二次函数的实际应用之利润最大值、面积最值问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的实际应用——最大利润问题、面积最大(小)值问题

一:最大利润问题

知识要点:

二次函数的一般式c bx ax y ++=2

(0≠a )化成顶点式a

b a

c a b x a y 44)2(2

2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).

即当0>a 时,函数有最小值,并且当a

b

x 2-=,a b ac y 442-=最小值;

当0

b

x 2-=,a b ac y 442-=最大值.

如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当a

b

x 2-=,a b ac y 442-=

最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=22

2最大,当1

x x =时,c bx ax y ++=121最小;

如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=12

1最大,当2

x x =时,c bx ax y ++=2

最小.

商品定价一类利润计算公式:

经常出现的数据:商品进价;商品售价;商品销售量;涨价或降价;销售量变化;其他成本。 ◆ 总利润=总售价-总进价-其他成本=单位商品利润×总销售量-其他成本

单位商品利润=商品定价-商品进价

总售价=商品定价×总销售量;总进价=商品进价×总销售量

[例1]:某电子厂商投产一种新型电子厂品,每件制造成本为18 元,试销过程中发现,每月销售量y (万件)与销售单价x (元)之间的关系可以近似地看作一次函数y= ﹣2x+100 .(利润= 售价﹣制造成本) (1 )写出每月的利润z (万元)与销售单价x (元)之间的函数关系式; ﻫ(2 )当销售单价为多少元时,厂商每月能获得3502 万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少? (3 )根据相关部门规定,这种电子产品的销售单价不能高于32 元,如果厂商要获得每月不低于350 万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

解:(1 )z= (x -18 )y = (x -18 )(-2x+100 )= -2x 2+136x -1800 ,

∴z 与x 之间的函数解析式为z= -2x 2

+136x-1800 ; (2 )由z=350 ,得350= -2x 2+136x -1800 , 解这个方程得x 1=25 ,x 2=43

所以,销售单价定为25 元或43 元, ﻫ将z =-2x 2+136x-1800 配方,得z =-2 (x -34 )2+512 ,

因此,当销售单价为34 元时,每月能获得最大利润,最大利润是512 万元;ﻫ(3 )结合(2 )及函数z=-2x 2+136x ﹣1800 的图象(如图所示)可知, ﻫ当25≤x ≤43时z ≥350 ,

又由限价32 元,得25 ≤x ≤32 , ﻫ根据一次函数的性质,得y=-2x+100 中y 随x 的增大而减小,

∴当x=32 时,每月制造成本最低

最低成本是18 ×(-2 ×32+100 )=648 (万元), 因此,所求每月最低制造成本为648 万元.

[练习]:1.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 解:设涨价(或降价)为每件x 元,利润为y 元,

1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=

)60010(102

---=x x 6250)5(102

+--=x

当5=x ,即:定价为65元时,6250max =y (元)

)20300)(4060(2x x y +--= )15)(20(20+--=x x

6125)5.2(202

+--=x

当5.2=x ,即:定价为57.5元时,6125max =y (元)

综合两种情况,应定价为65元时,利润最大. [例2]: 市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;

⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?

⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx +b 由图象可知,

30400

20

,:402001000

k b k k b b +==-⎧⎧⎨

+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202

-+-=x x

∵020<-=a ∴P有最大值.

当35)

20(21400

=-⨯=

x 时,4500max =P (元)

(或通过配方,4500)35(202

+--=x P ,也可求得最大值)

答:当销售单价为35元/千克时,每天可获得最大利润4500元.

⑶∵44804500)35(2041802

≤+--≤x

16)35(12

≤-≤x ∴31≤x ≤34或36≤x≤39. 练习 2.某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已

知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y 与x 之间的函数关系式为y =20﹣0.2x ;当50≤x ≤70时,y 与x 的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.

相关文档
最新文档