沪科版八年级上册数学期中考试试题
沪科版八年级数学(上册)期中综合检测卷
点三角形 ABC(顶点是 网 格 线 的 交 点 的 三 角 形)的 顶 点 A ,
C
的坐标分别为(-4,
5),(-1,
3).
(
1)请画出平面直角坐标系,并直接写出 △ABC 的面积;
(
2)已知 直 线 l2:
y =x +b 经 过 点 B ,与 y 轴 交 于 点 E ,求
△ABE 的面积 .
(考查范围:第 11 章至第 13 章)
满分:
150 分 考试时间:
120 分钟
一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分)
如图,在 △ABC 中,
8.
AE 平 分 ∠BAC 交 BC 于 点 E ,过 点 A 作
若 ∠B =
AD ⊥BC ,垂足为 D ,过 点 E 作 EF ⊥AB ,垂 足 为 F .
D
∠A∶∠B∶∠C =1∶3∶4
直线y=-x+3 与y=mx+n 交点的横坐标为 1,则关于 x,
7.
y
的方程组
( )
{
的解为
mx-y=-n
x=2,
{
A
x+y=3,
y=1
x=1.
5,
{
B
5
y=1.
x=1,
{
C
y=2
第 8 题图
第 9 题图
第 10 题图
如 图,
9.
BD 是 △ABC 的 中 线,
期中综合检测卷
沪科八年级数学(上册)
A
B
C
D
二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)
点(
12.
沪科版八年级上册数学期中考试试卷带答案
沪科版八年级上册数学期中考试试卷一、单选题1.下列式子中,表示y 是x 的正比例函数的是( )A .2x y =B .2y x =C .2y xD .y =【答案】A2.点P (3,-1)在平面直角坐标系中所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D3.将点P(–4,3)先向左平移2个单位长度,再向下平移2个单位长度后得到点P ',则点P '的坐标为( )A .(–2,5)B .(–6,1)C .(–6,5)D .(–2,1)【答案】B4.已知ABC 的三个内角的大小关系为A B C ∠-∠=∠,则这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法确定【答案】B5.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B6.下列命题中,假命题是( )A .如果|a|=a ,则a≥0B .如果a 2=b 2,那么a =b 或a =﹣bC .如果ab >0,则a >0,b >0D .若a 3<0,则a 是一个负数【答案】C7.下列说法正确的是( )①三角形的角平分线是射线;①三角形的三条角平分线都在三角形内部;①三角形的一条中线把该三角形分成面积相等的两部分;①三角形的三条高都在三角形内部. A .①① B .①① C .①① D .①①【答案】B8.若一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为( )A .5x =-B .3x =-C .3x =D .5x =【答案】C9.如图,函数y=kx+b (k≠0)的图象经过点B (2,0),与函数y=2x 的图象交于点A ,则不等式0<kx+b <2x 的解集为( )A .12x <<B .2x >C .0x >D .01x <<【答案】A10.①ABC 的两条中线AD 、BE 交于点F ,连接CF ,若①ABC 的面积为24,则①ABF 的面积为( )A .10B .8C .6D .4【答案】B二、填空题11.函数y x 的取值范围是____________. 【答案】x≤4且x≠212.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.【答案】()3,4-13.若一次函数y=(2-m)x+m 的图像不经过第三象限,则m 的取值范围是________.【答案】m>214.如图,直线AB①CD ,OA①OB ,若①1=142°,则①2=____________度.【答案】5215.已知A 点()26,a a -+在一三象限夹角平分线上,则a 的值为___________.【答案】216.如图,E 为①ABC 的BC 边上一点,点D 在BA 的延长线上,DE 交AC 于点F ,①B =46°,①C =30°,①EFC =70°,则①D =______.【答案】34°17.我们把连接三角形两边中点的线段叫做三角形的中位线,已知三角形的任一条中位线都平行于第三边,并且等于第三边的一半.如图,在ABC 中,3BC =,将ABC 平移5个单位长度得到111A B C △,点P 、Q 分别是AB 、11A C 的中点,PQ 的最小值等于___.【答案】7218.将函数2y x b =+(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数2y x b =+(b 为常数)的图象.若该图象与直线2y =的两个交点的横坐标都满足04x <<,则b 的取值范围为______.【答案】-6≤b≤-2三、解答题19.已知y -1与x 成正比例,且当x=-2时,y=5.(1)求y 与x 之间的函数关系式.(2)若点(m -1,3)在这个函数图象上,求m.【答案】(1) y=-2x+1;(2)m=0.【分析】(1)设y -1=kx ,把已知条件代入可求得k ,则可求得其函数关系式;(2)把点的坐标代入可得到关于m 的方程,可求得m 的值.【详解】解:设y -1=kx ,①x=-2时,y=5,①5-1=-2k ,解得k=-2,①y -1=-2x,即y=-2x+1;(2)①点(m -1,3)在这个函数的图象上,①-2(m -1)+1=3,解得m=0.20.如图,在ABC 中,D 、E 分别是边AB 、AC 上一点,将ABC 沿DE 折叠,使点A 落在边BC 上.若55A ∠=︒,求1234∠+∠+∠+∠四个角和的度数?【答案】235°【分析】依据三角形内角和定理,可得①ABC中,①B+①C=125°,即可得出①1+①2+①3+①4的度数.【详解】解:①①A=55°,①①ABC中,①B+①C=125°,又①①1+①2+①B=180°,①3+①4+①C=180°,①①1+①2+①3+①4=360°-(①B+①C)=360°-125°=235°.21.已知3m+n=1,且m≥n.(1)求m的取值范围(2)设y=3m+4n,求y的最大值【答案】(1)14m≥(2)74【分析】(1)把n用m表示,再代入m≥n即可求解;(2)先表示为y关于m的函数,再根据一次函数的性质即可求解.【详解】(1)①3m+n=1①n=-3m+1①m≥n①m≥-3m+1解得14 m≥(2)y=3m+4n=3m+4(-3m+1)=-9m+4①-9<0,①y随m的增大而减小,①当m=14时,y 的最大值为-9×14+4=7422.已知a ,b ,c 分别为ABC 的三边,且满足32a b c +=-,26a b c -=-.(1)求c 的取值范围;(2)若ABC 的周长为12,求c 的值.【答案】(1)2<c<6 (2)3.5【解析】(1)根据三角形任意两边之和大于第三边得出3c -2>c ,任意两边之差小于第三边得出|2c -6|<c ,列不等式组求解即可;(2)由①ABC 的周长为12,a+b=3c -2,4c -2=12,解方程得出答案即可.(1)①a ,b ,c 分别为①ABC 的三边,a+b=3c -2,a -b=2c -6,①3226c c c c ->⎧⎨-<⎩,解得:2<c<6.故c 的取值范围为2<c<6;(2)①①ABC 的周长为12,a+b=3c -2,①a+b+c=4c -2=12,解得c=3.5.故c 的值是3.5.23.已知y -4与x 成正比例,且当x=6时,y= —4.(1)求y 与x 的函数关系式(2)(1)中函数图象与x 轴,y 轴分别交于A ,B 两点,P 点在y 轴上,若S ①ABP =9,求P 点坐标.【答案】(1)443y x =-+;(2)P (0,﹣2)或P (0,10) 【分析】(1)根据正比例函数的定义设出函数解析式y -4=kx (k≠0),再把当x=6时,y=-4代入求出k 的值即可;(2)由(1)解析式可求出A 、B 两点的坐标,设点P 的坐标为(0,m )根据①ABP 的面积列方程求出m 的值即可;【详解】(1)①y -4与x 成正比例,①设y -4=kx (k≠0).把x=6,y=-4代入,得-4-4=6k ,解得,k=-43,则y -4=-43x ,①y 与x 的函数关系式为:y=-43x+4; (2)①P 点在y 轴上,①设P 点坐标为(0,m ),①函数图象与x 轴,y 轴分别交于A ,B 两点,①当x=0时,y=4,当y=0时,x=3,①A (3,0),B (0,4),①S ①ABP =124m -⨯3=9解得:m 1=10,m 2=-2,①P 点坐标为(0,10)或(0,-2)24.在平面直角坐标系中,①ABC 的三个顶点的位置如图所示,将①ABC 水平向左平移3个单位,再竖直向下平移2个单位.(1)读出①ABC 的三个顶点坐标;(2)请画出平移后的①A′B′C′,并直接写出点A /、B′、C′的坐标;(3)求平移以后的图形的面积 .【答案】(1) A (2,4)、B (1,1)、C (3,0);(2)见解析, (1,2)(2,1)(0,2)A B C ---'''-、、;(3)3.5 【分析】(1)直接根据平面直角坐标系写出各点坐标即可;(2)利用平移的性质得出对应点坐标,进而得出作出图形;(3)利用①ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】(1)A (2,4)、B (1,1)、C (3,0),(2)如图:()()()1,22,10,2A B C ---'-''、、;(3)S ①ABC =2×4-12×1×4-12×2×1-12×1×3=8-2-1-32 =72.25.如图P 为①ABC 内部一点,①BAC=70°,①BPC=120°,BD ,CE 分别平分①ABP ,①ACP ,BD 与CE 交于点F ,求①BFC 的度数.【答案】95°【分析】根据①BAC 的度数可求出①ABC 与①ACB 的度数的和,同理可求出①PBC 与①PCB 的和,进而求出①ABP 与①ACP 的和,根据角平分线可求出①FBP 与①FCP 的和,即可求出①FBC 与①FCB 的和,根据三角形内角和定理求出①BFC 的度数即可.【详解】①①BAC=70°,①①ABC+①ACB=110°,①①BPC=120°,①①PBC+①PCB=60°,①①ABP+①ACP=50°,①BD ,CE 分别平分①ABP 、①ACP ,①①FBP+①FCP=25°,①①FBC+①FCB=60°+25°=85°①①BFC=180°-85°=95°.【点睛】本题考查三角形内角和定理,三角形的三个内角的和等于180°,熟练掌握并灵活运用三角形内角和定理是解题关键.26.A 、B 两地相距60km ,甲从A 地去B 地,乙从B 地去A 地,图中1l 、2l 分别表示甲、乙两人到B 地的距离()km y 与甲出发时间()x h 的函数关系图象.(1)根据图象,求乙的行驶速度;(2)求出点A 的坐标,并解释交点A 的实际意义;(3)求甲出发多少时间,两人之间恰好相距5km ?【答案】(1)20km/h(2)点A 的坐标为(1.4,18),点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B 地18km(3)当甲出发1.3h 或1.5h 时,两人之间的距离恰好相距5km【解析】(1)由图象得知乙从B 地去A 地共用3小时,从而求乙的速度;(2)根据函数图象中的数据可以求出点A 的坐标,并说出点A 的实际意义;(3)根据(1)中的函数解析式,可以列出相应的等式,从而可以求得甲出发多少时间,两人之间的距离恰好相距5km .(1)解:由图象可得,乙的行驶速度为:60÷(3.5-0.5)=20km/h ,(2)解:设l 1对应的函数解析式为y 1=k 1x+b 1,把(0,60)(2,0)代入得:1116020b k b =⎧⎨+=⎩ ,得1160-30b k =⎧⎨=⎩, 即l 1对应的函数解析式为y 1=-30x+60,设l 2对应的函数解析式为y 2=k 2x+b 2,把(0.5,0)(3.5,60)代入得:22220.503.560k b k b +=⎧⎨+=⎩,得22-1020b k =⎧⎨=⎩, 即l 2对应的函数解析式为y 2=20x -10,①联立30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ , 即点A 的坐标为(1.4,18),①点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B 地18km ;(3)解:由题意得当125y y -=时(-30x+60)-(20x -10)=5,解得x=1.3 当215y y -=时,(20x -10)-(-30x+60)=5,解得x=1.5,答:当甲出发1.3h 或1.5h 时,两人之间的距离恰好相距5km ;。
沪科版八年级数学上册期中测试题
一、选择题(每题3分,共30分)1.在平面直角坐标系中,点(3,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.点P (-3,4)到y 轴的距离是 ( )A .3B .4C .-3D .53.一次函数32-=x y 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.下列函数 (1)12-=x y (2)x y 1= (3)x y 3-= (4)12+=x y 中,是一次函数的有( ) A .3个 B .2个 C .1个 D .0个5.下列说法中错误的是( )A .三角形的中线、高、角平分线都是线段B .任意三角形的内角和都是180°C .三角形按角可分为锐角三角形、直角三角形和等腰三角形D .直角三角形两锐角互余6.直线1+-=x y 上有两点A (1x ,1y ),B (2x ,2y ),且1x <2x ,则1y 与2y 的大小关系是( )A .1y >2yB .1y =2yC .1y <2yD .无法确定7.已知一次函数y=kx+b,当x 增加3时,y 减小2,则k 的值是( )A .32-B . 23-C .32 D . 23 8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A→D→C→B→A ,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )9.直线y=2x -4与两坐标轴所围成的三角形面积等于( )A .8B .6C . 4D .1610.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、 CE 的中点,且ABC S ∆=4cm 2,则阴影S 等于( )2A .2cm 2B .1 cm 2C .21 cm 2D .41 cm 2二、填空题(每题4分,共16分)11.写出“对顶角相等”的逆命题_________________________12.函数211++-=x x y 的自变量x 的取值范围是___________________。
沪科版八年级上册数学期中考试试卷含答案
沪科版八年级上册数学期中考试试卷含答案-CAL-FENGHAI.-(YICAI)-Company One1沪科版八年级上册数学期中考试试题一.选择题(本大题共有10小题,每小题4分,共计40分)1.函数xxy -=2中自变量x 的取值范围是A .2≠xB .2≥xC .2≤xD .2>x 2.下列曲线中不能表示y 是x 的函数的是3.将一次函数32-=x y 的图象沿y 轴向上平移8个单位长度,所得直线的解析式为A .52-=x yB .52+=x yC .82+=x yD .82-=x y4.若一次函数b ax y +=的图象经过第一、二、四象限,则下列不等式一定成立的是A .0<+b a B .0>-b a C .0>ab D .0<ab5.已知c b a ,,是△ABC 的三条边长,化简||||b a c c b a ----+的结果为 A .c b a 222-+ B .b a 22+ C .0 D .c 26.已知一次函数x m kx y 2--=的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是A .0,2><m kB .0,2<<m kC .0,2>>m kD .0,0<<m k 7.如图,函数x y 21-=与32+=ax y 的图象相交于点)2,(m A ,则关于x 的不等式32+>-ax x 的解集是A .1->xB .1-<xC .2>xD .2<x8.在同一平面直角坐标系中,直线14+=x y 与直线b x y +-=的交点不可能在 A .第一象限 B .第二象限 C . 第三象限 D .第四象限9.如图,某工厂有两个大小相同的蓄水池,且中间有管道连通。
现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙池水面上升的高度h 与注水时间t 之间的函数关系的图象可能是10.在平面直角坐标系中,点(,)P x y 经过某种变换后得到点(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P …n P ,若点1P 的坐标为(2,0),则点2017P 的坐标为.A .(﹣3,3)B .(1,4)C .(2,0)D .(﹣2,﹣1) * 选择题答题卡(请同学们将选择题答案填在答题卡内)二.填空题(本题共有4小题,每小题5分,共计20分)11.已知,在平面直角坐标系中,白棋2,1A ,白棋6,0B ,则黑棋C 的坐标为 ( , ).12.长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是 (写一个即可). 13.一次函数2yx m 的图象经过点2,3P,且与x 轴、y 轴分别交于点A 、B ,则AOB △的面积等于 .题号 1 2 3 4 5 6 7 8 9 10 答案14.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m )与跑步时间(单位:s )的对应关系如下图所示.下列叙述正确的是 (填上你认为正确的序号)①两人从起跑线同时出发,同时到达终点;②小苏跑全程的平均速度小于小林跑全程的平均速度;③小苏前15s 跑过的路程大于小林前15s 跑过的路程;④小林在跑最后100m 的过程中,与小苏相遇2次。
沪科版八年级上册数学期中考试试卷附答案
沪科版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案,每小题3分)1.点P(﹣2,5)在第( )象限A .一B .二C .三D .四2.已知某一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数为( ) A .y=﹣x ﹣2 B .y=﹣x+10 C .y=﹣x ﹣6 D .y=﹣x ﹣10 3.若一次函数y=ax+b 的图象经过第一、二、四象限,则下列不等式中总是成立的是( ) A .ab >0 B .a ﹣b >0 C .a 2+b >0 D .a+b >04.若点A (-1, m)和点B(-2, n)在直线y=-2x+b 上,则m 与n 的大小关系是( ) A .m=nB .m>nC .m<nD .与b 的取值有5.如图,在CEF △中,80E ∠=︒,50F ∠=︒,AB CF ,AD CE ,连接BC ,CD ,则A∠的度数是( )A .45°B .50°C .55°D .80°6.一次函数y 1=kx +b 与y 2=x +a 的图象如图所示,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2;④当y 1>0且y 2>0时,﹣a <x <4.其中正确的个数是( )A .1个B .2个C .3个D .4个7.满足下列条件的三角形中,不是直角三角形的是( )A .∠A -∠B =∠CB .∠A :∠B :∠C =3:4:7 C .∠A =2∠B =3∠CD .∠A =9°,∠B =81°8.如图,在△ABC 中有四条线段DE ,BE ,EF ,FG ,其中有一条线段是△ABC 的中线,则该线段是( )A .线段DEB .线段BEC .线段EFD .线段FG 9.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是 ( ). A .5:4:3 B .4:3:2 C .3:2:1 D .5:3:1 10.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④ 11.关于函数21y x =-+,下列结论正确的是( )A .图象必经过点()2,1-B .图象经过第一、二、三象限C .当12x >时,0y < D .y 随x 的增大而增大12.如图,已知矩形OABC ,A (4,0),C (0,3),动点P 从点A 出发,沿A ﹣B ﹣C ﹣O 的路线匀速运动,设动点P 的运动时间为t ,△OAP 的面积为S ,则下列能大致反映S 与t 之间关系的图象是( )A .B .C .D .二、填空题13.如果点P (m ,1﹣2m )在第四象限,则m 的取值范围是_______.14.已知点(3,5)在直线y=ax+b (a ,b 为常数,且a≠0)上,则 5b a-=______. 15.若点M(x 1,y 1)在函数y=kx+b(k≠0)的图象上,当﹣1≤x 1≤2时,﹣2≤y 1≤1,则这条直线的函数解析式为_____.16.如图,把一副常用的三角板如图所示拼在一起,那么图中∠CEF =___°.17.已知一次函数的图象经过点(﹣12,﹣14),且图象与x 轴的交点到原点的距离为1,则该一次函数的解析式为:_____. 18.若一次函数()12112y k x k =-+-的图象不过第一象限,则k 的取值范围是_____.三、解答题19.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积20.已知ABC △的三边长分别为a , b , c.(1)若a , b , c 满足22()()0a b b c -+-=,试判断ABC ∆的形状:(2)若a=5, b=2, 且c 为整数,求ABC ∆的周长的最大值及最小值.21.已知21y +与33x -成正比例,且10x =时,4y =.求y 与x 之间的函数关系式.22.我们知道,海拔高度每上升1km ,温度下降6ºC .某时刻,杭州地面温度为20ºC ,设高出地面x km 处的温度是y ºC . (1)求y 与x 的函数关系式.(2)在同一时刻,有一架飞机飞过杭州上空,若机舱内仪表显示飞机外的温度为-34ºC ,求这架飞机距离地面的高度.23.小华有一个容量为8GB (1GB= 1024MB)的U盘,U盘中已经存储了一个视频文件,其余空间都用来存储照片,若每张照片占用的内存容量均相同,图片数量x (张)和剩余可用空间y (MB)的部分关系如表:(1)由上表可知,y与x之间满足___ ___(填“一次”或“二次”或“反比例”)函数的关系,求出y与x之间的关系式.(2)求出U盘中视频文件的占用内存容量.24.某服装店用6000元购进A、B两种新式服装.按照标价出售后获利3800(毛利润=售价-进价),这两种服装的进价、售价如表所示:(1)求这两种服装各购进的件数:(2)如果A种服装售价不变,B种服装降价a元出售.这批服装全部售完后所获利润为w.①写出w与a之间的函数关系式:②当20≤a≤50时,这批服装全部售出后,获得的最大利润是多少?25.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)求△ABC的面积;(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.参考答案1.B【分析】根据点的横纵坐标的符号可判断出相应的象限.【详解】解:∵点P(-2,5)横坐标为负数,纵坐标为正数,∴点P(-2,5)在第二象限.故选B.【点睛】本题考查点的坐标,解题的关键是熟记:横坐标为负,纵坐标为正的点在第二象限.2.B【详解】分析:一次函数的图象与直线y=-x+1平行,所以k值相等,即k=-1,又因该直线过点(8,2),所以就有2=-8+b,从而可求出b的值,进而解决问题.详解:∵一次函数y=kx+b的图象与直线y=-x+1平行,∴k=-1,则即一次函数的解析式为y=-x+b.∵直线过点(8,2),∴2=-8+b,∴b=10.∴直线l的解析式为y=-x+10.故选B.点睛:本题主要考查了运用待定系数法求一次函数的解析式,注意两直线平行时k的值相等.3.C【详解】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴ab<O,故A错误,a﹣b<0,故B错误,20a b>,故C正确,a+b不一定大于0,故D错误.故选C.4.C【分析】先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.【详解】解:∵直线y=-2x+b中,k=-2<0,∴此函数y随着x的增大而减小,∵-1>-2,∴m<n.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点,以及一次函数的增减性,熟知一次函数的增减性是解答此题的关键.5.B【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】解:连接AC 并延长交EF 于点M .AB CF ,31∴∠=∠,AD CE ,24∴∠=∠,3412BAD FCE ∴∠=∠+∠=∠+∠=∠,180180805050FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,50BAD FCE ∴∠=∠=︒,故选B .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.6.B【分析】仔细观察图象,①k 的正负看函数图象从左向右成何趋势即可;②a 看y 2=x +a 与y 轴的交点坐标;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④看两直线都在x 轴上方的自变量的取值范围.【详解】①∵y 1=kx +b 的图象从左向右呈下降趋势,∴k <0正确;②∵y 2=x +a ,与y 轴的交点在负半轴上,∴a <0,故②错误;③当x <3时,y 1>y 2,故③错误;④y 2=x +a 与x 轴交点的横坐标为x =﹣a ,当y1>0且y2>0时,﹣a<x<4正确;故正确的判断是①④,正确的个数是2个.故选B.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象与性质,利用数形结合是解题的关键.7.C【分析】依据三角形内角和定理,求得三角形的最大角是否大于90°,进而得出结论.【详解】解:A.∵∠A-∠B=∠C,∴∠A=∠B+∠C=90°,∴该三角形是直角三角形;B.∵∠A:∠B:∠C=3:4:7,∴∠C=180°×714=90°,∴该三角形是直角三角形;C.∵∠A=2∠B=3∠C,∴∠A=180°×611>90°,∴该三角形是钝角三角形;D.∵∠A=9°,∠B=81°,∴∠C=90°,∴该三角形是直角三角形;故选:C.【点睛】本题考查了三角形内角和定理.解题的关键是灵活利用三角形内角和定理进行计算.8.B【详解】【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知线段BE是△ABC的中线,其余线段DE、EF、FG都不符合题意,故选B.【点睛】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.9.C【分析】试题分析:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,3x=90°,4x=120°,5x=150°,相应的内角分别为90°,60°,30°,则这个三角形内角之比为:90°:60°:30°=3:2:1,故选C.考点:三角形的外角性质.【详解】请在此输入详解!10.A【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.11.C【详解】根据一次函数的性质,依次分析可得,A. x=−2时,y=−2×−2+1=5,故图象必经过(−2,5),故错误,B. k<0,则y随x的增大而减小,故错误,C. 当x>1时,y<0,正确;2D. k=−2<0,b=1>0,则图象经过第一、二、四象限,故错误,故选C.点睛:本题考查了一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.12.A【详解】∵A (4,0)、C (0,4),∴OA=AB=BC=OC=4,①当P 由点A 向点B 运动,即0≤t≤4,S=12OA·AP=2t ; ②当P 由点A 向点B 运动,即4<t≤8,S=12OA·AP=8; ③当P 由点A 向点B 运动,即8<t≤12,S=12OA·AP=2(12﹣t )=﹣2t+24; 结合图象可知,符合题意的是A .故选A .13.12m > 【分析】直接利用第四象限点的性质可得关于m 的不等式组,解不等式组即可得解.【详解】解:∵点(),12P m m -在第四象限∴0120m m >⎧⎨-<⎩ ∴12m > ∴m 的取值范围是12m >. 故答案是:12m >【点睛】 本题考查了平面直角坐标系中象限内点的坐标的符号特征以及解不等式组,掌握各象限内点的坐标特征是解题的关键.14.-3【解析】5353b a b a-+=⇒=- 15.y=x ﹣1或y=﹣x .【分析】分两种情形,分别求解即可解决问题;【详解】∵点M (x 1,y 1)在在直线y=kx+b 上,-1≤x 1≤2时,-2≤y 1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k b k b -+-⎧⎨+⎩==,或122k b k b ==-+⎧⎨+-⎩可得11k b ⎧⎨-⎩==或10k b -⎧⎨⎩==, ∴y=x-1或y=-x ,故答案为y=x-1或y=-x .【点睛】本题考查待定系数法确定一次函数解析式,一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法,属于中考常考题型.16.15【分析】根据常用的三角板的特点求出∠ACB 和∠F 的度数,根据三角形的外角的性质计算即可.【详解】解:由一副常用的三角板的特点可知,∠ACB =45°,∠F =30°,∴∠CEF =∠ACB -∠F =15°,故答案为:15.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.17.y=16x ﹣16或y=﹣12x ﹣12【解析】【分析】依据一次函数的图象经过点(-12,-14),与x 轴的交点坐标为(1,0)或(-1,0),运用待定系数法即可得到该一次函数的解析式.【详解】 解:由题意可知:一次函数的图象经过点(﹣12,﹣14),与x 轴的交点坐标为(1,0)或(﹣1,0),设一次函数解析式为y =kx +b , 当一次函数图象过点(﹣12,﹣14),(1,0)时,则 11420k b k b⎧-=-+⎪⎨⎪=+⎩ , 解得1k 61b 6⎧=⎪⎪⎨⎪=-⎪⎩, 此时一次函数解析式为1166y x =-; 当一次函数图象过点(﹣12,﹣14),(﹣1,0)时,则 11420k b k b⎧-=-+⎪⎨⎪=-+⎩, 解得1k 21b 2⎧=-⎪⎪⎨⎪=-⎪⎩, 此时一次函数解析式为1122y x =--, 综上所述,该函数的解析式为y=16x ﹣16或y=﹣12x ﹣12. 故答案是:y=16x ﹣16或y=﹣12x ﹣12. 【点睛】 考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式. 18.12k <≤【分析】如果函数b y kx =+(0k ≠)不过第一象限,则说明其x 的系数小于零,b 小于或等于零,据此求解即可.【详解】∵一次函数()12112y k x k =-+-的图象不过第一象限,∴()2101102k k ⎧-⎪⎨-≤⎪⎩<,∴12k <≤所以答案为:12k <≤【点睛】本题主要考查了一次函数图像的性质及特点,熟练掌握相关概念是解题关键.19.(1)详见解析;(2)A 1 (4,−2), B 1 (1,−4), C 1 (2,−1);(3)72【分析】(1)直接利用平移的性质得出A ,B ,C 平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用△A1B1C1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:A 1 (4,−2), B 1 (1,−4), C 1 (2,−1);(3) △A 1B 1C 1的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则20.(1)ABC △是等边三角形;(2)最小值:11,最大值:13.【分析】(1)直接根据非负数的性质即可得出结论;(2)根据三角形的三边关系可得出c 的取值范围,进而可得出结论.【详解】(1)∵22()()0a b b c -+-=,∴0,0a b b c -=-=,∴.a=b=c ,∴ ABC △是等边三角形.(2)∵a=5, b=2,∴5-2<c<5+2.即3<c<7,∵c 为整数,∴c=4,5,6,∴.当c=4时,△ABC 的周长最小,最小值=5+2+4=11;当c=6时,△ABC 的周长最大,最大值=5+2+6=13.【点睛】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,两边差小于第三边是解答此题的关键.21.112y x =- 【分析】可设()2133y k x +=-,将已知条件代入即可求得k 的值,进一步求得函数解析式即可.【详解】设()2133y k x +=-,∵10x =时,4y =,∴()2413103k ⨯+=⨯-, ∴13k =, ∴211y x +=-,即112y x =- 【点睛】本题主要考查了正比例关系的运用,熟练掌握相关概念是解题关键.22.(1) ()2060y x x =->;(2) 9km.【分析】(1)根据等量关系:高出地面x 千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的函数值高出地面x 千米处的温度-34℃代入一次函数求得x .【详解】解:(1)()2060y x x =->.(2)当y =-34时,20634x -=-,解得9x =,所以这架飞机距离地面的高度9km .【点睛】本题考查的是用一次函数解决实际问题,通过给出自变量或因变量的值求另一变量. 23.(1)一次;(2)2192 (MB).【分析】(1)由表中数据可知y 与x 之间满足一次函数的关系,设y 与x 之间的关系式为y=kx+b ,运用待定系数法解答即可;(2)根据(1)结果解答即可;【详解】(1) 由表中数据可知y 与x 之间满足一次函数的关系,设y 与x 之间的关系式为y=kx+b ,根据题意得,10057002005400k b k b +=⎧⎨+=⎩, 解得k 3b 6000=-⎧⎨=⎩, 故y 与x 之间的关系式为y= -3x+6000;(2) ∵-3<0,∴y= -3x+6000的最大值是6000,∴U 盘中视频文件的占用内存容量为1024860002192⨯-= (MB).【点睛】本题主要考查了一次函数的应用,熟练掌握待定系数法求函数关系式是解答本题的关键. 24.(1)购进A 种服装50件,购进B 种服装30件;(2)①W=-30a+3800;②当20≤a≤50时, 这批服装全部售出后,获得的最大利润是3200元.【分析】(1)设A 种服装购进x 件,B 种服装购进y 件,由总价=单价×数量,利润=售价-进价建立方程组求出其解即可;(2)①根据总利润=A 种服装的利润+B 中服装的利润,求解即可;②根据一次函数的性质求解即可.【详解】(1)设购进A 种服装a 件,购进B 种服装b 件,601006000(10060)(160100)3800a b a b +=⎧⎨-+-=⎩, 解得,5030a b =⎧⎨=⎩, 答:购进A 种服装50件,购进B 种服装30件:(2)①由题意可得,50(10060)30(160100)303800w a a =⨯-+--=-+,即w 与a 之间的函数关系式是W=-30a+3800;②∵w 与a 之间的函数关系式是W=-30a+3800, 20≤a≤50,∵ -30<0, w 随a 的增大而减小,∴当a=20时,w 取得最大值,此时W= 3200,答:当20≤a≤50时, 这批服装全部售出后,获得的最大利润是3200元.【点睛】本题考查了销售问题的数量关系的运用,列二元一次方程组解实际问题的运用,以及一次函数的应用,解答时由销售问题的数量关系建立二元一次方程组是关键.25.(1)A (2,﹣1)、B (4,3);(2)5;(3)图详见解析,A ′(0,0)、B ′(2,4)、C ′(﹣1,3).【分析】(1)根据直角坐标系的特点写出对应点的坐标;(2)用△ABC 所在的矩形面积减去三个小三角形的面积即可求解;(3)分别将点A 、B 、C 先向左平移2个单位长度,再向上平移1个单位长度,得到点A ′、B′、C′,然后顺次连接并写出坐标.【详解】解:(1)A(2,﹣1),B(4,3);(2)S△ABC=3×4﹣12×2×4﹣12×1×3﹣12×3×1=5,故△ABC的面积为5;(3)所作图形如图所示:A′(0,0)、B′(2,4)、C′(﹣1,3).【点睛】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.。
沪科版八年级上册数学期中考试试卷及答案
沪科版八年级上册数学期中考试试题一、单选题1.将点P(0,5)向左平移2个单位后,得到对应点Q的坐标是()A.(﹣2,5)B.(2,5)C.(0,3)D.(0,7)2.点P在第二象限,并且到x轴的距离为1,到y轴的距离为3,那么点P的坐标为()A.(﹣1,3)B.(﹣1,﹣3)C.(﹣3,﹣1)D.(﹣3,1)3.若正比例函数y=kx的图象经过点(2,﹣1),则k的值为()A.12-B.12C.﹣2 D.24.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()A.13cm B.6cm C.5cm D.4cm5.下列命题中,真命题是()A.如果|a|=a,则a>0 B.如果22a b=,那么a=bC.两点之间,直线最短D.对顶角相等6.数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b,相交于点P ,根据图象可知,方程x+5=ax+b的解是()A.x=20 B.x=5 C.x=25 D.x=157.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C .D .8.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) A .90° B .110° C .100° D .120° 9.直线y =2(a ﹣2)x +a 2﹣4经过原点,则a 的值是( ) A .﹣2 B .2 C .±2 D .无法确定10.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( ) A .122t ≤< B .112t <≤ C .12t <≤ D .122t ≤≤且1t ≠二、填空题 11.函数y =x 的取值范围是________. 12.已知直线y =2x +1经过P 1(3,y 1)、P 2(﹣2,y 2)两点,则y 1___y 2.(填“>”“<”或“=”) 13.若一个等腰三角形的两边长分别为4cm 和9cm ,则这个等腰三角形的周长是______cm . 14.已知k 为正整数,无论k 取何值,直线1:1l y kx k =++与直线2:(1)2l y k x k =+++都交于一个固定的点,这个点的坐标是_________;记直线1l 和2l 与x 轴围成的三角形面积为k S ,则1S =_____,123100S S S S ++++的值为______.15.直线l 1:y =x+1与直线l 2:y =mx+n 相交于点P (a ,2),则关于x 的不等式x+1≥mx+n 的解集为_____.三、解答题16.如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别为A(0,3),B(-3,5),C(-4,1).把△ABC 向右平移2个单位,再向下平移3个单位得到△A 1B 1C 1. (1)请画出△A 1B 1C 1,并写出点A 1的坐标;(2)连接OC 、A 1A ,求四边形ACOA 1的面积.17.已知:如图,△ABC 中,AD 平分△BAC . (1)画出△ADC 中DC 边上的高AE .(2)若△B =30°,△ACB =110°,求△DAE 的度数.18.世界上大部分国家都使用摄氏温度(△),但美、英等国的天气预报仍然使用华氏温度(△)两种计量之间有如下对应:(1)这两种计量之间的关系式一次函数关系,请求出此一次函数解析式; (2)求出华氏0度时摄氏温度是多少度.19.如图,函数2y x =和4y ax =+的图像相交于点(,3)A m . (1)求,m a 的值;(2)根据图像,直接写出不等式24xax 的解集.20.k取何值时,直线y=2x+k+1与直线y=﹣x+3k的交点在第二象限.21.某经销商从市场得知如下信息:他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x 块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.22.已知y-1与x成正比例,且当x=-2时,y=5.(1)求y与x之间的函数关系式.(2)若点(m-1,3)在这个函数图象上,求m.23.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.参考答案1.A【解析】【分析】根据平移变换的性质,向左平移2个单位,纵坐标不变,横坐标减2进行计算.【详解】解:△0﹣2=﹣2,△得到对应点Q的坐标是(﹣2,5).故选:A.【点睛】本题考查了平移变换的性质,熟记“左减右加,下减上加”是解题的关键.2.D【解析】【分析】应先判断出点P的横纵坐标的符号,进而根据到坐标轴的距离判断具体坐标.【详解】解:△点P在第二象限,△其横坐标是负数,纵坐标是正数,又△点到x轴的距离为1,到y轴的距离为3,△它的横坐标是﹣3,纵坐标是1,点P的坐标为(﹣3,1).故选D.【点睛】本题考查了点在第二象限内时点的坐标的符号以及点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.3.A【解析】【分析】得到关于k的一元一次方程,解之即可.把点(2,﹣1)代入正比例函数y kx【详解】解:把点(2,﹣1)代入正比例函数y kx =得: 21k =-,解得:12k =-,故选:A . 【点睛】本题考查了求正比例函数的解析式,熟悉相关性质,正确掌握代入法是解题的关键. 4.B 【解析】 【分析】利用三角形的三边关系即可求解. 【详解】解:第三边长x 的范围是:8383x -<<+,即5cm 11cm x <<, 故选:B . 【点睛】本题考查三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是解题的关键. 5.D 【解析】 【分析】根据去绝对值定义对选项A 进行判断;根据平方性质对选项B 进行判断;根据两点之间线段最短性质对选项C 进行判断;根据对顶角的性质对选项D 进行判断. 【详解】解:A 、如果|a|=a ,则a≥0,所以A 选项为假命题;B 、如果22a b =,那么a =b 或a +b =0,所以B 选项为假命题;C 、两点之间线段最短,不是直线最短,所以C 选项为假命题;D 、对顶角相等,所以D 选项为真命题. 故选:D . 【点评】本题考查了命题与定理,掌握用推理证实命题及相关定理是解题关键. 6.A【解析】【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.【详解】解:由图可知:直线y=x+5和直线y=ax+b交于点P(20,25),△方程x+5=ax+b的解为x=20.故选:A.【点睛】本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0 (a,b 为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.7.C【解析】【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【详解】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选:C.【点睛】一次函数y=kx+b的图象有四种情况:△当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;△当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限; △当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限; △当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限. 掌握以上知识是解题的关键. 8.C 【解析】 【分析】根据三角形的外角和等于360︒列方程求三个外角的度数,确定最大的内角的度数即可. 【详解】解:设三个外角的度数分别为2k ,3k ,4k ,根据三角形外角和定理,可知234360k k k ︒+︒+︒=︒, 得40k =︒,所以最小的外角为280k =︒, 故最大的内角为18080100︒-︒=︒. 故选:C . 【点睛】本题考查的是三角形外角和定理及内角与外角的关系,解题的关键是根据题意列出方程求解. 9.C 【解析】 【分析】根据题意可知直线y =2(a ﹣2)x +a 2﹣4经过原点,根据横纵坐标为0,列方程求解即可. 【详解】解:△直线y =2(a ﹣2)x +a 2﹣4经过原点,横坐标为0,纵坐标为0, △a 2﹣4=0,解得2a =±, 故选:C . 【点评】题目主要考查了一次函数的图象和性质,理解题意将原点代入是解题关键. 10.D 【解析】 【分析】画出函数图象,利用图象可得t 的取值范围. 【详解】 △22y tx t =++, △当y=0时,x=22t--;当x=0时,y=2t+2, △直线22y tx t =++与x 轴的交点坐标为(22t--,0),与y 轴的交点坐标为(0,2t+2),△t>0, △2t+2>2,当t=12时,2t+2=3,此时22t--=-6,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图1, 当t=2时,2t+2=6,此时22t--=-3,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图2, 当t=1时,2t+2=4,22t--=-4,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,如图3, △122t ≤≤且1t ≠, 故选:D.【点睛】此题考查一次函数的图象的性质,一次函数图象与坐标轴交点坐标,根据t 的值正确画出图象理解题意是解题的关键. 11.1x > 【解析】【详解】分析:一般地从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.解答:解:根据题意得到:x-1>0,解得x>1.故答案为x>1.点评:本题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.12.>【解析】【分析】k>时,y随x的增大而增大解答即可.根据一次函数的性质,当0【详解】k=>,解:△一次函数y=2x+1中20△y随x的增大而增大,△3>2,△y1>y2.故答案为:>.【点评】题目主要考查了一次函数的性质,牢记一次函数的性质,“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.13.22【解析】【分析】分别从等腰三角形的腰为4cm和9cm两种情况讨论,结合三角形三边关系分析,再计算出周长即可.【详解】解:当4cm为腰长时,三角形三边为4cm、4cm和9cm,△4+4<9,所以不构成三角形,舍去;当9cm 为腰长时,三角形三边为9cm 、9cm 和4cm ,△9+4>9,所以可以构成三角形,周长为9+9+4=22cm ,故答案为:22.【点睛】本题考查了等腰三角形的性质与三角形三边关系.解题的关键是分情况讨论,再根据三角形三边关系判断能否组成三角形.14. ()1,1-1450101 【解析】【分析】联立直线1l 和2l 成方程组,通过解方程组,即可得到交点坐标;分别表示出直线1l 和2l 与x 轴的交点,求得交点坐标即可得到三角形的边长与高,根据三角形面积公式进行列式并化简,即可得到直线1l 和2l 与x 轴围成的三角形面积为k S 的表达式,从而可得到1S 和123100S S S S ++++,再依据分数的运算方法即可得解. 【详解】解:联立直线1:1l y kx k =++与直线2:(1)2l y k x k =+++成方程组,1(1)2y kx k y k x k =++⎧⎨=+++⎩, 解得11x y =-⎧⎨=⎩, △这两条直线都交于一个固定的点,这个点的坐标是()1,1-;△直线1:1l y kx k =++与x 轴的交点为1,0k k +⎛⎫- ⎪⎝⎭, 直线2:(1)2l y k x k =+++与x 轴的交点为2,01k k +⎛⎫- ⎪+⎝⎭, △12111112211k k k k k k S k ++--+⎛⎫=⨯⨯= ⎪⎝⎭+, △114S =,12310011111111223341001011111111111223341001112222011110150,1011212S S S S -----+-⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪+-+++++++ ⎪⎝⎭⎝-⎭⎝⎭⎝⎭⎛⎫= ⎪⎝⎭⎛⎫= ⎪⎝⎭=+- 故答案为:()1,1-;14;50101【点睛】本题考查了一次函数y kx b =+(k≠0,b 为常数)的图象与两坐标轴的交点坐标特点,与x 轴的交点的纵坐标为0,与y 轴的交点的横坐标为0;也考查了坐标与线段的关系、三角形的面积公式以及分数的特殊运算方法.解题的关键是熟练掌握一次函数y kx b =+(k≠0,b 为常数)的图象与性质,能灵活运用分数的特殊运算方法.15.x≥1【解析】【分析】将P(a ,2)代入直线l 1:y =x+1中求出a =1,然后再根据图像越在上方,其对应的函数值越大即可求解.【详解】解:将点P(a ,2)坐标代入直线y =x+1,得a =1,从图中直接看出,在P 点右侧时,直线l 1:y =x+1在直线l 2:y =mx+n 的上方, 即当x≥1时,x+1≥mx+n ,故答案为:x≥1.16.(1)A 1 (2,0);(2)9.【详解】分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用四边形ACOA 1的面积为:1AOC AOA SS +,进而得出答案.详解:(1)如图所示:A 1(2,0).故答案为(2,0);(2)四边形ACOA 1的面积为:S△AOC+S△AOA1=12AO×4+12AO×A1O=12×3×4+12×2×3=9.点睛:本题主要考查了平移变换以及三角形面积求法,根据题意得出对应点位置是解题的关键.17.(1)见解析;(2)40°【分析】(1)利用三角形高线的作法进而得出AE即可;(2)利用三角形内角和定理得出△BAC的度数,再利用角平分线的性质得出△DAC的度数,进而得出△CAE的度数,即可得出答案.【详解】解:(1)如图所示:AE即为所求;(2)△△B=30°,△ACB=110°,△△ECA=70°,△BAC=40°,△AD平分△BAC,△△BAD=△DAC=20°,△△E=90°,△ECA=70°,△△EAC=20°,△△DAE=20°+20°=40°.【点睛】此题主要考查了复杂作图以及角平分线的性质以及三角形内角和定理等知识,得出△DAC 的度数是解题关键.18.(1)y=1.8x+32;(2)﹣17.8△【解析】【分析】(1)设一次函数的解析式为y=kx+b,由待定系数法求出其解即可;(2)当y=0时代入(1)的解析式求出其解即可.【详解】解:(1)设一次函数的解析式为y=kx+b,由题意,得32 5010bk b=⎧⎨=+⎩,解得:1.832kb=⎧⎨=⎩,△y=1.8x+32.答:一次函数表达式为y=1.8x+32;(2)当y=0时,1.8x+32=0,解得:x=﹣1609≈﹣17.8.答:华氏0度时摄氏是﹣17.8△;【点睛】本题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.(1)m=32,a=23-;(2)x>32.【解析】【分析】(1)由题意首先把A(m,3)代入y=2x,求得m的值,然后利用待定系数法求出a的值,(2)根据题意以交点为分界,结合图象写出不等式2x>ax+4的解集即可.【详解】解:(1)把(m,3)代入y=2x得,2m=3,解得m=32,△点A的坐标为(32,3),△函数y=ax+4的图象经过点A,△32a+4=3,解得:a=23 -;(2)由图象得,不等式2x>ax+4的解集为x>32.【点睛】本题主要考查一次函数与一元一次不等式,解题的关键是求出A点坐标利用数形结合思维分析.20.﹣17<k<12【解析】【分析】首先求出方程组213y x ky x k=++⎧⎨=-+⎩的解,然后根据第二象限内点的坐标特征,列出关于k的不等式组,从而得出k的取值范围.【详解】解:解方程组213y x ky x k=++⎧⎨=-+⎩,得213713kxky-⎧=⎪⎪⎨+⎪=⎪⎩,△交点在第二象限,△213713kk-⎧⎪⎪⎨+⎪⎪⎩<>,解得:﹣17<k<12.故k的取值范围是:﹣17<k<12.【点睛】本题主要考查了一次函数与方程组的关系及第二象限内点的坐标特征,难度适中,关键掌握两个一次函数图象的交点坐标就是对应的二元一次方程组的解.21.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案△进货时,经销商可获利最大,最大利润是13000元.【解析】【分析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.△y与x之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又△x≤50,△经销商有以下三种进货方案:(3)△140>0,△y 随x 的增大而增大.△x=50时y 取得最大值.又△140×50+6000=13000,△选择方案△进货时,经销商可获利最大,最大利润是13000元.【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用. 22.(1) y=-2x+1;(2)m=0.【解析】【分析】(1)设y -1=kx ,把已知条件代入可求得k ,则可求得其函数关系式;(2)把点的坐标代入可得到关于m 的方程,可求得m 的值.【详解】解:设y -1=kx ,△x=-2时,y=5,△5-1=-2k ,解得k=-2,△y -1=-2x,即y=-2x+1;(2)△点(m -1,3)在这个函数的图象上,△-2(m -1)+1=3,解得m=0.【点睛】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键. 23.(1)小明在南亚所游玩的时间为1(h ).(2)妈妈驾车的速度为60(km/ h ).CD 所在直线的函数解析式为:60110y x =-.【解析】【分析】(1)根据图象,小明1小时骑车20 km ,从而由路程、时间和速度的关系求出小明骑车的速度.图象中线段AB 表明小明游玩的时间段.(2)求出点C 、D 的坐标,根据待定系数法求解.【详解】解:(1)由图象知,小明1小时骑车20 km ,△小明骑车的速度为:20201=(km/ h ). 图象中线段AB 表明小明游玩的时间段,△小明在南亚所游玩的时间为:211-=(h ).(2)由题意和图象得,小明从南亚所出发到湖光岩门口所用的时间为:502511260604+-=(h ), △从南亚所出发到湖光岩门口的路程为:12054⨯=(km ).△从家到湖光岩门口的路程为:20525+=(km ).△妈妈驾车的速度为:25256060÷=(km/ h ).设CD 所在直线的函数解析式为:y kx b =+, 由题意知,点911C ,25,D ,046⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, △9254{1106k b k b +=+=,解得:60{110k b ==-.△CD 所在直线的函数解析式为:60110y x =-.。
2024-2025学年沪科版八年级数学上册期中复习试卷
2024-2025学年沪科版八年级数学上册期中复习试卷1.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限2.若是第二象限内的点,且点到轴的距离是,到轴的距离是,则点的坐标是()A.B.C.D.3.已知两点,都在直线(为常数)上,则、的大小关系是()A.B.C.D.不能确定4.如图,△ABC中,∠A=30°,D为CB延长线上的一点,DE⊥AB于点E,∠D=40°,则∠C为()A.20°B.15°C.30°D.25°5.下列命题中,①如果,那么;②如果两个角相等,那么这两个角为内错角;③如果,那么;④如果与互补,那么,真命题有()A.1个B.2个C.3个D.4个6.如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是()A.点B.点C.点D.点7.如图,已知于点,于点,,则的度数是()A.B.C.D.8.正比例函数y=2kx和一次函数y=kx-的大致图象是()A.B.C.D.9.下列命题:①在同一平面内,已知直线a、b,若,则;②在同一平面内,两条直线的位置关系只有相交和平行两种;③过直线上一点有且只有一条直线与已知直线垂直;④已知直线a,b,如果,那么,其中真命题是()A.①②③B.②④C.②③④D.③④10.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟它从原点运动到点,第二分钟,它从点运动到点,而后它接着按图中箭头所示在与x 轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2023分钟时,这个粒子所在位置的坐标是()A.B.C.D.11.在函数中,自变量的取值范围是______.12.如图,在的顶点在网格点上,过点作,垂足为点,则点的坐标为_____.13.如图,在中,点是上两点,点分别是上的点,将和分别沿着折叠,它们的对应三角形分别是和.若,则______︒.14.已知直线和直线(其中均为非零常数)位于同一平面直线坐标系内.(1)若这两条直线与轴交于同一点,则______;(2)若自变量取一切实数时,不等式恒成立,则的取值范围是_____.15.已知点P(8–2m,m–1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.16.如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为A(-2,-2),B(3,1),C(0,2).点P(a,b)是三角形ABC的边AC上任意一点,三角形ABC 经过平移后得到三角形A′B′C′,点P的对应点为P′(a-2,b+3).(1)写出点A′的坐标:点A′.(2)在图中画出平移后的三角形A′B′C′;(3)三角形ABC的面积为.17.用一条长为的铁丝围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么底边长是多少?(2)能用这根铁丝围成一个边长为的等腰三角形吗?如果能,请求出另外两条边的长度;如果不能,请说明理由.18.如图所示方格纸中,每个小正方形的边长均为1,点,点,点在小正方形的顶点上.(1)画出中边上的高;(2)画出中边上的中线;(3)直接写出的面积为________.19.已如三角形的三条边长为3、5和.(1)若3是该三角形的最短边长,求的取值范围;(2)若为整数,求三角形周长的最大值.20.在中,平分,.(1)如图1,若于点,,,求的度数.(2)如图2在线段上任取一点(不与,重合),过点作于点,若,,试求出的度数.(用含有、的代数式表示即可)21.如图,已知函数=2x+b和=ax﹣3的图象交于点P(﹣2,﹣5),这两个函数的图象与x轴分别交于点A、B.(1)分别求出这两个函数的解析式;(2)求△ABP的面积;(3)根据图象直接写出不等式2x+b<ax﹣3的解集.22.22.如图甲是一个大长方形剪去一个小长方形后形成的图形,已知动点以每秒的速度沿图甲的边框按从的路径移动,相应的的面积与时间之间的关系如图乙中的图象表示.若,试回答下列问题.图甲图乙(1)填空:图甲中的__________,__________;(2)求:图乙中的的值;(3)求:图乙中的的值.23.在平面直角坐标系中,点为坐标原点,直线交轴于点,交轴于点,且.(1)求直线的解析式;(2)①若另一条直线与直线有唯一交点,求点的坐标;②直接写出的取值范围.(3)若直线只与轴的交点在线段上(不与,重合),试写出取值范围.。
沪科版八年级上册数学期中考试试题带答案
沪科版八年级上册数学期中考试试卷一、单选题1.要从直线3x y =-得到函数53x y +=-的图象,那么直线3x y =-必须( ) A .向上平移5个单位 B .向下平移5个单位C .向上平移53个单位D .向下平移53个单位 【答案】D2.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A .向右平移了3个单位B .向左平移了3个单位C .向上平移了3个单位D .向下平移了3个单位【答案】D3.若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D4.如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【答案】A5.函数11y x =+的自变量x 的取值范围是( ) A .1x >- B .1x <- C .1x ≠- D .1x ≠【答案】C6.下列分别是三根小木棒的长度,其中能组成三角形的是( )A .3cm,4cm,8cmB .8cm,7cm,15cmC .5cm,5cm,11cmD .13cm,12cm,12cm【答案】D7.已知一次函数(3)5y m x m =+++,y 随x 的增大而减小,且其图象与y 轴的交点在y 轴的正半轴上,则m 的取值范围是( )A .5m >-B .3m <-C .53m -<<-D .3m >-【答案】C8.一副三角板有两个直角三角形,如图叠放在一起,则α∠的度数是( )A .165°B .120°C .150°D .135°【答案】A9.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B10.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离y (单位:km )与慢车行驶时间t (单位:h )的函数关系如图,则两车先后两次相遇的间隔时间是( )A .5h 3B .3h 2C .7h 5D .4h 3 【答案】B二、填空题11.在坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于_______个单位长度【答案】612.点()3,2P m m -+在y 轴上,则点P 的坐标为_________.【答案】(0,5)13.在△ABC 中,△A=55°,△B 比△C 大25°,则△B 的度数为_____.【答案】75°14.已知一次函数()324y m x m =-++的图象过直线143y x =-+与y 轴的交点M ,则此一次函数的表达式为_________.【答案】34y x =-+15.在直线132y x =-+,且与y 轴的距离是2个单位长度的点的坐标是_________. 【答案】(2,2)或(2,4)-16.如图,直线()0y kx b k =+<经过点()1,1P ,当kx b x +≥时,则x 的取值范围为_________.【答案】1x ≤17.若以二元一次方程20x y b +-=的解为坐标的点(x ,y ) 都在直线112y x b =-+-上,则常数b =_______.【答案】2.18.如图,已知长方形ABCD 顶点坐标为A (1,1),B (3,1),C (3,4),D (1,4),一次函数y =2x +b 的图像与长方形ABCD 的边有公共点,则b 的变化范围是__________.【答案】52b -≤≤三、解答题19.已知函数y=(m+1)x 2-|m |+n+4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?【答案】(1)当m=1,n 为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.【详解】(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又△m+1≠0即m≠−1,△当m=1,n 为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又△m+1≠0即m≠−1,△当m=1,n=−4时,这个函数是正比例函数.20.如图,在边长为1的小正方形网格中,AOB 的顶点均在格点上.(1)将AOB 向左平移3个单位,再向下平移1个单位长度得到111AO B ,请画出111AO B ,并写出点1A 的坐标;(2)求111AO B 的面积.【答案】(1)图见解析,1(2,2)A - (2)72【解析】(1) 解:如图,111AO B 即为所求,点A 的坐标为(1,3)A ,∴点1A 的坐标为1(13,31)A --,即为1(2,2)A -.(2) 解:111AO B 的面积为1117333212312222⨯-⨯⨯-⨯⨯-⨯⨯=.21.设三角形的三边长为正整数,,a b c ,且a b c ≤≤,当4b =时,满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形有多少个?(要求写出分析、判断的过程)【答案】满足条件的三角形共有10个,其中等腰三角形有7个,等边三角形有1个.【详解】 解:三角形的三边长为正整数,,a b c ,且a b c ≤≤,4b =,4,c a c a当1a =时,则14+1,c c此时45,c 则4,c =三角形的三边分别为:1,4,4,a b c此时,三角形有1个,等腰三角形1个;当2a =时,则242,c c此时46,c 则4,5,c三角形的三边分别为:2,4,4a b c 或2,4,5,a b c此时,三角形有2个,等腰三角形1个;当3a =时,则343,c c此时47,c 则4,5,6,c三角形的三边分别为:3,4,4a b c 或3,4,5a b c ===或3,4,6,a b c 此时,三角形有3个,等腰三角形1个;当4a =时,则444,c c此时48,c 则4,5,6,7c ,三角形的三边分别为:4,4,4a b c ===或4,4,5a b c 或4,4,6a b c 或4,4,7a b c ,此时,三角形有4个,等腰三角形有4个,等边三角形有1个;由题意知:5a ≥不合题意,舍去.综上:满足条件的三角形共有10个,其中等腰三角形有7个,等边三角形有1个.22.如图,直线2y x =-与直线y kx b =+相交于点,2A a ,并且直线y kx b =+经过x 轴上点()2,0(1)求直线y kx b =+的表达式;(2)直接写出不等式()20k x b ++≥的解集.【答案】(1)2433y x =-+ (2)1x ≥- 【解析】(1)解:把A (a ,2)代入y=-2x 中,得-2a=2,△a=-1, △A (-1,2)把A (-1,2),B (2,0)代入y=kx+b 中得△一次函数的解析式是2433y x =-+; (2)不等式(k+2)x+b≥0可以变形为kx+b≥-2x ,结合图象得到解集为:x≥-1.23.如图,在平面直角坐标系中,点M 是直线y x =-上的动点,过点M 作MN x ⊥轴,交直线y x =于点N ,当8MN ≤时,设点M 的横坐标为m ,求m 的取值范围.【答案】44m -≤≤【详解】解:对于直线y x =-,当x m =时,y m =-,即(,)M m m -,MN x ⊥轴,交直线y x =于点N ,∴点N 的横坐标为m ,对于直线y x =,当x m =时,y m =,即(,)N m m ,2MN m m m ∴=--=,8MN ≤,28m ∴≤,解得44m -≤≤.24.现从A ,B 向甲、乙两地运送蔬菜,A ,B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 地到甲运费60元/吨,到乙地45元/吨.(1)设A 地到甲地运送蔬菜x 吨,请完成下表:(2)设总运费为W 元,请写出W 与x 的函数关系式(3)怎样调运蔬菜才能使运费最少?【答案】(1)见解析(2)W=5x +1275(3)当x 最小为1时,W 有最小值 1280元【详解】解:(1)完成填表:(2)W=50x +30(14-x )+60(15-x )+45(x -1),整理得,W=5x +1275.(3)△A ,B 到两地运送的蔬菜为非负数,△x 014x 0{15x 0x 10≥-≥-≥-≥,解不等式组,得:1≤x≤14.在W=5x+1275中,W随x增大而增大,△当x最小为1时,W有最小值1280元.△当x=1时,A:x=1,14−x=13,B:15−x=14,x−1=0,即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.25.已知△ABC中,△ACB=90°,CD为AB边上的高,BE平分△ABC,分别交CD、AC于点F、E,求证:△CFE=△CEF.【答案】证明见解析.【详解】试题分析:根据互余、角平分线及对顶角等相关知识即可得出答案.证明:如图,△△ACB=90°,△△1+△3=90°,△CD△AB,△△2+△4=90°,又△BE平分△ABC,△△1=△2,△△3=△4,△△4=△5,△△3=△5,即△CFE=△CEF.。
沪科版八年级上册数学期中考试试题及答案
沪科版八年级上册数学期中考试试卷一、单选题1.下列数据中不能确定物体的位置的是()A .南偏西40°B .红旗小区3号楼701号C .龙山路461号D .东经130°,北纬54°2.下列函数(1)y =πx ;(2)y =-2x ﹣1;(3)y =1x;(4)y =22﹣x ;(5)y =x 2﹣1中,一次函数的个数是()A .4个B .3个C .2个D .1个3.如图,下列各曲线中表示y 是x 函数的是()A .B .C .D .4.根据如图所示的计算程序计算变量y 的值,若输入m =4,n =3时,则输出y 的值是A .13B .7C .10D .115.若一次函数y =(1-2k )x +1的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1<y 2,则k 的取值范围是()A .k <0B .k >0C .k <12D .k >126.如图,ABC 中,30A ∠=︒,将ABC 沿DE 折叠,点A 落在F 处,则FDB FEC ∠∠+的度数为()A.140︒B.60︒C.70︒D.80︒7.已知点A(m,n),且有mn≤0,则点A一定不在()A.第一象限B.第二象限C.第四象限D.坐标轴上8.一次函数y=kx﹣b与y=﹣bkx(k,b为常数,且kb≠0),它们在同一坐标系内的图象可能为()A.B.C.D.9.下列说法中,正确的是()A.三角形的高都在三角形内B.三角形的三条中线相交于三角形内一点C.三角形的一个外角大于任何一个内角D.三角形最大的一个内角的度数可以小于60度10.甲、乙两位同学周末相约骑自行车去游玩,沿同一路线从A地出发前往B地,甲、乙分别以不同的速度匀速骑行,甲比乙早出发5分钟.甲骑行20分钟后,乙以原速的1.5倍继续骑行,经过一段时间,乙先到达B地,甲一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:m)与甲骑行的时间x(单位:min)之间的关系如图所示,则下列说法中错误..的是()A.甲的骑行速度是250m/min B.A B,两地的总路程为22.5kmC.乙出发60min后追上甲D.甲比乙晚5min到达B地二、填空题11.在函数21y x =-中,自变量x 的取值范围是_____________.12.把命题“不能被2整除的数是奇数”改写成“如果…那么…”的形式__________.13.已知2y -与x 成正比,且当1x =时,6y =-,则y 与x 的关系式是___________14.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,设直线l 和八个正方形的最上面交点为A ,则直线l 的解析式是_____________.三、解答题15.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy ,按要求解答下列问题:(1)写出△ABC 三个顶点的坐标;(2)画出△ABC 向右平移6个单位,再向下平移2个单位后的图形△A 1B 1C 1;(3)求△ABC 的面积.16.已知一次函数y =kx -4,当x =2时,y =-3.(1)求一次函数的表达式;(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x 轴交点的坐标.17.用一条长为18cm 的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长.(2)能围成有一边的长是4cm 的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.18.如图,已知直线1:2l y x n =+-与直线2:l y mx n =+相交于点()1,2P .(1)求m 、n 的值;(2)请结合图象直接写出不等式2mx n x n +>+-的解集.19.如图,在△ABC 中,∠1=100°,∠C=80°,∠2=12∠3,BE 平分∠ABC .求∠4的度数.20.已知:如图,在 AOB 中,A(3,2),B(5,0),E(4,m),且点A 、E 、B 在同一条直线上,求:(1)m 的值;(2) AOE 的面积.21.如图1,∠MON =90°,点A 、B 分别在OM 、ON 上运动(不与点O 重合).(1)若BC 是∠ABN 的平分线,BC 的反方向延长线与∠BAO 的平分线交于点D .①若∠BAO =60°,则∠D =°.②猜想:∠D 的度数是否随A ,B 的移动发生变化?并说明理由.(2)若∠ABC=13∠ABN,∠BAD=13∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=1n∠ABN,∠BAD=1n∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)22.某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的23,求该校本次购买A型和B型课桌凳共有几种购买方案?怎样的方案使总费用最低?并求出最低消费.23.已知直线AB∥CD,(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=1n∠MBE,∠CDN=1n∠NDE,直线MB、ND交于点F,则FE∠∠=.参考答案1.A【解析】【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【详解】解:A.南偏西40︒,不是有序数对,不能确定物体的位置,故本选项符合题意;B.红旗小区3号楼701号,相当于一个数据,是有序数对,能确定物体的位置,故本选项不合题意;C.龙山路461号,是有序数对,能确定物体的位置,故本选项不合题意;D.东经130︒,北纬54︒,是有序数对,能确定物体的位置,故本选项不合题意;故选:A.【点睛】本题考查了坐标确定点的位置,解题的关键是要明确,一个有序数对才能确定一个点的位置.2.B【解析】【分析】根据一次函数的定义条件进行逐一分析即可.【详解】解:(1)y=πx是正比例函数,是特殊的一次函数;(2)y=2x﹣1是一次函数;(3)y=1x不是一次函数;(4)y=22﹣x是一次函数;(5)y=x2﹣1不是一次函数.故选:B.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3.B【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.函数的意义反映在图象上简单的判断方法是:作垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【详解】解:A、作垂直x轴的直线,在左右平移的过程中与函数图象可能有两个交点,故A不符合题意;B、作垂直x轴的直线,在左右平移的过程中与函数图象只会有一个交点,故B符合题意;C、作垂直x轴的直线,在左右平移的过程中与函数图象可能有两个交点,故C不符合题意;D、作垂直x轴的直线,在左右平移的过程中与函数图象可能有两个交点,故D不符合题意;故选:B.【点睛】:主要考查了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y 都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.B【解析】【分析】当m<n时用左边的解析式算;当m≥n时用右边的解析式算.【详解】解:∵m=4,n=3,∴m>n,∴y=3n﹣2,当n=3时,y=3×3﹣2=7.故选:B【点睛】本题考查已知自变量的数值求对应函数值,体现了分类讨论的数学思想,仔细审题是解此类题的关键.5.C【解析】由x1<x2时,y1<y2,可知y随x增大而增大,则比例系数1-2k>0,从而求出k的取值范围.【详解】解:当x1<x2时,y1<y2,y随x增大而增大,∴1-2k>0,得k<12.故选:C.【点睛】本题考查一次函数的图象性质:当k>0,y随x增大而增大,掌握一次函数的图象性质是解题的关键.6.B【解析】【分析】由折叠得到∠A与∠F的关系,利用四边形的内角和得到∠ADF+∠AEF=360°-∠A-∠F= 300°,再利用平角得到∠FDB+∠FEC=180°-∠ADF+180°-∠AEF,可得到最终结果.【详解】△DEF是由△DEA折叠而成的,∴∠A=∠F=30°,∠A+∠ADF+∠AEF+∠F=360°,∴∠ADF+∠AEF=360°-∠A-∠F=300°,∴∠BDF=180°-∠ADF,∴∠FEC=180°-∠AEF,∴∠FDB+∠FEC=180°-∠ADF+180°-∠AEF=360°-(∠ADF+∠AEF)=360°-300°=60°.故选:B.【点睛】本题考查了四边形的内角和,掌握折叠的性质及三角形的内角和定理是解决本题的关键.7.A【解析】【分析】由mn≤0可知,m、n不可能同号,再根据四个象限点的特点即可判断.【详解】∵mn≤0,∴mn≥⎧⎨≤⎩或mn≤⎧⎨≥⎩第一象限上的点横纵坐标均为正数,所以A点不可能在第一象限.故选A.【点睛】本题考查坐标系中点的符号特征,熟记四个象限上的点与坐标轴上的点的横纵坐标符号,是解题的关键.8.C【解析】【分析】根据一次函数的图象与系数的关系,由一次函数y=kx﹣b图象分析可得k、b的符号,进而可得bk-的符号,从而判断y=bk-x的图象是否符合,进而比较可得答案.【详解】解:根据一次函数的图象分析可得:A、由一次函数y=kx﹣b图象可知k>0,b>0,bk-<0;正比例函数y=bk-x的图象可知bk->0,故此选项错误;B、由一次函数y=kx﹣b图象可知k<0,b<0,bk-<0;正比例函数y=bk-x的图象可知bk->0,故此选项错误;C、由一次函数y=kx﹣b图象可知k<0,b<0,bk-<0;正比例函数y=bk-x的图象可知bk-<0,故此选项正确;D、由一次函数y=kx﹣b图象可知k>0,b<0,bk->0;正比例函数y=bk-x的图象可知bk <0,故此选项错误;故选:C.【点睛】此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9.B【解析】【分析】根据三角形的有关性质,对选项逐个判断即可.【详解】解:A、锐角三角形的三条高在三角形内部,相交于三角形内一点,钝角三角形的高不都在三角形内部,故本选项错误,不符合题意;B、三角形的三条中线相交于三角形内一点,故本选项正确,符合题意;C、三角形的一个外角大于任何一个不相邻的一个内角,故本选项错误,不符合题意;D、根据三角形内角和等于180°,三角形最大的一个内角的度数大于或等于60度,故本选项错误,不符合题意;故选:B.【点睛】本题考查三角形高线,中线的概念,三角形外角的性质和三角形内角和定理,掌握这些知识点是解题的关键.10.C【解析】【分析】根据函数与图象的关系依次计算即可判断.【详解】甲5min骑行1250m,故速度为1250÷5=250m/min,A正确;设乙的速度为x m /min ,则有20×250-15x=2000解得x=200∴乙的速度为200m /min ,甲骑行20分钟后,乙以原速的1.5倍,即1.5×200=300m /min 继续骑行,∵乙先到达B 地,∴由题意可得A B ,两地的总路程为15×200+(85-20)×300=22500m=22.5km ,B 正确;设乙出发t min 后追上甲依题意可得2000=()()3001525020t t ---解得t=30∴乙出发30min 后追上甲,C 错误;85min 甲的路程为85×250=21250m ∴甲比乙晚22500212505250-=min 到达B 地,D 正确故选C .【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考的压轴题.11.1x ≠【解析】【分析】根据分式存在的条件求解即可【详解】要使21x -有意义,则10x -≠,解得:1x ≠故答案为:1x ≠【点睛】本题考查了函数的概念,分式的性质,理解分式的性质是解题的关键.12.如果一个数不能被2整除,那么这个数是奇数【解析】【分析】先分清命题“不能被2整除的数是奇数”的题设与结论,然后写成“如果…那么…”的形式.【详解】解:如果一个数不能被2整除,那么这个数是奇数.故答案为:如果一个数不能被2整除,那么这个数是奇数.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.13.82y x =-+【解析】【分析】已知2y -与x 成正比例,即可以设2y kx -=,把1x =,6y =-代入解析式即可求得k 的值,从而求得函数的解析式.【详解】解:设2y kx-=根据题意得:62k--=则8k =-则函数的解析式是:82y x =-+.故答案为:82y x =-+【点睛】本题主要考查了待定系数法求函数的解析式,解题的关键是正确理解2y -与x 成正比例.14.910y x =【解析】【分析】如图,利用正方形的性质得到(0,3)B ,由于直线l 将这八个正方形分成面积相等的两部分,则5AOB S ∆=,然后根据三角形面积公式计算出AB 的长,从而可得A 点坐标.再由待定系数法求出直线l 的解析式.【详解】解:如图,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,415AOB S ∆∴=+=,而3OB =,∴1·352AB =,103AB ∴=,A ∴点坐标为10(3,3).设直线l 的解析式为y kx =,∴1033k =,解得910k =,∴直线l 的解析式为910y x =故答案为910y x =.【点睛】本题考查了坐标与图形性质和待定系数法求函数解析式.由割补法得5AOB S ∆=求分割点A 的位置是解题关键.15.(1)A (﹣1,8),B (-5,3),C (0,6);(2)见解析;(3)6.5【解析】【分析】(1)直接利用已知坐标系得出各点坐标即可;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)A (﹣1,8),B (-5,3),C (0,6);(2)如图所示:△A1B1C1即为所求;(3)S正方形=55=25,所以,S△ABC=25﹣12×4×5﹣12×3×5﹣12×1×2=25﹣10﹣7.5﹣1=6.5【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.16.(1)y=12x-4.(2)(-4,0).【解析】【分析】(1)把点(2,-3)代入解析式即可求出k;(2)先得出函数图像向上平移6单位的函数关系式,再令y=0,即可求出与x轴交点的坐标.【详解】解:(1)将x=2,y=-3代入y=kx-4,得-3=2k-4.∴k=1 2 .∴一次函数的表达式为y=12x-4.(2)将y=12x-4的图像向上平移6个单位长度得y=12x+2.当y=0时,x=-4.∴平移后的图像与x轴交点的坐标为(-4,0).【点睛】此题主要考察一次函数的解析式的求法与在坐标轴方向上的平移.17.(1)三角形三边的长为185cm 、365cm 、365cm;(2)能围成等腰三角形,三边长分别为4cm 、7cm 、7cm【解析】【分析】(1)可设出底边xcm ,则可表示出腰长,由条件列出方程,求解即可;(2)分腰长为4cm 和底边长为4cm 两种情况讨论即可.【详解】(1)设底边长为xcm ,则腰长为2xcm ,,依题意,得2218x x x ++=,解得185x =,∴3625x =,∴三角形三边的长为185cm 、365cm 、365cm ;(2)若腰长为4cm ,则底边长为18-4-4=10cm ,而4+4<10,所以不能围成腰长为4cm 的等腰三角形,若底边长为4cm ,则腰长为1842-=7cm ,此时能围成等腰三角形,三边长分别为4cm 、7cm 、7cm .【点睛】本题主要考查等腰三角形的性质,掌握等腰三角形的两腰相等是解题的关键,注意利用三角形三边关系进行验证.18.(1)1m =-,3n =;(2)1x <.【解析】【分析】(1)把点P 的坐标分别代入l 1与l 2的函数关系式,解方程即可;(2)利用函数图象,写出直线2l 在直线1l 的上方所对应的自变量的范围即可.【详解】解:(1)因为点P 是两条直线的交点,所以把点()1,2P 分别代入2y x n =+-与y mx n =+中,得212n =+-,2m n =+,解得1m =-,3n =.(2)当1x <时,2:l y mx n =+的图象在1:2l y x n =+-的上面,所以,不等式2mx n x n +>+-的解集是1x <.【点睛】本题考查了一次函数的交点问题和一次函数与一元一次不等式的关系,读懂图象,弄清一次函数图象的交点与解析式的关系和一次函数与一元一次不等式的关系是解题的关键.19.∠4=45°.【解析】【分析】根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD ,再根据角平分线的定义求得∠ABE ,最后根据三角形的外角的性质求得∠4.【详解】∵∠1=∠3+∠C ,∠1=100°,∠C=80°,∴∠3=20°,∵∠2=∠3,∴∠2=10°,∴∠ABC=180°﹣100°﹣10°=70°,∵BE 平分∠BAC ,∴∠ABE=35°,∵∠4=∠2+∠ABE ,∴∠4=45°.【点睛】本题考查了三角形的外角性质、角平分线的定义及三角形内角和定理,熟知三角形的外角等于和它不相邻的两个内角的和及三角形的内角和为180°是解题的关键.20.(1)m =1;(2)52.【解析】【分析】(1)求出直线AB 的解析式,利用待定系数法,可求出m 值;(2)由A 、B 、E 三点坐标可求出△AOE 的面积.【详解】解:(1)设:AB所在直线解析式为:y=kx+b,∵A(3,2),B(5,0),∴直线AB的解析式为y=﹣x+5,∵点E在直线AB上,∴﹣4+5=m,解得:m=1;(2)由上得E坐标为(4,1),S△AEO=S△AOB﹣S△EOB=12×5×2﹣12×5×1=52.∴△AOE的面积是5 2.【点睛】本题主要考查了坐标与图形的性质及三角形的面积公式,关键求出点E的坐标,间接求出△AOE的面积.21.(1)①45;②不变,见解析;(2)30;(3)nα.【解析】【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=12∠ABN=75°、∠BAD=12∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC﹣∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC﹣∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=nα+β,由∠D=∠ABC﹣∠BAD得出答案.【详解】解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=12∠ABN=75°,∠BAD=12∠BAO=30°,∴∠D=∠CBA﹣∠BAD=45°,故填45;②∠D的度数不变.理由如下:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(2)设∠BAD=α,∵∠BAD=13∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=13∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故填30;(3)设∠BAD=β,∵∠BAD=1n∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=1n∠ABN,∴∠ABC=nα+β,∴∠D=∠ABC﹣∠BAD=nα+β﹣β=nα,故填n α.【点睛】本题主要考查了角平分线和三角形外角的性质等知识点,掌握三角形的外角性质和角平分线的性质是解答本题的关键.22.(1)A 型课桌凳需180元,B 型课桌凳需220元;(2)共3种方案:方案一:A 型78套,B 型为122套;方案二:A 型79套,B 型为121套;方案三:A 型80套,B 型为120套;方案三总费用最低,费用为40880元【解析】【分析】(1)设A 型课桌凳需x 元,则B 型课桌凳需(x+40)元,根据4套A 型+5套B 型课桌凳=1820元,列出方程,解方程即可.(2)设购a 套A 型桌椅,()200a -套B 型桌椅,由购买这两种课桌凳总费用不能超过40880元可得到不等式,求得a 的取值范围,再分情况进行讨论.【详解】(1)设购一套A 型课桌凳需x 元,一套B 型课桌凳需()40x +元.依题意列方程得:()45401820x x ++=解得:180x =:B 18040220+=(元)(2)设购a 套A 型桌椅,()200a -套B 型桌椅,列不等式组得:()()1802202004088022003a a a a ⎧+-≤⎪⎨≤-⎪⎩解得7880a ≤≤∵a 为整数∴78,79,80a =∴共3种方案,分别为方案一:A 型78套,B 型为122套;方案二:A 型79套,B 型为121套;方案三:A 型80套,B 型为120套;方案一:78180122220140402684040880⨯+⨯=+=(元)方案二:79180121220142202662040840⨯+⨯=+=(元)方案三:80180120220144002640040800⨯+⨯=+=(元)∵408004084040880<<∴方案三总费用最低,费用为40880元.【点睛】考查了一元一次方程的应用和不等式组的应用,解题关键是根据已知得出不等式,求出a 的取值.23.(1)∠E=∠END﹣∠BME;(2)∠E+2∠NPM=180°;(3)1 1 n+【解析】【分析】(1)根据平行线的性质和三角形外角定理即可解答.(2)根据平行线的性质,三角形外角定理,角平分线的性质即可解答.(3)根据平行线的性质和三角形外角定理即可解答.【详解】解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案是:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=1n∠MBE,∠CDN=1n∠NDE,∴∠ABM=11n+∠ABE=∠CHB,∠CDN=11n+∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=11n+∠ABE﹣11n+∠CDE=11n+(∠ABE﹣∠CDE),②由①代入②,可得∠F=11n+∠E,即11FE n∠=∠+.故答案是:11 n+.。
沪科版八年级上册数学期中考试试卷含答案
沪科版八年级上册数学期中考试试题一、单选题1.在平面直角坐标系中,点(1,-3)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限2.如果三角形的两边分别为3和5,那么第三边可能是()A .7B .1C .2D .93.函数=x y x 的自变量x 的取值范围是()A .x≥l 且x≠0B .x≠0C .x≤1且x≠0D .x≤14.已知点P (3,y1)、Q (-2,y 2)在一次函数y=(2m-1)x+2的图象上,且y 1<y 2,则m 的取值范围是()A .m≥1B .m <l C .m >1D .m <125.已知正比例函数y=kx (k≠0)的函数值y 随x 的增大而减小,则一次函数y=x-k 的图象大致是()A .B .C .D .6.如图,BD 为ΔABC 的角平分线,若∠DBA=30°,∠ADB=80°,则∠C 的度数为()A .30°B .40°C .50°D .60°7.已知直线l 1:y=kx+b 与直线l 2:y=-2x+4交于点C (m ,2),则方程组24y kx b y x =+⎧⎨=-+⎩的解是()A .12x y =⎧⎨=⎩B .12x y =-⎧⎨=⎩C.21xy=⎧⎨=⎩D.21xy=⎧⎨=-⎩8.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④有两个角是锐角的三角形是直角三角形.其中是真命题的个数有()A.3个B.2个C.1个D.0个9.如图,A(1,0)、B(3,0)、M(4,3),动点P从点A出发,沿x轴以每秒1个单位长的速度向右移动,且过点P的直线y=-x+b也随之平移,设移动时间为t秒,若直线与线段BM有公共点,则t的取值范围()A.3≤t≤7B.3≤t≤6C.2≤t≤6D.2≤t≤510.如图,过点Q(0,3)的一次函数与正比例函数y=2x的图象交于点P,能表示这个一次函数图象的方程是()A.3x﹣2y+3=0B.3x﹣2y﹣3=0C.x﹣y+3=0D.x+y﹣3=0二、填空题11.若函数y=(k+3)x∣k∣-2+3是一次函数,则k的值是____________12.已知点(,)P m n在第2象限,且到x轴的距离为3,到y轴的距离等于5,则点P的坐标是________.13.如图,在△ABC中,点D、E分别AC、BC上,AE、BD交于一点F,D为AC的中点,BF=3DF,若SΔADF=2,则△ABC的面积是___________14.甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件,乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为y(个),甲加工零件的时间为x(时),y 与x之间的函数图象如图所示,当甲、乙两人相差15个零件时,甲加工零件的时间为______________15.等腰三角形的一边长是10cm,另一边长是5cm,则它的周长是____________三、解答题16.已知△ABC在8×8方格中,位置如图所示,A(-3,1)、B(-2,4)(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,并写出点B1的坐标.17.一次函数y=kx+b 的图象与直线y=-2x 平行,且经过点(1,6)(1)求k 、b 的值;(2)判断点P (-1,10)是否在该函数的图象上.18.已知:如图,△ABC 中,AD 平分∠BAC .(1)画出△ADC 中DC 边上的高AE .(2)若∠B =30°,∠ACB =110°,求∠DAE 的度数.19.已知y 与2x +成正比例,当3x =时,10y =-(1)求y 与x 之间的函数表达式;(2)当21x -<≤时,求y 的取值范围20.如图,已知:点A 、B 、C 在一条直线上.(1)请从三个论断:①AD ∥BE ;②∠1=∠2;③∠A=∠E 中,选两个作为条件,另一个作为结论构成一个真命题:条件:结论:(2)证明你所构建的命题是真命题.x+1,且l1与x轴交于点D,直线12的函数解析式21.如图,直线l1的函数关系式为y1=12y2=kx+b经过定点A(4,0),B(-1,5),直线l1与l2相交于点C(1)求直线l2函数解析式;(2)若在x轴上存在一点F,使得SΔACF-SΔADC=3,求点F的坐标;22.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q 同时出发,点P的速度为每秒lcm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒lcm,图②是点P出发x秒后△APD 的面积S(cm)与x(秒)的函数关系图象.(1)根据图象得a=;b=;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式,井写出自变量取值范围.23.如图,BE平分∠ABD,DF平分∠BDC,FD的延长线交BE于点E(1)若∠BAC=56°,∠DCA=22°,∠EBD=23°,求∠BEF的度数;(2)若∠BAC=α,∠DCA=β,∠BEF=γ,请直接写出α、β、γ三者之间的关系.24.双十一期间,合肥百大电器公司新进了一批空调机和电冰箱共100台,电冰箱是空调机数量的2倍多10台;计划调配给下属的甲、乙两个连锁店销售,其中60台给甲连锁店,40台给乙连锁店,两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200170乙连锁店160150设公司调配给甲连锁店x台空调机,公司卖出这100台电器的总利润为y(元)(1)求新进空调机和电冰箱各多少台?(2)求y关于x的函数关系式,并求出x的取值范围;(3)为了促销,公司决定仅对甲连锁店的空调机每台让利m元(m>0)销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该公司应该如何设计调配方案,使总利润达到最大?参考答案1.D【分析】根据各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b >0;③第三象限:a<0,b<0;④第四象限:a>0,b<0进行判断即可.【详解】解:∵第四象限内的点横坐标>0,纵坐标<0,∴点(1,-3)所在的象限是第四象限,故选D.【点睛】考查点的坐标,掌握每个象限点的坐标特征是解题的关键.2.A【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】解:设第三边为a,根据三角形的三边关系:5﹣3<a<3+5,解得:2<a<8.第三边可能是7,故选:A.【点睛】此题主要考查了三角形的三边关系,题目比较基础,只要掌握三角形的三边关系定理即可.3.C【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据题意得:1﹣x≥0且x≠0,解得:x≤1且x≠0.故选:C.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.D【解析】【分析】由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围.【详解】解:∵点P (3,y 1)、点Q (-2,y 2)在一次函数y=(2m-1)x+2的图象上,∴当3>-2时,由题意可知y 1<y 2,∴y 随x 的增大而减小,∴2m-1<0,解得m <12,故选D .【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.5.A【解析】【分析】先根据正比例函数y=kx 的函数值y 随x 的增大而减小,判断出k 的符号,再根据一次函数的性质即可得答案.【详解】解:∵正比例函数y =kx(k≠0)的函数值y 随x 的增大而减小,0k ∴<∴y =x-k 的图象经过一、二、三象限,故选A .【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b (k≠0)中,当0k >,0b >时,图象经过一、二、三象限.6.C【解析】【分析】根据角平分线的定义得到∠CBD=∠ABD=30°,再由三角形外角的性质即可得到∠C=∠ADB-∠CBD=50°.【详解】解:∵BD 是△ABC 的角平分线,∴∠CBD=∠ABD=30°,∵∠ADB=∠C+∠CBD=80°,∴∠C=∠ADB-∠CBD=50°,故选C .【点睛】本题主要考查了三角形外角的性质,角平分线的定义,解题的关键在于能够熟知角平分线的定义和三角形外角的性质.7.A【解析】【分析】根据直线解析式求出点C 坐标,根据两函数交点坐标与方程组的解得关系即可求解.【详解】解:∵y=-2x+4过点C (m ,2),∴224m =-+,解得1m =,∴点C (1,2),∴方程组24y kx b y x =+⎧⎨=-+⎩的解12x y =⎧⎨=⎩.故选择A .【点睛】本题考查两函数的交点坐标与方程组的解的关系,掌握两函数的交点坐标与方程组的解是解题关键.8.D【解析】【分析】①根据对顶角的定义进行判断;②根据同位角的知识判断;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;根据直角三角形的定义对④进行判断.【详解】解:①对顶角相等,相等的角不一定是对顶角,①假命题;②两直线平行,同位角相等;②假命题;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;③假命题;④有两个角是锐角且互余的三角形是直角三角形,所以④假命题;真命题的个数为0,故选:D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.C【解析】【分析】分别求出直线经过点B、点M时的t值,即可得到t的取值范围.【详解】解:当直线y=-x+b过点B(3,0)时,∴3121t-==,当直线y=-x+b过点M(4,3)时,3=-4+b,解得:b=7,∴7y x =-+,当y=0时,07x =-+,解得:x=7,∴7161t -==,∴若直线与线段BM 有公共点,t 的取值范围是:2≤t≤6,故选:C .【点睛】此题考查了一次函数的图像和性质,解题的关键是根据题意求出直线经过点B 、点M 时的t 的值.10.D【解析】【分析】如果设这个一次函数的解析式为y=kx+b ,那么根据这条直线经过点P (1,2)和点Q (0,3),用待定系数法即可得出此一次函数的解析式.【详解】解:设这个一次函数的解析式为y=kx+b .∵这条直线经过点P (1,2)和点Q (0,3),∴2b 3k b +=⎧⎨=⎩,解得k=-1b=3⎧⎨⎩.故这个一次函数的解析式为y=-x+3,即:x+y-3=0.故选D .【点睛】本题主要考查了一次函数与方程组的关系及用待定系数法求一次函数的解析式.两个一次函数图象的交点坐标就是对应的二元一次方程组的解,反之,二元一次方程组的解就是对应的两个一次函数图象的交点坐标.11.k=3【解析】根据一次函数的定义可得:k+3≠0且|k|﹣2=1,求出k即可.【详解】解:由函数y=(k+3)x|k|﹣2+4是一次函数得:k+3≠0且|k|﹣2=1,解得:k≠-3且k=±3,∴k=3.故答案为:3.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.12.(-5,3)【解析】【分析】根据到x轴的距离得到点P的纵坐标的绝对值,到y轴的距离得到横坐标的绝对值,进而根据所在象限判断出具体坐标即可.【详解】解:∵到x轴的距离为3,到y轴的距离为5,∴纵坐标的绝对值为3,横坐标的绝对值为5,∵点P在第二象限,∴点P的坐标为(-5,3).故答案为(-5,3).【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离得到点的纵坐标的绝对值,到y轴的距离得到横坐标的绝对值.13.16【解析】【分析】根据BF=3DF,若SΔADF=2,求出S△ABD,再根据D为AC的中点,即可求出△ABC的面积.解:∵BF=3DF ,若S ΔADF=2,∴S △ABF =3S △ADF =6,S △ABD =S △ABF+S △ADF =8,∵点D 是AC 的中点,∴S △ABC =2S △ABD =16,故答案为:16.【点睛】本题考查了三角形中线的性质和三角形面积,解题关键是根据边的关系得出面积之间的关系.14.32或52或72【解析】【分析】结合题意,首先计算得甲加工到100个零件需要的时间、乙在3小时后的每小时加工零件数;再根据一次函数的性质,分别得甲、乙两人各自加工的零件数和加工零件的时间的函数解析式;再结合函数图像,通过列一元一次方程并求解,即可得到答案.【详解】根据题意,甲加工到100个零件,需要的时间为:100101430-+=(小时)∴甲加工零件的时间04x ≤≤(时)∴甲加工的零件数为()()()10,110301,14x x x ⎧≤⎪⎨+-<≤⎪⎩,即()()10,13020,14x x x ⎧≤⎪⎨-<≤⎪⎩∵乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务∴乙在3小时后,每小时加工零件数为:100406043-=-(个)∴乙加工的零件数为()()()40,340603,34x x x ⎧≤⎪⎨+-<≤⎪⎩,即()()40,360140,34x x x ⎧≤⎪⎨-<≤⎪⎩甲、乙两人相差15个零件,分甲比乙少15个零件和甲比乙多15个零件两种情况;根据y 与x 之间的函数图象,当甲比乙少15个零件时,得:30204015x -=-∴32x =;当甲比乙多15个零件时,分3x <和3x >两种情况;当3x <时,得30204015x --=∴52x =当3x >时,()30206014015x x ---=∴72x =;故答案为:32或52或72.【点睛】本题考查了一次函数、一元一次方程的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.15.25cm【解析】【分析】题目给出等腰三角形有两条边长为5cm 和10cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25cm .故答案为:25cm .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.(1)图见解析,C (1,1);(2)图见解析,(0,3)【解析】【分析】(1)根据点A 、B 的坐标和直角坐标系的特点建立直角坐标系;(2)分别将点A 、B 、C 向下平移1个单位长度,再向右平移2个单位长度,然后顺次连接各点,并写出点B 1的坐标;【详解】(1)直角坐标系如图所示,C 点坐标(1,1);(2)△A 1B 1C 1如图所示,点B 1坐标(0,3);【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.17.(1)k=-2,b=8;(2)在该函数的图象上【解析】【分析】(1)根据平行即可得出k 的值,再将点(1,6)代入函数解析式即可求出b 的值.(2)根据(1)可求出函数解析式,再令1x =-时,求出y 的值,即可判断.【详解】解:(1)根据题意两直线平行可知其斜率相等,∴2k =-.∴一次函数的解析式为2y x b =-+.∵该一次函数又经过点(1,6),∴62b =-+,解得:8b =.(2)根据(1)可知该一次函数解析式为28y x =-+,对于28y x =-+,当1x =-时,2(1)810y =-⨯-+=,∴点P(-1,10)在该函数图象上.【点睛】本题考查一次函数的性质,掌握一次函数图象上的点的坐标满足其解析式是解答本题的关键.18.(1)见解析;(2)40°【解析】【分析】(1)利用三角形高线的作法进而得出AE 即可;(2)利用三角形内角和定理得出∠BAC 的度数,再利用角平分线的性质得出∠DAC 的度数,进而得出∠CAE 的度数,即可得出答案.【详解】解:(1)如图所示:AE 即为所求;(2)∵∠B =30°,∠ACB =110°,∴∠ECA =70°,∠BAC =40°,∵AD 平分∠BAC ,∴∠BAD =∠DAC =20°,∵∠E =90°,∠ECA =70°,∴∠EAC =20°,∴∠DAE =20°+20°=40°.【点睛】此题主要考查了复杂作图以及角平分线的性质以及三角形内角和定理等知识,得出∠DAC 的度数是解题关键.19.(1)24y x =--;(2)60y -≤<.【解析】【分析】(1)设(2)(0)y k x k =+≠,把x 、y 的值代入求出k 的值,即可求得函数表达式;(2)由(1)可得24y x =--,再根据21x -<≤,可得6240x ---<≤,即可得结果.【详解】解:(1)设(2)(0)y k x k =+≠,把3x =,10y =-代入得:510k =-,解得:2k =-,24y x ∴=--,y ∴与x 之间的函数表达式为:24y x =--;(2)∵21x -<≤,∴224x --<≤,∴6240x ---<≤即60y -≤<,y ∴的取值范围为:60y -≤<.【点睛】本题考查了待定系数法求一次函数表达式,理解题意根据x 的取值范围求得y 的范围,得出关于k 的方程是解决问题的关键.20.(1)AD ∥BE ,12∠=∠;A E ∠=∠;(2)见解析【解析】【分析】(1)根据命题的概念,写出条件、结论;(2)根据平行线的判定的礼盒性质定理证明.【详解】解:(1)条件:①AD ∥BE ;②∠1=∠2;结论:③∠A =∠E ,故答案为:①AD ∥BE ,②∠1=∠2;③∠A =∠E ;(2)证明:∵AD ∥BE ,∴∠A =∠EBC ,∵∠1=∠2,∴DE ∥BC ,∴∠E =∠EBC ,∴∠A =∠E .【点睛】本题考查的是命题的概念、平行线的性质,掌握平行线的判定定理和性质定理是解题的关键.21.(1)y=-x+4;(2)F (-5,0)或(13,0)【解析】【分析】(1)直接把A 、B 两点坐标代入直线l 2解析式进行求解即可;(2)设F 的坐标为(m ,0),则4AF m =-,然后求出D (-2,0),得到()426AD =--=,再求出C (2,2),得到1=62ADC C S AD y ⋅=△,142ACF C S AF y m =⋅=-△,再由3ACF ADC S S -=△△进行求解即可.【详解】解:(1)把A (4,0),B (-1,5)代入直线l 2的解析式得:405k b k b +=⎧⎨-+=⎩,解得14k b =-⎧⎨=⎩,∴直线l 2的解析式为4y x =-+;(2)设F 的坐标为(m ,0),∴4AF m =-,∵D 是直线l 1:112y x =+与x 轴的交点,∴D (-2,0),∴()426AD =--=,联立4112y x y x =-+⎧⎪⎨=+⎪⎩,解得22x y =⎧⎨=⎩,∴C (2,2),∴1=62ADC C S AD y ⋅=△,142ACF C S AF y m =⋅=-△,∵3ACF ADC S S -=△△,∴463m --=,解得5m =-或13m =,∴F 的坐标为(-5,0)或(13,0).【点睛】本题主要考查了待定系数法求一次函数解析式,两直线交点问题,三角形面积,坐标与图形,解题的关键在于能够熟练掌握待定系数法.22.(1)a=6;b=2;(2)y 1=2x-6(6≤x≤17),y 2=22-x (6≤x≤22)【解析】【分析】(1)先判断出P 改变速度时是在AB 上运动,由此即可求出改变速度的时间和位置,从而求出a ,再根据在第8秒P 的面积判断出此时P 运动到B 点,即可求出b ;(2)根据P 和Q 的总路程都是CD+BC+AB=28cm ,然后根据题意进行求解即可.【详解】解:(1)∵当P 在线段AB 上运动时,12APD S AD AP =⋅△,∴当P 在线段AB 上运动时,△APD 的面积一直增大,∵四边形ABCD 是矩形,∴AD=BC=10cm ,∴当P 在线段AB 上运动时,△APD 的面积的最大值即为P 运动到B 点时,此时2140cm 2APD S AD AB =⋅=△,由函数图像可知,当P 改变速度时,此时P 还在AB 上运动,∴1=242APD S AD AP =⋅△,即18242a ⨯=,解得6a =,∴6cm AP =,∴4cmBP AB AP =-=又由函数图像可知当P 改变速度之后,在第8秒面积达到40cm 2,即此时P 到底B 点∴()864b -=,∴2b =,故答案为:6,2;(2)由(1)得再第6秒开始改变速度,∴改变速度时,P 行走的路程为6cm ,Q 行走的路程为12cm ,∵Q 和P 的总路程都为CD+BC+AB=28cm ,∴()()162626617y x x t =+-=-≤≤,()()22812622622y x x x =---=-≤≤【点睛】本题主要考查了从函数图像上获取信息,解题的关键在于能够准确根据函数图像判断出P 点在改变速度时是在AB 上运动.23.(1)39°;(2)22αβγ=+【解析】【分析】(1)连接BC ,根据∠EBD=23°,BE 平分∠ABD ,求出ABD ∠的度数,然后根据∠BAC=56°,∠DCA=22°,求出DBC ∠的度数,然后根据DF 是BDC ∠的平分线,求出BDF ∠的度数,最后根据外角的性质即可求出∠BEF 的度数;(2)连接BC ,首先根据三角形内角和定理和BE 平分∠ABD ,表示出∠BDC 的度数,然后根据DF 平分∠BDC ,表示出∠BDF 的度数,利用BDF BEF EBD ∠=∠+∠,即可得到α、β、γ三者之间的关系.【详解】解:(1)如图所示,连接BC ,23,EBD BE ︒∠= 平分ABD ∠,246ABD EBD ︒∴∠=∠=,56,22BAC DCA ︒︒∠=∠= ,18056DBC DCB BAC ABD DCA ︒∴∠+∠=-∠-∠-∠=︒,180()18056124BDC DBC DCB ︒∴∠=-∠+∠=︒-︒=︒,∵DF 是BDC ∠的平分线,1622BDF BDC ︒∴∠=∠=,632239BEF BDF EBD ︒︒=︒∴∠=∠-∠=-.(2)如图所示,连接BC ,∵BE 是ABD ∠的平分线,∴12EBD ABD ∠=∠,,BAC DCA αβ∠=∠= ,180()BDC DBC DCB ︒∴∠=-∠+∠()180180BAC DCA ABD︒=︒--∠-∠-∠ABD αβ=++∠,∵DF 平分BDC ∠,11112222BDF BDC ABD αβ∴∠=∠=++∠,BDF BEF EBD ∠=∠+∠ ,11112222ABD ABD αβγ∴++∠=+∠,1122γαβ∴=+,∴,,αβγ三者之间的关系是1122γαβ≡+.【点睛】此题考查了角平分线的运用,三角形内角和定理等知识,解题的关键是根据题意表示出∠BDF .24.(1)空凋30台,电冰箱70台;(2)y=20x+16500(0≤x≤30);(3)当0<m <20时,配给甲连锁店空调、电冰箱各30台;配给乙连锁店电冰箱40台;当m=20时,x 的取值在0≤x≤30内的所有方案利润相同;当20<m <30时,调配给甲连锁店空调机0台,电冰箱60台,乙连锁店空调30台,电冰箱10台.【解析】【分析】(1)设空调机数量为m台,列出方程即可得出答案;(2)由题意可知,设公司调配给甲连锁店x台空调机,则调配给甲连锁店电冰箱(60﹣x)台,调配给乙连锁店空调机(30﹣x)台,电冰箱为70﹣(60﹣x)=x+10台,列出函数和不等式组求解即可;(3)依题意得出y与x的关系式,根据m的取值范围利用函数的增减性可得出使利润达到最大的分配方案.【详解】解:(1)设空调机数量为m台,则2m+10+m=100解得:m=30∴空凋30台,电冰箱70台;(2)由题意可知,设公司调配给甲连锁店x台空调机,则调配给甲连锁店电冰箱(60﹣x)台,调配给乙连锁店空调机(30﹣x)台,电冰箱为70﹣(60﹣x)=x+10台,则y=200x+170(60﹣x)+160(30﹣x)+150(x+10),即y=20x+16500.∵0 600 300100 xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩∴0≤x≤30.∴y=20x+16500(0≤x≤30);(3)由题意得:y=(200-m)x+170(60-x)+160(30-x)+150(10+x)=(20-m)x+16500;∵200﹣m>170,∴m<30.①当0<m<20时,即20﹣m>0,函数y随x的增大而增大,当x=30时,y最大,此时配给甲连锁店空调、电冰箱各30台;配给乙连锁店电冰箱40台;②当m=20时,x的取值在0≤x≤30内的所有方案利润相同;③当20<m<30时,即20﹣m<0,函数y随x的增大而减小,故当x=0时,总利润最大,即调配给甲连锁店空调机0台,电冰箱60台,乙连锁店空调30台,电冰箱10台;综上可得:当0<m<20时,配给甲连锁店空调、电冰箱各30台;配给乙连锁店电冰箱40台;当m=20时,x的取值在0≤x≤30内的所有方案利润相同;当20<m<30时,调配给甲连锁店空调机0台,电冰箱60台,乙连锁店空调30台,电冰箱10台.【点睛】本题考查函数和一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意.。
沪科版八年级上册数学期中考试试卷含答案
沪科版八年级上册数学期中考试试题一、单选题1.在平面直角坐标系中,点A 的坐标为(-2,3)若线段AB∥y 轴,且AB 的长为4,则点B 的坐标为( )A .(-2,-1)B .(-2,7)C .(﹣2,-1)或(-2,7)D .(2,3)2.以下列各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .4cm ,6cm ,8cmC .5cm ,6cm ,12cmD .2cm ,3cm ,5cm3.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4 4.下列图形中,正确画出AC 边上的高的是( )A .B .C .D .5.如图,在平面直角坐标系中,一次函数y =kx +b 和y =mx +n 相交于点(2,-1)则关于x 、y 的方程组kx y b mx n y =-⎧⎨+=⎩的解是( )A .-12x y =⎧⎨=⎩B .2-1x y =⎧⎨=⎩C .12x y =⎧⎨=⎩ D .21x y =-⎧⎨=⎩ 6.具备下列条件是∥ABC 中,不是直角三角形的是( )A .ABC ∠+∠=∠ B .1123A B C ∠=∠=∠ C .∥A :∥B :∥C =1:3:4 D .∥A =2∥B =3∥C7.下列命题中,正确的是( )A .三角形的一个外角大于任何一个内角B .三角形三条角平分线交点在三角形的外部C .三角形的三条高都在三角形内部D .三角形的一条中线将三角形分成两个面积相等的三角形8.定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是( ) A .99° B .99°或49.5° C .99°或54° D .99°或49.5°或54° 9.关于函数y =(k -3)x +k ,给出下列结论:∥此函数一定是一次函数;∥无论k 取什么值,函数图象必经过点(-1,3);∥若图象经过二、三、四象限,则k 的取值范围是k <0;∥若函数图象与x 轴的交点始终在正半轴可得k <3,其中正确的有( )A .1个B .2个C .3个D .4个10.关于一次函数23y x =-+,下列结论正确的是( )A .图象过点()1,1-B .图象与x 轴的交点是()0,3C .y 随x 的增大而增大D .函数图象不经过第三象限二、填空题11.命题“如果a+b=0,那么a ,b 互为相反数”的逆命题为_________________________. 12.一次函数y=kx+6的图象与x 轴交于点A ,与y 轴交于点B ,S∥AOB ═9,则k=_____ 13.如图,CE 平分∥ACD ,∥A=40°,∥B=30°,∥D=104°,则∥BEC=____.14.如图,在 Rt∥ABC 中,∥ACB =90°,BC =4cm ,AC =9cm ,点 D 在线段 CA 上从点C 出发向点A 方向运动(点 D 不与点 A ,点C 重合),且点D 运动的速度为2cm/s ,现设运动时间为 x (0<x <92)秒时,对应的 ∥ABD 的面积为ycm²,则当x =2 时,y =_________ ;y 与x 之间满足的关系式为_________.15.直线y=12x -4与x 轴的交点坐标是_____,与y 轴的交点坐标是_______. 三、解答题16.在∥ABC 中,∥A -∥B =30°,∥C =4∥B ,求∥A 、∥B 、∥C 的度数17.如图,在平面直角坐标系中,P (a ,b )是三角形ABC 的边AC 上的一点,三角形ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出经过上述平移后得到的三角形A 1B 1C 1;(2)求线段AC 扫过的面积.18.已知一次函数y =(6+3m )x +n -4(1)m 为何值时,y 随x 的增大而减小;(2)m ,n 分别为何值时,函数的图象经过原点.19.设一次函数(,y kx b k =+b 为常数,0)k ≠的图象过()1,3A ,()5,3B --两点. ()1求该函数表达式;()2若点()2,21C a a +-在该函数图象上,求a 的值;()3设点P 在x 轴上,若12ABP S =,求点P 的坐标.20.已知,如图,在∥ABC中,AH平分∥BAC交BC于点H,D、E分别在CA、BA 的延长线上,DB∥AH,∥D=∥E.(1))求证:DB∥EC;(2)若∥ABD=2∥ABC,∥DAB比∥AHC大5°.求∥D的度数.21.在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1 棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路臀购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.∥求w与x之间的函数表达式,并写出x的取值范围?∥要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?22.已知∥ABC中,∥ABC=∥ACB,D为线段CB 上一点(不与C,B重合),点E为射线CA上一点,∥ADE=∥AED,设∥BAD=a,∥CDE=β.(1)如图(1),∥若∥BAC=50°,∥DAE=40°,则a=____,β=∥若∥BAC=58°,∥DAE=42°,则a=_____,β=____∥写出a与β的数量关系,并说明理由;(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出a与β的数量关系.23.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m 的值;(2)若函数的图象平行于直线y =3x -3,求m 的值;(3)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.24.如图,在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴交点为 A (-3,0),与y 轴交点为 B ,且与正比例函数43y x =的图象交于点C (m ,4). (1)求点C 的坐标;(2)求一次函数y =kx +b 的表达式;(3)利用图象直接写出当x 取何值时,kx +b >43x .参考答案1.C【解析】【分析】设点B (),x y ,根据线段与数轴平行可得2x =-,根据线段4AB =,可得34y -=,求解即可得出点的坐标.【详解】解:设点B (),x y ,∥AB y ∥轴,∥A ()2,3-与点B 的横坐标相同,∥2x =-,∥4AB =, ∥34y -=,∥34y -=或34y -=-,∥1y =-或7y =,∥点B 的坐标为:()2,1--,()2,7-,故选:C .【点睛】题目主要考查线段与坐标轴平行的点的坐标特点,两点之间的距离,一元一次方程应用等,理解题意,利用绝对值表示两点之间距离是解题关键.2.B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A 、1+2<4,不能组成三角形;B 、4+6>8,能组成三角形;C 、5+6<12,不能够组成三角形;D 、2+3=5,不能组成三角形.故选:B .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.B【解析】【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∥一次函数3y kx =+的函数值y 随x 的增大而减小,∥k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.4.D【解析】【分析】根据高的定义即可求解.【详解】解:根据锐角三角形和钝角三角形的高线的画法,可得D 选项中,BE 是∥ABC 中AC 边长的高,故选:D .【点晴】此题主要考查高的作法,解题的关键是熟知高的定义.5.B【解析】【分析】根据题意直接利用方程组的解就是两个相应的一次函数图象的交点坐标进行分析解决问题.【详解】解:∥一次函数y kx b =+和y mx n =+相交于点(2,-1),∥关于x 、y 的方程组kx y b mx n y=-⎧⎨+=⎩的解为21x y =⎧⎨=-⎩. 故选:B .【点睛】本题考查一次函数交点问题与二元一次方程(组)解得关系,理清二者的联系是解题关键.6.D【解析】【分析】分别求出各个选项中,三角形的最大的内角,即可判断.【详解】解:A 、由A B C ∠+∠=∠,可以推出90C ∠=︒,本选项不符合题意.B 、由1123A B C ∠=∠=∠,可以推出90C ∠=︒,本选项不符合题意. C 、由::1:3:4A B C ∠∠∠=,可以推出90C ∠=︒,本选项不符合题意,D 、由23A B C ∠=∠=∠,推出108011A ⎛⎫∠=︒ ⎪⎝⎭,ABC ∆是钝角三角形,本选项符合题意. 故选:D .【点睛】本题考查三角形内角和定理,熟悉相关性质是解题的关键.7.D【解析】【分析】根据三角形外角的性质、中线的性质、高的性质及角平分线的性质逐一判断可得.【详解】解:A 、三角形的一个外角大于任何一个不相邻的内角,故此选项错误,不合题意; B 、三角形三条角平分线交点在三角形的内部,故此选项错误,不合题意;C 、锐角三角形的三条高在三角形的内部、直角三角形有两条高在边上、钝角三角形有两条高在外部,故此选项错误,不合题意;D 、三角形的一条中线将三角形分成两个三角形的底相等、高公共,据此知两个三角形面积相等,故正确,符合题意;故选:D .【点睛】本题考查了命题与定理,解题的关键是熟练掌握三角形外角的性质、中线的性质、高的性质、角平分线的性质.8.C【解析】【分析】根据题意设三角形的三个内角分别是m、n、α且α=2m,由题意得α=99°或m=99°或n=99°,分这三种情况讨论即可.【详解】解:设三角形的三个内角分别是m、n、α且α=2m,当α=99°,则m=49.5°,n=31.5°,当m=99°,则α=2m=198°(舍去),当n=99°,则m+α=180°-n=81°,∥3m=81°,∥m=27°,∥α=2m=54°.综上:倍角α的度数为99°或54°.故选:C.【点睛】本题主要考查三角形内角和定理,熟练掌握三角形内角和定理即三角形内角和是180°是解决本题的关键,注意分类讨论方法的运用.9.B【解析】【分析】∥当k﹣3≠0时,函数是一次函数;当k﹣3=0时,该函数是y=3,此时是常数函数,即可求解;∥y=(k﹣3)x+k=k(x+1)﹣3x,当x=﹣1时,y=3,过函数过点(﹣1,3),即可求解;∥函数y=(k﹣3)x+k经过二,三,四象限,可得30kk-<⎧⎨<⎩,从而可以求得k的取值范围;∥当k﹣3=0时,y=3,与x轴无交点;当k≠3时,函数图象与x轴的交点始终在正半轴,即-03k k >-,即可求解. 【详解】 解:∥当k ﹣3≠0时,函数是一次函数;当k ﹣3=0时,该函数是y =3,此时是常数函数,故∥不符合题;∥y =(k ﹣3)x+k =k (x+1)﹣3x ,当x =﹣1时,y =3,过函数过点(﹣1,3),故∥符合题意;∥函数y =(k ﹣3)x+k 经过二,三,四象限,则300k k -<⎧⎨<⎩,解得:k <0,故∥符合题意; ∥当k ﹣3=0时,y =3,与x 轴无交点;当k≠3时,函数图象与x 轴的交点始终在正半轴,即﹣03k k >-,解得:0<k <3,故∥不符合题; 故正确的有:∥∥,共2个故选B【点睛】本题考查根据交点坐标确定解析式字母系数的取值及分类讨论思想的运用,一般地,先求出交点坐标,再把坐标满足的条件转化成相应的方程或是不等式进而解决问题.10.D【解析】【分析】A 、把点的坐标代入关系式,检验是否成立;B 、把y =0代入解析式求出x ,判断即可;C 、根据一次项系数判断;D 、根据系数和图象之间的关系判断.【详解】解:A 、当x =1时,y =1.所以图象不过(1,−1),故错误;B 、把y =0代入y =−2x +3,得x =32,所以图象与x 轴的交点是(32,0),故错误; C 、∥−2<0,∥y 随x 的增大而减小,故错误;D 、∥−2<0,3>0,∥图象过一、二、四象限,不经过第三象限,故正确.故选D .【点睛】本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.11.如果a,b互为相反数,那么a+b=0【解析】【分析】交换原命题的题设与结论即可得到其逆命题.【详解】解:逆命题为:如果a,b互为相反数,那么a+b=0.故答案为:如果a,b互为相反数,那么a+b=0.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.12.2±【解析】【详解】分析:首先计算出与x轴的交点坐标,与y轴的交点坐标,再利用三角形的面积公式计算出面积即可.详解:∥当x=0时,y=6,∥与y轴的交点B(0,6),∥当y=0时,6xk =-,∥与x轴的交点6,0Ak⎛⎫-⎪⎝⎭,∥∥AOB的面积为:1669. 2k⨯⨯-=解得: 2.k=±故答案为 2.±点睛:考查了利用一次函数解析式求直线与坐标轴的交点问题,并借助三角形的面积公式求系数k,属于常见题型.13.57°##57度【解析】【分析】根据四边形外角的性质和角平分线的性质,再结合题意,即可得到答案.【详解】根据四边形外角的性质可得∥D =∥A+∥B+∥DCA ,∥D =∥BEC+∥B+∥ECD ,则∥DCA =∥D -(∥A+∥B )=34°,因为CE 平分∥ACD ,所以∥ECD=123471︒=⨯︒, 所以∥BEC=∥D -(∥B+∥ECD )=57°.故答案为57°.【点睛】本题考查四边形外角的性质和角平分线的性质,解题的关键是掌握四边形外角的性质和角平分线的性质.14. 10 184y x =-【解析】【分析】根据ABDABC BCD S S S =-,代入数轴求解即可. 【详解】解:根据题意得:ABD ABC BCD SS S =- =1122AC BC CD BC ⋅-⨯ =118242x -⨯⨯ =184x -,∥当x =2 时,184184210y x =-=-⨯=,故答案为:10,184y x =-.【点睛】本题考查了动点问题的函数关系,根据题意得出解析式是关系.15. (8,0) (0,-4)【解析】【分析】分别根据x 、y 轴上点的坐标特点进行解答即可.【详解】解:令0y =,则1042x =-,解得8x =,故直线与x 轴的交点坐标为:(8,0); 令0x =,则4y =-,故直线与y 轴的交点坐标为:(0,-4);故答案为(8,0),(0,-4).【点睛】本题考查的是x 、y 轴上点的坐标特点,与x 轴相交,0y =,与y 轴相交,0x =. 16.55A ∠=︒,25B ∠=︒,100C ∠=︒【解析】【分析】根据三角形内角和定理,以及已知条件列三元一次方程组解方程求解即可【详解】在∥ABC 中,180A B C ∠+∠+∠=︒,∥A -∥B =30°,∥C =4∥B ,180304A B C A B C B ∠+∠=︒-∠⎧⎪∴∠-∠=︒⎨⎪∠=∠⎩①②③ ∥-∥得2150B C ∠=︒-∠∥将∥代入∥解得25B ∠=︒100C ∴∠=︒,55A ∠=︒∴55A ∠=︒,25B ∠=︒,100C ∠=︒【点睛】本题考查了三角形内角和定理,解三元一次方程组,正确的计算是解题的关键. 17.(1)见解析;(2)14【解析】【分析】(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位; (2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.【详解】解:(1)如图,各点的坐标为:A (﹣3,2)、C (﹣2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1; ∥1117272AC A S =⨯⨯= ;117272AC C S =⨯⨯=; ∥四边形ACC 1A 1的面积为7+7=14.答:线段AC 扫过的面积为14.【点睛】本题考查平移,涉及的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;解题关键是掌握求四边形的面积通常整理为求几个三角形的面积的和.18.(1)当2m <-时,一次函数()634y m x n =++-,y 随x 的增大而减小;(2)当2m ≠-且4n =时,()634y m x n =++-的图象经过原点.【解析】【分析】(1)根据“y 随x 的增大而减小”可得630m +<,由此可求出m 的取值范围;(2)由函数图象经过原点得40n -=,630m +≠,由此求解即可.【详解】解:(1)由一次函数()634y m x n =++-,∥y 随x 的增大而减小,可得:630m +<,∥2m <-;∥当2m <-时,一次函数()634y m x n =++-,y 随x 的增大而减小;(2)由一次函数()634y m x n =++-的图象经过原点,可得:40n -=,解得:4n =,∥630m +≠,2m ≠-,∥当2m ≠-且4n =时,()634y m x n =++-的图象经过原点.【点睛】本题考查了一次函数的性质,解题的关键要熟练掌握一次函数的增减性与图象特点与参数之间的关系.19.(1)2y x =+;(2)5a =;(3)点P 坐标()2,0或()6,0-【解析】【分析】(1)根据一次函数y=kx+b(k,b 是常数,k≠0)的图象过A(1,3),B(-5,-3)两点,可以求得该函数的表达式; (2)将点C 坐标代入(1)中的解析式可以求得a 的值; (3)由题意可求直线y=x+2与x 轴的交点坐标,根据三角形的面积公式可求点P 坐标.【详解】解:()1根据题意得:{353k b k b +=-+=- 解得:{12k b == ∴函数表达式为2y x =+()2点()2,21C a a +-在该函数图象上,2122a a ∴-=++5a ∴=()3设点(),0P m直线2y x =+与x 轴相交∴交点坐标为()2,0-1123231222ABP S m m =+⨯++⨯-= 24m ∴+=2m ∴=或6-∴点P 坐标()2,0或()6,0-【点睛】本题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.20.(1)见解析;(2)50°【解析】【分析】(1)根据平行线的性质可得∥D =∥CAH ,根据角平分线的定义可得∥BAH =∥CAH ,再根据已知条件和等量关系可得∥BAH =∥E ,再根据平行线的判定即可求解;(2)可设∥ABC =x ,则∥ABD =2x ,则∥BAH =2x ,可得∥DAB =180°−4x ,可得∥AHC =175°−4x ,可得175°−4x =3x ,解方程求得x ,进一步求得∥D 的度数.【详解】(1)证明:∥DB ∥AH ,∥∥D =∥CAH ,∥AH 平分∥BAC ,∥∥BAH =∥CAH ,∥∥D =∥E ,∥∥BAH =∥E ,∥AH ∥EC ,∥DB ∥EC ;(2)解:设∥ABC =x ,则∥ABD =2x ,∥BAH =2x ,∴∥DAB =180°−4x ,∥DAB 比∥AHC 大5°∴∥AHC =175°−4x ,DB ∥AH ,∴ AHC DBC ∠=∠即:175°−4x =3x ,解得x =25°,则∥D =∥CAH =∥BAH =∥ABD =2x =50°.【点睛】考查了三角形内角和定理,平行线的判定与性质,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)柏树的单价为100元,杉树的单价为80元;(2)∥2012000w x =+,112.5150x ≤<且x 为整数;∥要使此次费用最少,柏树购买113棵,杉树37棵,最少费用为14260元.【解析】【分析】(1)设柏树的单价为m 元,杉树的单价为n 元,根据题意列出二元一次方程组求解即可;(2)∥根据单价、数量与费用的关系列出一次函数即可;再由题意本次购买柏树和杉树共150棵,且两种树都必须购买,可得不等式组,柏树的棵树不少于杉树的3倍,列出相应不等式求解,综合即可得x 的取值范围;∥根据一次函数的增减性质可得w 随x 的增大而增大,由x 的取值范围代入求解即可.【详解】解:(1)设柏树的单价为m 元,杉树的单价为n 元,根据题意可得:234403380m n m n +=⎧⎨+=⎩, 解得:10080m n =⎧⎨=⎩, 答:柏树的单价为100元,杉树的单价为80元;(2)∥设本次活动中购买柏树x 棵,则杉树()150x -棵,由(1)及题意可得:()100801502012000w x x x =+-=+,∥本次购买柏树和杉树共150棵,且两种树都必须购买,即:01500x x >⎧⎨->⎩, ∥0150x <<,∥柏树的棵树不少于杉树的3倍,∥()3150x x ≥-,解得:112.5x ≥,综合可得:2012000w x =+,112.5150x ≤<且x 为整数;∥由∥可得:2012000w x =+,∥200>,∥w 随x 的增大而增大,∥112.5150x ≤<,∥当113x =时,w 最小,此时,201131200014260w =⨯+=(元),15011337-=(棵),∥要使此次费用最少,柏树购买113棵,杉树37棵,最少费用为14260元.【点睛】题目主要考查二元一次方程组、不等式组及一次函数的应用,理解题意,列出相应方程是解题关键.22.(1)∥10︒,5︒;∥16︒,8︒;∥2αβ=,理由见详解;(2)2180αβ=-︒,理由见详解.【解析】【分析】(1)∥先根据角的和与差求α的值,根据等腰三角形的两个底角相等及顶角可得:70ADE AED ∠=∠=︒,同理可得:65ACB ABC ∠=∠=︒,,根据外角性质列式:706510β︒+=︒+︒,即可得β的度数;∥先根据角的和与差求α的值,根据等腰三角形的两个底角相等及顶角可得:69ADE AED ∠=∠=︒,同理可得:61ACB ABC ∠=∠=︒,,根据外角性质列式:696116β︒+=︒+︒,即可得β的度数;∥设设BAC x ∠=,DAE y ∠=,则x y α=-,分别求出ADE ∠和B ∠,根据ADC B α∠=∠+列式,可得结论;(2)根据图形,设E x ∠=,则2DAC x ∠=,根据ADC B BAD ∠=∠+∠,列式代入化简可得结论.【详解】解:(1)∥∥40DAE ∠=︒,∥140ADE AED ∠+∠=︒,∥70ADE AED ∠=∠=︒,∥50BAC ∠=︒,∥504010BAC DAE α=∠-∠=︒-︒=︒, ∥180652BACACB ABC ︒-∠∠=∠==︒,∥ADC B α∠=∠+,∥706510β︒+=︒+︒,∥5β=︒;故答案为10︒,5︒;∥∥42DAE ∠=︒,∥138ADE AED ∠+∠=︒,∥69ADE AED ∠=∠=︒,∥58BAC ∠=︒,∥584216α=︒︒=︒﹣, ∥180612BACACB B ︒-∠∠=∠==︒,∥ADC B α∠=∠+,∥696116β︒+=︒+︒,∥8β=︒;故答案为16︒,8︒;∥2αβ=,理由是:如图(1),设BAC x ∠=,DAE y ∠=,则x y α=-,∥ACB ABC ∠=∠, ∥1802xACB ︒-∠=,∥ADE AED ∠=∠,∥1802y AED ︒-∠=, ∥ADE ABC βα+∠=+∠,18018022y x βα︒-︒-+=+, 化简可得:2αβ=;(2)2180αβ=-︒,理由是:由图象可得,设E x ∠=,则2DAC x ∠=,∥2BAC BAD DAC x α∠=∠+∠=+, ∥18022x B ACB α︒--∠=∠= ∥ADC B BAD ∠=∠+∠, ∥18022x x αβα︒---=+, ∥2180αβ=-︒.【点睛】题目主要考查等腰三角形的性质、三角形内角和定理、三角形外角的性质,熟练掌握等腰三角形的性质及运用类比的方法解决问题是解题关键.23.(1)m=3;(2)m=1;(3)m <﹣12【解析】【分析】(1)把原点坐标(0,0)代入函数关系式,即可求得m 的值;(2)根据图象平行的一次函数的一次项系数相同即可得到关于m 的方程,解出即可; (3)根据一次函数的性质即可得到关于m 的不等式,解出即可.【详解】解:(1)由题意得,30m -=,解得:3m =;(2)由题意得,213m +=,解得:1m =; (3)由题意得,210m +<,12m <-. 【点睛】解答本题的关键是熟练掌握一次函数的性质:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.24.(1)(3,4);21 (2)223y x =+; (3)3x <时.【解析】【分析】(1)把点C (m ,4)代入正比例函数43y x =即可得到答案; (2)把点A 和点C 的坐标代入y kx b =+求得k ,b 的值即可; (3)根据图象判断.【详解】解:(1)∥点C (m ,4)在正比例函数43y x =上, ∥443m = , ∥3m =,即点C 坐标为(3,4)(2)∥一次函数 y kx b =+经过A (-3,0)、点C (3,4)∥3034k b k b -+=⎧⎨+=⎩ ,解之得:232k b ⎧=⎪⎨⎪=⎩ , ∥一次函数的表达式为:223y x =+; (3)由图象可知一次函数223y x =+与正比例函数43y x =的交点是点C ,并且当3x <时,43kx b x +>.。
沪科版八年级数学上册期中试卷【含答案】
沪科版八年级数学上册期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果一个三角形的两边长分别是3cm和4cm,那么第三边的长度可能是多少?A. 1cmB. 6cmC. 7cmD. 8cm3. 下列哪个数是质数?A. 12B. 17C. 20D. 214. 下列哪个数是无理数?A. √9B. √16C. √25D. √265. 下列哪个数是负数?A. -3B. 0C. 3D. 4二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 任何两个质数相乘的积都是合数。
()3. 任何两个负数相乘的积都是正数。
()4. 任何两个正数相除的商都是正数。
()5. 任何两个无理数相加的和都是无理数。
()三、填空题(每题1分,共5分)1. 3的平方根是______。
2. 9的立方根是______。
3. 任何数乘以0都等于______。
4. 任何数除以1都等于______。
5. 任何数加上它的相反数都等于______。
四、简答题(每题2分,共10分)1. 请简述勾股定理。
2. 请简述有理数的乘法法则。
3. 请简述无理数的定义。
4. 请简述整数的除法法则。
5. 请简述负数的概念。
五、应用题(每题2分,共10分)1. 一个长方形的长是5cm,宽是3cm,求这个长方形的面积。
2. 一个正方形的边长是4cm,求这个正方形的面积。
3. 一个等边三角形的边长是6cm,求这个等边三角形的面积。
4. 一个圆的半径是3cm,求这个圆的面积。
5. 一个圆锥的底面半径是2cm,高是4cm,求这个圆锥的体积。
六、分析题(每题5分,共10分)1. 请分析有理数和无理数的区别。
2. 请分析正数和负数的区别。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个正方形。
2. 请用直尺和圆规画一个等边三角形。
八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在水平面上的滚动摩擦小于滑动摩擦。
沪科版八年级上册数学期中考试试卷附答案
沪科版八年级上册数学期中考试试题一、单选题1.已知点(),4A x 在第二象限,则点(),4B x --在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.在平面直角坐标系中,点P (2,-3)先向左平移2个单位,再向下平移3个单位,得到的点坐标是( )A .(0,0)B .(6,-4)C .(6,0)D .(0,-6) 3.点()1,P m m -不可能在第( )象限.A .一B .二C .三D .四4.下列图象中,不可能是关于x 的一次函数y =mx ﹣(m ﹣3)的图象的是( ) A .B .C .D . 5.当-1≤x≤2时,函数y =ax +6满足y <10,则常数a 的取值范围( ) A .-4<a <0B .0<a <2C .-4<a <2且a≠0D .-4<a <26.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .D .167.平面直角坐标系中,将直线向右平移1个单位长度得到的直线解析式是2y x =+,则原来的直线解析式是( )A .21y x =+B .1y x =+C .3y xD .23y x =+8.已知一个三角形的两条边长分别为3和7,则第三条边的长度不能是( ) A .10 B .9 C .8 D .79.若直线1y k x 1=+与2y k x 4=-的交点在x 轴上,那么12k k 等于( ) A .4 B .4- C .14 D .14- 10.如图,矩形ABCD 中,E ,F 分别是线段BC ,AD 的中点,AB =2,AD =4,动点P 沿EC ,CD ,DF 的路线由点E 运动到点F ,则△PAB 的面积s 是动点P 运动的路径总长x 的函数,这个函数的大致图象可能是( )A .B .C .D .二、填空题11.点P (,2)m m +到两条坐标轴的距离相等,则m=_______.12.一次函数()224y k x k =++-的图象经过原点,则k 的值为________.13.如图,AD 平分△CAE ,△B=30°,△ACD=80°,则△EAD=_________.14.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.15.如图,函数y 1=﹣2x 与y 2=ax+3的图象相交于点A (m ,2),则关于x 的不等式﹣2x >ax+3的解集是_____.三、解答题16.已知y-1是x+1的正比例函数,并且当x=-2时,y=6(1)求y关于x的函数解析式并在平面直角坐标系中画出该函数图像;(2)当y≥-1时,求x的取值范围.17.某自来水公司为了鼓励市民节约用水,采取分段收费标准.居民每月应交水费y(元)是用水量x(吨)的函数其图象如图所示:(1)求y与x的函数解析式;(2)若某用户居民该月用水3.5吨,问应交水费多少元?若该月交水费9元,则用水多少吨?18.已知:如图,三角形ABC中,AC△BC.F是边AC上的点,连接BF,作EF//BC且交AB于点E.过点E作DE△EF,交BF于点D.求证:△1+△2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:△AC△BC(已知),△△ACB=90°(垂直的定义).△EF//BC(已知),△△AFE==90°().△DE△EF(已知),△△DEF=90°(垂直的定义).△△AFE=△DEF(等量代换),△//().△△2=△EDF().又△△EDF+△1=180°(邻补角互补),△△1+△2=180°(等量代换).19.如图,已知直线y=kx+b经过点A(5,0)、B(1,4),直线y=2x-4与该直线交于点C.(1)求直线AB的表达式;(2)求两直线与y轴围成的三角形面积;(3)根据图象,写出关于x的不等式2x-4≥kx+b的解集.20.直线y=kx+2-k(其中k≠0),当k取不同的数值时,可以得到许多不同的直线,我们一起来探究这些直线的某些共同特征:(1)当k=1时,直线l1的解析式为,请画出图象;当k=2时,直线l2的解析式为,请画出图象;观察图象,猜想:直线y=kx+2-k(其中k≠0)必经过点;(2)证明你的猜想.21.如图,点A,C,D,B四点共线,且AC=BD,△A=△B,△ADE=△BCF,求证:DE=CF.22.某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(单位:元)如下表:设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润都不变,并且让利后每台空调机的利润比甲连锁店销售每台电冰箱的利润至少高出10元,问该集团应该如何设计调配方案,能使总利润达到最大.23.△ABC中,AD是△BAC的角平分线,AE是△ABC的高.(1)如图1,若△B=40°,△C=60°,请说明△DAE的度数;(2)如图2(△B<△C),试说明△DAE、△B、△C的数量关系;(3)如图3,延长AC到点F,△CAE和△BCF的角平分线交于点G,请直接写出△G的度数.参考答案1.D【解析】【分析】根据第二象限内点的横坐标是负数求出x的取值范围,再根据各象限内点的坐标特征解答.【详解】解:△点A(x,4)在第二象限,△x<0,△-x>0,△点B(-x,-4)在第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.D【解析】【分析】根据点的平移规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:点P (2,-3)先向左平移2个单位,再向下平移3个单位点的坐标为(22,33)---,即(0,6)-故选D【点睛】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加,掌握点的平移规律是解题的关键.3.C【解析】【分析】假设点P 在每一个象限内,根据该象限内点的符号特征列不等式,若不等式无解,则点P 不可能在这个象限内.【详解】解:设点P 在第一象限内,则100m m ->⎧⎨>⎩,解得01m <<,故A 不符合题意; 设点P 在第二象限内,则100m m -<⎧⎨>⎩,解得1m ,故B 不符合题意; 设点P 在第三象限内,则100m m -<⎧⎨<⎩,不等式无解,故C 符合题意; 设点P 在第四象限内,则100m m ->⎧⎨<⎩,解得0m <,故D 不符合题意; 故选C .【点睛】解题的关键是根据点所在的象限内的符号特征,列出不等式组,解不等式组求未知数的范围.4.C【解析】【分析】分别根据四个答案中函数的图象求出m的取值范围即可.【详解】解:A、由函数图象可知(3)0mm>⎧⎨-->⎩,解得03m<<;B、由函数图象可知(3)0mm>⎧⎨--=⎩,解得3m=;C、由函数图象可知(3)0mm<⎧⎨--<⎩,解得0m<,3m>,无解;D、由函数图象可知(3)0mm<⎧⎨-->⎩,解得0m<.故选:C.【点睛】本题考查了一次函数图象问题,解答此题的关键是根据各选项列出方程组,求出无解的一组.5.D【解析】【分析】当函数y=ax+6为一次函数,在-1≤x≤2范围内,它是递增或递减的,则当x=-1,y=ax+6=-a+6<10;当x=2,y=ax+6=2a+6<10,解两个不等式,得到a的范围,另外a=0时,也符合题意.最后综合得到a的取值范围.【详解】解:当a<0时,函数y=ax+6为一次函数,它是递减的,当-1≤x≤2时,y<10.则有当x=-1,y=ax+6=-a+6<10,解得:a>-4,故此时:-4<a<0;当a>0时,函数y=ax+6为一次函数,它是递增的,当x=2,y=ax+6=2a+6<10,解得a<2;故可得此时0<a<2;当a=0时,也符合题意,综上所述,-4<a<2,故选:D.【点睛】本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.6.D【解析】【详解】解:如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,△C(1,4),△FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,△A(1,0),即OA=1,△AD=CF=OD-OA=5-1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选D.7.C【解析】【分析】直接根据“左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知:把直线2y x =+向左平移1个单位长度后,其直线解析式为(1)2y x =++,即3y x .故选:C .【点睛】本题考查的是一次函数的图象与几何变换,解题的关键是熟知函数图象平移的法则. 8.A【解析】【分析】设第三边长为x ,然后再利用三边关系列出不等式,进而可得答案.【详解】解:设第三边长为x ,由题意得:7-3<x <7+3,即:4<x <10,故选:A .【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.9.D【解析】【分析】分别求出两直线与x 轴的交点的横坐标,然后列出方程整理即可得解.【详解】解:令y 0=,则1k x 10+=, 解得11x k =-, 2k x 40-=, 解得24x k =,两直线交点在x 轴上,1214k k ∴-=, 12k 1k 4∴=-. 故选D .【点睛】考查了两直线相交的问题,分别表示出两直线与x 轴的交点的横坐标是解题的关键. 10.C【解析】【分析】根据题意分析△PAB 的面积的变化趋势即可.【详解】解:根据题意当点P 由E 向C 运动时,△PAB 的面积匀速增加,当P 由C 向D 时,△PAB 的面积保持不变,当P 由D 向F 运动时,△PAB 的面积匀速减小但不为0.故选:C .【点睛】本题为动点问题的函数图象探究题,考查了函数图象的性质,分析动点到达临界点前后函数值变化是解题关键.11.-1【解析】【分析】根据点到坐标的距离即可求解.【详解】解:△点P (,2)m m +到两条坐标轴的距离相等, △2m m =+ ,解得:1m =- .故答案为:1- .【点睛】本题主要考查了平面直角坐标系内点到坐标轴的距离,熟练掌握点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.12.2【解析】【分析】把原点坐标代入函数解析式可求得k 的值.【详解】△一次函数 y=(k+2)x+k 2−4 的图象经过原点,△ k 2−4= 0,解得: k=2 或 k=−2 ,且 k+2≠0 ,所以 k=2 .故答案为: k=2 .【点睛】本题考查了一次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.注意一次项系数不为零.13.65︒【解析】【分析】先根据三角形的外角性质求得△BAC 的度数,再根据平角的性质以及角平分线的定义求得△EAD 的度数.【详解】解:△△ACD 是△ABC 的外角,△△BAC=△ACD -△B=80°-30°=50°,△△CAE =180°-50°=130°,△AD 平分△CAE , △△EAD=12CAE ∠=65°. 故答案为:65°.【点睛】本题主要考查了角平分线的定义、三角形的外角性质,解决问题的关键是掌握:三角形的一个外角等于和它不相邻的两个内角的和.14.()0,8或80,3⎛⎫ ⎪⎝⎭##80,3⎛⎫ ⎪⎝⎭或()0,8 【解析】【分析】先求出A 点的坐标为(2,4)A ,设(,0)B a ,则OB a =,由1144822AOB S OB a =⨯=⨯=△,求出4a =±,设直线AB 的解析式为y kx b =+,再讨论当4a =时和当4a =-时利用待定系数法求出直线AB 的解析式,即可得到答案.【详解】解:△点(2,)A m 在直线2y x =上,△224m =⨯=,△(2,4)A ,设(,0)B a , △OB a =, △1144822AOB S OB a =⨯=⨯=△, △4a =±,设直线AB 的解析式为y kx b =+,△当4a =时,(4,0)B ,△2440k b k b +=⎧⎨+=⎩, 解得28k b =-⎧⎨=⎩, △直线AB 的解析式为28y x =-+,△此时直线AB 与y 轴的交点坐标为(0,8);同理求得当4a =-时,直线AB 的解析式为2833y x =+, △此时直线AB 与y 轴的交点坐标为(0,83), 故答案为:(0,8)或(0,83). 【点睛】本题主要考查了一次函数图像上点的坐标特征,求一次函数解析式,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.15.x <﹣1【解析】【分析】首先利用待定系数法求出A 点坐标,再以交点为分界,结合图象写出不等式﹣2x >ax+3的解集即可.【详解】解:△函数y 1=﹣2x 过点A (m ,2),△﹣2m =2,解得:m =﹣1,△A (﹣1,2),△不等式﹣2x >ax+3的解集为x <﹣1.故答案为x <﹣1.【点睛】本题考查一次函数与一元一次不等式,关键是求出A 点坐标.16.(1)y=-5x -4;见解析;(2)35x ≤-.【解析】【分析】(1)由正比例函数的定义,结合待定系数法解题;(2)将问题转化为解一元一次不等式421x --≥-,解此不等式即可.【点睛】解:(1)设y -1=k (x+1),把x=-2,y=6代入y -1=k (x+1)得:6-1=k (-2+1),解得k=-5,△y=-5x -4;如图所示:(2)由图像可知:当y≥-1时,541x --≥-53x ∴-≥35x ∴≤- 35x ≤-. 【详解】本题考查一次函数与一元一次不等式,涉及正比例函数、待定系数法求一次函数解析式等知识,是重要考点,掌握相关知识是解题关键.17.(1)0.72(05)0.90.9(5)x x y x x <≤⎧=⎨->⎩;(2)2.52元;11吨 【解析】【分析】(1)分0<x≤5和x >5时,设出y 与x 的函数解析式运用待定系数法求解即可; (2)分别代入相应的函数,计算即可.【详解】解:(1)当0<x≤5时,设函数解析式为y=kx ,由题意得3.6=5k ,解得k=0.72,△y=0.72x (0<x≤5);当x >5时,设函数解析式为y=ax+b ,由题意得:5 3.68 6.3a ba b+⎧⎨+⎩==,解得:0.90.9ab⎧⎨-⎩==,△y=0.9x-0.9(x>5);综上可得,0.72(05)0.90.9(5)x xyx x<≤⎧=⎨->⎩;(2)当x=3.5时,y=0.72×3.5=2.52元;当y=9时,9=0.9x-0.9,解得,x=11答:用户居民该月用水3.5吨,应交水费2.52元;若该月交水费9元,则用水11吨.【点睛】考查用待定系数法求一次函数解析式及一次函数的应用;根据自变量或函数值的取值使用相应的函数解析式是解决本题的易错点.18.△ACB;两直线平行,同位角相等;DE;AC;内错角相等,两直线平行;两直线平行,内错角相等【解析】【分析】由垂直的定义以及平行线的性质,不难得到△AFE=ACB=90°,再由DE△EF,可求得AC// DE,从而有△2=△EDF,再结合△EDF+△1=180°,即可得证.【详解】证明:△AC△BC(已知),△△ACB=90°(垂线的定义).△EF//BC(已知),△△AFE=△ACB=90°(两直线平行,同位角相等).△DE△EF(已知),△△DEF=90°(垂线的定义).△△AFE=△DEF(等量代换).△DE//AC(内错角相等,两直线平行).△△2=△EDF(两直线平行,内错角相等).△△EDF +△1=180°(邻补角互补),△△1+△2=180°(等量代换).故答案为:△ACB ;两直线平行,同位角相等;DE ;AC ;内错角相等,两直线平行;两直线平行,内错角相等,【点睛】本题主要考查三角形的内角和定理以及平行线的判定与性质,解答的关键是结合图形分析清楚角之间的关系.19.(1)y=-x+5;(2)272;(3)x≥3 【解析】【分析】(1)将()5,0A ,()1,4B 代入y kx b =+求解即可;(2)先求出两个一次函数与y 轴的交点,两个函数的交点C ,根据图象求出三角形的底和高,即可计算三角形面积;(3)根据图象中点C 的位置可得:324x x kx b =-=+当时,,再分别观察图象中当3x <,3x >时情况即可得.【详解】解:(1)将()5,0A ,()1,4B 代入y kx b =+可得:504k b k b +=⎧⎨+=⎩, 解得:15k b =-⎧⎨=⎩, △5y x =-+;(2)由(1)得,5y x =-+与y 轴交点为()0,5,24y x =-与y 轴交点为()0,4-,联立得:524y x y x =-+⎧⎨=-⎩, 解得:32x y =⎧⎨=⎩, △()3,2C ,由图可得:两个函数与y 所围的三角形底为:()549--=,高为点C 的横坐标, △1279322S =⨯⨯=; (3)根据图象可得:当3x =时,24x kx b -=+,当3x <时,24x kx b -<+,当3x >时,24x kx b ->+,综合可得:当3x ≥时,24x kx b -≥+,△不等式的解集为:3x ≥.【点睛】题目主要考查待定系数法确定一次函数解析式、一次函数与二元一次方程组、不等式组的联系、一次函数与三角形面积问题,熟练掌握一次函数的性质及与二元一次方程、不等式组的联系是解题关键.20.(1)y=x+1,y=2x ,(1,2);(2)见解析【解析】【分析】(1)当k=1时,即得到直线l 1,当k=2时,即得到另一条直线l 2.根据图象猜想直线y=kx+2-k (其中k≠0)必经过点(1,2);(2)把解析式进行变形,得到y=kx+2-k=k (x -1)+2,即可得到当x=1时,y=2,即可证得图象经过点(1,2).【详解】解:(1)当k=1时,直线l 1的解析式为y=x+1,当k=2时,直线l 2的解析式为y=2x ,画出函数图象如图:观察图象,猜想直线y=kx+2-k (其中k≠0)必经过点(1,2),故答案为y=x+1,y=2x ,(1,2);(2)证明:△y=kx+2-k=k (x -1)+2,△当x=1时,y=2,△直线y=kx+2-k (其中k≠0)必经过点(1,2).【点睛】本题考查了待定系数法求一次函数的解析式,一次函数的图象和性质,数形结合是解题的关键.21.证明见解析【解析】【分析】根据条件可以求出AD=BC ,再证明△AED△△BFC ,由全等三角形的性质就可以得出结论.【详解】△AC=BD ,△AC+CD=BD+CD ,△AD=BC ,在△AED 和△BFC 中,A B AD BCADE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△AED△△BFC (ASA ),△DE=CF .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.22.(1)20168001040y x x =+≤≤();(2)故当x=40时,总利润最大,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台.【解析】【分析】(1)根据题意首先设调配给甲连锁店电冰箱(70-x )台,调配给乙连锁店空调机(40-x )台,电冰箱60-(70-x )=(x -10)台,列出不等式组求解即可;(2)由(1)可得几种不同的分配方案;依题意得出y 与a 的关系式,解出不等式方程后可得出使利润达到最大的分配方案.【详解】解:(1)由题意可知,调配给甲连锁店电冰箱 70x -()台, 调配给乙连锁店空调机40x -()台,电冰箱为607010x x --=-()()台, 则200170701604015010y x x x x =+-+-+-()()(),即2016800y x =+.△0700400100x x x x ≥⎧⎪⎪⎨-≥-≥-≥⎪⎪⎩ △1040x ≤≤.△20168001040y x x =+≤≤();(2)由题意得:200170701604015010y a x x x x =-+-+-+-()()()(),即2016800y a x =-+(). △200-a≥170+10,△a≤20.当0<a <20时,20-a >0,函数y 随x 的增大而增大,故当x=40时,总利润最大,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x 的取值在10≤x≤40内的所有方案利润相同.【点睛】本题考查一次函数的应用以及一元一次不等式的应用,找到正确的数量关系是解答本题的关键.23.(1)△DAE =10°;(2)△DAE =12△C ﹣12△B ;(3)45°.【解析】【分析】(1)先根据三角形的内角和定理求得80BAC ∠=︒、30CAE ∠=︒,再根据角平分线的定义得到40CAD ∠=︒,最后根据角的和差解答即可;(2)先根据三角形的内角和定理求得180BAC B C ∠=︒-∠-∠、90CAE C ∠=︒-∠,再根据角平分线的定义得到12CAD BAD BAC ∠=∠=∠,然后根据角的和差表示出来即可; (3)先根据角平分线的定义得到2,2CAE CAG FCB FCG ∠=∠∠=∠,再结合三角形外角的性质得到2AEC G ∠=∠,然后根据题意得到90AEC ∠=︒,最后算出△G 即可.【详解】解:(1)40,60,180B C BAC B C ∠=︒∠=︒∠+∠+∠=︒80BAC ∴∠=︒AE ∵是ABC ∆的高,90,AEC ∴∠=︒60,C ∠=︒906030CAE ∴∠=︒-︒=︒ AD 是BAC ∠的角平分线,1402CAD BAD BAC ∴∠=∠=∠=︒,10DAE CAD CAE ∴∠=∠-∠=︒.(2)180,BAC B C ∠+∠+∠=︒180BAC B C ∴∠=︒-∠-∠AE ∵是ABC ∆的高,90,AEC ∴∠=︒90CAE C ∴∠=︒-∠ AD 是BAC ∠的角平分线,12CAD BAD BAC ∴∠=∠=∠,()1902DAE CAD CAE BAC C ∴∠=-∠=∠-︒-∠()1180902C C =︒-∠B -∠-︒+∠1122C B =∠-∠ 即1122DAE C B ∠=∠-∠;(3)CAE ∠和BCF ∠的角平分线交于点G ,2,2CAE CAG FCB FCG ∴∠=∠∠=∠,CAE FCB AEC CAG FCG G ∠=∠-∠∠=∠-∠()2222FCG AEC FCG G FCG G ∴∠-∠=∠-∠=∠-∠,即2AEC G ∠=∠,AE ∵是ABC ∆的高,90AEC ∴∠=︒,45G ∴∠=︒.故答案为:45°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义、三角形外角的性质等知识点,灵活应用相关知识成为解答本题的关键.。
沪科版八年级上册数学期中考试试卷及答案
沪科版八年级上册数学期中考试试题一、单选题1.平面直角坐标系中,点A (﹣2,1)到x 轴的距离为()A .﹣2B .1C .2D2.若xy >0,则关于点P (x ,y )的说法正确的是()A .在一或二象限B .在一或四象限C .在二或四象限D .在一或三象限3.一次函数y=2x+3的图像不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限4.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1)B (x 2,y 2),当x 1>x 2时,有y 1<y 2那么m 的取值范围是()A .m>0B .m<0C .m>1D .m<15.在下列条件中,能确定ABC 是直角三角形的条件有()①A B C ∠+∠=∠,②::1:2:3A B C ∠∠∠=,③90A B ∠=︒-∠,④A B C ∠=∠=∠A .1个B .2个C .3个D .4个6.如图,在 ABC 中,∠A =30°,则∠l +∠2的度数为()A .210°B .110°C .150°D .100°7.满足下列条件的ABC 中,不是直角三角形的是()A .ABC ∠-∠=∠B .::3:4:7A B C ∠∠∠=C .23A B C∠=∠=∠D .9A ∠=︒,81B ∠=︒8.如图,点A(O ,1)、点A 1(2,0)、点A 2(3,2)、点A 3(5,1)、…,按照这样的规律下去,点A 2021的坐标为()A .(2022,2021)B .(3032,1010)C .(3033,1011)D .(2021,1012)9.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是()A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+10.下列长度的三条线段能组成三角形的是()A .3,3,4B .7,4,2C .3,4,8D .2,3,5二、填空题11.点(2,3)关于y 轴对称的点的坐标为_____.12.已知点(1,3)M m m ++在x 轴上,则m 等于______.13.三角形三边长分别为3,2a -1,8,则a 的取值范围是_____.14.如图,直线y =kx+b (k 、b 是常数k≠0)与直线y =2交于点A (4,2),则关于x 的不等式kx+b <2的解集为_____.15.将直线y=2x-1向左平移,使其经过点(-32,0),则平移后的直线所对应的函数关系式为_____________.16.△ABC 中,AE 是角平分线,AD 是边BC 上的高,过点B 做BF ∥AE ,交直线AD 于点F ,∠ABC=a ,∠ACB=β,且a >β,则∠AFB=___________(用a ,β表示)17.如果不论k 为何值,一次函数y=211133k k x k k ---++的图象都经过一定点,则该定点的坐标是________.三、解答题18.在平面直角坐标系中,点M 的坐标为(a ,1-2a).(1)当a =-1时,点M 在坐标系的第___________象限(直接填写答案);(2)将点M 向左平移2个单位,再向上平移1个单位后得到点N ,当点N 在第三象限时,求a 的取值范围.19.如图,点A 、B 、C 都落在网格的顶点上.(1)写出点A、B、C的坐标;(2)求△ABC的面积;(3)把△ABC先向右平移4个单位长度,再向下平移5个单位长度,得△A´B´C´,画出△A´B´C´20.已知等腰△ABC,解答以下问题:(1)若有一个内角为40°,求这个等腰三角形另外两个角的度数;(2)若等腰三角形的周长为27,两条边长分别是a和2a+1,求三边的长21.已知一次函数y1=(m-1)x+5-m,y2=(n+1)x+1-n.(1)若y1的图象经过点(0,3),求y1函数的解析式;(2)若y2的图象经过第一、二、三象限,求n的取值范围;(2)当m=n,且y1<y2时,求x的取值范围.22.某天中午,小明从文具店步行返回学校,与此同时,小亮从学校骑自行车去文具店购买文具(购买文具时间忽略不计),然后原路返回学校,两人均匀速行驶,结果两人同时到达学校.小明、小亮两人离书店的路程y1、y2(单位:米)与出发时间x(单位:分)之间的函数图象如图所示.(1)学校和文具店之间的路程是米,小亮的速度是小明速度的倍;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)小明与小亮迎面相遇以后,再经过多长时间两人相距20米?23.某水产品商店销售1千克A 种水产品的利润为10元,销售1千克B 种水产品的利润为15元,该经销商决定一次购进A 、B 两种水产品共200千克用于销售,设购进A 种水产品x 千克,销售总利润为y 元.(1)求y 与x 之间的函数关系式;(2)若其中B 种水产品的进货量不超过A 种水产品的3倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.24.如图,已知四边形ABCD .(1)写出点A ,B ,C ,D 的坐标;(2)试求四边形ABCD 的面积(网格中每个小正方形的边长均为1)25.已知直线1l 的解析式为33y x =-+,1l 与x 轴交于点D ,直线2l 的解析式为32y x k =+,且直线1l 与直线2l 交于点(2,)C m ,直线2l 与x 轴交于点A .(1)求,k m 的值;(2)求ADC ∆的面积;(3)在直线2l 上是否存在一点P ,使ADP ∆的面积等于ADC ∆的面积,若存在求出点P 的坐标,若不存在请说明理由.参考答案1.B【解析】【分析】根据平面直角坐标系中点到x轴的距离等于该点纵坐标的绝对值判断即可.【详解】由题可知,点A的纵坐标的绝对值等于1,即点A(﹣2,1)到x轴的距离为1,故选:B.【点睛】本题考查平面直角坐标系中点到坐标轴的距离问题,掌握基本结论是解题关键.2.D【解析】【分析】根据xy>0,可得x>0,y>0或x<0,y<0,再根据各象限内点的坐标的符号特征判断即可.【详解】解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.【点睛】本题考查的是乘法法则的理解,平面直角坐标系内点的坐标特点,掌握坐标系内点的坐标特点是解题的关键.3.D 【解析】【分析】根据一次函数23y x =+的系数k ,b 的符号确定图象经过的象限.【详解】解:20k => ,图象过一三象限,30=>b ,图象过第一、二象限,∴直线23y x =+经过一、二、三象限,不经过第四象限.故选D .【点睛】本题考查一次函数的0k >,0b >的图象性质.需注意x 的系数为1,难度不大.4.D 【解析】【分析】先根据x 1>x 2时,y 1<y 2,得到y 随x 的增大而减小,所以x 的比例系数小于0,那么m-1<0,解不等式即可求解.【详解】∵x 1>x 2时,y 1<y 2∴y 随x 的增大而减小∴m-1<0∴m <1.故选D .【点睛】本题考查一次函数的图象性质:当k >0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.5.C 【解析】【分析】结合三角形的内角和为180°逐个分析4个条件,可得出①②③中∠C=90°,④能确定ABC为等边三角形,从而得出结论.【详解】解:①∵∠A+∠B=∠C,且∠A+∠B+∠C=180°,∴∠C+∠C=180°,即∠C=90°,为直角三角形,①符合题意;此时ABC②∵∠A:∠B:∠C=1:2:3,∴∠A+∠B=∠C,同①,为直角三角形,②符合题意;此时ABC③∵∠A=90°-∠B,∴∠A+∠B=90°,∴∠C=90°,③符合题意;④∵∠A=∠B=∠C,且∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,为等边三角形,④不符合题意;∴ABC为直角三角形.综上可知:①②③能确定ABC故选:C.【点睛】本题考查了直角三角形的定义以及三角形内角和定理,解题的关键是结合三角形的内角和定理逐个分析4个条件.6.A【解析】【分析】利用三角形的外角性质以及三角形的内角和即可求得答案.【详解】解:由题意可得:∠l=∠A+∠ACB,∠2=∠A+∠ABC,∴∠l+∠2=∠A+∠ACB+∠A+∠ABC,又∵∠A=30°,∠ACB+∠A+∠ABC=180°,∴∠l+∠2=30°+180°=210°,故选:A.【点睛】本题考查了三角形的外角性质以及三角形的内角和定理,熟练运用三角形的外角性质是解决本题的关键.7.C 【解析】【分析】依据三角形内角和定理,求得三角形的最大角是否等于90︒,进而得出结论.【详解】解:在ABC 中,++=180A B C ∠∠∠︒,A .ABC ∠-∠=∠Q ,90A B C ∴∠=∠+∠=︒,∴该三角形是直角三角形;B .::3:4:7A B C ∠∠∠= ,71809014C ∴∠=︒⨯=︒,∴该三角形是直角三角形;C .23A B C ∠=∠=∠ ,61809011A ∴∠=︒⨯>︒,∴该三角形是钝角三角形;D .9A ∠=︒ ,81B ∠=︒,90C ∴∠=︒,∴该三角形是直角三角形;故选:C .8.B 【解析】【分析】观察图形得到奇数点的规律为:35211(2,0),(5,1),(8,2)(31,1)n A A A A n n -⋯⋯--,由2021是奇数,且2021=2n−1,则可求A2n−1(3032,1010).【详解】解:由图像可得:35211(2,0),(5,1),(8,2)(31,1)n A A A A n n -⋯⋯--2462(3,2),(6,3),(9,4)(3,1)n A A A A n n ⋯⋯+∵212021n -=∴1011n =2021(3032,1010)A 故选B .【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.9.D【解析】【分析】设一次函数关系式为y=kx+b,y随x增大而减小,则k<0;图象经过点(1,2),可得k、b 之间的关系式.综合二者取值即可.【详解】设一次函数关系式为y=kx+b,∵图象经过点(1,2),∴k+b=2;∵y随x增大而减小,∴k<0.即k取负数,满足k+b=2的k、b的取值都可以故选:D.【点睛】此题考查一次函数,解题关键在于掌握一次函数的性质及图象上点的坐标特征.10.A【解析】【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A、3+3>4,能构成三角形,故此选项正确;B、4+2<7,不能构成三角形,故此选项错误;C、3+4<8,不能构成三角形,故此选项错误;D、2+3=5,不能构成三角形,故此选项错误.故选:A.【点睛】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.11.(﹣2,3)【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【详解】点(2,3)关于y轴对称的点的坐标是(﹣2,3),故答案为:(﹣2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,关于x轴对称的点,横坐标相同,纵坐标互为相反数.12.3-【解析】【分析】当点M的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,-.故答案为:3【点睛】此题主要考查点的坐标;用到的知识点为:x轴上点的纵坐标为0.13.3<a<6【解析】【分析】根据三角形的三边关系列出不等式即可求出a的取值范围.【详解】∵三角形的三边长分别为3,2a-1,8,∴8-3<2a-1<8+3,即3<a<6.故答案为3<a <6.【点睛】考查了三角形三边关系,解答此题的关键是熟知三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.14.x <4【解析】【分析】结合函数图象,写出直线y kx b =+在直线y =2下方所对应的自变量的范围即可.【详解】解:∵直线y =kx+b 与直线y =2交于点A (4,2),∴x <4时,y <2,∴关于x 的不等式kx+b <2的解集为:x <4.故答案为:x <4.【点睛】本题考查的是利用函数图像解不等式,理解函数图像上的点的纵坐标的大小对图像的影响是解题的关键.15.y=2x+3【解析】【分析】根据题意,设平移后的直线为()21y x a =+-,再将3(,0)2-代入,求解即可.【详解】解:根据题意,设平移后的直线为()21y x a =+-再将3(,0)2-代入直线可得:32102a ⎛⎫-+-= ⎪⎝⎭解得2a =则直线为2(2)123y x x =+-=+故答案为23y x =+【点睛】此题考查了一次函数图像的平移,解题的关键是掌握函数图像的平移口诀“左加右减,上加下减”.16.1()2αβ-【解析】【分析】由三角形的个内角和定理可求解∠BAC的度数,结合三角形的角平分线,高线可求∠EAD 的度数,根据平行线的性质可求解∠AFB的度数.【详解】解:如图:∵∠ABC=α,∠C=β,∠ABC+∠C+∠BAC=180°,∴∠BAC=180°−α−β,∵AE是△ABC的角平分线,∴∠BAE=12∠BAC=1802αβ︒--,∵AD是△ABC的BC边上的高,∴∠ADB=90°,∴∠BAD=90°−∠ABC=90°−α,∴∠EAD=∠BAE−∠BAD=1801(90)()22αβααβ︒---︒-=-,∵BF∥AE,∴∠AFB=∠EAD=1()2αβ-,故答案为:1()2αβ-;【点睛】本题主要考查三角形的内角和定理,三角形的高线,角平分线,平行线的性质,灵活运用三角形的内角和定理求解角的度数是解题的关键.17.(2,3)【解析】【分析】将一次函数y=211133k kxk k---++变形为(2k-1)x-(k+3)y-(k-11)=0,整理得(2x-y)k-(x+3y)=k-11,从而求得定点坐标.【详解】解:将一次函数y=211133k kxk k---++变形为(2k-1)x-(k+3)y-(k-11)=0,由(2k-1)x-(k+3)y-(k-11)=0,得:(2x-y)k-(x+3y)=k-11.不论k为何值,上式都成立.所以2x-y=1,x+3y=11,解得:x=2,y=3.即不论k为何值,一次函数(2k-1)x-(k+3)y-(k-11)=0的图象恒过(2,3).【点睛】恒过一个定点,那么应把所给式子重新分配整理成左右都含k的等式.18.(1)第二象限(2)1a2<<.【解析】【分析】(1)把a=-1代入点M的坐标为(-1,3),所以在第二象限;(2)先写出点M(a,1-2a)平移后的点N的坐标为(a-2,1-2a+1),再根据点N再第三象限列出不等式组,即可求出a的取值.【详解】(1)把把a=-1代入点M的坐标得(-1,3),故在第二象限;(2)∵点M(a,1-2a)平移后的点N的坐标为(a-2,1-2a+1),依题意得20 1210 aa-<⎧⎨-+<⎩解得1a2<<.19.(1)A(-1,4)、B(-4,3)、C(-3,1);(2)3.5;(3)见解析【解析】【分析】(1)根据坐标系直接写出点的坐标即可;(2)根据网格的特征用长方形的面积减去三个拐角三角形的面积即可;(3)把A ,B ,C 分别平移连接即可;【详解】(1)根据平面直角坐标系得:A (-1,4)、B (-4,3)、C (-3,1);(2)111331312239 1.513 3.5222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---=△;(3)将A ,B ,C 先向右平移4个单位长度,再向下平移5个单位长度,得到()3,1A '-,()0,2B '-,()4,1C '-,连接即可,如图:【点睛】本题主要考查了坐标与图形变化和平移的性质,准确分析计算是解题的关键.20.(1)70°,70°;40°,100°;(2)11、11、5【解析】【分析】(1)分两种情况进行讨论,当40°为底角时和40°为顶角时,分别求解即可;(2)分两种情况进行讨论,当腰长为a 时和腰长为21a +时,分别求解即可.【详解】解:(1)当40°为底角时,则另外一个底角也为40︒,顶角为100︒当40°为顶角时,则两个底角为1(18040)702⨯︒-︒=︒故答案为70°,70°;40°,100°;(2)当腰长为a 时,底边为21a +,221a a a a +=<+,不满足三角形三边条件,舍去;当腰长为21a +时,由题意可得:212127a a a ++++=,解得5a =;此时三边长分别为11、11、5,符合题意,故答案为11、11、5.【点睛】此题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键,易错点为容易忽略三角形三边关系.21.(1)y1=x+3;(2)-1<n <1;(3)x >2【解析】【分析】(1)将点(0,3)代入函数y 1的解析式,即可得到m 的值,从而可以得到函数y 1的表达式;(2)根据函数y 2图象经过第一,二,三象限,即可得到1010n n +⎧⎨-⎩>>,从而可以求得n 的取值范围;(3)根据当m=n 时,y 1<y 2,可以得到x 的取值范围.【详解】解:(1)∵函数y 1的图象与y 轴交于点(0,3),∴-3=(m-1)×0+5-m ,解得m=2,∴13y x =+;(2)∵函数y 2图象经过第一,二,三象限,y 2=(n+1)x+1-n ,∴1010n n +⎧⎨-⎩>>,解得-1<n <1,即k 的取值范围是-1<n <1;(3)依题意,得(m-1)x+5-m <(m+1)x+1-m ,解得x >2.本题考查一次函数与一元一次不等式,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.22.(1)360;2;(2)a=120m ;两人出发2min 后在距离文具店120m 处相遇;(3)19或113min 【解析】【分析】(1)由图中的数据,可以直接写出学校和文具店之间的路程,根据题意可知小亮的速度是小明的2倍;(2)设小明的速度为xm/分,则小亮的速度为2xm/分,观察图象知2分钟两人迎面相遇,列出方程可求得小明和小亮的速度,进而计算出a 的值,从而可得图中点M 的横坐标、纵坐标的实际意义;(3)根据题意可知,分两种情况进行讨论,一种是小亮到达文具店前相距20米,一种是小亮从文具店回学校的过程中相距20米,然后分别进行计算即可解答本题.【详解】解:(1)由图中的数据可知,学校和文具店之间的路程是360米,根据题意可知小亮的速度是小明的2倍;(2)设小明的速度为xm/分,则小亮的速度为2xm/分,2(x+2x)=360解得x=60,2×60=120,∴a=120,∴图中点M 的横坐标、纵坐标的实际意义是两人出发2min 后在距离文具店120m 处相遇;(3)设小明与小亮迎面相遇以后,再经过t 分钟两人相距20米,当0≤t≤3时,60t+120t=20,解得t=19,当3<t≤6时,60(t+2)-20=120(t+2)-360,解得t=113,∴小明与小亮迎面相遇以后,再经过19或113min 两人相距20米.本题考查了一次函数的应用,一元一次方程的实际应用.解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.(1)y=-5x+3000;(2)购进A 水产品50kg 、B 种150kg 时,利润最大是2750元【解析】【分析】(1)设购进A 种水产品x 千克,则购进B 种水产品(200-x )千克,根据等量关系表示出函数解析式即可;(2)由题意得:2003x x -≤,解得:50x ≥,即50200x ≤<,根据53000y x =-+的性质得y 随x 的增大而减小,则当50x =时,销售利润最大,把50x =代入53000y x =-+即可得.【详解】解:(1)设购进A 种水产品x 千克,则购进B 种水产品(200-x )千克,1015(200)y x x =+-10300015y x x=+-即53000y x =-+,则y 与x 之间的函数关系式为:53000y x =-+;(2)由题意得:2003x x -≤,4200x ≥解得:50x ≥,∴50200x ≤<,∵53000y x =-+,50-<,∴y 随x 的增大而减小,∴当50x =时,销售利润最大,55030002750y =-⨯+=,200-50=150(千克),故购进A 种水产品50千克,购进B 种水产品150千克,销售总利润最大,总利润的最大值为2750元.【点睛】本题考查了一次函数的应用,解题的关键是根据题意找出等量关系表示出函数解析式.24.(1)()()()()2,1,3,2,3,2,1,2A B C D ----;(2)16【分析】(1)根据各点所在的象限,对应的横坐标、纵坐标,分别写出点的坐标;(2)首先把四边形ABCD 分割成规则图形,再求其面积和即可.【详解】解:(1)由图象可知()()()()2,1,3,2,3,2,1,2A B C D ----;(2)作AE BC ⊥于E DG BC ⊥,于G ,则111=+=13+24+3+43=16222ABE DGCABCD AEGD S S S S +⨯⨯⨯⨯⨯⨯ 四边形梯形()【点睛】此题主要考查了点的坐标,以及求不规则图形的面积,关键是把不规则的图形正确的分割成规则图形.25.(1)k=-6,m=-3;(2)92;(3)()6,3P 【解析】【分析】(1)利用待定系数法即可求解;(2)求得C 的坐标,然后利用三角形的面积公式即可求解;(3)P 与C 的纵坐标一定互为相反数,据此求得P 的纵坐标,代入直线解析式求得横坐标.【详解】解:(1)2x =时,3233m =-⨯+=-,()2,3C ∴-、将()2,3C -代入2l ,332,62k k -=⨯+=-362y x ∴=-(2)在33y x =-+中,令0y =,解得:1x =.则D 的坐标是()1,0.在362y x =-中,令0y =,解得:4x =,则A 的坐标为()4,0则413AD =-=,19322ADC S AD =⨯= ;(3)点P 的纵坐标是3,把3y =代入362y x =-,得6x =.则()6,3P。
沪科版八年级上册数学期中考试试卷附答案
沪科版八年级上册数学期中考试试题一、单选题1.已知点A(x+2,x﹣3)在y轴上,则x的值为()A.﹣2 B.3 C.0 D.﹣32.已知△ABC△△A1B1C1,若△A=△A1=60°,△B=50°,则△C的度数为()A.50° B.60° C.70° D.80°3.函数y=2211xx-+的自变量x的取值范围是()A.x ≠0 B.x ≠1 C.x ≠±1 D.全体实数4.如图,在△ABC和△BAD中,AC=BD,要使△ABC△△BAD,则需要添加的条件是A.△BAD=△ABC B.△BAC=△ABD C.△DAC=△CBD D.△C=△D 5.已知4个正比例函数y=k1x,y=k2x,y=k3x,y=k4x的图像如图,则下列结论成立的是()A.k1>k2>k3>k4B.k1>k2>k4>k3C.k2>k1>k3>k4D.k4>k3>k2>k16.下列命题中,假命题是()A.如果a,b都是正数,那么ab>0 B.如果a2=b2,那么a+b=0C.如果一个三角形是直角三角形,那么它的两个锐角互余D.同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行7.已知一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,则该函数图象所经过的象限为()A.一、二、三B.二、三、四C.一、三、四D.一、二、四8.如图,△ABC△△ADE,△DAC=70°,△BAE=100°,BC、DE相交于点F,则△DFB度数是()A.15° B.20° C.25° D.30°9.甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是()A.B.C.D.10.下列命题中,是真命题的是()A.若|a|=|b|,那么a=b B.如果ab>0,那么a,b都是正数C.两条平行线被第三条直线所截,同旁内角互补D.两条直线与第三条直线相交,同位角相等11.在数学探究活动中,小明进行了如下操作:将一张四边形纸片ABCD沿BD折叠,点A 恰巧落在BC上,已知△C=90°,AB=6dm,BC=9dm,CD=4dm,则四边形ABCD的面积是()A.24dm2B.30dm2C.36dm2D.42dm²12.下列图象中,表示y不是x的函数的是()A.B.C.D.二、填空题13.“等腰三角形的两个底角相等.”请写出它的逆命题:_________________.14.一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是_____.15.如图,已知P(3,3),点B、A分别在x轴正半轴和y轴正半轴上,△APB=90°,则OA +OB=________.16.在平面直角坐标系中,已知两条直线l1:y=2x+m和l2:y=﹣x+n相交于P(1,3).请完成下列探究:(1)设l1和l2分别与x轴交于A,B两点,则线段AB的长为_____.(2)已知直线x=a(a>1)分别与l1l2相交于C,D两点,若线段CD长为2,则a的值为_____.三、解答题17.在平面直角坐标系中,若点O(0,0),A(﹣1,6),B(a,﹣2)在同一条直线上,求a的值.18.如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且△ACB=90°.(1)图中与△ABC相等的角是;(2)若AC=3,BC=4,AB=5,求点C的坐标.19.如图,已知AB∥CD,AB=CD,BE=CF.求证:AF∥DE.20.如图,在每个小正方形的边长为1个单位的网格中,△ABC的顶点均在格点(网格线的交点)上,线段DE的端点也均在格点上,且AB=DE.(1)将△ABC向上平移4个单位,再向右平移5个单位得到△A1B1C1,画出△A1B1C1;(2)以DE为一边画△DEF,使得△DEF与△ABC全等.21.如图,已知A,B,C三点在同一条直线上,△ACD=△BCE,AC=CD,BC=CE,AE,BD相交于F.求证:(1)AE=BD;(2)△ACD=△BFE.22.如图,已知两个一次函数y1=32x﹣6和y2=﹣32x的图象交于A点.(1)求A点的坐标;(2)观察图象:当1<x<3时,比较y1,y2的大小.23.我国古代数学家刘微将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.如图,在△ABC中,△C=90°,四边形CDEF为正方形,△ADE△△AGE,△BGE△△BFE.(1)求△AEB的度数;(2)设BC=a,AC=b,AB=c,求正方形CDEF的边长.(用含a,b,c的式子表示)24.某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A种型号设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润=售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润.25.如图1,AM为△ABC的BC边的中线,点P为AM上一点,连接PB.(1)若P为线段AM的中点.△设△ABP的面积为S1,△ABC的面积为S,求1S的值;S△已知AB=5,AC=3,设AP=x,求x的取值范围.(2)如图2,若AC=BP,求证:△BPM=△CAM.参考答案1.A【解析】【分析】根据y 轴上点的横坐标为0列方程求解即可.【详解】解:△点A (x+2,x ﹣3)在y 轴上,△x+2=0,解得x=-2.故选:A .【点睛】本题考查了点的坐标,熟记y 轴上点的横坐标为0是解题的关键.2.C【解析】【分析】根据三角形的内角和定义即可求解.【详解】解:△△A =60°,△B =50°,则△C=180°-△A -△B =70°故选C .【点睛】此题主要考查三角形内角和定理,解题的关键是熟知三角形的内角和为180°.3.D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得220,110x x ≥+≥≠,所以自变量x 的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.4.B【解析】【分析】利用全等三角形的判定方法对各选项进行判断.【详解】解:△AC=BD,而AB为公共边,A、当△BAD=△ABC时,“边边角”不能判断△ABC△△BAD,该选项不符合题意;B、当△BAC=△ABD时,根据“SAS”可判断△ABC△△BAD,该选项符合题意;C、当△DAC=△CBD时,由三角形内角和定理可推出△D=△C,“边边角”不能判断△ABC△△BAD,该选项不符合题意;D、同理,“边边角”不能判断△ABC△△BAD,该选项不符合题意;故选:B.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.A【解析】【分析】首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.【详解】解:首先根据直线经过的象限,知:k3<0,k4<0,k1>0,k2>0,再根据直线越陡,|k|越大,知:|k1|>|k2|,|k4|>|k3|.则k1>k2>k3>k4,故选:A.【点睛】本题主要考查了正比例函数图像的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.6.B【解析】【分析】根据有理数的运算、乘方的性质、直角三角形的性质及平行线的判定定理即可依次判断.【详解】A.如果a,b都是正数,那么ab>0,正确;B.如果a2=b2,那么a=±b,△a+b=0或a=b,故错误;C.如果一个三角形是直角三角形,那么它的两个锐角互余,正确;D.同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,正确故选B.【点睛】此题主要考查命题的真假,解题的关键是熟知有理数的运算、乘方的性质、直角三角形的性质及平行线的判定定理.7.D【解析】【分析】根据题意画出函数大致图象,根据图象即可得出结论.【详解】解:如图,△一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,△该函数图象所经过一、二、四象限,故选:D.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.8.A【解析】【分析】先根据全等三角形对应角相等求出△B=△D,△BAC=△DAE,所以△BAD=△CAE,然后求出△BAD的度数,再根据△ABG和△FDG的内角和都等于180°,所以△DFB=△BAD.【详解】解:△△ABC△△ADE,△△B=△D,△BAC=△DAE,又△BAD=△BAC-△CAD,△CAE=△DAE-△CAD,△△BAD=△CAE,△△DAC=70°,△BAE=100°,△△BAD=12(△BAE-△DAC)=12(100°-70°)=15°,在△ABG和△FDG中,△△B=△D,△AGB=△FGD,△△DFB=△BAD=15°.故选:A.【点睛】本题主要利用全等三角形对应角相等的性质.需注意:全等三角形的对应边相等,对应角相等.9.C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤45、45<x≤43、43<x≤2三段求出函数关系式,进而得到当x=43时,y=80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B车到达甲地时间为120÷90=43小时,A车到达乙地时间为120÷60=2小时,△当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x≤43时,y=60(x-45)+90(x-45)=150x-120;当43<x≤2是,y=60x;由函数解析式的当x=43时,y=150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.10.C【解析】【分析】分别根据绝对值、有理数乘法符号规律以及平行线性质分析得出即可.【详解】解:A、若|a|=|b|,那么a=b,或a=-b,故此选项A错误;B、如果ab>0,那么a,b都是同号,此选项B错误;C.两条平行线被第三条直线所截,同旁内角互补,故此选项C正确;D、两平行直线被第三条直线所截,同位角相等.选项中未指明两直线是否平行,故此选项D 错误;故选C.【点睛】此题主要考查了命题与定理,正确灵活的掌握相关性质和定理是解题关键.11.B【解析】【分析】由折叠的性质得到BE=BA=6,△ABD=△EBD,利用角平分线的性质以及三角形公式即可求解.【详解】解:根据题意,将一张四边形纸片ABCD沿BD折叠,点A恰巧落在BC上的E处,连接DE,过点D作DF△BA并交BA的延长线于点F,如图:△BE=BA=6,△ABD=△EBD,△△C=90°,DF△BA,△DF=DC=4,△四边形ABCD的面积=12BC⨯CD+12AB⨯DF=12⨯9⨯4+12⨯6⨯4=30(dm2) .故选:B.【点睛】本题考查了折叠的性质,角平分线的性质,熟记各图形的性质并准确识图是解题的关键.12.B【解析】【分析】依据函数的定义即可判断.【详解】选项B中,当x>0时对每个x值都有两个y值与之对应,不满足函数定义中的“唯一性”,而选项A、C、D对每个x值都有唯一y值与之对应.故选B.【点睛】本题考查了函数的定义.判定依据是看是否满足定义中的“任意性”、“唯一性”.13.有两个角相等三角形是等腰三角形【解析】【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【详解】解:逆命题为:有两个角相等三角形是等腰三角形,故答案为:有两个角相等三角形是等腰三角形.【点睛】此题主要考查了命题与定理,根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.14.30°##30度【解析】【分析】设三角形的三个内角分别为x ,2x ,3x ,再根据三角形内角和定理求出x 的值,进而可得出结论.【详解】解:△三角形三个内角的比为1:2:3,△设三角形的三个内角分别为x ,2x ,3x ,△x+2x+3x=180°,解得x=30°.△这个三角形最小的内角的度数是30°.故答案为:30°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键. 15.6【解析】【详解】过P 作PM△y 轴于M ,PN△x 轴于N ,△P (3,3),△PN=PM=3,△90MON PNO PMO ∠=∠=∠=︒,△△MPN=360°-90°-90°-90°=90°,则四边形MONP 是正方形,△3OM ON PN PM ==== ,△△APB=90°,△△APB=△MON ,△9090MPA APN BPN APN ∠=︒-∠∠=︒-∠, ,△△APM=△BPN ,在△APM 和△BPN 中APM BPN PM PNPMA PNB ∠∠⎧⎪⎨⎪∠∠⎩=== , △△APM△△BPN (ASA ),△OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=3+3=6故答案是:6.16. 4.553(或者213) 【解析】【分析】 (1)把P (1,3)分别代入直线l 1、 l 2,求出直线,再求出两直线与x 轴的交点,即可求解;(2)分别表示出C ,D 的坐标,根据线段CD 长为2,得到关于a 的方程,故可求解.【详解】解:(1)把P (1,3)代入l 1:y =2x+m 得3=2+m解得m=1△l 1:y =2x+1令y=0,△2x+1=0解得x=-12, △A (-12,0) 把P (1,3)代入l 2:y =﹣x+n 得3=-1+n解得n=4△l 1:y =﹣x+4令y=0,△﹣x+4=0解得x=4,△B (4,0)△AB=4-(-12)=4.5; 故答案为:4.5;(2)△已知直线x =a (a >1)分别与l 1、l 2相交于C ,D 两点,设C 点坐标为(a ,y 1),D 点坐标为(a ,y 2),△y 1=2a+1,y 2=﹣a+4△CD=2△()()4221a a --+=+解得a=13或a=53 △a >1 △a=53. 故答案为:53. 【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法、一次函数的性质特点.17.a 的值为13. 【解析】【分析】设直线的解析式为y=kx ,把A 点的坐标代入求得k 值,再把B 点的坐标代入即可求出a 的值.【详解】解:设直线OA的解析式为:y=kx,把A(﹣1,6)代入得:6=-k,△k=-6,△直线OA的解析式为:y=-6x,△点O(0,0),A(﹣1,6),B(a,﹣2)在同一条直线上,即B点在直线OA上,把B(a,﹣2)代入y=-6x得:-2=-6a,△a=13,△a的值为13.18.(1)△ACO;(2)点C的坐标为(0,125).【分析】(1)由同角的余角相等,可得到△ABC=△ACO;(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)△OC△AB,△ACB=90°.△△ABC+△BCO=△ACO+△BCO=90°,△△ABC=△ACO;故答案为:△ACO;(2)△AC=3,BC=4,AB=5,△三角形ABC是直角三角形,△ACB=90°1 2AB⨯CO=12AC⨯BC,即CO=345⨯=125,△点C的坐标为(0,125).19.见解析【分析】先由平行线的性质得△B=△C,从而利用SAS判定△ABF△△DCE;再根据全等三角形的性质得△AFB=△DEC,由平行线的判定可得结论.【详解】证明:△AB△CD,△△B=△C,△BE=CF ,△BE+EF=CF+EF ,即BF=CE ,在△ABF 和△DCE 中,AB DCB C BF CE=⎧⎪∠=∠⎨⎪=⎩,△△ABF△△DCE (SAS ),△△AFE=△DEF ,△AF△DE .20.(1)见详解;(2)见详解.【分析】(1)由题意先平移A 、B 、C 到A 1、B 1、C 1进而再连接A 1B 1、B 1C 1、 A 1C 1即可;(2)根据题意通过全等三角形的判定条件SSS 进行分析作图.【详解】解:(1)如图,△A 1B 1C 1即为所得,(2)如图,△DEF 与△ABC 全等,△AB DE BC EF ======AC DF ==△△DEF ≅△ABC(SSS).【点睛】本题考查作图-平移变换以及勾股定理等知识,解题的关键是掌握平移变换的性质以及全等三角形的判定条件.21.(1)见解析;(2)见解析【解析】【分析】(1)根据已知得出△ACE=△DCB,根据SAS证出两三角形全等,利用全等三角形的性质易得结论;(2)根据全等三角形性质得出△AEC=△DBC,由三角形内角和定理推出△BFE=△BCE,即可得到结论.【详解】(1)证明:△△ACD=△BCE,△△ACD+△DCE=△BCE+△DCE,△△ACE=△DCB,在△ACE和△DCB中△AC CDACE DCBCE CB=⎧⎪∠=∠⎨⎪=⎩,△△ACE△△DCB(SAS),△AE=BD;(2)解:△△ACE△△DCB,△△AEC=△DBC,△ACD=△BCE,△△BGC=△EGF,△△BGC+△GCB+△GBC=△EGF+△GFE+△GEF,△△BFE=△BCE,△△ACD=△BFE .【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理,解此题的关键是找出已知量和未知量之间的关系.22.(1)A (2,-3)(2)当1<x <2时,y 2>y 1;当x=2时,y 1=y 2;当2<x <3时,y 1>y 2.【解析】【分析】(1)联立两函数即可求解;(2)根据交点,分情况讨论即可求解.【详解】解:(1)联立两函数得36232y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得23x y =⎧⎨=-⎩ △A (2,-3)(2)△两函数交于A 点,由图可得:当1<x <2时,y 2>y 1;当x=2时,y 1=y 2;当2<x <3时,y 1>y 2.【点睛】此题主要考查一次函数的图像与性质,解题的关键是根据题意联立两函数求出交点. 23.(1)△AEB=135°;(2)正方形CDEF 的边长为2a b c +-. 【解析】【分析】(1)根据三角形内角和定理以及全等三角形的性质推出△GBE+△GAE=45°,再利用三角形内角和定理即可求解;(2)设正方形CDEF 的边长为x ,利用全等三角形的性质推出AD=AG=b -x ,BF=BG=a -x ,再由AG+ BG=c ,即可求解.【详解】解:(1)△△ADE△△AGE ,△BGE△△BFE ,△△GBE=△FBE ,△GAE=△DAE ,△△C=90°,△△CBA+△CAB=90°,即△GBE+△GAE=45°,△△AEB=180°-(△GBE+△GAE)=135°;(2)△△ADE△△AGE ,△BGE△△BFE ,△BF=BG ,AD=AG ,设正方形CDEF 的边长为x ,△AD=AG=b -x ,BF=BG=a -x ,△AG+ BG=c ,△b -x+ a -x=c , △x=2a b c +-, 即正方形CDEF 的边长为2a b c +-. 【点睛】本题考查了全等三角形的性质,三角形内角和定理,解题的关键是学会利用参数构建方程解决问题.24.(1)y=-2x+60;(2)公司生产A ,B 两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【解析】【分析】(1)设销售A 种品牌设备x 台,B 种品牌设备(20-x )台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A 种型号设备x 台,则销售B 种型号设备(20-x )台,依题意得:y=(4-3)x+(8-5)×(20-x ),即y=-2x+60;(2)3x+5×(20-x )≤80,解得x≥10.△-2<0,△当x=10时,y 最大=40万元.故公司生产A ,B 两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.25.(1)△14,△14x ≤≤;(2)证明见解析 【分析】(1)△由中线定义即可得14ABP ABC S S =,故114S S = △过C 点作AB 平行线,过B 点作AC 平行线,相交于点N ,连接ME ,可得ABM CME ≅△△,AB=CE ,则在AEC △中,有两边之和大于第三边,两边之和小于第三边,即可求出AE 的取值范围,即28AE ≤≤,又因为P 为线段AM ,故14AP ≤≤.(2)延长PM 到点D 使PM=DM ,连接DC ,由边角边可证明BMP CMD ≅△△,则对应边BP=CD 相等,由等角对等边即可求得 △BPM=△CDM ,同理可得△CAM=△CDM ,所以△BPM =△CAM .【详解】(1)△由AM 为△ABC 的BC 边的中线可知12ABM ACM ABC S S S ==△△△ 由P 为线段AM 的中点可知12ABP BPM AMB S S S ==△△△ 则14ABP ABC S S =,故114S S = △过C 点作AB 平行线,过B 点作AC 平行线,相交于点N ,连接ME△AB//CE△△ABC=△BCE ,△BAE=△AEC ,BM=MC△ABM CME ≅△△(AAS )△AB=CE在AEC △中有CE AC AE CE AC -≤≤+即AB AC AE AB AC -≤≤+得28AE ≤≤即28AM ≤≤△P 为线段AM 的中点△AM=2AP ,△14AP ≤≤即14x ≤≤.(2)延长PM 到点D 使PM=DM ,连接DC , △PM=DM ,△BMP=△CMD ,BM=CM △BMP CMD ≅△△(SAS )△BP=CD , △BPM=△CDM又△AC =BP△AC =CD△△CAM=△CDM△△BPM =△CAM。
2024-2025学年沪科版数学八年级上册期中质量检测试题(含答案)
2024-2025学年沪科版数学八年级上册期中质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题:(本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
)1.已知点(―2,―3)在正比例函数y=kx的图象上,则k的值是( )A. 32B. 23C. 6D. ―322.如图,在直线y=kx+b交坐标轴于A(―3.0)、B(0,5)两点,则不等式kx+b<5的解集为( )A. x>―3B. x<―3C. x>0D. x<03.在同一坐标系中,函数y=―ax与y=23x―a的图象大致是( )A. B. C. D.4.下列各曲线中不能表示y是x的函数是( )A. B. C. D.5.函数y 1=k 1x ,y 2=k 2x ,y 3=k 3x 的图象如图所示,对k 1,k 2,k 3之间的大小关系判定正确的是( )A. k 1<k 2<k 3B. k 1=k 2=k 3C. k 1>k 2>k 3D. 无法确定6.若点P(2k-1,1-k )在第四象限,则k的取值范围为( )A .k>1B .k<C .k>D .<k<17.甲以每小时20km 的速度行驶时,他所走的路程s (km )与时间t(ℎ)之间可用公式s =20t 来表示,则下列说法正确的是( )A. 数20和s ,t 都是变量 B. s 是常量,数20和t 是变量C. 数20是常量,s 和t 是变量D. t 是常量,数20和s 是变量8.某品牌的自行车链条每节长为2.5cm ,每两节链条相连部分重叠的圆的直径为0.8cm ,按照这种连接方式,n 节链条总长度为y cm ,则y 与n 的关系式是( )A. y =2.5nB. y =1.7nC. y =1.7n +0.8D. y =2.5n ―0.89.若直线y =―2 x ―4与直线y =4 x + b 的交点在第三象限,则b 的取值范围是( ).A. ―4< b <8 B. ―4< b <0C. b <―4或b >8D. ―4≤ b ≤810.函数y =中自变量x 的取值范围是( )A. x >4B. x ≥4C. x ≤4D. x ≠4二、填空题:(本题共4小题,每小题5分,共20分。
八年级数学上册 期中测试卷(沪科版)
八年级数学上册期中测试卷(沪科版)一、选择题(本大题共10小题,每小题4分,满分40分)1.若点P(m,1)在第二象限内,则点Q(-m,0)在() A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上2.下列函数:(1)y=πx;(2)y=-2x+1;(3)y=1x;(4)y=2-1-3x;(5)y=x2-1中,一次函数有()A.1个B.2个C.3个D.4个3.已知一次函数y=(k-2)x+5,若y的值随x的值的增大而减小,则k的取值范围是()A.k>2 B.k<2C.0<k<2 D.k<04.下列命题中是假命题的是()A.一个锐角的补角大于这个角B.凡能被2整除的数,末位数字必是偶数C.两条直线被第三条直线所截,同旁内角互补D.相反数等于它本身的数是05.如图,一次函数y=kx+b(k≠0)的图象经过A(2,0),B(0,-2)两点,则关于x的不等式kx+b<0的解集是()A.x>2 B.x<2C.-2<x<2 D.-2≤x≤2(第5题)(第7题)6.已知在△ABC中,∠A=100°-∠B,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.前三种都有可能7.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.58.等腰三角形的周长是18 cm,其中一边长为4 cm,其他两边长分别为() A.4 cm,10 cm B.7 cm,7 cmC.4 cm,10 cm或7 cm,7 cm D.无法确定9.小明把两个直角三角尺按如图所示的方式摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°(第9题)(第10题)10.甲、乙两车从A地出发,匀速驶向B地.甲车以80 km/h的速度行驶1 h后,乙车才沿相同路线行驶.乙车先到达B地并停留1 h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶的时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120 km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题共4小题,每小题5分,满分20分)11.函数y=2x+4x-1中自变量x的取值范围是___________________________________________________.12.在△ABC中,∠A=12∠B=13∠C,则∠B=________度.13.已知y-2与x成正比例,且当x=-1时y=5,则y与x的函数关系式是____________.14.已知点P(3m-6,m+1).(1)若点P在y轴上,则点P的坐标为________;(2)若点P的横坐标比纵坐标小5,则点P在第______象限.三、(本大题共2小题,每小题8分,满分16分)15.如图是某单位的部分平面示意图,已知大门的坐标为(-3,0),花坛的坐标为(0,-1).(1)根据上述条件建立平面直角坐标系;(2)建筑物A的坐标为(3,1),请在图中标出点A的位置.(第15题)16.已知等腰三角形的周长是20 cm,设腰长为x cm,底边长为y cm.(1)求y关于x的函数表达式,并求出自变量x的取值范围;(2)在如图所示的平面直角坐标系中画出函数图象.(第16题)四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=(m+3)x+m-4.(1)m为何值时,该一次函数的图象经过原点?(2)将该一次函数的图象向下平移3个单位后得到的函数图象经过点(2,5),求平移后的图象对应的函数表达式.18.如图,小黄车1节链条的长度为2.5 cm,交叉重叠部分的圆的直径为0.8 cm.(1)观察图形填表:链条节数23 4链条长度/cm__________________(2)如果x节链条的总长度是y cm,求y与x之间的关系式;(3)如果一辆小黄车的链条(安装前)由80节这样的链条组成,那么这根链条安装到小黄车后,链条的总长度是多少?(第18题)五、(本大题共2小题,每小题10分,满分20分) 19.(1) 完成下面的推理说明:已知: 如图,BE ∥CF ,BE ,CF 分别平分∠ABC 和∠BCD . 求证:AB ∥CD .证明:∵BE ,CF 分别平分∠ABC 和∠BCD (已知) , ∴∠1=12∠______,∠2=12∠______(____________).(第19题)∵BE ∥CF (____________),∴∠1=∠2(______________________). ∴12∠ABC =12∠BCD (____________), ∴∠ABC =∠BCD (等式的性质), ∴AB ∥CD (______________________).(2) 说出 (1) 的推理中运用了哪两个互逆的真命题.20.如图,已知在△ABC中,∠A∶∠B∶∠ACB=2∶3∶4,CD是∠ACB的平分线,求∠A和∠CDB的度数.(第20题)六、(本题满分12分)21.新春佳节来临,某公司组织10辆汽车装运苹果、芦柑、香梨三种水果共60 t去外地销售,要求10辆汽车全部装满,每辆汽车只能装运同一种水果,且装运每种水果的车辆都不少于2辆,根据下表提供的信息,解答以下问题:苹果芦柑香梨每辆汽车载货量/t76 5每辆汽车水果获利/元 2 500 3 000 2 000(1)设装运苹果的车辆为x辆,装运芦柑的车辆为y辆,求y与x之间的函数关系式,并直接写出x的取值范围.(2)设销售获得的利润为w元,那么怎样安排车辆能使此次销售获利最大?并求出w的最大值.七、(本题满分12分)22.如图,已知直线AB:y=kx+b经过点B(1,4),且与直线y=-x-11平行,与直线y=2x-4交于点C.(1)求直线AB的表达式并求出点C的坐标;(2)直接写出关于x的不等式0<2x-4<kx+b的解集;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x-4于点Q,若点C到线段PQ的距离为1,求点P的坐标并直接写出线段PQ的长.(第22题)八、(本题满分14分)23.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x 之间的函数关系.根据图象解决以下问题:(1)求慢车和快车的速度;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500 km.(第23题)答案一、1.A 2.C 3.B 4.C 5.B 6.D7.C8.B9.B10.B二、11.x≥-2且x≠112.6013.y=-3x+214.(1)(0,3)(2)二点拨:(1)利用y轴上点的坐标特征得到3m-6=0,然后解方程求出m即可得到点P的坐标;(2)利用点P的横坐标比纵坐标小5,得到3m-6+5=m+1,然后解方程求出m即可得到点P的坐标,从而可判断点P所在的象限.三、15.解:(1)建立的平面直角坐标系如图所示.(第15题)(2)点A的位置如图所示.16.解:(1)根据题意,得2x+y=20,所以y=20-2x.由x+x>20-2x,得x>5,由20-2x>0,得x<10,故自变量x的取值范围为5<x<10.(2)如图.(第16题)四、17.解:(1)因为一次函数y=(m+3)x+m-4的图象经过原点,所以m-4=0,m+3≠0,解得m=4.(2)一次函数y=(m+3)x+m-4的图象向下平移3个单位后得到的图象对应的函数表达式为y=(m+3)x+m-7,因为该图象经过点(2,5),所以5=2(m+3)+m-7,解得m=2,所以平移后的图象对应的函数表达式为y=5x-5.18.解:(1)4.2;5.9;7.6(2)y=2.5x-0.8(x-1)=1.7x+0.8.(3)因为小黄车上的链条为环形,在展直的基础上还要缩短0.8cm,故链条的总长度为1.7×80=136(cm).五、19.解:(1)ABC;BCD;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行(2)两个互逆的真命题为两直线平行,内错角相等和内错角相等,两直线平行.20.解:∵在△ABC中,∠A∶∠B∶∠ACB=2∶3∶4,∠A+∠ACB+∠B=180°,∴∠A=29×180°=40°,∠ACB=49×180°=80°.∵CD是∠ACB的平分线,∴∠ACD=12∠ACB=40°,∴∠CDB=∠A+∠ACD=40°+40°=80°.六、21.解:(1)由题意得7x+6y+5(10-x-y)=60,所以y=-2x+10(2≤x≤4,且x为正整数).(2)w=2500x+3000(-2x+10)+2000[10-x-(-2x+10)],即w=-1500x+30000,当x=2时,w有最大值27000,此时-2×2+10=6(辆),10-2-6=2(辆).所以安排装运苹果的车辆为2辆,装运芦柑的车辆为6辆,装运香梨的车辆为2辆时,能使此次销售获利最大,w的最大值为27000.七、22.解:(1)∵直线AB:y=kx+b与直线y=-x-11平行,∴k=-1.∵直线AB经过点B(1,4),∴-1+b=4,解得b=5,∴直线AB的表达式为y=-x+5.由直线AB与直线y=2x-4交于点C,=-x+5,=2x-4,=3,=2,∴点C的坐标为(3,2).(2)解集是2<x<3.(3)∵点C(3,2)到线段PQ的距离为1,PQ∥y轴,∴点P的横坐标为2或4.∵点P在直线AB上,∴x=2时,y=-2+5=3;x=4时,y=-4+5=1,∴点P的坐标为(2,3)或(4,1).线段PQ的长为3.八、23.解:(1)设慢车的速度为a km/h,快车的速度为b km/h,(a+b)=720,9-3.6)a=3.6b,=80,=120,即慢车的速度为80km/h,快车的速度为120km/h.(2)点C的实际意义是快车到达乙地.因为快车走完全程所需时间为720÷120=6(h),所以点C的横坐标为6,纵坐标为(80+120)×(6-3.6)=480,即点C的坐标为(6,480).(3)由题意可知两车行驶的过程中有两次两车之间的距离为500km.相遇前:(80+120)x=720-500,解得x=1.1.相遇后:因为点C(6,480),所以慢车再行驶20km后两车之间的距离为500km.因为慢车行驶20km需要的时间是2080=0.25(h),所以x=6+0.25=6.25.故当x=1.1或x=6.25时,两车之间的距离为500km.11。
2024-2025学年沪科版数学八年级上册 期中综合测试卷(二)
2024-2025学年沪科版数学八年级上册期中综合测试卷(二)1.在平面直角坐标系中,若点A(2,a)在第四象限内,则点B(a,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.给出下列命题:①三角形的三条高相交于一点;②如果不等式的解集为,那么;③如果三角形的一个外角等于与它相邻的一个内角,则这个三角形是直角三角形,其中正确的命题有()A.1个B.2个C.3个D.0个3.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.4.已知n正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个5.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.6.如图,的坐标为,若将线段平移至,则的值为()A.2B.3C.4D.57.如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A.2B.4C.6D.88.如图,直线和与x轴分别交于点,点,则解集为()A.B.C.或D.9.一次函数的图象如图所示,将直线向下平移若干个单位后得直线,的函数表达式为.下列说法中错误的是()A.B.C.D.当时,10.在△ABC中,∠B,∠C的平分线交于点O,D是外角与内角平分线交点,E是外角平分线交点,若∠BOC=120°,则∠D=()A .15°B .20°C .25°D .30°11.若点P 在第三象限,且点P 到x ,y 轴的距离分别为3,2,则点P 的坐标为_____.12.新定义:[a ,b]为一次函数(a≠0,,a 、b 为实数)的“关联数”.若“关联数”为[3,m-2]的一次函数是正比例函数,则点(1-m ,1+m)在第_____象限.13.如图,点D 、E 、F 为△ABC 三边上的点,则∠1+∠2+∠3+∠4+∠5+∠6=______.14.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为________米.15.如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)把向左平移个单位,向下平移个单位得到,画出;(2)点为内一点,则平移后点的对应点的坐标为;(3)求的面积.16.如图,在中,,,,求的度数.17.如图,一次函数与正比例函数的图象交于点M.(1)求正比例函数和一次函数的表达式.(2)根据图象,写出关于x的不等式的解集.(3)求的面积.18.已知a,b,c分别为的三边,且满足,.(1)求c的取值范围;(2)若的周长为12,求c的值.19.对x,y定义一种新运算T,规定:T[x,y]=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T[0,1]==b.(1)若T[1,﹣1]=﹣2,T[4,2]=1.求a,b的值;(2)平面直角坐标系中,已如点P横坐标的值为T[2,0],且点P到y轴距离为3,求a.20.在抗击新冠状病毒战斗中,有152箱公共卫生防护用品要运到、两城镇,若用大小货车共15辆,则恰好能一次性运完这批防护用品,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其中用大货车运往、两城镇的运费分别为每辆800元和900元,用小货车运往、两城镇的运费分别为每辆400元和600元.(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往城镇,其余货车前往城镇,设前往城镇的大货车为辆,前往、两城镇总费用为元,试求出与的函数解析式.若运往城镇的防护用品不能少于100箱,请你写出符合要求的最少费用.21..一副三角板如图所示摆放,OA边和OC边与直线EF重合,∠AOB=45°,∠COD=60°.(1)求图1中∠BOD的度数是多少;(2)如图2,三角板COD固定不动,若将三角板AOB绕着点O顺时针旋转一个角度,在转动过程中当OB分别平分∠EOD、∠DOC时,求此时的值.22.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数和的图象如图所示.x…﹣3﹣2﹣10123…y…﹣6﹣4﹣20﹣2﹣4﹣6…(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数的对称轴.(2)探索思考:平移函数的图象可以得到函数和的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数的图象.若点和在该函数图象上,且,比较,的大小.23.如图,△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图①,求证:∠AIB=∠ADI;(2)如图②,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.。
沪科版八年级上册数学期中考试试卷含答案
沪科版八年级上册数学期中考试试题一、单选题1.在平面直角坐标系中,点()2021,2022P -在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.若三角形三边长分别为2,x ,4,且x 为正整数,则这样的三角形个数为( ) A .2 B .3 C .4 D .53.正比例函数(0)y kx k =≠的函数值y 随着x 的增大而增大,则一次函数1y kx k =-++的图象一定经过( )A .一二三象限B .一二四象限C .二三四象限D .一三四象限 4.点(,)P x y 在第一象限,且10x y +=,点A 的坐标为(8,0),若OPA 的面积为16,则点P 的坐标为( )A .(5,5)B .(4,6)C .(6,4)D .(12,2)- 5.用反证法证明“在ABC 中,若A B ∠>∠,则a b >”时,应假设( )A .a b <B .a b ≤C .a b =D .a b ≥6.如图,直线l 1:y =3x +1与直线l 2:y =mx +n 相交于点P (1,b ),则关于x ,y 的方程组31y x y mx n =+⎧⎨=+⎩的解为( )A .41x y =⎧⎨=⎩ B .41x y =-⎧⎨=⎩ C .14x y =⎧⎨=⎩ D .12x y =⎧⎨=⎩ 7.如图,将三角形纸片ABC 折叠,DE 为折痕,点C 落ABC 外的点F 处,65A ∠=︒,75B ∠=︒,35AEF ∠=︒,则BDF ∠=( )A .95°B .105°C .115°D .125°8.函数 y =ax ﹣a 的大致图象是( )A .B .C .D . 9.如图,在△ABC 中,EF //AC ,BD△AC ,BD 交EF 于G ,则下面说法中错误的是()A .BD 是△BDC 的高B .CD 是△BCD 的高C .BG 是△BEF 的高D .BE 是△BEF 的高 10.一辆旅游大巴以40km/h 的速度从零陵区某地出发,当大巴车到达途中桐子坳时(大巴车停靠前后速度不变),一私家车从同一地点出发前往阳明山.如图是两车离出发地的距离s (km )与大巴车出发的时间t (h )的函数图象.小明同学根据图象得出以下几个结论:△私家车的速度为60km/h ;△大巴车在桐子坳停留了36分钟;△私家车比大巴车早到12分钟;△私家车与大巴车相遇时离景区还有30km ;△当两车相距6km 时,t =2.1或2.7h .其中正确结论的个数是( )A .2B .3C .4D .5二、填空题 11.如图,点()2,2A -是棋盘上象的第一跳后的位置,象走的规则是沿“田”形对角线走. 请指出:(1)象是从点________跳到A 点;(2)象下一跳的可能位置是__________.12.如图,共有_________个三角形.13.从亳州到合肥大约280km ,一辆客车以70km/h 的速度从亳州出发至合肥,则客车离合肥的距离y 表示为行驶时间t 的函数关系式应为:___________.14.已知关于x 、y 的二元一次方程组y ax b y kx =+⎧⎨=⎩的解是42x y =-⎧⎨=⎩,则一次函数y ax b =+和y kx =的图像交点坐标为______.15.已知当23x -≤≤时,函数|2|y x m =-(其中m 为常量)的最小值为254m -,则m =________.三、解答题16.把下列命题改写成“如果…,那么…”(1)同旁内角互补,两直线平行;(2)a+b =0,则a 与b 互为相反数;(3)平行于同一条直线的两条直线平行.17.如图,将平行四边形ABCD 向左平移2个单位长度,然后再向上平移3个单位长度,可以得到平行四边形A B C D '''',画出平移后的图形,并指出其各个顶点的坐标.18.图1是一张三角形纸片ABC.将BC对折使得点C与点B重合,如图2,折痕与BC的交点记为D.(1)请在图2中画出ΔABC的BC边上的中线.(2)若AB=11cm、AC=16cm,求ΔACD与ΔABD的周长差.19.在同一直角坐标系中画出下列函数的图象,并指出每小题中三个函数的图象有什么关系.(1)y=x-1、y=x、y=x+1;(2)y=-x-2、y=-x、y=-x+2.20.(1)当b>0时,函数y=x+b的图象经过哪几个象限?(2)当b<0时,函数y=-x+b的图象经过哪几个象限?(3)当k>0时,函数y=kx+1的图象经过哪几个象限?(4)当k<0时,函数y=kx+1的图象经过哪几个象限?沿y轴向上平移2个单位后得到直线l,已知l 21.在平面直角坐标系xOy中,将直线y kx经过点A(-4,0).(1)求直线l的解析式;(2)设直线l与y轴交于点B,点P在坐标轴上,△ABP与△ABO的面积之间满足12ABPABO S S ∆∆= , 求P 的坐标. 22.下表是佳佳往朋友家打长途电话的几次收费记载:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)你能帮佳佳预测一下,如果她打电话用时间是10分钟,则需付多少电话费?23.在世界经济的影响下,国家采取扩大内需的政策,基建投资成为拉动内需最强有力的引擎,金强公司中标一项工程,在甲、乙两地施工,其中甲地需推土机30台,乙地需推土机26台,公司在A 、B 两地分别库存推土机32台和24台,现从A 地运一台到甲、乙两地的费用分别是400元和300元.从B 地运一台到甲、乙两地的费用分别为200元和500元,设从A 地运往甲地x 台推土机,运这批推土机的总费用为y 元.(1)求y 与x 的函数关系式;(2)公司应设计怎样的方案,能使运送这批推土机的总费用最少?24.如图,直线1:24l y x =+与直线23:2l y ax =+相交于点(1,)A b -.(1)=a ________;b =________.(2)经过点(,0)m 且垂直于x 轴的直线与直线1l ,2l 分别交于点M ,N ,若线段MN 长为5,求m 的值.参考答案1.B【解析】【分析】根据横坐标为负,纵坐标为正即可判断.【详解】解:由题意可知,P 点的横坐标为负,纵坐标为正,△P 点位于第二象限,故选:B .【点睛】本题考查了平面直角坐标系中点的坐标特点,属于基础题.2.B【解析】【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边,据此解答即可.【详解】解:由题意可得,4-2<x <4+2,解得2<x <6,△x 为整数,△x 为3、4、5,△这样的三角形个数为3.故选:B .【点睛】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;运用三角形的三边关系定理是解答的关键.3.B【解析】【分析】根据正比例函数的增减性,可得0k > ,从而得到0k -< ,10k +> ,即可求解.【详解】解:△正比例函数(0)y kx k =≠的函数值y 随着x 的增大而增大,△0k > ,△0k -< ,10k +> ,△一次函数1y kx k =-++的图象一定经过一二四象限.故选:B .【点睛】本题主要考查了正比例函数和一次函数的图象和性质,熟练掌握正比例函数和一次函数的图象和性质是解题的关键.4.C【解析】【分析】根据题意画出图形,根据三角形的面积公式即可得出S 关于x 的函数关系式,把16S =代入函数关系即可得出x 的值,进而得出y 的值.【详解】解:已知(8,0)A 和(,)P x y ,118422OPA S OA y y y ∴=⋅=⨯⨯=△. 10x y +=,10y x ∴=-,4(10)404OPA S x x ∴=-=-△,当16OPA S =△时,40416x -=,解得6x =.10x y +=,1064y ∴=-=,即(6,4)P ;故选:C .【点睛】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.5.B【解析】【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立,据此进行判断即可.【详解】解:用反证法证明,“在△ABC中,△A、△B对边是a、b,若△A>△B,则a>b”,第一步应假设a≤b,故选:B.【点睛】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.6.C【解析】【分析】首先把P(1,b)代入直线l1:y=3x+1即可求出b的值,从而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:△直线y=3x+1经过点P(1,b),△b=3+1,解得b=4,△P(1,4),△关于x ,y 的方程组31y x y mx n =+⎧⎨=+⎩的解为14x y =⎧⎨=⎩, 故选:C .【点睛】此题主要考查了二元一次方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次方程组的解.7.C【解析】【分析】先根据三角形的内角和定理可出△C=180°-△A -△B=180°-65°-75°=40°;再根据折叠的性质得到△F=△C=40°,再利用三角形的内角和定理以及外角性质得△3+△2+△5+△F=180°,△5=△4+△C=△4+40°,即可得到△3+△4=65°,然后利用平角的定义即可求出△1,即BDF ∠.【详解】解:如图,△△A=65°,△B=75°,△△C=180°-△A -△B=180°-65°-75°=40°;又△将三角形纸片的一角折叠,使点C 落在△ABC 外,△△F=△C=40°,而△3+△2+△5+△F=180°,△5=△4+△C=△4+40°,△35AEF ∠=︒,即△2=35°,△△3+35°+△4+40°+40°=180°,△△3+△4=65°,△△1=180°-65°=115°.即115BDF ∠=︒故选:C .【点睛】本题考查了折叠问题中的角度计算问题,注意折叠前后,对应角相等,熟练掌握三角形的内角和定理以及外角性质是解题的关键.8.C【解析】【分析】将y=ax -a 化为y= a(x -1),可知图像过点(1,0),进行判断可得答案.【详解】解:一次函数y=ax -a=a(x -1)过定点(1,0),而选项A 、B 、 D 中的图象都不过点(1,0), 所以C 项图象正确.故本题正确答案为C.【点睛】本题主要考查一次函数的图象和一次函数的性质.9.D【解析】【分析】根据高线的定义:三角形的顶点到对边所在直线的垂线段,即可解答.【详解】解:A 、BD△AC ,则BD 是△ABC 的高,故命题正确;B 、CD△BD ,则CD 是△BCD 的高,故命题正确;C 、△EF //AC ,BD△AC△EG△BG ,则EG 是△BEG 的高,故命题正确;D 、BE 不是△BEF 的高,故错误;故选:D .【点睛】本题考查了高线的定义,理解定义是关键.10.B【解析】【分析】由图象得:大巴车出发48÷40=1.2(h )停留,则停留了1.8-1.2=0.6(h ),继续行驶(96-48)÷40=1.2(h )到达阳明山.则大巴车共用时1.8+1.2=3(h ),可得私家车的速度为96÷(2.8-1.2)=60(km/h ),求出大巴车在桐子坳停留后继续行驶和私家车的解析式,可得两车相遇的时间和当两车相距6km 时的时间.【详解】解:由图象得:大巴车出发48÷40=1.2(h )停留,则停留了1.8-1.2=0.6(h )=36分钟,△正确;私家车的速度为96÷(2.8-1.2)=60(km/h ),△正确;大巴车继续行驶(96-48)÷40=1.2(h )到达阳明山.则大巴车共用时1.8+1.2=3(h ),3-2.8=0.2(h )=12分钟,△正确;设大巴车在桐子坳停留后继续行驶时离出发地的距离s (km )与大巴车出发的时间t (h )的函数的解析式为s=kt+b ,1.848396k b k b +=⎧⎨+=⎩,解得:4024k b =⎧⎨=-⎩, △s=40t -24,设离出发地的距离s (km )与大巴车出发的时间t (h )的函数的解析式为s=k′t+b′,1.202.896k b k b +=⎧⎨+=''''⎩,解得:6072k b =⎧⎨=-''⎩, △s=60t -72,60t -72=40t -24,解得:t=2.4,△家车与大巴车相遇时离景区还有(2.8-2.4)×60=24(km ),△错误;当两车相距6km 时:有一下几种情况a :40t=6,解得:t=0.15,b :60t -72-(40t -24)=6,解得:t=2.7,c :40t -24-(60t -72)=6,解得:t=2.1,△当两车相距6km 时,t=0.15或2.1或2.7h .△错误.其中正确的结论有△△△,故选:B .【点睛】本题主要考查利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.11. ()0,0或()4,0 ()0,0,()4,0,()0,4-,()4,4-【解析】【分析】根据象走的规则是沿“田”形对角线走,也就是按2×2格点的对角线走,可得答案.【详解】△点A(2,−2)是棋盘上象的第一跳后的位置,象走的规则是沿“田”形对角线走, △象是从点O(0,0)或点B(4,0) 跳到A 点的,△象下一跳的可能位置是点O(0,0)或点B(4,0)或点C (0,−4)或点D(4,−4).故答案为:△(0,0) 或(4,0),△(0,0),B(4,0), (0,−4),(4,−4).【点睛】本题考查了象棋中象的走法,沿“田”形对角线走,也就是按2×2格点的对角线走,正确找出点的位置,用坐标表示即可.12.6【解析】【分析】根据三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形数出三角形的个数.【详解】解:图中有:△ABD ,△ADE ,△AEC ,△ABE ,△ADC ,△ABC ,共6个.故答案为:6.此题主要考查了三角形,关键是掌握三角形的定义,数三角形时,要不重不漏. 13.y=280-70x##y=-70x+280【解析】【分析】根据题意即可列出一次函数.【详解】△亳州到合肥大约280km ,一辆客车以70km/h 的速度从亳州出发至合肥,△客车离合肥的距离y 表示为行驶时间t 的函数关系式应为:y=280-70x故答案为:y=280-70x .【点睛】此题主要考查依题意列函数解析式,解题的关键是熟知路程与速度的关系.14.()4,2-【解析】【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两一次函数的交点坐标是两函数解析式所组成的方程组的解可直接得到答案.【详解】解:△已知关于x 、y 的二元一次方程组y ax b y kx =+⎧⎨=⎩的解是42x y =-⎧⎨=⎩, △一次函数y ax b =+和y kx =的图像交点坐标为()4,2-.故答案为()4,2-.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.15.48【解析】【分析】根据绝对值的性质分情况去除绝对值,再结合23x -≤≤求出每种情况下y 的最小值,再求【详解】 解:22222m x m x y x m m x m x ⎧⎛⎫-+≤ ⎪⎪⎪⎝⎭=-=⎨⎛⎫⎪-> ⎪⎪⎝⎭⎩; 当232m -≤<时,即当46m -≤<时,min 20254m y y m ==≠-,不符合题意; 当22m <-时,即当4m <-时, △23x -≤≤,△min 22(2)254x y y m m =-==⨯--=-, 解得503m =,不符合4m <-. 当32m ≥时,即当6m ≥时, △23x -≤≤,△min 3(2)3254x y y m m ===-⨯+=-,解得48m =,符合6m ≥﹔综合可得48m =故填:48.【点睛】本题主要考查一次函数、一元一次不等式、绝对值,进行分类讨论是关键.16.(1)如果同旁内角互补,那么两直线平行;(2)如果0a b +=,那么a 与b 互为相反数;(3)如果两条直线平行于同一条直线,那么这两条直线平行.【解析】【分析】(1)根据如果是条件,那么是结论的方法改写即可;(2)根据如果是条件,那么是结论的方法改写即可;(3)根据如果是条件,那么是结论的方法改写即可.【详解】(1)如果同旁内角互补,那么两直线平行;(2)如果0a b +=,那么a 与b 互为相反数;(3)如果两条直线平行于同一条直线,那么这两条直线平行.本题考查了命题,掌握命题的改写方法是解题关键.17.图见解析,(3,1)A '-,(1,1)B ',(2,4)C ',(2,4)'-D【解析】【分析】首先将各点按照题意平移,然后顺次连接各点,并写出坐标即可.【详解】解:作图如图所示:平行四边形A B C D ''''四个顶点的坐标分别是(3,1)A '-,(1,1)B ',(2,4)C ',(2,4)'-D .【点睛】本题考查平面直角坐标系中图形的平移,理解并掌握平移的法则是解题关键.18.(1)见解析;(2)5厘米【解析】【分析】(1)由翻折的性质可知BD=DC ,然后连接AD 即可;(2)由BD=DC 可知△ABD 与△ACD 的周长差等于AB 与AC 的差.【详解】解:(1)连接AD ,△由翻折的性质可知:BD=DC ,△AD 是△ABC 的中线.如图所示:(2)△BD=DC,△△ADC的周长-△ADB的周长=AC+DC+AD-(AD+AB+DC)=AC-AB=16-11=5cm.【点睛】本题主要考查的是翻折的性质,由翻折的性质得到BD=DC是解题的关键.19.(1)图见解析,三条直线互相平行;(2)图见解析,三条直线互相平行【解析】【分析】利用“两点确定一条直线”画出图象,根据图象找到它们之间的关系;【详解】(1)如图所示(2)如图所示:根据图像这三条直线互相平行;根据图像这三条直线互相平行;【点睛】本题考查了一次函数的图象,使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横纵坐标尽量取整数,以便于描点准确.20.(1)第一、二、三象限;(2)第二、三、四象限;(3)第一、二、三象限;(4)第一、二、四象限【解析】【分析】根据k、b的符号和一次函数的性质确定其经过的象限即可.【详解】解:(1)△k>0,b>0,△函数y=x+b的图象经过一、二、三象限;(2)△k<0,b<0,△函数y=-x+b的图象经过二、三、四象限;(3)△k>0,b>0,△函数y=x+b的图象经过一、二、三象限;(4)△k<0,b>0,△函数y=x+b的图象经过一、二、四象限.【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.记住k>0,b>0△y=kx+b的图象在一、二、三象限;k>0,b<0△y=kx+b 的图象在一、三、四象限;k<0,b>0△y=kx+b的图象在一、二、四象限;k<0,b<0△y=kx+b 的图象在二、三、四象限.21.(1)122y x=+;(2)(2,0)-,(6,0)-,(0,3)或(0,1)【解析】【分析】(1)由平移和待定系数法求出直线l的解析式;(2)先求出三角形AOB的面积,进而得出三角形ABP的面积,三角形ABP的面积用三角形PAF和BAF的面积之和建立方程求出m的值.【详解】解:(1)△将直线y=kx(k≠0)沿y轴向上平移2个单位得到直线l,△设直线l解析式为y=kx+2,△直线l经过点A(﹣4,0)△﹣4k+2=0,△k =12, △直线l 的解析式为y =12x+2, (2)当x=0时,y=2,△()()4,0,0,2A B -4,2OA OB ∴==142ABO S OA OB ∴=⋅⋅= 1 2.2ABP ABO S S ∴==当点P 在x 轴上时,122ABP S AP OB =⋅⋅=2AP ∴=()2,0P ∴-或()6,0-;当点P 在y 轴上时,122ABP S BP OA =⋅⋅= 1BP ∴=()0,3P ∴或()0,1;综上所述,点P 的坐标为(2,0)-,(6,0)-,(0,3)或(0,1).【点睛】此题是一次函数综合题,主要考查了待定系数法,函数图象的平移,三角形的面积,解本题的关键是分类讨论,求出BP AP 、的长.22.(1)通话时间与电话费;通话时间是自变量,电话费是因变量;(2)6元.【分析】(1)根据函数的定义可知,通话时间是自变量,电话费是因变量;(2)观察图表中的数据,1分钟0.6,两分钟1.2,三分钟1.8,每多一分钟,多0.6,据此求解即可.【详解】解:(1)依题意的:上表反映了通话时间与电话费之间的关系;其中通话时间是自变量,电话费是因变量;(2)设时间为x ,电话费为y ,则依题意得:0.6y x =,∴当10x =时,6y =元.【点睛】本题主要考查一次函数的定义及其性质,熟悉相关性质是解题的关键.23.(1)y =400x+12600(2) 从B 地运往甲地30-6=24(台),运往乙地26-(32-6)=0(台) 答:略…【解析】【详解】试题分析:(1) 根据题意进行分析,可将库存地和施工地之间推土机的运输数量列表如下:根据上表中的各地之间的运输数量以及题目中所给的运输单价,可以利用“运输总价=运输单价×运输数量”列出各项费用,相加之后整理即得总费用的表达式.(2) 分析第(1)问中得到的总费用表达式可知,总费用y 是随着x(从A 地运往甲地的推土机的数量)的增加而增加的. 因此,只要得到x 的最小值就可以获得总费用的最小值. 分析(1)中的运输数量关系表可以看出,x 的取值必须保证各地之间的运输数量均为非负数. 据此可得到一个关于x 的不等式组,解之即可获得x 的取值范围,进而得到总费用的最小值.(1) 由题意得,若从A 地运往甲地的推土机的数量为x 台,则从A 地运往乙地的推土机的数量应为(32-x)台,从B 地运往甲地的推土机的数量应为(30-x)台,从B 地运往乙地的推土机的数量应为[26-(32-x)]台. 因此,从A 地往甲地运推土机的费用为:400x ,从A 地往乙地运推土机的费用为:300(32-x),从B 地往甲地运推土机的费用为:200(30-x),从B 地往乙地运推土机的费用为:500[26-(32-x)].故运甲、乙两地所需的这批推土机的总费用y 可以表示为:y=400x+300(32-x)+200(30-x)+500[26-(32-x)]=400x+12600,即y=400x+12600.(2) 由于各地之间的运输数量均与x 的取值有关. 从实际情况来看,x 的取值必须保证各地之间的运输数量均为非负数. 因此,x 的取值必须满足:()032030026320x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪--≥⎩, 解此不等式组,得6≤x≤30.由运送这批推土机的总费用y 和从A 地运往甲地的推土机的数量x 的关系y=400x+12600可知,y 与x 满足一次函数关系,且y 随x 的增大而增大. 故要使总费用y 最小,则x 应取最小值.又因为x 的取值范围为:6≤x≤30,所以当x=6时,总费用最小.总费用最少的运输方案为:从A 地运往甲地的推土机的数量为:6台,从A 地运往乙地的推土机的数量为:26台,从B 地运往甲地的推土机的数量为:24台,从B 地运往乙地的推土机的数量为:0台.答:(1) y 与x 的函数关系式为:y=400x+12600.(2) 总费用最少的运输方案为:从A 地往甲地运6台推土机;从A 地往乙地运26台推土机;从B 地往甲地运24台推土机;不从B 地往乙地运推土机.21 点睛:本题的一个难点在于分析各地之间推土机的运输数量,根据题目条件边分析边列表是一个理清各种数量关系的重要方法. 另外,对于x 取值范围的确定则是本题的第二个难点,分析时要注意各个数量的实际意义.24.(1)12-,2;(2)1m =或3m =-. 【解析】【分析】(1)先根据直线1l 的表达式和点A 的坐标解得b 的值,再把点A 的坐标代入直线2l 的表达式中解得a 的值;(2)根据题意判断出点M ,N 的横坐标即为m ,代入1l 和2l 的表达式中得出M y ,N y 关于m 的表达式,再根据MN 长为5求解即可.【详解】解:(1)把(1,)A b -代入24y x =+得:2(1)4b =⨯-+解得:2b =△点A 的坐标为(1,2)-再把A (1,2)-代入3y ax 2=+中得:322a =-+ 解得:12a =- △213:22l y x =-+ 故填:1,22; (2)当x m =时,24M y m =+,1322N y m =-+, △5MN =,△1324522m m ⎛⎫+--+= ⎪⎝⎭或1324522m m ⎛⎫+--+=- ⎪⎝⎭, 解得:1m =或3m =-.【点睛】本题主要考查一次函数的表达式及直线的位置关键,理解点M ,N 的横坐标即为m 是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版八年级上册数学期中考试试题温馨提示:本试卷共8大题,计23小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题4分,满分40分)1.某中学2017届新生入学军训时,小华、小军、小刚的位置如图所示,如果小军的位置用(0,0) 表示,小刚的位置用(2,2)表示,那么小华的位置可表示为 ( ) A.(-2,-1) B.(-1,-2) C.(2,1) D.(1,2)第1题图 第5题图2.若一个三角形的两边长分别为3和7,且第三边长为整数,则这样的三角形共有( ) A.2个 B.3个 C.4个 D.5个3.放学后,小明倒了一杯开水,下列能近视刻画这杯水的水温y(℃)与时间t(h)的函数关系的 图象是 ( )A B C D4.一个直角三角形的3个内角之比可以是 ( ) A.2:3:4 B.3:4:5 C.4:5:6 D.3:3:65.如图所示,在△ABC 中,AD ⊥BC ,AE ⊥AB,分别交BC 的延长线于点D ,E ,则BC 边上的高 是 ( ) A.线段CD B.线段AE C.线段DE D.线段AD6.下列命题中,假命题是 ( ) A.三角形的一个外角大于任何一个不相邻的内角B.三角形按边可分为不等边三角形、等腰三角形、等边三角形、C.三角形中最少有2个锐角D.三角形的三条中线交于一点,这个交点就是三角形的重心7.等腰三角形的周长为11cm ,一边长为3cm ,则另两边长为 ( ) A.3cm,5cm B.4cm,4cm C.3cm,5cm 或4cm,4cm D.以上都不对8.关于直线l:y=kx+k(k ≠0),下列说法不一定正确的是 ( ) A.点(0,k)在l 上 B.l 经过定点(-10) C.当k>0时,y 随x 的增大而增大 D.l 经过第一、二、三象限9.已知函数y=kx+b 的图像如图所示,则y=2kx+b 的图像可能是 ( )A B C D 第9题图10.某商场有成本为8元的钢笔若干支,据统计钢笔的销售金额y (元)与销售量x (支)的函 数关系图象如图所示,则降价..后每支钢笔的利润率为 ( ) A.25% B.33.3% C.37.5%D.50%第10题图二、填空题(本大题共4小题,每小题5分,满分20分)11.函数y=x31中自变量x 的取值范围是 . 12.“等腰三角形的两条边相等”的逆命题是 .13.如图所示,△ABC 的两条中线AD ,BE 交于点F ,连接CF ,若△ABF 的面积为8,则△ABC 的面积为 .得分 评卷人第13题图 第14题图14.一辆慢车从甲地匀速行使至乙地,一辆快车同时从乙地匀速行驶至甲地,两车之间的距离y (千米)与行驶时间x (h )的对应关系如图所示,当两车相距300km 时,x 为 h.三、(本大题共2小题,每小题8分,满分16分)15.已知直角l 与直线y=-2x 平行,且经过点(-1,-2)求直线l 与坐标轴围成的三角形的面积.16.如图所示,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC=60°,∠BCE=45°,求∠ADB 的大小.第16题图四、(本大题共2小题,每小题8分,满分16分)17.一次函数y=kx+b(k,b 实常数,且k ≠0)的图像如图所示, (1)求k,b 的值;(2)当-1<x<1时,求y 的取值范围.第17题图18.证明:两条平行直线被第三条直线所截,一对同旁内角的平分线互相垂直.已知:.求证: .证明:第18题图五、(本大题共2小题,每小题10分,满分20分)19.如图所示,在8×8的网络中,△ABC是格点三角形(顶点是网格线的交点),若点A坐标为(-1,3),按要求回答下列问题:(1)建立符合条件的平面直角坐标系,并写出点B和点C的坐标;(2)将△ABC先向下平移2个单位长度,在向右平移3个单位长度,得到△DEF,请在图中画出△DEF,并求出线段AC在平移过程中扫过的面积.第19题图20.如图所示,直线l1:y=2x+b与直线l2:y=mx+4相交于点P(1,3),利用图像:(1)解关于x,y的二元一次方程组:⎩⎨⎧=+-=+-;04,02ymxbyx(2)解关于x的一元一次不等式:2x+b>mx+4.第20题图得分评卷人六、(本题满分12分)21.已知等腰△ABC 的周长为8,腰长为x ,底边长为y.(1)写出y 关于x 的函数关系式,并求自变量x 的取值范围; (2)在平面直角坐标系中,画出y 与x 之间的函数图像; (3)若△ABC 的三边长均为整数,求三边的长.第21题图七、(本题满分12分)22.图1是中华人民共和国国旗上的五角星.(1)下面是探究五角星5个内角和过程,请完成填空.解:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.( ) ∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.∵∠A+∠AFG+∠AGF= °,( ) ∴∠A+∠B+∠C+∠D+∠E=180°.( )(2)如图2 所示,若改变五角星的5个内角的度数,使它们均不相等,猜想这5个个内角 的度数和,并证明.第22题图1 第22题图2八、(本试题满分14分)23.某校为宣传“义务教育均衡发展”相关政策,需要制作宣传单,现有甲、乙两家文化公司可供选择,制作该宣传单的收费标准如下:甲文化公司:收费y (元)与印制数x (张)的函数关系如下表:乙文化公司:500张以内(含500张),按每张0.20元收费;超过500张的部分,按照每张0.10元收费.(1)根据表格中的数据,求甲文化公司收费y (元)与印制数x (张)之间的函数表达式. (2)若该校准备在甲、乙两家公司共印刷400张宣传单,费用不超过65元,则在甲文化公司最少要印制多少张?(3)宣传单发放后,深受家长们的喜爱,学校决定再加印b 张,若在甲、乙文化公司中任选一家,应如何选择,费用较少?参考答案及评分标准一、选择题(本大题共10小题,每小题4分,满分40分)二、填空题(本大题共4小题,每小题5分,满分20分)11. x<312. 两条边相等的三角形是等腰三角形. 13. 24 14. 2或6三、(本大题共2小题,每小题8分,满分16分) 15.解:设一次函数关系式为y=-2x+b ,将(-1,-2)代入上式得-2×(-1)+b=-2,解得b=-4,即y=-2x-4,…………………………………………………………………………4分当x=0时,y=-4;当y=0时,x=-2,则该函数图像与坐标轴围成的三角形的面积为21×2×4=4.……………………8分 16.解:∵AD 是△ABC 的角平分线,∠BAC=60°,∴∠BAD=30°, ……………………………………………………………………3分 又∵CE 是△ABC 的高,∠BCE=45°, ∴∠BEC=90°∴∠B=45°…………………………………………………………………………6分∴∠ADB=180°-∠B-∠BAD=180°-45°-30°=105°.…………………………8分 四、(本大题共2小题,每小题8分,满分16分) 17.解:(1)∵函数图像过点(1,0),(0,2),∴⎩⎨⎧=+=,0,2b k b 解得⎩⎨⎧=-=,2,2b k ………………………………………………………4分(2)∵y=-2x+2,∴当x=-1时,y=4,当x=1时,y=0, ∵k=-2<0,∴函数值y 随x 的增大而减小,∴0≤y<4. …………………………………………………………………………8分 18.解:已知:直线AB ∥CD ,直接EF 分别交AB ,CD 于点E ,F ,∠BEF ,∠EFD 的平分线 交于G 点.求证:EG ⊥FG.………………………………………………………………………4分 证明:∵AB ∥CD , ∴∠BEF+∠EFD=180°, ∵EG 平分∠BEF,FG 平分∠EFD ,∴∠GEF=21∠BEF ,∠EFG=21∠EFD , ∴∠GEF+∠EFG=21∠BEF+21∠EFD=21×180°=90°,∴∠EGF=180°-(∠GEF+∠EFG)=90°,∴EG ⊥FG.…………………………………………………………………………8分 五、(本大题共2小题,每小题10分,满分20分)19.解:(1)如图所示,建立平面直角坐标系,点B 的坐标为(-4,-1),点C 的坐标为(0,1); ………………………………………………………………………………………4分 (2)平移后图形如图所示,………………………………………………………7分 线段AC 在平移过程中扫过的面积:S △ACD+S △CDF=21×2×2+21×2×2=4.…10分第19题图20.解:(1)记⎩⎨⎧=+-=+-②,04①,02y mx b y x ①式可变形为y=2x+b,②式可变形为y=mx+4,由图像知直线y=2x+b 和直线y=mx+4的交点坐标为(1,3),即关于x,y 的二元一次方程组的解为⎩⎨⎧==31y x …………………………………5分 (2)由图可知,当x>1时,直线y=2x+b 在直线y=mx+4的上方,即关于x 的一元一次不等式的解集为x>1.……………………………………10分 六、(本题满分12分)21.解:(1)y=-2x+8; ………………………………………………………………2分∵⎪⎩⎪⎨⎧>+--+>+->,0)82(,082,0x x x x x 解得2<x<4,…………………………………………6分(2)如图所示:第18题图 …………………………………………………………10分 (3)∵x 为正整数,2<x<4. ∴x=3,y=2,∴ △ABC 的三边长为3,3,2. …………………………………………………12分 七、(本题满分12分)22.解:(1)三角形的一个外角等于和它不相邻的两个内角和;180,三角形内角和定理;等量代换; …………………………………………4分 (2)猜想:∠A+∠B+∠C+∠D+∠E=180°, ……………………………………6分 证明:∵∠AFG=∠C+∠E,∠AGF =∠B+∠D, ∴∠AFG+∠AGF=∠C+∠E+∠B+∠D, ∵∠A+∠FG+∠AGF=180°,∴∠A+∠B+∠C+∠D+∠E=180°.………………………………………………12分 八、(本题满分14分)23.解:(1)设甲文化公司收费与(元)与印制数x (张)之间的函数表达式为y=kx+b, 将(50,7.5)(100,15)代入得: ⎩⎨⎧=+=+151005.750b k b k ,解得⎩⎨⎧==015.0b k ,∴y=0.15x,将x=150代入到y=0.15x 中,得y=0.15×150=22.5,即甲文化公司收费y (元)与印制数x (张)之间的函数表达式为y=0.15x,……4分 (2)设在甲文化公司印刷a 张,则在乙文化公司印刷(400-a)张,依题意得:0.15a+0.20(400-a )≤65,解得a ≥300,答:在甲文化公司最少要印制300份. …………………………………………8分 (3)若选甲公司,则y 甲=0.15b (b>0且为整数),若选乙公司,则y 乙=⎩⎨⎧>+=-+⨯≤<.500(501.0)500(10.05002.0.50002.0且为整数)且为整数)(b b b b b…………………………………………………………………………………11分 当0<b ≤500时,y 甲<y 乙,选甲公司; 当b>500时,0.10b+50=0.15b,解得b=1000. ①当500<b<1000时,y 甲<y 乙,选甲公司; ②当b=1000时,y 甲<y 乙,甲乙两家公司均可; ③当b=1000时,y 甲<y 乙,选乙公司.答:0<b<1000且为整数时,选甲公司;当b=1000时,可任选甲、乙一家公司;当b>1000 且为整数时,选乙公司. …………………………………………………………14分。