你感受到了哪些事物的变化?请举例并加以说明? 例如:温度随四季的变化,身高随年龄的变化,汽车行驶里程随时间的变化等. 设计意图:引导学生用数学的眼光,关注生活中的变量.二、新知探究活动1:分析生活中的变化现象,认识变量之间的关系.问题1:生活中温度的变化.我们能感受到每天温度的变化,怎么刻画这种变化呢?在一个标准大气压下定义了摄氏零度的概念,这样就可以用温度值的大小表示温度的变化,温度的变化与季节、时间、地点、空气湿度、海拔高度等很多客观因素都有关系.引导学生依据生活中的情境,围绕以下问题进行小组讨论交流:⑴生活情境是什么?其中的变化怎样描述?这种变化有什么需要说明的条件吗? ⑵变化的过程中存在哪些变量?哪些常量?⑶变量之间是什么关系?这种关系是怎样描述的?答案:⑴生活情境是每天温度的变化,这种变化用温度值描述,这种变化要限制季节、时间、地点、空气湿度、海拔高度等客观因素.⑵变化过程中一个标准大气压下摄氏零度是常量,季节、时间、地点、空气湿度、海拔高度等是变量.⑶对于季节、时间、地点、空气湿度、海拔高度等每一个不同的值都对应一个温度. 设计意图:通过一个简单的例子,引导学生用数学的方式分析生活现象.◆教学目标 ◆教学重难点 ◆ ◆教学过程问题2:高速公路的加油站经过高速公路的加油站时,你是否想过,汽油存在哪儿?是怎么储存的?如图是某高速公路加油站的图片.加油站的油是存放在地下,常用圆柱体罐储存.储油罐的长度为d,截面半径为r,油面高度为h、油面宽度为w、储油量记作V.这些量哪些是常量,哪些是变量?量与量之间存在着怎样的关系?这些关系是同一类关系吗?有什么不同?答案:储油罐的长度d、截面半径r是常量,油面高度h、油面宽度w、储油量V是变量.当油面高度h和油面宽度w发生变化时,储油量V也随之改变即油面高度h和油面宽度w与储油量V是依赖关系.但这两种关系又不完全相同,对于油面高度h的每一个取值,都有唯一的储油量V与它对应.而对于油面宽度w取定一个值可以有两种油面高度和它对应.设计意图:在较为复杂的问题情境中,理解变量之间的依赖关系和函数关系,提升对函数概念的认识.问题3:阅读下面材料,回答问题.自2008年京津城际列车开通运营以来,高速铁路在中国大陆迅速发展,截至2017年年底运营里程突破25 000 km.下图表示的是中国高铁年运营里程的变化.从图中可以看出:随着时间的变化,高铁运营里程与年份存在着依赖关系.依据图中的数据,你能得出哪些结论?答案:通过观察图不难看出,(1)从2008年到2017年,高铁年运营里程是不断增加的,与前一年相比,2014年增长得最多.(2)随着时间的变化,高铁运营里程在变化,它与年份存在着依赖关系.对于年份的每一个取值,都有唯一的运营里程与它对应.初中我们学习过函数的概念:如果在一个变化过程中,有两个变量x和y,对于变量x的每一个值,变量y都有唯一确定的值和它相对应,那么y就是x的函数,其中x是自变量,y是因变量.判断两个变量是否有函数关系:对于变量x的每一个值,变量y都有唯一确定的值和它相对应.因此在问题2与问题3中,储油量V是油面高度h的函数,高铁运营里程是年份时间的函数,但是储油量V不是油面宽度w的函数.设计意图:通过以上三个问题的分析,复习初中的函数概念,即在一个变化的过程中,有两个变量x,y,对于变量x的每一个取值,变量y都有唯一确定的值与之对应,那么y是x的函数,其中x是自变量.另外,在现实生活中,要确定两个变量之间是否具有函数关系,关键是判断对于变量x的每一个取值,变量y是否都有唯一确定的值与之对应,这点非常重要,需要学生认真理解.活动2:分析事物中变量间的函数关系,叙述刻画函数关系的不同方法.阅读下面的材料,思考以下问题,学生之间交流讨论.(1)确认变量之间是否存在函数关系.(2)材料中采用什么方法描述函数关系的?材料1:表2-1记录了几个不同气压下水的沸点:条曲线画在同一平面直角坐标系中,每一条曲线表示在一个观测点的观测情况.材料3:某地电力公司为鼓励市民节约用电,采取阶梯电价,即按月用电量分段计费办法.居民每月应缴电费y(单位:元)与用电量x(单位:kW•h)的关系是y={0.4883x,0≤x≤240,0.5383x−12,240<x≤400,0.7883x−112,x>400.答案:(1)材料1,2,3中的变量之间均存在着函数关系.(2)材料1,2,3分别用列表法、图象法和解析法来表示函数.尤其是在材料3中,给定范围内,对于自变量x的取值范围不同所对应的函数关系也不同,我们称这样的函数为分段函数.设计意图:通过分析学生理解材料中隐含着函数的三种表示法:列表法、图象法和解析法.活动3:1.对于问题2中的储油罐的问题中还有很多量,如储油罐长度、油面面积等,找出这些量中的常量和变量,并指出哪些变量之间是函数关系.答案:(1)常量有圆柱底面积、油罐容积、油的密度等;变量有油的体积、圆柱底面上的弓形面积等;(2)储油量和油的体积、储油量和圆柱底面上弓形的面积、油的体积和油面宽度之间都存在依赖关系;(3)储油量是油体积的函数,油的体积也是储油量的函数,储油量是圆柱底面上弓形面积的函数.2.选定超市、邮局、公路或其他一个场景,观察分析其中有哪些常量和变量,哪些变量之间是函数关系?答案:略.结论很开放,由学生交流各自的结论.设计意图:鼓励学生积极思考,让学生体会到生活中的函数关系非常普遍,数学源于生活,用于生活.三、应用举例1.某电器商店以2 000元/台的价格购进了一批电视机,然后以2100元/台的价格售出,随着售出台数的变化,商店的利润是怎样变化的?利润和售出的台数之间存在函数关系吗?答案:随着售出台数的变化,商店的利润也会增加,利润和售出的台数间存在函数关系.2.坐电梯时,电梯距地面的高度与时间之间存在怎样的依赖关系?答案:坐电梯时,电梯距地面的高度随时间的确定而确定.3.在一定量的水中加入蔗糖,糖水的质量分数与所加蔗糖的质量之间存在怎样的依赖关系?答案:在一定量的水中加人燕糖,糖水的浓度随所加蔗糖的质量的确定而确定.四、课堂练习1.下列各组中两个变量间之间是否存在依赖关系?其中哪些是函数关系?(1)球的体积和它的半径;(2)速度不变的情况下,汽车行驶的路程与行驶时间;(3)家庭的收入与其消费支出;(4)正三角形的面积和它的边长.πr3的关系.答案:(1)中,球的体积V与半径r间存在V=43(2)中,在速度不变的情况下,行驶路程s与行驶时间t之间存在正比例关系.(3)中,家庭收入与其消费支出间存在关系,但具有不确定性.a2的关系.(4)中,正三角形的面积s与其边长a间存在s=√34综上可知(1)(2)(3)(4)中两个变量间都存在依赖关系,其中(1)(2)(4)是函数关系.2.下图是我国某年某地降雨量的统计情况,图中横轴为月份(单位:月),纵轴为降雨量(单位:cm).由图中曲线可判断该地该年的降雨量与时间是否具有函数关系?答案:因为对于该年的每一个月都有唯一的降雨量与之对应,故可得该年的降雨量与时间具有函数关系,且自变量是时间,因变量是降雨量.五、课堂小结1.依赖关系:如果在一个变化过程中,有两个变量x和y,对于变量x的改变引起变量y的改变,则这两个变量是依赖关系.2.函数关系:如果在一个变化过程中,有两个变量x和y,对于变量x的每一个值,变量y都有唯一确定的值和它对应,则这两个变量是函数关系,在现实生活中,凡是要确定两个变量具有函数关系,就要判断“对于变量x的每一个值,变量y都有唯一确定的值和它对应”.3.依赖关系不一定是函数关系,但函数关系一定是依赖关系.六、布置作业教材第51页习题2-1A组、B组.。

新教材高中数学第二章函数1生活中的变量关系课件北师大版必修第一册

新教材高中数学第二章函数1生活中的变量关系课件北师大版必修第一册

[归纳提升] 依赖关系的判断方法与步骤 对于两个变量,如果一个变量的改变影响另一个变量,则这两个变 量具有依赖关系,否则不具有依赖关系.
【对点练习】❶ 下列各组中的两个变量之间是否存在依赖关系? (1)将保温瓶中的热水倒入茶杯中缓慢冷却,并将一温度计放入茶杯 中,每隔一段时间,观察温度计示数的变化,冷却时间与温度计示数的 关系; (2)商品的价格与销售量; (3)某同学的学习时间与其学习成绩.
2.俗语“名师出高徒”说明 A.名师与高徒之间具有依赖关系 B.名师与高徒之间具有函数关系 C.名师是高徒的函数 D.高徒是名师的函数 [解析] 说明名师与高徒之间存在依赖关系.
(A)
3.下列各量间不存在依赖关系的是
(D)
A.人的年龄与他(她)拥有的财富
B.某人的体重与其饮食情况
C.水稻的亩产量与施肥量
[解析] (1)由图象可知甲、乙到达终点所用的时间分别为 12 s,12.5 s.故甲先到达终点;
(2)v 乙=1120.05=8(m/s).
4.给出下列关系: ①人的年龄与体重之间的关系; ②抛物线上的点与该点坐标之间的关系; ③橘子的产量与气候之间的关系; ④某同学在6次考试中的数学成绩与他的考试号之间的关系. 其中不是函数关系的有__①__③__④____. [解析] 由已知关系判断得,①③④中关系不确定,故不是函数关 系,只有②是函数关系.
D.如果变量m是变量n的函数,那么变量n不一定是变量m的函数
(2)汽车的“燃油效率”是指汽车每 消耗1升汽油行驶的里程.如图描述了 甲、乙、丙三辆汽车在不同速度下燃油 效率情况,下列叙述中正确的是( D )
A.消耗1升汽油,乙车最多可行驶 5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油 D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙 车比用乙车更省油

高中数学 第二章 函数 2.1 生活中的变量关系教案2 北师大版必修1(2021年最新整理)

高中数学 第二章 函数 2.1 生活中的变量关系教案2 北师大版必修1(2021年最新整理)

高中数学第二章函数2.1 生活中的变量关系教案2 北师大版必修1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章函数2.1 生活中的变量关系教案2 北师大版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章函数2.1 生活中的变量关系教案2 北师大版必修1的全部内容。

生活中的变量关系★教学目标1.知识目标:通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.2.能力目标:培养学生类比分析问题的能力,并通过对现实生活中依赖关系的观察、分析归纳和比较来提高学生的实践能力.3.情感目标:培养学生合作交流的意识及广泛联想的能力和热爱数学的态度.★教学重难点:1.重点:生活中变量之间有依赖关系,掌握变量之间的函数关系。

2.难点:变量之间的依赖关系不一定都是函数关系。

★授课类型:新授课★教具:多媒体、实物投影仪★教学方法:启发式、交互式教学★教学过程:一、创设情景,引入课题多媒体展示“神舟七号”发射的电脑模拟动画,提出问题:在“神七”发射升空的过程中,随着时间的变化,你能发现哪些量也在变化?从而导出课题生活中的变量关系.(板书课题生活中的变量关系)二、新课讲解1、温故知新:◇初中学习的函数定义是什么?◇下图为运行中的电梯,它离地面高度h与时间t是否存在函数关系?◇下图为行驶中的汽车,它行驶速度v与时间t是否存在函数关系?2、知识探究: 阅读课文23-24页,在高速公路情境下的函数问题(1)课本高速公路情景下研究了哪些函数关系?请指出它们的自变量和因变量。

高中数学北师大版必修1课件:第2章函数1生活中的变量关系2对函数的进一步认识2.1函数概念

高中数学北师大版必修1课件:第2章函数1生活中的变量关系2对函数的进一步认识2.1函数概念

结论:
①闭区间:符号表示[a,b],数轴表示为
②开区间:符号表示(a,b),数轴表示为 ③半开半闭区间:符号表示[a,b)或(a,b],
数轴表示为

(2)无穷大区间
①实数集R也可以用区间表示为 (-∞,+∞) .
②读法:“-∞”读作“ 负无穷大
”,“+∞”读作
“_正__无__穷__大___”.
③无穷大区间的表示: 定义 {x|x≥a} {x|x>a} {x|x≤a} {x|x<a} 符号 [a,+∞) (a,+∞) (-∞,a] (-∞,a) 几何 表示
生活中的变量关系及判断
【例1】 下列两个变量之间是否存在依赖关系,其中哪些是函 数关系?
(1)圆的面积与其半径之间的关系; (2)家庭收入与消费支出之间的关系; (3)人的身高与视力之间的关系; (4)价格不变的情况下,商品销售额和销售量之间的关系.
[思路探究] 当一个变量随着另一个变量的变化而变化时,这 两个变量之间存在依赖关系;存在依赖关系的两个变量,对于一个 变量的每一个值,另一个变量都有唯一确定的值与之对应时,这两 个变量具有函数关系.
[探究问题] 1.已知f(x)=1+x x,如何求f12?
11 提示:f12=1+2 12=232=13.
2.已知f(x)=1+x x,若f(x)=2,如何求x? 提示:由f(x)=2,得1+x x=2,解得x=-2.
3.已知f(x)=1+x x,如何求f[f(x)]? x
提示:f[f(x)]=1+fxfx=1+1+1+xx x=1+xx+x=1+x2x.
2.判断两个具有依赖关系的变量是否是函数关系,关键是看二 者之间的关系是否具有确定性,即验证对于一个变量的每一个值, 另一个变量是否都有唯一确定的值与之对应.

2.1 生活中的变量关系 课件(北师大版必修1)

2.1 生活中的变量关系 课件(北师大版必修1)

设在一个变化过程中有两个变量 x与y, 如果对于x的每一个值, y都有
唯一的值与它对应, 那么就说 y是 x
的函数. x叫做自变量.
问题提出 在高速公路的情景下,你能发 现哪些函数关系?
思考交流 1. 请列举一些与公路有关 的函数关系.
2. 请思考在其它环境下存 在的函数关系.
注 意
并非有依赖关系的两个变量
都有函数关系.
教材P.25 A组T2.
ask
世界是变化的.变量与变量的依 赖关系在生活中随处可见,与我们 息息相关.
函 数
它描述了因变量随自变量而变化
的依变量关系
问题提出 在我们生活中,变量与变量之 间存在依赖关系的实例有哪些?
初中学习过的函数描述了两个变量: 因变量y与自变量x之间什么样的依赖关系? 因变量y随自变量x的变化而变化: 即一个x的取值有唯一确定的值y与之对应 则称 y是x的函数.

高中数学 第二章 函数 2.1 生活中的变量关系教案3 北师大版必修1(2021年最新整理)

高中数学 第二章 函数 2.1 生活中的变量关系教案3 北师大版必修1(2021年最新整理)

高中数学第二章函数2.1 生活中的变量关系教案3 北师大版必修1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章函数2.1 生活中的变量关系教案3 北师大版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章函数2.1 生活中的变量关系教案3 北师大版必修1的全部内容。

2.1生活中的变量关系[教学目标]1、知识与技能(1)通过实例,了解生活中的变量关系,体会变量与变量之间的相互关系;(2)知道两变量之间有相互依赖关系不一定就有函数关系;(3)了解两变量之间有函数关系具备的条件;2、过程与方法(1)让学生从时间生活中发现变量之间存在关系的过程,感知函数的意义.(2)让学生收集归纳生活中变量之间的关系.3、情感。

态度与价值观培养善于观察发现的责任心,增强学习的积极性。

[教学重点]:现实生活中的实例中的变量关系。

[教学难点]:对于两变量之间的函数关系的理解。

[教学教具]:实例图片[课时安排]:1课时[学法指导]:学生提供信息材料,自主学习、思考、交流、讨论和概括。

[讲授过程]【新课导入】世界是变化的,许多变量之间有着相互依赖的关系,变量与变量的依赖关系在生活中随处可见,与我们息息相关。

【新课内容】函数就描述了因变量随自变量而变化的依赖关系.[互动过程1]:教师提出问题:初中我们学习过哪些函数?学生抢答你能说出函数描述了几个变量之间的关系?它们分别是什么变量?因变量y与自变量x之间什么样的依赖关系?什么是函数吗?由于函数的概念比较抽象,不好理解,教师可以提示:因变量y随自变量x的变化而变化:即一个x的取值有唯一确定的值y与之对应则称y是x的函数.【板书】函数的概念:设在一个变化过程中有两个变量x与y,如果对于x的每一个值, y都有唯一的值与它对应, 那么就说y是x的函数。

2021-2022年高中数学《生活中的变量关系》说课稿北师大版必修1

2021-2022年高中数学《生活中的变量关系》说课稿北师大版必修1

2021-2022年高中数学《生活中的变量关系》说课稿北师大版必修1 本节通过创设问题情境引出生活中的变量关系。

利用由特殊到一般的方法,以小组合作探究的形式展开研究过程,引导学生归纳分析生活中的变量关系,区分依赖关系与函数关系,为进一步学习函数打下良好的基础.本节说课包括:教材分析、教法分析、教学设计和构思说明四个部分展开。

一、教材分析本节综述:《生活中的变量关系》一节是北师大版必修一第二章第一节的教学内容,函数是中学数学的核心内容,生活中的变量关系是函数一章的开篇课,为函数的学习提供必要的知识铺垫.通过本节的学习,学生将明析依赖关系与函数关系的区别和联系,体会生活与数学的密切联系,掌握研究方法激发学生学习数学的兴趣。

教学目标:通过生活实例研究变量关系,明析依赖关系与函数关系的区别和联系,合作交流,归纳探知生活中的变量关系。

教学重点:依赖关系与函数关系的区别和联系,生活实例的变量关系研究。

教学难点:合作交流,归纳探知生活中的变量关系,函数关系中的自变量与因变量。

二、教法分析创设问题情境,引出问题,激发学生探知欲实践操作,类比研究生活中的数学问题小组合作交流,师生共同归纳三、教学设计 (1)在某案发现场,测得犯罪份子脚印一个,并以此推断:姓别:男 身高:175~180体重:65~75 依此缩小侦察范围,并最终破案设计说明:创设生活情境,激发求知欲(2) 合作探知识归创设情复习导实践操小结作创设情复习导◇ 初中学习的函数定义是什么?◇下图为运行中的电梯,它离地面高度h 与时间t 是否存在函数关系?◇下图为行驶中的汽车,它行驶速度v 与时间t 是否存在函数关系?设计说明:明析相关知识,明确研究方法(3) 请同学们用3钟的时间阅读课本P21~P22倒数第二段的内容? 请同学们分学习小组思考交流下面几个问题? 1、课本中高速公路环境下研究哪函数关系?请指出它们的自变量与因变量?2、请你以高速公路为背景,再研究一些函数关系,并思考自变量与因变量交换后是否还是函数关系?3、试归纳依赖关系与函数关系的区别和联系?设计说明:自主学习,合作探究(4) 依赖关系与函数关系:若两个变量间存在依赖关系,且由对于其中一个变量的每一个值都有另一个变量的唯一值和它对应,则两个变量间有函数关系。

2021_2022学年新教材高中数学第二章函数1生活中的变量关系课件北师大版必修第一册2021060

2021_2022学年新教材高中数学第二章函数1生活中的变量关系课件北师大版必修第一册2021060
每一个值,变量y都有唯一确定的值和它对应,那么y就是x的
函数,其中x是自变量,y是因变量.
3.做一做:下列说法不正确的是(
)
A.依赖关系不一定是函数关系
B.函数关系是依赖关系
C.如果变量m是变量n的函数,那么变量n也是变量m的函数
D.如果变量m是变量n的函数,那么变量n不一定是变量m的函

解析:根据依赖关系与函数关系的区别可知A,B正确.若变量m
到,全天最低气温大约是-2 ℃,在4时达到.
1.本例中条件不变,请问大约在什么时刻,气温为0 ℃?
解:大约在8时和22时,气温为0 ℃.
2.本例中条件不变,大约在什么时间内,气温在0 ℃以上?两个
变量有什么特点,它们具有怎样的对应关系?
解:大约在8时到22时之间,气温在0 ℃以上,变量0≤t≤24,变
答案:C
4.右图表示一位骑自行车者和一位骑摩托车者在相距80 km
的两城镇间旅行时,路程和时间的函数图象,由图可知,骑自行
车者用了6 h(含途中休息的1 h),骑摩托车者用了2 h,有人根
据这个函数图象,提供了这两个旅行者的如下信息,其中正确
的信息是
.(填序号)
①骑自行车者比骑摩托车者早
出发3 h,晚到1 h;
土壤中的热量向外散发,又可阻止外界冷空气的侵入,具有增
墒肥田的作用.所以下雪与来年的丰收具有依赖关系,但不是
函数关系.
答案:A
探究二 用图象表示变量间的关系
【例2】 某市一天24 h内的气温变化,如图所示.
上午8时的气温是多少?全天的最高气温、最低气温分别是多
少?
解:上午8时的气温是0 ℃,全天最高气温大约是9 ℃,在14时达
量-2≤θ≤9,由于图象是连续的,可知它们之间具有随着时间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021-2022年高中数学《生活中的变量关系》说课稿 北师大版必修1
本节通过创设问题情境引出生活中的变量关系。

利用由特殊到一般的方法,以小组合作探究的形式展开研究过程,引导学生归纳分析生活中的变量关系,区分依赖关系与函数关系,为进一步学习函数打下良好的基础.本节说课包括:教材分析、教法分析、教学设计和构思说明四个部分展开。

一、教材分析
本节综述:《生活中的变量关系》一节是北师大版必修一第二章第一节的教学内容,函数是中学数学的核心内容,生活中的变量关系是函数一章的开篇课,为函数的学习提供必要的知识铺垫.通过本节的学习,学生将明析依赖关系与函数关系的区别和联系,体会生活与数学的密切联系,掌握研究方法激发学生学习数学的兴趣。

教学目标:通过生活实例研究变量关系,明析依赖关系与函数关系的区别和联系,合作
交流,归纳探知生活中的变量关系。

教学重点:依赖关系与函数关系的区别和联系,生活实例的变量关系研究。

教学难点:合作交流,归纳探知生活中的变量关系,函数关系中的自变量与因变量。

二、教法分析
创设问题情境,引出问题,激发学生探知欲
实践操作,类比研究生活中的数学问题
小组合作交流,师生共同归纳
三、教学设计 (1)
在某案发现场,测得犯罪份子脚印一个,并以此推断:
姓别:男 身高:175~180体重:65~75 依此缩小侦察范围,并最终破案
设计说明:创设生活情境,激发求知欲
(2) 合作探知识归创设情复习导实践操小结作创设情复习导
◇ 初中学习的函数定义是什么?
◇下图为运行中的电梯,它离地面高度h 与时间t 是否存在函数关系?
◇下图为行驶中的汽车,它行驶速度v 与时间t 是否存在函数关系?
设计说明:明析相关知识,明确研究方法
(3) 请同学们用3钟的时间阅读课本P21~P22倒数第二段的内容? 请同学们分学习小组思考交流下面几个问题? 1、课本中高速公路环境下研究哪函数关系?请指出它们的自变量与因变量?
2、请你以高速公路为背景,再研究一些函数关系,并思考自变量与因变量交换后是否还是
函数关系?
3、试归纳依赖关系与函数关系的区别和联系?
设计说明:自主学习,合作探究
(4) 依赖关系与函数关系:
若两个变量间存在依赖关系,且由对于其中一个变量的每一个值都有另一个变量的唯一值和它对应,则两个变量间有函数关系。

注意问题:
1、依赖关系不一定是函数关系,但函数关系一定是依赖关系。

2、研究函数关系时,通常要指明自变量和因变量,因为两者交换位置不一定还存在函数关
系。

设计说明:归纳总结,突出重点
(5) 请同学们利用课前准备的圆柱形水杯进行下面操作,记圆柱形水杯高s ,底面圆半径r 水面距离桌面高度记为h ,下面情况下h
与水面宽度w 间是否存在函数关系?
r
s h
w
w
h
s
合作探知识归实践操
设计说明:观察操作,加深理解
(6)
小结作
课本后作业P23练习1、习题2(2)
选做:请你以一个邮局为研究背景分析其中的函数关系与依赖关系?
课堂小结:
知识小结:函数关系与依赖关系
方法小结:合作探究、类比归纳
(四)构思说明:
1、教材的重组
以电梯和汽车等实际问题引入教学替代高速公路问题,用水杯问题替代油罐车,更符合学生的认识水平。

2、学生的主体性体现
本课通过创设情境、自主阅读、实践操作等环节增强学生参与和合作交流意识,体现了学生的主体性地位。

20417 4FC1 俁0B38193 9531 锱39532 9A6C 马Iu>37746 9372 鍲a'21395 5393 厓b 21310 533E 匾。

相关文档
最新文档