八年级数学(沪科版)(上)期末测试卷及答案
沪科版八年级数学上册试题 期末综合测试卷(含解析)
期末综合测试卷一.选择题(共10小题,满分30分,每小题3分)1.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0)B.(1,4)C.(5,4)D.(5,0)2.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是图中的( )A.B.C.D.3.如图,在△ABC中,已知点D,E,F分别为BC,AD,EC的中点,且S=12cm2,则阴影ΔABC部分面积S=( )cm2.A.1B.2C.3D.44.如图,顺次连接同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC=120°,若∠ABC的平分线BE经过点D,则∠ABE的度数为()A.25°B.30°C.35°D.40°5.如图,点P是∠AOB内部一点,点P′,P″分别是点P关于OA,OB的对称点,且P′P″=8cm,则△PMN的周长为()A.5cm B.6cm C.7cm D.8cm6.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若AB=8,则DE 的长度是()A.6B.2C.3D.47.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t 之间的函数关系如图所示.下列说法中正确的有( )①A、B两地相距120千米;②出发1小时,货车与小汽车相遇③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A .1个B .2个C .3个D .4个8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n ,则△O A 3A 2022的面积是( )A .504m 2B .10092m 2C .505m 2D .10112m 29.在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n ),其中m >a ,a <1,n >0,若△ABC 是等腰直角三角形,且AB =BC ,则m 的取值范围是( )A .0<m <2B .2<m <3C .m <3D .m >310.已知:如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90° ,AB =AC ,AD=AE ,点C 、D 、E 三点在同一直线上,连接BD ,BE ;以下四个结论:①BD=CE ;②∠ACE +∠DBC =45°;③BD ⊥CE ;④∠BAE +∠DAC =180° ;其中结论正确的个数有( )A .1B .2C .3D .4二.填空题(共6小题,满分18分,每小题3分)11.已知AB ∥x 轴,A 的坐标为(3,-2),并且AB=4,则点B 的坐标是____________.12.函数y =(k −1)x −3(k 是常数,k ≠1)的图象上有两个点A (x 1,y 1),B (x 2,y 2),且(x 1−x 2)(y 1−y 2)<0,则k 的取值范围为______.13.在平面直角坐标系中,点A (2,m )在直线y =−2x +1上,点A 关于y 轴对称的点B 恰好落在直线y =kx +1上,则k 的值为___.14.如图,ΔABC 中,∠ACB =90°,AC =6,BC =8.点P 从A 点出发沿A →C →B 路径向终点B点运动;点Q从B点出发沿B→C→A路径向终点A点运动.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动.在某时刻,分别过P和Q作PE⊥l 于E,QF⊥l于F.点P运动________秒时,ΔPEC与ΔQFC全等.15.如图,已知∠MON=30°,点A1,A2,A3,……在射线ON上,点B1,B2,B3,……在射线OM上,ΔA1B1A2,ΔA2B2A3,ΔA3B3A4,……均为等边三角形,若O A1=2,则ΔA6B6A7的边长为___________.16.如图,在四边形ABCD中,AC是四边形的对角线,∠CAD=30°,过点C作CE⊥AB于点E,∠B=2∠BAC,∠ACD+∠BAC=60°,若AB的长度比CD的长度多2,则BE的长为_______________.三.解答题(共9小题,满分72分)17.(6分)已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式|a+b−c|+|b−a−c|=_______.(2)若∠B=∠A+18°,∠C=∠B+18°,求△ABC的各内角度数;18.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作∠CBA的角平分线BD,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在上图中,若BD=10cm,求DC的长19.(6分)已知△ABC三个顶点坐标分别为A(2,5),B(-1,2),C(4,0),在直角坐标系中,正方形网格的单位长度为1.(1)若△ABC内部一点P(a,b),直角坐标系中有点P'(a−3,b−5),请平移△ABC,使点P与点P'重合,画出平移后的△A'B'C';(2)直接写出△A'B'C'的三个顶点的坐标;(3)求出△ABC在平移过程中扫过的面积.20.(8分)已知一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),与坐标轴的交点分别是A 、B 、C 、D .(1)直接写出方程组{ax −y =−6y +x =b的解;(2)求△PCD 的面积;(3)请根据图象直接写出当y 1>y 2时x 的取值范围.21.(8分)如图,在△ABC 中,已知∠1=∠2,BE =CD .(1)证明:AB=AC;(2)AB=5,AE=2,求CE的长.22.(9分)A校和B校分别有库存电脑12台和6台,现决定支援给C校10台和D校8台,从A校运一台电脑到C校的运费是40元,到D校是80元;从B校运一台电脑到C校的运费是30元,到D校是50元.设A校运往C校的电脑为x台,总运费为W元.(1)写出W关于x的函数关系式;(2)从A、B两校调运电脑到C、D两校有多少种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?23.(9分)如图1,在ΔABC中,过点B作BD⊥AB,且BD=AB,连接CD.(问题原型)(1)若∠ACB=90°,且AC=BC=8,过点D作的ΔBCD的BC边上的高DE,易证△ABC≌△BDE,从而得到ΔBCD的面积为______.(变式探究)(2)如图2,若∠ACB=90°,BC=a,用含a的代数式表示△BCD的面积,并说明理由.(拓展应用)(3)如图3,若AB=AC,BC=16,则△BCD的面积为______.24.(10分)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠ADC=90°. E、F分别是BC、CD 上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法:延长FD到点G,使DG=BE.连接AG.先证明△ABE≌△ADG,再证△AEF≌△AGF,可得出结论,他的结论应是.【灵活运用】(2)如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°, F、F分别是BC、CD上的点.且EF=BE+FD,上述结论是否仍然成立?请说明理由.【延伸拓展】(3)如图③,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.25.(10分)如图,△ABC为等边三角形,点D是△ABC外一点,连接AD,BD,CD,AB与CD 相交于点G,且∠DAC+∠DBC=180°.图1 图2(1)请求出∠ADB的度数;(2)请写出AD,BD,CD之间的数量关系,并说明理由;(3)如图2,点E为CD的中点,连接BE并延长,交AC于点F,当BF与CD的夹角∠FEC=60°时,△ABC的面积为12,直接写出△CEF的面积.答案解析一.选择题1.D【分析】根据“横坐标右移加,左移减;纵坐标上移加,下移减”的规律求解即可.【详解】解:将点P(3,2)向右平移2个单位长度得到(5,2),再向下平移2个单位长度,所得到的点坐标为(5,0).故选:D.2.C【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【详解】解:注水量一定,即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.A.容器的底面积大,中,小,则函数图象的走势是平缓,稍陡,陡,故此选项不符合题意;B.容器的底面积小,大,中,则函数图象的走势是陡,平缓,稍陡,故此选项不符合题意;C.容器的底面积中,大,小,则函数图象的走势是稍陡,平缓,陡,故此选项符合题意;D.容器的底面积小,中,大,则函数图象的走势是陡,稍陡,平缓,故此选项不符合题意;故选:C.3.C【分析】根据三角形面积公式由点D为BC的中点得到SΔABD =SΔADC=12SΔABC=6,同理得到SΔEBD=SΔEDC=12SΔABD=3,则SΔBEC=6,然后再由点F为EC的中点得到SΔBEF=12SΔBEC=3.【详解】解:∵点D为BC的中点,∴SΔABD =SΔADC=12SΔABC=6,∵点E为AD的中点,∴SΔEBD =SΔEDC=12SΔABD=3,∴SΔBEC =SΔEBD+SΔEDC=6,∵点F为EC的中点,∴SΔBEF =12SΔBEC=3,即阴影部分的面积为3.故选:C.4.B【分析】首先根据三角形的外角性质得∠ADC=∠A+∠C+∠ABC,从而求出∠ABC,最后根据角平分线的定义即可解决问题.【详解】解:∵∠ADE=∠ABD+∠A,∠EDC=∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120∘=40∘+20∘+∠ABC,∴∠ABC=60∘,∵BE平分∠ABC,∴∠ABE=12∠ABC=30∘,故选:B.5.D【分析】根据点P′,P″分别是P关于OA,OB的对称点,得到PP′被OA垂直平分,PP″被OB垂直平分,根据线段垂直平分线的性质得到MP=MP′,NP=NP″,即可得出△PMN的周长.【详解】∵点P′,P″分别是P关于OA,OB的对称点,∴PP′被OA垂直平分,PP″被OB垂直平分,∴MP=MP′,NP=NP″,∴△PMN的周长=MN+MP+NP=MN+MP′+NP″=P′P″=8(cm).故选:D.6.D【分析】分别延长AC 、BD 交于点F ,根据角平分线的性质得到∠BAD=∠FAD ,证明△BAD ≌△FAD ,根据全等三角形的性质得到BD=DF ,根据平行线的性质得到BE=ED ,EA=ED ,进一步计算即可求解.【详解】解:分别延长AC 、BD 交于点F ,∵AD 平分∠BAC ,AD ⊥BD ,∴∠BAD=∠FAD ,∠ADB=∠ADF=90°,在△BAD 和△FAD 中,{∠BAD =∠FADAD =AD ∠ADB =∠ADF =90°,∴△BAD ≌△FAD (ASA ),∴∠ABD=∠F ,∵DE ∥AC ,∴∠EDB=∠F ,∠EDA=∠FAD ,∴∠ABD=∠EDB ,∠EDA=∠EAD ,∴BE=ED ,EA=ED ,∴BE=EA=ED ,∴DE=12AB=12×8=4,故选:D .7.D【分析】根据图象中t =0 时,s =120 可得A 、B 两地相距的距离,进而可判断①;根据图象中t =1 时,s =0可判断②;由图象t =1.5 和t =3的实际意义,得到货车和小汽车的速度,从而可判断④;根据路程=速度×时间分别计算出货车与小汽车出发1.5小时后的路程,进而可判断③,于是可得答案.【详解】解:由图象可知,当t=0时,货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①正确;当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故小汽车的速度为:120÷ 1.5=80(千米/小时),货车的速度为:120÷3=40(千米/小时),∴小汽车的速度是货车速度的2倍,故④正确;出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A 地,即小汽车1.5小时行驶路程为120千米,所以出发1.5小时,小汽车比货车多行驶了60千米,故③正确.∴正确的说法有①②③④四个.故选:D.8.B【分析】从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,则第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),点A2020的坐标(1010,0),则点A2022的坐标(1011,1),点A3的坐标(2,1),则A3A2022=1009(m),则△OA3A2023的底边为A3A2022,高为1m,则根据三角形面积公式就可以求得.【详解】解:从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,2023÷4=505…2,∴第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),∴点A2020的坐标(1010,0),∴点A2022的坐标(1011,1),∵点A3的坐标(2,1),则A3A2022=1009(m),∴△OA3A2022的面积是12×1×1009=10092m2,故选:B.9.B【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a ,即可求解.【详解】解:如图,过点C 作CD ⊥x 轴于D ,∵点A (0,2),∴AO =2,∵△ABC 是等腰直角三角形,且AB =BC ,∴∠ABC =90°=∠AOB =∠BDC ,∴∠ABO+∠CBD =90°∠ABO+∠BAO =90°,∴∠BAO =∠CBD ,在△AOB 和△BDC 中,{∠AOB =∠BDC∠BAO =∠CBD AB =BC,∴△AOB ≌△BDC (AAS ),∴AO =BD =2,BO =CD =n =a ,∴0<a <1,∵OD =OB+BD =2+a =m ,∴2<m <3,故选:B .10.D【分析】①由AB =AC ,AD =AE 利用等式的性质得到夹角相等,从而得出三角形ABD 与三角形ACE 全等,由全等三角形的对应边相等得到BD =CE ,本选项正确;②由三角形ABD 与三角形ACE 全等,得到一对角相等,由等腰直角三角形的性质得到∠ABD+∠DBC =45°,进而得到∠ACE +∠DBC =45° ,本选项正确;③再利用等腰直角三角形的性质及等量代换得到BD⊥CE,本选项正确;④利用周角减去两个直角可得答案;【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD 即:∠BAD=∠CAE在△BAD和△CAE中{AB=AC∠BAD=∠CAEAD=AE∴△BAD≌△CAE(SAS)∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°∴∠ABD+∠DBC=45°∵△BAD≌△CAE∴∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°∴∠ACE+∠DBC=45°∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°即:BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°∴∠BAE+∠DAC=360°−90°−90°=180°,本此选项正确;故选:D.二.填空题11.(-1,-2)或(7,-2)##(7,-2)或(-1,-2)【分析】根据点B与点A的位置关系分类讨论,分别求解即可.【详解】解:∵AB∥x轴,A的坐标为(3,−2),并且AB=4,∴点B的纵坐标为−2,若点B在点A的左侧,则点B的坐标为(3-4,-2)=(-1,-2)若点B在点A的右侧,则点B的坐标为(3+4,-2)=(7,-2)故答案为:(-1,-2)或(7,-2).12.k<1【分析】先根据(x1−x2)(y1−y2)<0可得出{x1−x2>0y1−y2<0或{x1−x2<0y1−y2>0两种情况讨论求解即可.【详解】解:∵点A(x1,y1),B(x2,y2)在函数y=(k−1)x−3(k是常数,k≠1)的图象上,且(x1−x2)(y1−y2)<0,∴{x1−x2>0 y1−y2<0或{x1−x2<0 y1−y2>0∴函数值y随x的增大而减小,∴k−1<0解得,k<1故答案为:k<113.2【分析】根据直线y=−2x+1的解析式求出m,再求出点A关于y轴的对称点,再将对称点带入y=kx+1求出k.【详解】解:点A(2,m)在直线y=−2x+1上,∴m=−3,点 A(2,-3)关于y轴对称的点为(-2,-3),∴−3=−2k+1,∴k=2,故答案为:2.14.1或3.5或12【分析】根据题意分为五种情况,根据全等三角形的性质得出CP=CQ,代入得出关于t的方程,解方程即可.【详解】解:分为五种情况:①如图1,P在AC上,Q在BC上,则PC=6−t,QC=8−3t,∵PE⊥l,QF⊥l,∴∠PEC=∠QFC=90°,∵∠ACB=90°,∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,∴∠EPC=∠QCF,∵ΔPCE≅ΔCQF,∴PC=CQ,即6−t=8−3t,t=1;②如图2,P在BC上,Q在AC上,则PC=t−6,QC=3t−8,∵由①知:PC=CQ,∴t−6=3t−8,t=1;t−6<0,即此种情况不符合题意;③当P、Q都在AC上时,如图3,CP=6−t=3t−8,t= 3.5;④当Q到A点停止,P在BC上时,如图4,AC=PC,t−6=6时,解得t=12.⑤P和Q都在BC上的情况不存在,因为P的速度是每秒1,Q的速度是每秒3;答:点P运动1或3.5或12秒时,以P、E、C为顶点的三角形上以O、F、C为顶点的三角形全等.故答案为:1或3.5或12.15.64【分析】由等边三角形的性质得到∠BA1A2=60°,A1B1=A1A2,再由三角形外角的性质求1出∠AB1O=30°,则A1B1=A1A2=O A1,同理得A2B2=A2A3=O A2=2O A1,A3B3=A3A4= 122⋅O A1,A4B4=A4A5=23⋅O A1,由此得出规律A n B n=A n A n+1=2n-1⋅O A1=2n,即可求解.【详解】解:∵ΔAB1A2为等边三角形,1∴∠BA1A2=60°,A1B1=A1A2,1∴∠AB1O=∠B1A1A2-∠MON=60°-30°=30°,1∴∠AB1O=∠MON,1∴AB1=O A1,1∴AB1=A1A2=O A1,1同理可得AB2=A2A3=O A2=2O A1,2∴AB3=A3A4=O A3=2O A2=22⋅O A1,3A4B4=A4A5=O A4=2O A3=23⋅O A1,…∴AB n=A n A n+1=2n-1⋅O A1=2n,n∴ΔAB6A7的边长:A6B6=26=64,6故答案为:64.16.1【分析】在AE上截取EF=BE,连接CF,则CE垂直平分BF,结合题意推出AF=CF,过点F作FM ⊥AC,交AC于点M,过点C作CN⊥AD,交AD的延长线于点N,则有∠AMF=∠N=90°,AC=2AM,进而得出AM=CN,根据题意及三角形外角性质推出∠MAF=∠NCD,利用ASA判定△AFM ≌△CDN,根据全等三角形的性质得到AF=CD,结合题意即可得解.【详解】解:在AE上截取EF=BE,连接CF,∵CE⊥AB,∴CE垂直平分BF,∴BC=FC,∴∠B=∠BFC,∵∠B=2∠BAC,∴∠BFC=2∠BAC,∵∠BFC=∠BAC+∠ACF,∴∠ACF=∠BAC ,∴AF=CF ,过点F 作FM ⊥AC ,交AC 于点M ,过点C 作CN ⊥AD ,交AD 的延长线于点N ,则有∠AMF=∠N=90°,AC=2AM ,∵∠CAD=30°,∠N=90°,∴AC=2CN ,∴AM=CN ,∵∠ACD+∠BAC=60°,∴∠ACD=60°-∠BAC ,∴∠CDN=∠ACD+∠CAD=60°-∠BAC+30°=90°-∠BAC ,∴∠NCD=90°-∠CDN=90°-(90°-∠BAC )=∠BAC ,∴∠MAF=∠NCD ,在△AFM 和△CDN 中,{∠MAF =∠NCDAM =CN ∠AMF =∠N,∴△AFM ≌△CDN (ASA ),∴AF=CD ,∵AB 的长度比CD 的长度多2,∴AB- CD=AB- AF=2BE=2,∴BE=1,故答案为:1.三.解答题17.(1)解:∵在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∴a +b >c ,b −a <c ,∴a +b −c >0,b −a −c <0,∴|a +b −c|+|b −a −c|=a +b −c −(b −a −c )=a +b −c −b +a +c=2a,故答案为:2a;(2)解:∵∠B=∠A+18°,∠C=∠B+18°,∴∠C=∠A+18°+18°=∠A+36°,∵∠A+∠B+∠C=180°,∴∠A+∠A+18°+∠A+36°=180°,解得∠A=42°,故∠B=42°+18°=60°,∠C=60°+18°=78°,故△ABC的各内角度数分别为42°,60°,78°.18.(1)如图所示:(2)∵△ABC中,∠C=90°,∠A=30°∴∠ABC=90°-∠A=90°-30°=60°∵BD平分∠ABC∴∠DBC=12×60∘=30∘∵△DBC中,∠C=90°,∠CBD=30°∴CD=12BD=12×10=5cm答:CD长5cm19.(1)解:由题意可知,只需要将点A、B、C的坐标分别向左平移3个单位长度,向下平移5个单位长度,画出图形即可,△A'B'C'如图所示:(2)解:坐标内同一个图形中点的坐标的平移方式一致,故A'(−1,0),B'(−4,−3),C'(1,−5)(3)解:如图,△ABC在平移过程中扫过的面积为△ABC的面积与四边形B B'C'C的面积和,即8×10−2×12×3×5−12×2×5−3×3−12×3×3−12×2×5=41.5,即△ABC在平移过程中扫过的面积为41.520.(1)解:∵一次函数y1=ax+6和y2=﹣x+b的图象交于点P(1,2),∴方程组{ax −y =−6y +x =b 的解为{x =1y =2;(2)∵一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),∴{a+6=2−1+b =2 ,解得{a =−4b =3 ,∴y 1=﹣4x+6,y 2=﹣x+3,当y =0时,0=﹣4x +6,解得x =32,当y =0时,0=﹣x+3,解得x =3,∴C (32,0),D (3,0),∴CD =32,∴S △PCD =12×32×2=32.即△PCD 的面积为32;(3)根据图象可知当在P 点左边时y 1>y 2,∴y 1>y 2时x 的取值范围为x <1.21.(1)证明:在△ABE 和△ACD 中,∵{∠A =∠A∠1=∠2BE =CD,∴△ABE ≌△ACD ,∴AB =AC .(2)解:∵△ABE ≌△ACD ,∴AB =AC ,∵AB =5,AE =2,∴CE =AC -AE =5-2=3.22.(1)解:设A校运往C校的电脑为x台,则A校运往D校的电脑为(12−x)台,从B校运往C校的电脑为(10−x)台,运往D校的电脑为8−(12−x)=(x−4)台,由题意得,W=40x+80(12−x)+30(10−x)+50(x−4),=−20x+1060,由{12−x≥010−x≥0x−4≥0解得4≤x≤10,所以,W=1060−20x(4≤x≤10);(2)∵4≤x≤10∴0≤x−4≤6共有7种调运方案,即B到D的可以是0,1,2,3,4,5,6这7种情况.(3)∵k=−20<0,∴W随x的增大而减小,∴当x=10时,W最小,最小值为:−20×10+1060=860元.答:总运费最低方案:A校给C校10台,给D校2台,B校给C校0台,给D校6台,最低运费是860元.23.解:(1)∵在△ABC中,∠ACB=90°,过点B作BD⊥AB且过点D作的△BCD的BC边上的高DE,∴∠DEB=∠ACB =∠ABD =90°∴∠ABC+∠DBE =90°∵∠DBE+∠BDE =90°∴∠ABC =∠BDE .在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠ABC =∠BDE AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =8∴S ΔBCD =12CB ⋅DE =12×8×8=32故答案为:32(2)S ΔBCD =12a 2理由:过点D 作DE ⊥CB 延长线于点E ∴∠DEB=∠ACB =90°∵BD ⊥AB ,∠1+∠2=90°∵∠2+∠A =90°∴∠A =∠1.在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠A =∠1AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =a ∴S ΔBCD =12CB ⋅DE =12a 2(3)如图3中,∵AB =AC∴BF =12BC =12×8=4.过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E,∴∠AFB=∠E =90°,∴∠FAB+∠ABF =90°.∵∠ABD=90°,∴∠ABF+∠DBE =90°,∴∠FAB =∠EBD .在△AFB 和△BED 中,{∠AFB =∠E∠FAB =∠EBD AB =BD,∴△AFB ≌△BED(AAS),∴BF =DE =4.∵S △BCD =12BC ⋅DE ,∴S △BCD =12×8×4=16∴△BCD 的面积为16.故答案为:1624.解:(1)∠BAE+∠FAD=∠EAF .理由:如图1,延长FD 到点G ,使DG=BE ,连接AG,∵∠B=∠ADF=90°,∠ADG=∠ADF=90°,∴∠B=∠ADG=90°,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;故答案为:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°−1∠DAB.2证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°−1∠DAB.225.(1)解:∵四边形ACBD,∴∠DAC+∠DBC+∠ADB+∠ACB=360°.∵△ABC为等边三角形,∴∠ACB=60°.又∵∠DAC +∠DBC =180°,∴∠ADB =120°.(2)AD +BD =CD ,理由如下:如图,延长BD 至点H ,使得DH =AD ,连接AH .∵由(1)可知∠ADB =120°,∴∠ADH =60°.又∵DH =AD ,∴△ADH 为等边三角形.∴∠HAD =60°.AD =AH =DH .∵△ABC 为等边三边形,∴∠HAD +∠DAB =∠BAC +∠DAB .即∠HAB =∠DAC .在△HAB 与△DAC 中,{AH =AD ∠HAB =∠DAC AB =AC ∴△HAB ≅△DAC(SAS),∴CD =BH .又∵BH =BD +DH =BD +AD ,∴AD +BD =CD .(3)由(1)可知∠ABD=∠ACG,∵∠DGB=∠AGC,∴∠BDG=∠CAG=60°,∵∠CEF=∠BED=60°,∴△BDE是等边三角形,∴BE=DE,∵DE=EC,∴BE=EC,∵∠BEC=120°,∴∠EBC=∠ECB=30°,∵∠ABC=∠ACB=60°,∴∠ABF=∠CBF=30°,∠ACE=∠BCE=30°,∵BA=BC,∴BF⊥AC,AF=CF,∴EC=2EF,∴BE=2EF,∵△ABC 的面积为12,∴S△CEF =13S△BCF=16S△ABC=2.。
沪科版八年级上册数学期末测试卷(参考答案)
沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、在平面直角坐标系中,点( ,)关于轴对称的点的坐标是()A.(,)B.(,)C.(,)D.(,)2、点M(2,-1)向上平移2个单位长度得到的点的坐标是()A.(2,0)B.(2,1)C.(2,2)D.(2,)3、在同一平面直角坐标系中,函数y=mx+m与y= (m≠0)的图象可能是()A. B. C. D.4、如图,函数=2 和= +4的图象相交于点A(,3),则不等式2 <+4的解集为()A. <B. <3C. >D. >35、把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有()( 1 )∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A.1个B.2个C.3个D.46、平面直角坐标系y轴上有一点P(m-1,m+3),则P点坐标是()A.(-4,0)B.(0,-4)C.(4,0)D.(0,4)7、如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F.若S=12,DF=2,AC=3,则AB的长是()△ABCA.2B.4C.7D.98、如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P 的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.9、如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=4,则图中阴影部分的面积为()A. +B. +2C. +D.2 +10、下列命题是假命题的是()A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等; C.等腰三角形的底角可以是直角; D.直角三角形的两锐角互余.11、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=-x-2C.y=x+2D.y=x-212、如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(-8,0)B.(8,-8)C.(-8,8)D.(0,16)13、如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=65°,∠E=60°,则∠BAC的大小为( )A.60°B.75°C.85°D.95°14、函数y=﹣中的自变量x的取值范围是()A.x≥0B.x<0且x≠1C.x<0D.x≥0且x≠115、如图,在中,.若,,则的度数是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是________.(填写序号)17、如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM=________.18、如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为________.19、如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=14cm,BC=12cm,S=52cm2,则DE=________ cm.△ABC20、如图,平行四边形ABCD的对角线AC,BD交于点O,△AOD是正三角形,AD=4,则平行四边形ABCD的面积为________.21、如图,和都是等腰直角三角形,若,,,则________.22、已知:如图,△ABC是等边三角形,延长AC到E,C为线段AE上的一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,OC.以下五个结论:①AD=BE;②AP=BO;③PQ//AE;④∠AOB=60°;⑤OC平分∠AOE;结论正确的有________(把你认为正确的序号都填上)23、三角形两边的长分别是3和4,第三边的长是方程的根,则该三角形的周长为________.24、如图,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A、B两点,D、E分别是AB,OA上的动点,当△CDE周长最小时,点D坐标为________.25、在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y= 上,则k值可以是________.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、如图.AB=AD,∠ABC=∠ADC,求证:BC=DC.28、如图,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图,连接AE和GC. 你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.29、C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明:AC+DE=CE.30、已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、A5、D6、D8、D9、B10、C11、C12、C13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
沪科版八年级数学上册期末测试卷及答案
沪科版数学八年级上册期末测试卷及答案一、选择题(本大题共10小题,共40分)1. 点,1(P )2-关于y 轴对称的点的坐标是( )A. (1,2)B. (-1,2)C. (-1,-2)D. (-2,1)2. 有一个角是的等腰三角形,其它两个角的度数是( )A. 36°,108°B. 36°,72°C. 72°,72°D. 36°,108°或72°,°72°3. 点P 在x 轴的下方,且距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标为( )A. (4,-3)B. (3,-4)C. (-3,-4)或(3,-4)D. (-4,-3)或(4,-3)4. 若三条线段中3=a ,5=b ,c 为奇数,那么由a 、b 、c 为边组成的三角形共有( )A. 1个B. 3个C. 无数多个D. 无法确定5. 在同一直角坐标系中,若直线3+=kx y 与直线b x y +-=2平行,则( )A.2-=k ,3≠bB.2-=k ,3=bC.2-≠k ,3≠bD.2-≠k ,3=b6. 当0>k ,0<b 时,函数b kx y +=的图象大致是( ) A. B. C. D.7. 有以下四个命题:其中正确的个数为( )(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是矩形;(3)两条对角线互相垂直的平行四边形是菱形;(4)有一组邻边相等且有一个角是直角的四边形是正方形;A. 1B. 2C. 3D. 48. 如图,OP 是∠AOB 的平分线,点P 到OA 的距离为3,点N 是OB 上的任意一点,则线段PN 的取值范围为( )A. 3<PNB. 3>PNC. 3≥PND. 3≤PN9. 如图,将矩形纸片ABCD 折叠,使点D 与点B重合,点C 落在C '处,折痕为EF ,若1=AB ,2=BC ,则△ABE 和F C B '的周长之和为( )A. 3B. 4C. 6D. 810.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离 其中是真命题的个数有( )A. 0个B. 1个C. 2个D. 3个二、填空题(每题5分,共20分)11.命题“有两边相等的三角形是等腰三角形”的题设是________________,结论是________________,它的逆命题是__________________.12.如图,等边△ABC的边长为1 cm,D,E分别是AB,AC上的点,将△ABC 沿直线DE折叠,点A落在A′处,且A′在△ABC外部,则阴影部分的周长为________cm.13.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3,…每个正方形四条边上的整点的个数.按此规律推算出正方形A2 019B2 019C2 019D2 019四条边上的整点共有________个.三、解答题(15~17题每题6分,其余每题12分,共90分)15.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1的坐标:A1________,B1________;(3)S△A1B1C1=________.16.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.17.将一张长方形纸条ABCD按如图所示折叠,若∠FEC=64°.(1)求∠1的度数;(2)求证:△EFG是等腰三角形.18.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数y=kx+b的图象经过点B(-2,-1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数表达式;(2)求C点的坐标;(3)求△AOD的面积.19.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF ⊥AC交AC的延长线于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE,BE的长.20.如图,直线l:y=-12x+2与x轴、y轴分别交于A,B两点,在y轴上有一点C(0,4),动点M从A点出发以每秒1个单位的速度沿x轴向左移动.(1)求A,B两点的坐标;(2)求△COM的面积S与点M的移动时间t之间的函数表达式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.21.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系图象如图①中的点状图所示(5月份及以后每月的销售额都相等),而经销成本p(万元)与销售额y(万元)之间的函数关系图象如图②中的线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数表达式;(2)分别求该公司3月、4月的利润;(利润=销售额-经销成本)(3)问:把3月作为第1个月开始往后算,最早到第几个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?22.(1)如图①,直线m经过正三角形ABC的顶点A,在直线m上取两点D,E,使得∠ADB=60°,∠AEC=60°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明;(2)将(1)中的直线m绕着点A按逆时针方向旋转到如图②的位置,并使∠ADB=120°,∠AEC=120°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.23.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图①,点D在线段BC上移动时,α与β之间的数量关系是________,证明你的结论;(2)如图②,点D在线段BC的延长线上移动时,α与β之间的数量关系是____________,请说明理由;(3)当点D在线段BC的反向延长线上移动时,请在图③中画出完整图形,此时α与β之间的数量关系是____________.沪科版数学八年级上册期末测试卷参考答案1. C2. D3. D4. B5. A6. D7. B8. C9.C10.A二、11.一个三角形有两条边相等;这个三角形是等腰三角形;等腰三角形有两条边相等12.313.≥214.16 152三、15.解:(1)略(2)(0,-4);(-2,-2)(3)716.证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴△ABC≌△DEF.17.(1)解:∵∠GEF=∠FEC=64°,∴∠BEG=180°-64°×2=52°∵AD∥BC,∴∠1=∠BEG=52°.(2)证明:∵AD∥BC,∴∠GFE=∠FEC,∴∠GEF=∠GFE,∴GE=GF,∴△EFG是等腰三角形.18.解:(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),∴2m=2,∴m=1.把点A(1,2)和点B(-2,-1)的坐标代入y=kx+b,得k+b=2,-2k+b=-1,解得k=1,b=1,则一次函数表达式是y=x +1.(2)在y=x+1中,令x=0,则y=1,所以点C(0,1).(3)在y=x+1中,令y=0,所以x=-1.则△AOD的面积=12×1×2=1.19.解:(1)连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE =DF ,∠BED =∠CFD =90°.∵DG ⊥BC 且平分BC ,∴BD =CD .在Rt △BED 与Rt △CFD 中,BD =CD ,DE =DF ,∴Rt △BED ≌Rt △CFD (HL ),∴BE =CF .(2)在△AED 和△AFD 中,∠AED =∠AFD =90°,∠EAD =∠F AD , AD =AD ,∴△AED ≌△AFD (AAS ),∴AE =AF .设BE =x ,则CF =x ,∵AB =5,AC =3,AE =AB -BE ,AF =AC +CF ,∴5-x =3+x ,解得x =1,∴BE =1,AE =AB -BE =5-1=4.20.解:(1)在y =-12x +2中,当x =0时,y =2.当y =0时,-12x +2=0,解得x =4,所以A (4,0),B (0,2).(2)当0<t ≤4时,OM =4-t ,S =12OM ·OC =12(4-t )×4=-2t +8;当t >4时,OM =t -4,S =12OM ·OC =12(t -4)×4=2t -8.(3)因为△COM ≌△AOB ,所以OM =OB =2,当0<t ≤4时,OM =4-t =2,所以t =2.当t >4时,OM =t -4=2,所以t =6.所以当t =2或6时,△COM ≌△AOB ,此时M 点的坐标是(2,0)或(-2,0).21.解:(1)设经销成本p 与销售额y 之间的函数表达式为p =ky +b (k ≠0),则⎩⎨⎧100k +b =60,200k +b =110,解得⎩⎪⎨⎪⎧k =12,b =10.∴p =12y +10(100≤y ≤200). (2)利润=销售额-经销成本=y -⎝ ⎛⎭⎪⎫12y +10=12y -10.由题图①知,当x =3时,y =150;当x =4时,y =175.∴3月份的利润为12×150-10=65(万元),4月份的利润为12×175-10=77.5(万元).(3)设最早到第x 个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,用原线下销售方式每月销售所获的利润为12×100-10=40(万元),5月份及以后用线上方式销售每月的利润为12×200-10=90(万元),依题意,得[65+77.5+90(x-2)]-40x≥200,解得x≥4.75.∵x是整数,∴x至少取5.答:最早到第5个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.22.解:(1)猜想:BD+CE=DE.证明:∵在正三角形ABC中,∠BAC=60°,∴∠DAB+∠CAE=120°,又∵∠AEC=60°,∴∠ECA+∠CAE=120°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠CEA=60°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴BD+CE=AE+AD=DE.(2)猜想:CE-BD=DE.证明:∵在正三角形ABC中,∠BAC=60°,∴∠DAB+∠CAE=60°,∵∠AEC=120°,∴∠ECA+∠CAE=60°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠CEA=120°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴CE-BD=AD-AE=DE.23.解:(1)α+β=180°证明:∵∠DAE=∠BAC,∴∠DAE-∠DAC=∠BAC-∠DAC,∴∠CAE=∠BAD.∵在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°.(2)α=β理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,即α=β.(3)图略,α=β。
沪科版八年级上册数学期末测试卷(含解析)
沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、△ABC中,∠ABC=30°,边AB=10,边AC可以从4,5,7,9,11取一值.满足这些条件的互不全等三角形的个数是()A.6B.7C.5D.42、若点在第二象限内,则点()在()A. 轴正半轴上B. 轴负半轴上C. 轴正半轴上D. 轴负半轴上3、下列线段长能构成三角形的是()A.3、4、8B.2、3、6C.5、6、11D.5、6、104、下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.5、圆的周长公式为C=2πr,下列说法正确的是()A.π是自变量B.π和r都是自变量C.C、π是变量D.C、r 是变量6、一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是( )A. B. C. D.7、小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从、出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离、(米)与时间(分钟)的函数关系如图所示,则下列结论中:① 的距离为120米;②乙的速度为60米/分;③ 的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有()个A.1B.2C.3D.48、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是()A.6B.5C.10D.89、下列图形中阴影部分面积相等的是()A.①②B.②③C.①④D.③④10、如图所示,为的切线,切点为点A,交于点C,点D在上,若的度数是32°,则的度数是( )A.29°B.30°C.32°D.45°11、下列图形中,对称轴最多的是()A.正方形B.线段C.圆D.等腰三角形12、如图,过点Q(0,3.5)的一次函数的图象与正比例函数的图象相交于点P ,能表示这个一次函数图象的方程是()A. B. C. D.13、如图(1),在矩形ABCD中,动点P从点B出发,沿着BC、CD、DA运动到点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图(2)所示,则△ABC的周长为()A.9B.6C.12D.714、用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,,则该等腰三角形的腰长为()A.4cmB.6cmC.4cm或6cmD.4cm或8cm15、如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m-1)D. (m-2)二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD 的中点,若AD=10,则CP的长为________.17、如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△AʹBʹCʹ,连接AʹC,则△AʹBʹC的周长为________.18、如图,在△ABC中,∠BAC=90°,AB=3,AC=4,△ADE的顶点D在BC上运动,且∠DAE=90°,∠ADE=∠B,F为线段DE的中点,连接CF,在点D运动过程中,线段CF长的最小值为________.19、如图,直线y=mx﹣4m(m<0)与x,y轴分别相交于A,B两点,将△AOB 绕点O逆时针转90°得到△COD,E为AB中点,F为CD中点,连接EF,G为EF 中点,连接OG.若OG=,则m的值为________ .20、如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为________.21、如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;② ;③∠ADF=2∠ECD;④;⑤CE=DF.其中正确结论的序号是________.22、现以A(0,4),B(﹣3,0),C(3,0)三点为顶点画平行四边形,则第四个顶点D的坐标为________.23、如图,在中,AB=AC=10,BC=12,AD=8,A D⊥BC.若P、Q分别是AD 和AC上的动点,则PC+PQ的最小值是________.24、已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100°,则∠BAC=________.25、若点(a,-2)与点(-3,b)关于x轴对称,则a+b= ________三、解答题(共5题,共计25分)26、如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠A=56°,求∠EDF.27、如图,已知.相交于点.求证:.28、如图,E是□ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.29、在同一平面直角坐标系中,观察以下直线:y=2x,y=﹣x+6,y=x+2,y=4x ﹣4图象的共同特点,若y=kx+5也有该特点,试求满足条件的k值.30、在△ABC中,AB=AC,AB边上的中线CD把三角形的周长分成6和15的两部分,求三角形腰和底的长.参考答案一、单选题(共15题,共计45分)1、A2、A3、D4、B5、D6、B7、C8、B10、A11、C12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
(完整word版)八年级数学上册六套期末试卷(沪科版带答案)
八年级数学上册六套期末试卷(沪科版带答案)山八年级数学第一学期期末测试卷(三)一、(本题共10小题,每小题4分,满分40分)1、已知a是整数,点A(2a+1,2+a)在第二象限,则a的值是…………………………………()A.-1 B.0 C.1 D.22、如果点A(2-n,5+)和点B(2n-1,-+n)关于y 轴对称,则、n的值为…………()A.=-8,n=-5 B.=3,n=-5 C.=-1,n=3 D.=-3,n=13、下列函数中,自变量x的取值范围选取错误的是………………………………………………()A.y=2x2中,x取全体实数 B.中,x取x≠-1的所有实数C.中,x取x≥2的所有实数 D.中,x取x≥-3的所有实数4、幸福村办工厂,今年前5个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图1所示,则该厂对这种产品来说………………………………………………………………………()A.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4,5两月每月生产量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月停止生产D.1月至3月每月生产总量不变,4、5两月均停止生产5、下图中表示一次函数y=ax+b与正比例函数y=abx(a,b 是常数,且ab≠0)图象是……()A. B. C. D.6、设三角形三边之长分别为3,8,1-2a,则a的取值范围为……………………………………()A.-627、如图7,AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE。
下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE。
其中正确的有()A. 1个B. 2个C. 3个D. 4个8、如图8,AD=AE,BE=CD, ADB= AEC=100°, BAE=70°,下列结论错误的是………………()A. △ABE≌△ACDB. △ABD≌△ACEC. ∠DAE=40°D. ∠C=30°9、下列语句是命题点是………………………………………………………………………………()A、我真希望我们国家今年不要再发生自然灾害了B、多么希望国际金融危机能早日结束啊C、钓鱼岛自古就是我国领土不容许别国霸占D、你知道如何预防“H1N1”流感吗10、将一张长方形纸片按如图10所示的方式折叠,为折痕,则的度数为………()A. 60°B. 75°C. 90°D. 95°二、题(本题共4小题,每小题5分,满分20分)11、已知一次函数y=kx+b的图象如图11所示,当x 四、填空题(本题共2小题,每小题8分,满分16分)17、一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这个函数的解析式。
沪科版八年级上册数学期末测试卷【及含答案】
沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,▱ABCD中,对角线AC和BD相交于点O,如果AC=12、BD=10、AB=m,那么m的取值范围是()A.1<m<11B.2<m<22C.10<m<12D.5<m<62、点A(-5,4)关于原点的对称点A/的坐标为()A.(5,4)B.(5,-4)C.(-5,4)D.(-5,-4)3、已知一次函数y= x+a与y=x+b的图象都经过点A(﹣2,0),且与y 轴分别交于B,C两点,那么△ABC的面积是()A.2B.3C.4D.54、如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A. B. C. D.5、如图,是的两条角平分线,,则的度数为()A. B. C. D.6、一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7、△ABC中,等腰三角形有两条边分别为2,4,则等腰三角形的周长为()A.6B.8C.10D.8或108、如图,已知:是不等边三角形,请以为公共边,能作出()个三角形与全等,且构成的整体图形是轴对称图形.()A. 个B. 个C. 个D. 个9、观察下图中各组图形,其中不是轴对称的是()A. B. C.D.10、下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A.3,4,5B.7,8,15C.3,12,20D.5,11,511、直线y=2x﹣1沿y轴向下平移3个单位,则平移后直线与x轴的交点坐标为()A.(﹣2,0)B.(2,0)C.(4,0)D.(﹣1,0)12、以下四个三角形分别满足以下条件:①∠A=∠B=∠C;②∠A﹣∠B=∠C;③∠A=∠B=2∠C;④∠A= ∠B= ∠C,其中是Rt△的个数为()A.1B.2C.3D.413、如下图,将△ABC的各边都延长一倍至A'、B'、C',连接这些点,得到一个新的三角形A'B'C',若△ABC的面积为3,则△A'B'C'的面积是( )A.18B.21C.24D.314、如图,点D、E是等边△ABC的边BC、AC上的点,且CD=AE,AD、BE相交于P点,BQ⊥AD于Q,已知PE=1,PQ=2.5,则AD等于()A.5B.6C.7D.815、如图,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为( )A.15B.16C.18D.20二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEO的度数是________.17、用7根火柴首尾顺次相接摆成一个三角形,能摆成________个不同的三角形.18、把一张长方形纸条按如图方式折叠,若∠1=40°,则∠2的度数是________.19、直线与x轴的交点坐标是________.20、点(﹣3,5)到x轴上的距离是________,到y轴上的距离是________.21、如图,把一个长方形纸片沿EF折叠后,点A,B分别落在A′,B′的位置,若∠A′FD=50°,则∠CEF等于________.22、摩托车油箱中有8升油,行驶时每小时耗油2升,在不加油的情况下,求余油量Q(升)与行驶时间t(小时)之间的函数关系式为________,这里的时间t的取值范围为________.23、如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为________cm.24、已知,点A在y轴正半轴,点B在x轴正半轴,点C在x轴负半轴,,D为轴上一动点,平分,平分,若,则________.(用含的式子表示)25、如图,是半圆的直径,以弦(非直径)为对称轴将弧折叠,点是折叠后的弧与的交点,若,则________.三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、如图,在菱形ABCD中,∠B=30°,点E在CD边上,若AE=AC,DE=6,求AC 的长.28、如图,△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,B,C,D在同一直线上,连接EC.求证:EC⊥BD.29、如图所示,,,试说明≌ .30、已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、A5、A7、C8、B9、C10、A11、B12、B13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、。
沪科版八年级数学上册期末测试题含答案
沪科版八年级数学上册期末测试题含答案题目一问题某电器商店在一次特价促销活动中销售了一批电视机,设每台电视机的售价为x元。
商店共售出n台电视机,销售额为元。
请用代数方法解决以下问题:1. 如果商店销售了30台电视机,求每台电视机的售价。
2. 如果每台电视机的售价为3000元,求商店共售出多少台电视机。
解答1. 设每台电视机的售价为x元,商店售出了30台电视机。
根据题目中给出的销售额为元,可以得到以下方程:30x =解方程得:x = / 30计算得:x = 800因此,每台电视机的售价为800元。
2. 如果每台电视机的售价为3000元,商店售出了n台电视机。
根据题目中给出的销售额为元,可以得到以下方程:3000n =解方程得:n = / 3000计算得:n = 8因此,商店共售出8台电视机。
题目二问题一块矩形花坛的长是3米,宽是2米,现在要在花坛的四周围上一圈大理石砖。
每块砖的尺寸为0.5米 × 0.5米。
请用代数方法解决以下问题:1. 需要多少块砖才能围住整个花坛?2. 如果每块砖的尺寸变为1米 × 1米,需要多少块砖才能围住整个花坛?解答1. 花坛的周长可以通过长、宽计算得到:周长 = 2 * (长 + 宽)周长 = 2 * (3 + 2)计算得:周长 = 10米由于每块砖的尺寸为0.5米 × 0.5米,因此需要将周长除以每块砖的总长度,得出需要多少块砖:需要的块数 = 周长 / (0.5 + 0.5)计算得:需要的块数 = 10 / 1因此,需要用10块砖围住整个花坛。
2. 如果每块砖的尺寸变为1米 × 1米,同样需要计算周长并将周长除以每块砖的总长度,得出需要多少块砖:需要的块数 = 周长 / (1 + 1)计算得:需要的块数 = 10 / 2因此,需要用5块砖围住整个花坛。
以上是《沪科版八年级数学上册期末测试题含答案》的部分题目及解答。
如需查看完整的题目以及更多的解答,请参考原文档。
沪科版2022-2023学年八年级上学期期末达标检测数学试卷(含解析)
沪科版八年级上学期数学期末达标检测一、选择题(本大题共10小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1. 在平面直角坐标系中,点在( )A. 轴的正半轴上B. 轴的负半轴上C. 轴的正半轴上D. 轴的负半轴上2. 将某图形的各顶点的横坐标减去,纵坐标保持不变,可将该图形( )A. 横向向右平移个单位B. 横向向左平移个单位C. 纵向向上平移个单位D. 纵向向下平移个单位3. 函数中自变量的取值范围是( )A. 且B.C.D.4. 下列图形中,与关于直线成轴对称的是( )A. B. C. D.5. 如图,将三角尺的直角顶点放在直尺的一边上,,,则的度数等于( )A. B.C. D.6. 已知方程组的解为,则直线与直线的交点在平面直角坐标系中位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 下列命题真命题的个数有( )经过一点有且只有一条直线与已知直线平行;直线外一点与直线上各点连接的所有线段中,垂线段最短;若,则;同位角相等.A. 个B. 个C. 个D. 个8. 一个三角形的三边长分别为,,,另一个三角形的三边长分别为,,,若这两个三角形全等,则( )A. B. C. D.9. 在同一平面直角坐标系中,一次函数与的图象可能是( )A. B. C. D.10. 如图,直线是中边的垂直平分线,点是直线上的一动点.若,,,则周长的最小值是( )A. B. C. D.二、填空题(本大题共4小题,共20分)11. 把命题“垂直于同一条直线的两条直线平行”改写成“如果那么”的形式是.12. 如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是.13. 已知一次函数中,自变量的取值范围是,函数值的取值范围是,则这个一次函数的解析式为.14. 如图,在边长为的等边三角形中,点是与平分线的交点,过点的直线分别与边,交于点,点关于的对称点为点,连接,,分别与交于点,,连接,,的度数为______,若,则的长为______.三、解答题(本大题共9小题,共90分。
沪科版八年级数学上册期末试卷【含答案】
沪科版八年级数学上册期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果一个三角形的两边分别是5cm和12cm,那么第三边的长度可能是多少?A. 7cmB. 8cmC. 17cmD. 18cm3. 下列哪个数是质数?A. 21B. 23C. 27D. 294. 已知一组数据:2, 5, 7, 10, 12,那么这组数据的平均数是多少?A. 5B. 6C. 7D. 85. 如果一个圆的半径是4cm,那么这个圆的面积是多少平方厘米?A. 16πB. 32πC. 64πD. 128π二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 一个三角形的三个角的度数和一定是180度。
()3. 0是最小的自然数。
()4. 如果一个数的因数只有1和它本身,那么这个数一定是质数。
()5. 任何一个正方形的对角线长度都大于它的边长。
()三、填空题(每题1分,共5分)1. 一个正方形的边长是6cm,那么它的面积是______平方厘米。
2. 如果一个数的平方根是9,那么这个数是______。
3. 一个等腰三角形的底边长是8cm,腰长是5cm,那么这个三角形的周长是______厘米。
4. 下列哪个数既是偶数又是质数?______5. 如果一个圆的直径是10cm,那么这个圆的半径是______厘米。
四、简答题(每题2分,共10分)1. 请简述平行线的定义及其性质。
2. 请简述勾股定理的内容及其应用。
3. 请简述因式分解的意义及其方法。
4. 请简述概率的定义及其计算方法。
5. 请简述函数的定义及其性质。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
2. 如果一个等腰三角形的底边长是8cm,腰长是5cm,求这个三角形的面积。
3. 解方程:2x + 3 = 11。
4. 已知一组数据:2, 5, 7, 10, 12,求这组数据的方差。
(完整word版)沪科版八年级数学上期末测试卷含答案,推荐文档
八年级数学(沪科版)(上)期末测试卷考试时间: 120 分钟满分150分一、精心一(本大共10 小 , 每小 4 分, 共 40 分)每小出的 4 个中只有一个切合意 , 将所的字母代号写在目后的括号内.1、以下各条件中,能作出唯一的ABC 的是()A 、 AB=4,BC=5,AC=10B、AB=5,BC=4A40C、 A 90 ,AB=8D、 A 60 , B 50 ,AB=52、在以下度的四根木棒中,能与4cm、 9cm的两根木棒成一个三角形的是().A、 4cmB、5cmC、9cmD、13cm3、李老自行上班,最先以某一速度匀速行,?半途因为自行生故障,停下修耽了几分,了按到校,李老加速了速度,仍保持匀速行,果准到校.在堂上,李老学生画出他行的行程y? (千米)与行t (小)的函数象的表示,同学画出的象如所示,你正确的选项是()4、以下句不是命的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A、 x 与 y 的和等于 0 ?B、不平行的两条直有一个交点C 、两点之段最短D、角不相等。
5、在下中,正确画出AC上高的是().B BEB BA E C A CE A C E A C( A)( B)(C)( D)6、假如一次函数y kx b的象第一象限,且与y半订交,那么()A.k 0,b0 B. k 0 , b0 C. k 0 , b0 D. k 0 , b 0 7、在以下四个形中。
称条数最多的一个形是() .、如(A),已知在△88AB=AC ○2 ∠ CAE=∠EB C DABC中, AD垂直均分 BC,AC=EC,点 B、D、C、E 在同向来上,以下○ 1 ○3 AB+BD=DE ○4 ∠ BAC=∠ ACB正确的个数有()个A、 1B、 2C、3D、4A A C图( 10)图( 8)图( 9)PEFB DC E BD C AE B9、已知如图(9),AC⊥ BC, DE⊥ AB,AD均分∠ BAC,下边结论错误的选项是()A、 BD+ED=BCB、DE均分∠ ADB C 、 AD均分∠ EDC D 、 ED+AC>AD10、如图( 10),在△ ABC中, AB=AC,∠ BAC=90°,直角∠ EPF的极点 P 是 BC的中点,两边PE、PF 分别交 AB、AC于点 E、 F,当∠ EPF在△ ABC内绕点 P 旋转时,以下结论错误的有()A、 EF=AP B 、△ EPF为等腰直角三角形C、 AE=CFS四边形 AEPF1S ABC D 、2二、仔细填一填(本大题共6小题,每题 5分, 共 30 分)把答案直接写在题中的横线上.11、写一个图象交y 轴于点( 0, -3 ),且 y 随 x 的增大而增大的一次函数关系式________.12、如图( 12)在等腰△ ABC中, AB=BC,∠ A=360, BD均分∠ ABC,问该图中等腰三角形有___个A AAAB Cx DD DE D第 16题B图(C B图( 13)C B图( 14)C 12 )13、如图 13, BE,CD是△ ABC的高,且BD= EC,判断△ BCD≌△ CBE的依照是“ ______”。
沪科版数学八年级上册期末考试试卷含答案
沪科版数学八年级上册期末考试试题一、选择题(共10小题)1.在平面直角坐标系内,下列的点位于第四象限的是()A.(﹣2,1)B.(﹣2,﹣1)C.(2,﹣1)D.(0,﹣1)2.下列图案中,属于轴对称图形的有()A.5个B.3个C.2个D.4个3.若点(2,y1)和(﹣2,y2)都在直线y=﹣x+3上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定4.为了估计池塘A,B两点之间的距离,小明在池塘的一侧选取一点C,测得AC=3m,BC=6m,则A,B两点之间的距离可能是()A.11m B.9m C.7m D.3m5.下列命题中是假命题的是()A.全等三角形的对应角相等B.三角形的外角大于任何一个内角C.等边对等角D.角平分线上的点到角两边的距离相等6.如图,∠ABD=∠CBD,现添加以下条件不能判定△ABD≌△CBD的是()A.∠A=∠C B.∠BDA=∠BDC C.AB=CB D.AD=CD 7.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D.若∠A=30°,AE=10,则CE的长为()A.5B.4C.3D.28.若ab<0且a<b,则一次函数y=ax+b的图象可能是()A.B.C.D.9.如图,过点A1(2,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(4,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B2021的坐标为()A.(22021,22020)B.(22021,22022)C.(22022,22021)D.(22020,22021)10.2020年12月22日8时38分,G8311次动车组列车从合肥南站始发,驶向沿江千年古城安庆.这标志着京港高铁合肥至安庆段正式开通运营.运行期间,一列动车匀速从合肥开往安庆,一列普通列车匀速从安庆开往合肥,两车同时出发,设普通列车行驶的时间为x(h),两车之间的距离y(km),图中的折线表示y与x之间的函数关系,下列说法正确的有()①合肥、安庆两地相距176km,两车出发后0.5h相遇;②普通列车到达终点站共需2h;③普通列车的平均速度为88km/h;④动车的平均速度为250km/h.A.1个B.2个C.3个D.4个二、填空题(共5小题,每小题4分,满分20分)11.函数y=中自变量x的取值范围是.12.已知点A(3,0)和B(1,3),如果直线y=kx+1与线段AB有公共点,那么k的取值范围是.13.已知一次函数y=kx+3(k>0)的图象与两坐标轴围成的三角形的面积为3,则一次函数的表达式为.14.已知C,D两点在线段AB的垂直平分线上,且∠ACB=50°,∠ADB=86°,则∠CAD 的度数是.15.如图,在△ABC中,∠BAC=124°,分别作AC,AB两边的垂直平分线PM,PN,垂足分别是点M,N.以下说法正确的是(填序号).①∠P=56°;②∠EAF=68°;③PE=PF;④点P到点B和点C的距离相等.三、(本大题共2小题,每小题8分,满分16分)16.如图,在平面直角坐标系中,已知点A(﹣2,﹣2),B(﹣4,﹣1),C(﹣4,﹣4).(1)画出△ABC向右平移5个单位,再向上平移4个单位得到的△A1B1C1,其中点C1的坐标为;(2)在x轴上画出点P,使PA+PB最小,此时点P的坐标为.17.如图,在△ABC中,∠BAC=62°,∠B=78°,AC的垂直平分线交BC于点D.(1)求∠BAD的度数;(2)若AB=8,BC=11,求△ABD的周长.四、(本大题共2小题,每小题10分,满分20分)18.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.19.定义:关于x的一次函数y=ax+b与y=bx+a(ab≠0)叫做一对交换函数,例如:一次函数y=3x+4与y=4x+3就是一对交换函数.(1)一次函数y=2x﹣b的交换函数是;(2)当b≠﹣2时,(1)中两个函数图象交点的横坐标是;(3)若(1)中两个函数图象与y轴围成的三角形的面积为4,求b的值.五、(本大题满分10分)20.如图,在△ABC中,AB=BC,∠B=90°,AD是∠BAC的平分线,CE⊥AD于点E.求证:AD=2CE.六、(本大题共2小题,每小题12分,满分24分)21.许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A、B两种型号的口罩,共不少于5.8万只,其中A型口罩只数不少于B型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只,并且生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A型口罩或B型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?22.数学模型学习与应用:(1)学习:如图1,∠BAD=90°,AB=AD,BC⊥AC于点C,DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D;又∠ACB=∠AED=90°,可以通过推理得到△ABC≌△DAE,进而得到AC=,BC=.我们把这个数学模型称为“一线三等角”模型.(2)应用:如图2,在△ABC中,AB=AC,点D,A,E都在直线l上,并且∠BAD =∠AEC=∠BAC=α.若DE=a,BD=b,求CE的长度(用含a,b的代数式表示);(3)拓展:如图3,在(2)的条件下,若α=120°,且△ACF是等边三角形,试判断△DEF的形状,并说明理由.参考答案一、选择题(共10小题).1.C.2.D3.A.4.C.5.B.6.D.7.A.8.B.9.B.10.C.二、填空题(本大题共5小题,每小题4分,满分20分)11.函数y=中自变量x的取值范围是x≥﹣且x≠1.解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1.12.已知点A(3,0)和B(1,3),如果直线y=kx+1与线段AB有公共点,那么k的取值范围是﹣≤k≤2.解:由y=kx+1可知直线经过点(0,1),当k>0时,y=kx+1过B(1,3)时,3=k+1,解得k=2,∴直线y=kx+1与线段AB有公共点,则k≤2;当k<0时,y=kx+1过A(3,0),0=3k+1,解得k=﹣,∴直线y=kx+1与线段AB有公共点,则k≥﹣.综上,满足条件的k的取值范围是﹣≤k≤2;故答案为﹣≤k≤2.13.已知一次函数y=kx+3(k>0)的图象与两坐标轴围成的三角形的面积为3,则一次函数的表达式为y=x+3.解:一次函数y=kx+3与y轴的交点A的坐标为(0,3),则OA=3,由题意得,×OB×3=3,解得,OB=2,则点B的坐标为(﹣2,0),∴﹣2k+3=0,解得,k=,∴一次函数的表达式为y=x+3,故答案为:y=x+3.14.已知C,D两点在线段AB的垂直平分线上,且∠ACB=50°,∠ADB=86°,则∠CAD 的度数是18°或112°.解:∵C、D两点在线段AB的中垂线上,∴CA=CB,DA=DB,∵CD⊥AB,∴∠ACD=∠ACB=×50°=25°,∠ADC=∠ADB=×86°=43°,当点C与点D在线段AB两侧时,∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣25°﹣43°=112°,当点C与点D′在线段AB同侧时,∠CAD′=∠AD′C﹣∠ACD′=43°﹣25°=18°,故答案为:18°或112°.15.如图,在△ABC中,∠BAC=124°,分别作AC,AB两边的垂直平分线PM,PN,垂足分别是点M,N.以下说法正确的是①②④(填序号).①∠P=56°;②∠EAF=68°;③PE=PF;④点P到点B和点C的距离相等.解:∵PM垂直平分AC,PN垂直平分AB,∴∠PMA=∠PNA=90°,∴∠P=360°﹣90°﹣90°﹣124°=56°,①说法正确;∵∠BAC=124°,∴∠B+∠C=180°﹣124°=56°,∵PM垂直平分AC,PN垂直平分AB,∴EC=EA,FB=FA,∴∠EAC=∠C,∠FAB=∠B,∴∠EAF=∠BAC﹣∠EAC﹣∠FAB=∠BAC﹣(∠B+∠C)=124°﹣56°=68°,②说法正确;△ABC不一定是等腰三角形,∴PE与PF的大小无法确定,③说法错误;连接PC、PA、PB,∵PM垂直平分AC,PN垂直平分AB,∴PC=PA,PB=PA,∴PB=PC,即点P到点B和点C的距离相等,④说法正确,故答案为:①②④.三、(本大题共2小题,每小题8分,满分16分)16.如图,在平面直角坐标系中,已知点A(﹣2,﹣2),B(﹣4,﹣1),C(﹣4,﹣4).(1)画出△ABC向右平移5个单位,再向上平移4个单位得到的△A1B1C1,其中点C1的坐标为(1,0);(2)在x轴上画出点P,使PA+PB最小,此时点P的坐标为(﹣,0).【解答】解(1)如图所示:△A1B1C1,即为所求,点C1的坐标为(1,0);故答案为:(1,0);(2)作A点关于x轴对称点A′,则A′(﹣2,2),故设直线BA′的解析式为:y=kx+b,则,解得:,故直线BA′的解析式为:y=x+5,当y=0时,x=﹣,此时点P的坐标为:(﹣,0).故答案为:(﹣,0).17.如图,在△ABC中,∠BAC=62°,∠B=78°,AC的垂直平分线交BC于点D.(1)求∠BAD的度数;(2)若AB=8,BC=11,求△ABD的周长.解:(1)∵∠BAC=62°,∠B=78°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣62°﹣78°=40°,∵DE垂直平分AC,∴AD=CD,∴∠CAD=∠C=40°,∴∠BAD=∠BAC﹣∠CAD=62°﹣40°=22°;(2)∵AD=CD,AB=8,BC=11,∴△ABD的周长=AB+AD+BD=AB+CD+BD=AB+BC=8+11=19.四、(本大题共2小题,每小题10分,满分20分)18.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.解:猜想:CD=BE,CD⊥BE,理由如下:∵AD⊥AB,AE⊥AC,∴∠DAB=∠EAC=90°.∴∠DAB+∠BAC=∠EAC+∠BAC,即∠CAD=∠EAB,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∵∠AGD=∠FGB,∴∠BFD=∠BAD=90°,即CD⊥BE.19.定义:关于x的一次函数y=ax+b与y=bx+a(ab≠0)叫做一对交换函数,例如:一次函数y=3x+4与y=4x+3就是一对交换函数.(1)一次函数y=2x﹣b的交换函数是y=﹣bx+2;(2)当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1;(3)若(1)中两个函数图象与y轴围成的三角形的面积为4,求b的值.解:(1)由题意可得,一次函数y=2x﹣b的交换函数是y﹣bx+2,故答案为:y=﹣bx+2;(2)由题意可得,当2x﹣b=﹣bx+2时,解得x=1,即当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1,故答案为:x=1;(3)函数y=2x﹣b与y轴的交点是(0,﹣b),函数y=﹣bx+2与y轴的交点为(0,2),由(2)知,当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1,∵(1)中两个函数图象与y轴围成的三角形的面积为4,∴=4,解得b=6或b=﹣10,即b的值是6或﹣10.五、(本大题满分10分)20.如图,在△ABC中,AB=BC,∠B=90°,AD是∠BAC的平分线,CE⊥AD于点E.求证:AD=2CE.【解答】证明:延长AB、CE交于点F,∵∠ABC=90°,CE⊥AD,∠ADB=∠CDE,∴∠BAD=∠ECD,在△ABD和△CBF中,,∴△ABD≌△CBF(SAS),∴AD=CF,∵AD是∠BAC的平分线,∴∠CAE=∠FAE,在△CAE和△FAE中,,∴△CAE≌△FAE(ASA),∴CE=EF,∴AD=CF=2CE.六、(本大题共2小题,每小题12分,满分24分)21.许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A、B两种型号的口罩,共不少于5.8万只,其中A型口罩只数不少于B型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只,并且生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A型口罩或B型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?解:(1)设该厂每天能生产A型口罩x万只或B型口罩y万只.根据题意,得,解得,答:该厂每天能生产A型口罩0.8万只或B型口罩1万只.(2)设该厂应安排生产A型口罩m天,则生产B型口罩(7﹣m)天.根据题意,得,解得≤m≤6,设获得的总利润为w万元,根据题意得:w=0.5×0.8m+0.3×1×(7﹣m)=0.1m+2.1,∵m=0.1>0,∴w随m的增大而增大.∴当m=0.6时,w取最大值,最大值=0.1×6+2.1=2.7(万元).答:当安排生产A型口罩6天、B型口罩1天,获得2.7万元的最大总利润.22.数学模型学习与应用:(1)学习:如图1,∠BAD=90°,AB=AD,BC⊥AC于点C,DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D;又∠ACB=∠AED=90°,可以通过推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型称为“一线三等角”模型.(2)应用:如图2,在△ABC中,AB=AC,点D,A,E都在直线l上,并且∠BAD =∠AEC=∠BAC=α.若DE=a,BD=b,求CE的长度(用含a,b的代数式表示);(3)拓展:如图3,在(2)的条件下,若α=120°,且△ACF是等边三角形,试判断△DEF的形状,并说明理由.解:(1)∵∠1+∠2=∠2+∠D=90°,∴∠1=∠D,在△ABC和△DAE中,,∴△ABC≌△DAE(AAS),∴AC=DE,BC=AE,故答案为:DE,AE;(2)∵∠BAD=∠BAC=α,∴∠DBA+∠BAD=180°﹣α=∠BAD+∠CAE,∴∠CAE=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,∵DE=a,BD=b,∴CE=DE﹣BD=a﹣b;(3)△DEF是等边三角形,理由如下:由(2)知:△ABD≌△CAE,∴BD=AE,∠ABD=∠CAE,∵△ACF是等边三角形,∴∠CAF=60°,AB=AF,∴△ABF是等边三角形,∴∠ABD+∠ABD=∠CAE+∠CAF,即∠DBF=∠FAE,在△BDF和△AEF中,,∴△BDF≌△AEF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠AFD+∠AFE=∠AFD+∠BFD=60°,∴△DEF是等边三角形.。
沪科版八年级上册数学期末考试试卷及答案
沪科版八年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .2.在平面直角坐标系中,点()1,3P -位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.下列命题中,是假命题的是( )A .两直线平行,内错角相等B .有一个角是40o ,且腰相等的两个等腰三角形全等C .直角三角形的两个锐角互余D .到线段两端距离相等的点在线段的垂直平分线上4.现有两根木棒,长度分别为5cm 和13cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 5.在一次函数()214y m x =-+中,y 随x 的增大而增大,那么m 的值可以是( ) A .1 B .0 C .1- D .2-6.一根蜡烛长20cm ,点燃后每小时燃烧5cm 燃烧时剩下的高度h (cm )与时间t (小时)的关系图象表示是( )A .B .C .D . 7.如图ABC 中,20cm AB =,12cm AC =,点P 从B 处向A 处运动,每秒3cm ,点Q 从A 处向C 处运动,每秒2cm ,其中一个动点到达端点后,另一个点停止运动.当BPQ CQP ∠=∠时,运动时间为( )A .4sB .3.5sC .3sD .2.5s8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1-,第2次接着运动到点()2,0-,第3次接着运动到点()3,2-,…,按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .()2021,0B .()2021,0-C .()2021,1-D .()2021,2- 9.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<< B .03k <<C .04k <<D .30k -<< 10.如图,在四边形ABCD 中,AC ,BD 为对角线,AB =BC =AC =BD ,则∠ADC 的大小为( )A .120°B .135°C .145°D .150° 11.若正比例函数y =-12x 的图象经过点P (m ,1),则m 的值是( )A .-2B .-12C .12D .212.直线kx-3y =8,2x+5y =-4交点的纵坐标为0,则k 的值为( )A .4B .﹣4C .2D .-2二、填空题13.等腰三角形的一边长为3,周长为15,则该三角形的腰长是______.14.已知函数26y x =-+,当x=____时,函数的值为0.15.如图,在Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,10AB =,AD 是BAC ∠的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是__________.16.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在直线AC 上,且△OMC 的面积是△OAC 的面积的14,则点M 的坐标为_____.17.如图,D 是AB 上一点,DF 交AC 于点E ,DE =FE ,FC ∥AB ,若AB =4,CF =3,则BD =__________.三、解答题18.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)画出ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上求作一点P ,使PAB △的周长最小,并直接写出点P 的坐标.19.如图,点D 是△ABC 的BC 边上的一点,且∠1=∠2,∠3=∠4,∠BAC=66°, 求∠DAC 的度数.20.已知y 与2x +成正比例,且1x =时,6y =-.(1)求y 与x 之间的函数关系式,并建立平面直角坐标系,画出函数图象;(2)结合图象,当2y 0-<≤时,求x 的取值范围.21.游泳池常需进行换水清洗,图中的折现表示的是游泳池换水清洗过程“排水—清洗—灌水”中水量()3m y 与时间()min t 之间的函数关系式.(1)根据图中提供的信息,求整个换水清洗过程水量()3m y 与时间()min t 的函数解析式; (2)若换水清洗过程中,游泳池中水量为31200m 时,请求出此时的时间.22.我县黄墩镇有“安徽蓝莓第一镇”的美誉,截至目前,初步形成了以良种繁育、规模种植、休闲采摘、预冷保鲜、食品加工等较为完整的蓝莓产业.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗) 已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式;()2试求如何分配工人,才能使一天的销售收入最大?并求出最大值.23.如图,已知等腰ABC ,AB AC =,120BAC ∠=︒,AD BC ⊥于点D ,点P 是线段AD 上一点,点Q 是CA 延长线上一点,且PB PQ =.(1)求证:AQP ABP ∠=∠;(2)求证:AB AP AQ =+;(3)若8ACD S =△,求四边形AQBP 的面积.24.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?25.赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?参考答案1.B【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【分析】根据第四象限内的点的横坐标大于零,纵坐标小于零,可得答案.【详解】解:在平面直角坐标系中,点P的横坐标大于0,纵坐标小于0第四象限坐标的符号特征(+,-).P 位于第四象限,点(1,3)故选择:D.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.B【分析】根据平行线的性质,全等的判定,直角三角形的性质以及中垂线的性质即可得出答案.【详解】A:根据平行线的性质可知,选项A正确;B:两三角形可能一个底角为40°,一个顶角为40°,则两三角形不全等,故选项B错误;C:根据直角三角形的性质可知,两锐角相加等于90°,所以两锐角互余,故选项C正确;D:根据中垂线的性质可知,选项D正确;故答案选择:B.【点睛】本题考查的是平行线、中垂线、全等和互余等相关知识,比较简单,需要熟练掌握相关知识. 4.C【分析】设选取的木棒长为xcm,再根据三角形的三边关系求出x的取值范围,选出合适的x的值即可.【详解】解:设选取的木棒长为xcm ,∵两根木棒的长度分别为5cm 和13cm ,∴13cm-5cm <x <13cm+5cm ,即8cm <x <18cm ,∴12cm 的木棒符合题意.故选:C .【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.5.A【分析】对于,y kx b =+ 当y 随x 的增大而增大,则k >0, 利用此结论列不等式,解不等式即可得到答案.【详解】 解: 一次函数()214y m x =-+中,y 随x 的增大而增大,21m ∴->0,m ∴>12, 所以符合题意的是:1.故选:.A【点睛】本题考查的是一次函数的性质,一元一次不等式的解法,掌握以上知识是解题的关键. 6.C【分析】先根据题意求出h 与t 的函数关系式,再根据一次函数的图象特征即可得.【详解】由题意得:205h t =-,020h ≤≤,020520t ∴≤-≤,解得04t ≤≤,即h 与t 的关系式为()20504h t t =-≤≤,是一次函数图象的一部分,且h 随t 的增大而减小, 观察四个选项可知,只有选项C 符合,故选:C .【点睛】本题考查了一次函数的图象,依据题意,正确求出一次函数的解析式是解题关键. 7.A【分析】设运动时间为t 秒时,AP =AQ ,根据点P 、Q 的出发点及速度,即可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:当AP =AQ 时,∠APQ =∠AQP ,则∠BPQ =∠CQP ,设运动时间为t 秒时,根据题意得:20−3t =2t ,解得:t =4.故选:A .【点睛】本题考查了等腰三角形的性质、一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.8.C【分析】根据已知分析得出横坐标为运动次数的相反数,纵坐标为1,0,2,0,每4次一轮这一规律,进而计算即可.【详解】解:根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(−1,1),第2次接着运动到点(−2,0),第3次接着运动到点(−3,2),第4次运动到点(−4,0),第5次接着运动到点(−5,1),…,∴横坐标为运动次数的相反数,纵坐标为1,0,2,0,每4次一轮,∴经过第2021次运动后,动点P 的纵坐标为:2021÷4=505……1,故纵坐标为四个数中第1个,即为1,∴经过第2021次运动后,动点P 的坐标是:(−2021,1),故选:C .【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.9.B【分析】由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.10.D【分析】先判断出△ABC 是等边三角形,根据等边三角形的每一个内角都是60°可得∠ABC =60°,再根据等腰三角形两底角相等表示出∠ADB、∠BDC,然后根据∠ADC=∠ADB+∠BDC 求解即可.【详解】∵AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,∵AB=BC=BD,∴∠ADB=12(180°−∠ABD),∠BDC=12(180°−∠CBD),∴∠ADC=∠ADB+∠BDC,=12(180°−∠ABD)+12(180°−∠CBD),=12(180°+180°−∠ABD−∠CBD),=12(360°−∠ABC),=180°−12×60°,=150°.故选D.【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,本题主要利用了等腰三角形两底角相等,要注意整体思想的利用.11.A【分析】把点的坐标代入函数解析式,转化为关于m的一元一次方程求解即可.【详解】把点(),1m代入正比例函数,得:1 12m=-,解得2m=-.故选A.本题考查了正比例函数与点的关系,点的坐标满足函数的解析式是解题的关键.12.B【分析】根据交点的意义,确定交点坐标,代入含有k的直线的解析式即可求解.【详解】∵直线kx-3y=8,2x+5y=-4交点的纵坐标为0,∴x=-2,∴把x=-2,y=0代入直线kx-3y=8,得:-2k=8,∴k=-4,故选B.【点睛】本题考查了一次函数的交点问题,牢记交点坐标同时满足两个函数的解析式是解题的关键. 13.6【分析】分别从腰长为3与底边长为3,去分析求解即可求得答案.【详解】解:若腰长为3,则底边长为:15-3-3=9,∵3+3<9,∴不能组成三角形,舍去;若底边长为3,则腰长为:1532=6;∴该等腰三角形的腰长为:6.故答案为:6.【点睛】此题考查了等腰三角形的性质以及三角形的三边关系.注意分别从腰长为3与底边长为3去分析求解是关键.14.3【解析】把y=0代入解析式进行计算即可.【详解】y=0时,0=-2x+6,解得:x=3,即当x=3时,函数的值为0,故答案为:3.【点睛】本题考查了当函数值为0时求自变量的值,熟练掌握解题方法是解题的关键.15.24 5【分析】过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC 的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用S△ABC=12AB•CM=12AC•BC,得出CM的值,即PC+PQ的最小值.【详解】如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,AB=10,∠ACB=90°,BC=8,S△ABC=12AB•CM=12AC•BC,∴CM=AC BCAB=245,即PC+PQ的最小值为245.【点睛】本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点P和Q的位置.16.(1,5)或(-1,7)【分析】利用待定系数法求出直线AC 的解析式,得到OC 、OB 的长.设M 的坐标为(),6m m -+,用OC 作底,用含m 的式子表示OMC 和OAC 的面积,利用已知条件14OMC OAC S S =△△求得m 的值,即可得到M 的坐标.【详解】设直线AC 的解析式为:y kx b =+()()064,2C A ,,642b k b =⎧∴⎨+=⎩,解得:16k b =-⎧⎨=⎩∴直线AC 的解析式为:6y x =-+∴B 点的坐标为:()6,0M 在直线AC 上∴设M 点坐标(),6m m -+在OMC 中,OC=6,M 到OC 的距离1h m = ∴1116322OMC S OC h m m =⋅⋅=⨯⋅=在OAC 中,OC=6,A 到OC 的距离24h = ∴211641222OAC S OC h =⋅⋅=⨯⨯= 14OMC OAC S S =13124m ∴=⨯1m =11m =或21m =-M ∴的坐标为(1,5)或(-1,7).故答案为:(1,5)或(-1,7).【点睛】本题考查了待定系数法求一次函数解析式及三角形的面积求法.利用待定系数法求解一次函数解析式:①设出一次函数解析式的一般形式;②把已知条件代入解析式,得到关于待定系数的方程组;③解方程组,求出待定系数的值,代入解析式得到一次函数解析式. 17.1【分析】根据平行线的性质,得出∠A=∠FCE ,∠ADE=∠F ,根据全等三角形的判定,得出△ADE ≌△CFE ,根据全等三角形的性质,得出AD=CF ,根据AB=4,CF=3,即可求线段DB 的长.【详解】∵CF ∥AB ,∴∠A=∠FCE ,∠ADE=∠F ,在△ADE 和△FCE 中A FCE ADE F DE FE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADE ≌△CFE (AAS ),∴AD=CF=3,∵AB=4,∴DB=AB-AD=4-3=1.故答案为1.【点睛】此题考查全等三角形的性质和判定,平行线的性质的应用,能判定△ADE ≌△FCE 是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.18.(1)见解析;(2)见解析;P ()2,0【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可得;(2)作点A 关于x 轴的对称点,再连接A′B ,与x 轴的交点即为所求.(1)如图所示,111A B C △即为所求.(2)如图所示,点P 即为所求,其坐标为()2,0.【点睛】本题主要考查作图−轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.19.28°【分析】根据三角形的外角和内角和性质计算即可得出答案.【详解】解:由图和题意可知:∠BAC=180°-∠2-∠3 又∠3=∠4=∠1+∠2,∴66°=180°-∠2-(∠1+∠2)∵∠1=∠2∴66°=180°-3∠1,即∠1=38°∴∠DAC=∠BAC-∠1=66°-38°=28°【点睛】本题考查的是三角形,外角定理是三角形中求角度的常用定理,需要熟练掌握.20.(1)24y x =--,图见解析;(2)21x -≤<-(1)根据y与x+2成正比例,且x=1时,y=−6可确定解析式并能画出图象.(2)根据图象和y的取值范围可求出x的取值范围.【详解】x 成正比例,解:(1)∵y与2∴设y=k(x+2),∵x=1时,y=−6.∴−6=k(1+2)k=−2.∴y=−2(x+2)=−2x−4故y与x之间的函数关系式为:y=−2x−4.当x=0时,y=-4;当y=0时,x=-2;∴图象过点(0,−4)和(−2,0)故图像如图所示:;(2)由图像及解析式得:当y=0时,x=-2当y=-2时,x=-1故当−2<y≤0时,x的取值范围−2≤x<−1.【点睛】本题考查待定系数法求一次函数及图象的性质;解题关键是掌握正比例函数的一般式及一次函数图像的性质.21.(1)排水:201500y t =-+(0≤t <75);清洗:0y =(75≤t <95);灌水:10950y t =-(95≤t ≤245);(2)15min 或215min ;【分析】(1)根据图象上点的坐标利用待定系数法分别得出排水阶段解析式,以及清洗阶段:y =0和灌水阶段解析式即可;(2)根据(1)中所求解析式,把y=1200代入,即可得出答案.【详解】解:(1)排水阶段:设解析式为:y =kt +b ,图象经过(0,1500),(25,1000),则:1500251000b k b =⎧⎨+=⎩,解得:150020b k =⎧⎨=-⎩,故排水阶段解析式为:y =﹣20t +1500,当y =0时,t =75,故0≤t <75,清洗阶段:y =0(75≤t <95),灌水阶段:设解析式为:y =at +c ,图象经过(195,1000),(95,0),则:1951000950a c a c +=⎧⎨+=⎩,解得:10950a c =⎧⎨=-⎩,灌水阶段解析式为:y =10t ﹣950(95≤t ≤245);(2)∵排水阶段解析式为:y =﹣20t +1500;∴y =1200时,1200=﹣20t +1500,解得:t =15,∵灌水阶段解析式为:y =10t ﹣950,∴y =1200时,1200=10t ﹣950,解得:t =215,在换水清洗过程中,当时间为15分钟或215分钟时,游泳池中水量为31200m.【点睛】此题主要考查了待定系数法求一次函数解析式以及图象上点的坐标求法,根据图象得出正确信息是解题关键.22.(1)y=-350x+63000;(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.【分析】(1)根据“总销售收入=总销售量×单价”即可得出答案;(2)由采摘的蓝莓数量要大于加工的蓝莓数量得出x的取值范围,再结果(1)中求出的y 和x的函数关系式,即可得出答案.【详解】解:(1)根据题意得:y=[70x-(20-x)×35]×40+(20-x)×35×130=-350x+63000答:y与x的函数关系式为y=-350x+63000.(2)∵70x≥35(20-x)∴203 x≥∵x为正整数,且x≤20∴7≤x≤20∵y=-350x+63000中k=-350<0∴y的值随着x的增大而减小∴当x=7时,y取最大值,最大值为-350×7+63000=60550答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.【点睛】本题考查的是一次函数的应用,根据题意写出函数解析式是解决本题的关键,结合函数图像和性质可求最大最小值.23.(1)见解析;(2)见解析;(3)16【分析】(1)由已知可证∠ABC=∠ACB,连接PC可证明∠PBC=∠PCB,从而可得∠PBA=∠PCA,再证PQA PCQ∠=∠即可得到结论;(2)在AB 上截取AM=AQ ,证明△AMQ 是等边三角形,得AQ=MQ ,再证明∠AQP=∠BQM ,再根据ASA 证明△AQP MQB ≅∆得AP=MB ,则可证明结论;(3)过点B 作BG ⊥AQ 于G ,根据S 四边形APBQ =S △ABP +S △ABQ ,利用三角形的面积公式即可求解.【详解】(1)连接PC ,如图,∵AB AC =,AD BC ⊥,∴A ABC CB =∠∠,AD 是BC 边的垂直平分线,∴PB PC =,∴PBC PCB ∠=∠,∴PBA PCA ∠=∠∵PB=PQ ,∴PQ=PC ,∴PQA PCQ ∠=∠,∴AQP ABP ∠=∠.(2)如图,在AB 上截取AM=AQ ,∵∠BAC=120°,AB=AC ,AD ⊥BC ,∴60BAQ ∠=︒,∠BAD=60°,∴△AMQ 是等边三角形,∠QAP=120°,∴∠QMA=∠AQM=60°,QM=QA ,∴∠AQP+∠PQM=60°,∠BMQ=120°,∴∠BMQ=∠PAQ ,∵AQP ABP ∠=∠,∴∠QAM=∠QPB=60°,∵PB PQ =,∴△BPQ 是等边三角形,∴∠BQP=∠QPB=∠BQM+∠MQP=60°,∴∠AQP=∠BQM ,在△PQA 和△BQM 中,BMQ PAQQA QMAQP BQM∠=∠⎧⎪=⎨⎪∠∠⎩= ,∴△AQP MQB ≅∆,∴AP MB =,∴BM AM AB +=,∴AB AP AQ =+,(3)如图,过点B 作BG ⊥AQ 于点G ,∴∠60GAB DAB =∠=︒,∠90ADB AGB =∠=︒,又AB=AB ,∴△ADB AGB ≅∆,∴BG BD CD ==, ∴1=82ACD S AD CD ∆⋅=,1122ABP APBQ ABQ S S AQ BG PA CD S ∆∆=++⋅⋅=四边形,=1()2BD AQ AP ⋅+=12BD AC =12BG AC ⋅ =ABC S ∆=2ACD S ∆16=.【点睛】本题主要考查了等腰三角形的判定与性质、等边三角形的判定与性质以及全等三角形的判定与性质,正确作出辅助线是解决问题的关键.24.(1)商品的进价为40元,乙商品的进价为80元.(2)有三种进货方案:方案1,甲种商品30件,乙商品70件;方案2,甲种商品31件,乙商品69件;方案3,甲种商品32件,乙商品68件.方案1可获得最大利润,最大=4700.【解析】分析:(1)设甲商品的进价为x 元,乙商品的进价为y 元,就有1x y 2=,3x+y=200,由这两个方程构成方程组求出其解即可.(2)设购进甲种商品m 件,则购进乙种商品(100﹣m )件,根据不少于6710元且不超过6810元购进这两种商品100的货款建立不等式,求出其值就可以得出进货方案,设利润为W 元,根据利润=售价﹣进价建立解析式就可以求出结论.解:(1)设甲商品的进价为x 元,乙商品的进价为y 元,由题意,得 1x y {23x y 200=+=,解得:x 40{y 80==. 答:商品的进价为40元,乙商品的进价为80元.(2)设购进甲种商品m 件,则购进乙种商品(100﹣m )件,由题意,得()()40m 80100m 6710{40m 80100m 6810+-≥+-≤,解得:. ∵m 为整数,∴m=30,31,32.∴有三种进货方案:方案1,甲种商品30件,乙商品70件;方案2,甲种商品31件,乙商品69件;方案3,甲种商品32件,乙商品68件.设利润为W 元,由题意,得()W 40m 50100m 10m 5000=+-=-+,∵k=﹣10<0,∴W 随m 的增大而减小.∴m=30时,W 最大=4700.25.(1)3000米;(2)甲龙舟队先出发,乙龙舟队先到达终点;(3)y=200x ﹣1000(5≤x≤20);(4)甲龙舟队出发53或10或15或703分钟时,两支龙舟队相距200米 【详解】试题分析:(1)根据函数图象即可得出起点A 与终点B 之间的距离;(2)根据函数图象即可得出甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y 与x 函数关系式为y =kx ,把(25,3000)代入,可得甲龙舟队的y 与x 函数关系式;设乙龙舟队的y 与x 函数关系式为y =ax +b ,把(5,0),(20,3000)代入,可得乙龙舟队的y 与x 函数关系式;(4)分四种情况进行讨论,根据两支龙舟队相距200米分别列方程求解即可. 试题解析:解:(1)由图可得,起点A 与终点B 之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y 与x 函数关系式为y =kx ,把(25,3000)代入,可得3000=25k ,解得k =120,∴甲龙舟队的y 与x 函数关系式为y =120x (0≤x ≤25),设乙龙舟队的y 与x 函数关系式为y =ax +b ,把(5,0),(20,3000)代入,可得:05300020a b a b =+⎧⎨=+⎩,解得:2001000a b =⎧⎨=-⎩,∴乙龙舟队的y 与x 函数关系式为y =200x ﹣1000(5≤x ≤20);(4)令120x =200x ﹣1000,可得x =12.5,即当x =12.5时,两龙舟队相遇,当x <5时,令120x =200,则x =53(符合题意); 当5≤x <12.5时,令120x ﹣(200x ﹣1000)=200,则x =10(符合题意);当12.5<x ≤20时,令200x ﹣1000﹣120x =200,则x =15(符合题意);当20<x≤25时,令3000﹣120x=200,则x=703(符合题意);综上所述,甲龙舟队出发53或10或15或703分钟时,两支龙舟队相距200米.点睛:本题主要考查了一次函数的应用,解决问题的关键是掌握待定系数法求函数解析式的方法,解题时注意数形结合思想以及分类思想的运用.。
沪科版八年级数学上册期末试卷及答案六套
(3)ACE BD八年级数学(上学期)期末试题(一)姓名__________得分________一、填空题:(本题满分30分,每小题3分)1、若点(x ,y)的坐标满足y =2x - , 则这个点在 ____ 象限或_____。
2、点(5,-3)左平移3个单位,下平移2个单位坐标后的坐标是_______3、如图(1), 直线L, m 的解析式分别是 ___________________________4、某长途汽车客运公司规定按如图方法收取旅客行李费,问:旅客最多可免费携带行李_______kg ?5、函数 y =1x -+ (x-2)°中,x 的取值范围是_______________. 6、若10个数的平方和是370,方差是33那么这10个数的平均数为_______ 7、在∆ABC 中,BC = 10,AB = 6, 那么 AC 的取值范围是______________. 8、说明“对应角相等的两个三角形全等“是假命题的反例是______________________________________________________________ 9、腰长为12cm ,底角为15︒的等腰三角形的面积为____________。
10、上图(3),在∆ABC 中,∠ACB = 90︒,∠B= 30︒, DE 垂直平分BC ,BD = 5, 则∆ACD 的周长为_________。
二、选择题:(本题满分18分,每小题3分)1、若 y -1 与 2x +3 成正比例,且 x = 2 时, y = 15,则 y 与 x 间的函数解析式是 ( )A :y =2x +3B :y = 4x + 7C :y =2x +2D :y =2x +152、若函数y = ax + b ( a ≠0) 的图象如图(4)所示不等式ax + b ≥0的解集x(4) oy = ax+b22 yAEBCD(5)ABD C y (元)是 ( )A :B :x ≤C :x = 2D :x ≥ - b a3,若量得∠∠D =∠E = 35︒, 那么∠A = ( ) A :35︒ B : 45︒ C :40︒ D :50︒ 4、下列命题是真命题的是: ( )A : 面积相等的两个三角形全等B :三角形的外角和是360︒C : 有一个角是30︒的等腰三角形底角为75︒D :角平分线上的点到角的两边上的点的距离相等5、直线y = x , y = 3 , x = - 1所围成的三角形面积是 ( ) A :9 B : 5 C :6 D :86、三角形三内角平分线的交点到( )距离相等A :三顶点B :三边C :三边中点D :三条高三、证明题:(本题满分16分,每小题8分)1、已知:如图,在三角形ABC 中AB = AC ,O 是三角形ABC 内一点,且OB = OC , 求证:AO ⊥ BC2、如图,在∆ABC 中,AB = AC, ∠BAC =120︒,且BD = AD, 求证:CD = 2BD四、(本题满分20分,每小题10分)1、下图是某企业职工养老保险个人月缴费y(元),随个人月工资x (百元)变化的图象:请你根据图象解答问题:(1) 张工程师5月份工资3500元,这个月他应缴养老金多少元?(2) 李师傅5月份缴养老金80元?他这个 月工资多少元?2、已知等腰三角形周长为24cm ,若底边长为y(cm),一腰长为x(cm), (1) 写出y 与x 的函数关系式 (2) 求自变量x 的取值范围 (3) 画出这个函数的图象五、作图题(本题满分8分)求作一点P ,使PC = PD, 并且使点P 到AOB 两边的距离相等 (保留痕迹,不写作法)六、(本题满分8分)一组数据从小到大排列为a, 3, 4, 6, 7, 8, b ,其平均数为6,极差是8,求这组数据的方差答案: 一、1、第二象限 原点2、 (2,-5)3、L :y = x +3 m : y = - 2x4、 305、 x > 1且 x ≠ 26、 27、 4< x < 168、边长不等的两个等边三角形 9、 36 10、 15二、 1、B 2、B 3、C 4、B 5、D 三、提示:1、证明AO 是等腰三角形的顶角平分线2、利用直角三角形中30︒角所对的边等于斜边的一半四、1、(1)200 (2) 10002、(1)y = -2x + 24 (2)6< x < 12 五、作∠AOB 的平分线与CD 的垂直平分线相交,交点为P六、 6沪科版八年级数学第一学期期末测试题(二)一、认真选一选(本题共10小题,每题3分,共30分)1、函数12+=x y 中自变量x 的取值范围是 【 】 A .21≥x B. 0≥x C. 21-≥x D. 21->x 2、已知点P (a,-b )在第一象限,则直线y=ax+b 经过的象限为 【 】 A .一、二、三象限 B..一、三、四象限 C .二、三、四象限D .一、二、四象限3、下列一次函数中,y的值随着x的值增大而减小的是【】A.y=x B.y=x+1 C.y=x-1 D.y=-x+1 4、一个等腰三角形,周长为9,其余各边均为整数,则腰长为【】A.4或3或2 B. 4或3 C.4 D.35、如图,已知点P到BE、BD、AC的距离恰好相等,则P点的位置:①在∠B的平分线上②在∠DAC的平分线上③在∠ECA的平分线上④恰好是∠B、∠DAC、∠ECA的三条角平分线的交点。
沪科版八年级上册数学期末测试卷及含答案
沪科版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是()A.x<﹣1B.x>2C.﹣1<x<0,或x>2D.x<﹣1,或0<x <22、函数y=与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.3、如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A. B. C.9 D.4、如图,在平面直角坐标系中,点A的坐标为(2,7),点B的坐标为(5,0),点C是y轴上一个动点,且点A,B,C三点不在同一条直线上,当△ABC 的周长最小时,点C的坐标是()A. B. C. D.5、如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C. P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点6、在平面直角坐标系中,点A(5,6)与点B关于x轴对称,则点B的坐标为( )A.(5,6)B.(-5,-6)C.(-5,6)D.(5,-6)7、“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A、B、C、D四地.如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BD=BC=30m.从A地到D地的距离是()A.30 mB.20 mC.30 mD.15 m8、在数学课上,同学们在练习画边上的高时,出现下列四种图形,其中正确的是()A. B. C.D.9、已知如图,中,,,D为线段上一点,将线段绕点A逆时针旋转得到线段,F为中点,直线交射线于点G.下列说法:①若连接,则;②;③;④若,则.其中正确的有()A.1个B.2个C.3个D.4个10、如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x的解集是()A.0<x<B. <x<6C. <x<4D.0<x<311、下列函数中,是一次函数的有()个.①y=x;②y=;③y=+6;④y=3﹣2x;⑤y=3x2.A.1B.2C.3D.412、如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF,EG分别交BC,DC于点M,N,若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为( )A. B. C. D.13、方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.15C.12或15D.17或1114、如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是( )A.HLB.ASAC.AASD.SAS15、已知点(m,﹣2)关于原点对称的点落在直线y=x﹣3上,则m的值为()A.﹣5B.﹣2C.1D.2二、填空题(共10题,共计30分)16、如图,△ABC中,∠C=90°,AC=BC,AD=16cm,BE=12cm,点P是斜边AB 的中点.有一把直角尺MPN,将它的顶点与点P重合,将此直角尺绕点P旋转,与两条直角边AC和CB分别交于点D和点E.则线段PD和PE的数量关系为________,线段DE=________ cm。
(完整)沪科版数学八年级上学期期末试卷(答案)
八年级数学试题一、选择题(本题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点P(-1,4)一定在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4) 3.一次函数y=﹣2x ﹣3不经过 ( ) A .第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4.下列图形中,为轴对称图形的是 ( ) 5.函数y=21x 的自变量x 的取值范围是 ( ) A .x≠2 B. x <2 C. x≥2 D. x >26在△ABC 中,∠A ﹦31∠B ﹦51∠C ,则△ABC 是 ( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定7.如果一次函数y ﹦kx ﹢b 的图象经过第一象限,且与y 轴负半轴相交,那么( ) A. k ﹥0,b ﹥0 B. k ﹥0,b ﹤0 C. k ﹤0,b ﹥0D. k ﹤0, b ﹤08.如图,直线y ﹦kx ﹢b 交坐标轴于A ,B 两点,则不等式kx ﹢b ﹥0的解集是( ) A. x ﹥-2 B. x ﹥3 C. x ﹤-2 D. x ﹤39.如图所示,OD=OB,AD ∥BC,则全等三角形有 ( ) A. 2对 B. 3对 C. 4对 D. 5对 10. 两个一次函数y =-x +5和y =﹣2x +8的图象的交点坐标是( ) A.(3,2) B.(-3,2) C.(3,-2) D.(-3,-2)得分评卷人二、填空题(本题共4小题,每小题5分,满分20分)11.通过平移把点A(2,-1)移到点A’(2,2),按同样的平移方式,点B(-3,1)移动到点B’,则点B’的坐标是.12.如图所示,将两根钢条A A’、B B’的中点O连在一起,使A A’、B B’可以绕着点O自由转动,就做成了一个测量工具,则A’ B’的长等于内槽宽AB,那么判定△OAB≌△OA’ B’的理由是.13.2008年罕见雪灾发生之后,灾区急需帐篷。
(完整word版)沪科版八年级上册数学期末测试卷——含答案(免费)
x(h)4321摩托车汽车y(km)180200(4)(3)(2)(1) 八年级上期末试卷(制卷严安)一、选择题1.若某四边形顶点的横坐标变形为原来的相反数,而纵坐标不变,此时图形位置也不变,则这个四边形一定不是( )A .长方形B .直角梯形C .正方形D .等腰梯形2.一辆汽车和一辆摩托车分别从A 、B 两地去同一城市,它们离A 地的路程随时间变化的图像如图所示,则下列结论错误的是( )A .摩托车比汽车晚到1hB .A 、B 两地的路程为20kmC .摩托车的速度为45km/hD .汽车的速度为60 km/h3、如图,已知直线y 1=x +m 与y 2=kx -1相交于点P (-1,1),则关于x 的不等式x +m >kx -1的解集是 ( )A .x >1B .x <1C .x >-1D .x <-14.若一个三角形三个内角度数的比为2:3:4,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形5.若一次函数y =kx +b ,当x 得值减小1,y 的值就减小2,则当x 的值增加2时,y 的值 ( )A .增加4B .减小4C .增加2D .减小26.如图,在长方形ABCD 中,AB =4,BC =3,点P 从起点B 出发,沿BC 、CD 逆时针方向终点D 匀速运动,设点P 所走过的路程为x ,则线段AP 、AD 与长方形的边所围成的图形的面积为y ,则下列图像中能大致反映y 与x 函数关系的是( )7.下面是某条公共汽车线路收支差额y 与乘客量x 的图像(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出两条建议:①不改变车标价格,减少支出费用;②不改变支出费用,提高车票价格.下面给出四个图像(实线表示改进后的收支差额,虚线表示改进前的收支差额),则下列叙述正确的是( )A .图像(1)反映了建议②,图像(3)反映了建议①B .图像(1)反映了建议①,图像(3)反映了建议②C .图像(2)反映了建议①,图像(4)反映了建议② D .图像(4)反映了建议①,图像(2)反映了建议②F E D CB A 第8题图8.△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6,则△DEB 的周长是( )A 、3B 、4C 、6D 、22 9.将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95°10.将一副三角板按图中的方式叠放,则角α等于( )A .75°B 60°C .45°D .30°二、填空题11.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1),N (0,1),将线段MN 平移后得到线段M ′,N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为12.如图,一次函数y =kx +b 的图像如图所示,当y <3时,x 的取值范围是13.△ABC 中,AB =AC =x ,BC =6,则腰长x 的取值范围是 .14.已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个. 三、解答题15.你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O 上下转动,立柱OC 与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA ′、BB ′有何数量关系?为什么?16.某家庭装修房屋,由甲乙两个装修公司合作完成先由甲装修公司单独装修3天,剩下的工作由甲乙两个公司合作完成.工程进度满足如图所示的函数关系(x 为天数,y 为工作量),该家庭共支付工资8000元,若按完成工作量的多少支付工资,装修完后甲装修公司应得多少元?四、17. 已知:在梯形ABCD 中,AB //CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F . 求证:AB =CF . 23C O B′A′B A 530.50.25A B C E D 第8题图 B C D 第9题图α第10题图F ED C B A18.如图,在△ABC 中,D 是BC 边上的点(不与B 、C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE ,请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其它字母),并给出证明.(1)你添加的条件是: (2)证明:五、19.如图,∠BAC =∠ABD ,AC =BD ,点O 是AD 、BC 的交点,点E 是AB 的中点,试判断OE 和AB 的位置关系,并给出证明.20.(1)点(0,7)向下平移2个单位后的坐标是 ,直线y =2x +7向下平移2个单位后的解析式是 .(2)直线y =2x +7向右平移2个单位后的解析式是 .(3)如图,已知点C (a ,3)为直线y =x 上在第一象限内一点,直线y =2x +7交y 轴于点A ,交x 轴于点B ,将直线AB 沿射线OC 方向平移|OC |个单位,求平移后的直线解析式.EO CD B A X OA B C(a ,3)y六、21.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?七、22.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。
八年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)(一)
八年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()2.已知正比例函数y=(k+3)x,若y随x的增大而减小,则k的取值范围是() A.k>-3B.k<-3C.k>3D.k<33.函数y=x-2x-3的自变量x的取值范围是()A.x≠3B.x>0且x≠3C.x≥0且x≠3D.x≥2且x≠3 4.若长度分别是a,5,9的三条线段能组成一个三角形,则a的值可以是() A.15B.14C.8D.45.若点M(2-a,3a+6)到两坐标轴的距离相等,则点M的坐标为() A.(6,-6)B.(3,3)C.(-6,6)或(-3,3)D.(6,-6)或(3,3)6.下列命题:①内错角相等;②两个锐角的和是钝角;③a,b,c是同一平面内的三条直线,若a∥b,b∥c,则a∥c;④a,b,c是同一平面内的三条直线,若a⊥b,b⊥c,则a∥c,其中真命题的个数是()A.1个B.2个C.3个D.4个7.如图,已知∠1=∠2,添加一个条件,使得△ABC≌△ADC,下列条件添加错误的是()(第7题)A .∠B =∠D B .BC =DC C .AB =AD D .∠3=∠48.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.下列说法错误的是()A .该汽车的蓄电池充满电时,电量是60千瓦时B .蓄电池剩余电量为35千瓦时时汽车已行驶了150千米C .当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时D .25千瓦时的电量,汽车能行驶150km(第8题)(第9题)(第10题)9.如图,△ABC 的面积是2,AD 是△ABC 的中线,AF =13AD ,CE =12EF ,则△CDE 的面积为()A.29 B.16 C.23 D.4910.如图,在等边三角形ABC 中,BD 是中线,点P ,Q 分别在AB ,AD 上,且BP =AQ =QD =1,动点E 在BD 上,则PE +QE 的最小值...为()A .2B .3C .4D .5二、填空题(本大题共4小题,每小题5分,满分20分)11.如果点A (-3,a )和点B (b ,2)关于x 轴对称,那么ab 的值是____________.(第12题)12.如图,在△ABC 中,BD 是一条角平分线,CE 是AB 边上的高线,BD ,CE相交于点F,若∠EFB=60°,∠BDC=70°,则∠A=_______________________________________.13.在一次函数y=1x+3的图象上,到y轴的距离等于2的点的坐标是2____________.(第14题)14.如图,△ADB,△BCD都是等边三角形,E,F分别是AB,AD上两个动点,满足AE=DF.BF与DE交于点G,连接CG.(1)∠EGB的度数是____________;(2)若DG=3,BG=5,则CG=____________.三、(本大题共2小题,每小题8分,满分16分)15.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移5个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是什么?(第15题) 16.从①∠1+∠2=180°,②∠3=∠A,③∠B=∠C三个条件中选出两个作为题设,另一个作为结论可以组成三个命题.从中选择一个真命题,写出已知、求证,并证明.如图,已知:________,求证:________.(填序号)(第16题)证明:四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=kx+b的图象经过点(-2,10),(3,0)和(1,m).(1)求m的值;(2)当-4≤y≤8时,求x的取值范围.18.如图,在Rt△ABC中,∠C=90°,请用尺规作图:(不要求写作法,保留作图痕迹)(1)在线段AB上找一点E,使得E点到边BC的距离与到边AC的距离相等.(2)在线段BC 上找一点D ,使得S △ABD =S △ACD.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.下面是某数学兴趣小组在项目学习课上的方案策划书,请仔细阅读,并完成相应的任务.项目课题探究用全等三角形解决“不用直接测量,得到高度”的问题问题提出墙上点A 处有一灯泡,在无法直接测量的情况下,如何得到灯泡的高度(即OA 的长,灯泡的大小忽略不计)?项目图纸解决过程①标记测试直杆的底端点D ,测量OD 的长度.②找一根长度大于OA 的直杆,使直杆斜靠在墙上,且顶端与点A 重合.③使直杆顶端缓慢下滑,直到∠DCO =∠ABO .④记下直杆与地面的夹角∠ABO .项目数据……任务:(1)由于项目记录员粗心,记录排乱了“解决过程”,正确的顺序应是()A .②→③→①→④B .③→④→①→②C .①→②→④→③D .②→④→③→①(2)请你说明他们作法的正确性.20.如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°.(1)求证:AC=BD;(2)AC与BD相交于点P,求∠APB的度数.(第20题)六、(本题满分12分)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式(k-3)x+b>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线,交y=3x于点N,当MN=2DO时,求M点的坐标.(第21题)七、(本题满分12分)22.要从甲、乙两仓库向A,B两地运送水泥.已知甲仓库可运出100t水泥,乙仓库可运出80t水泥.A地需70t水泥,B地需110t水泥.两仓库到A,B两地的路程和运费如下表:路程/km运费/[元/(t·km)]甲仓库乙仓库甲仓库乙仓库A地2015 1.2 1.2B地252010.8(1)设从甲仓库运往A地水泥x t,求总运费y关于x的函数表达式,并画出图象.(2)当从甲仓库运往A地多少吨水泥时,总运费最省?最省的总运费是多少?八、(本题满分14分)23.如图,△ABC是边长为12cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,其中点P运动的速度是1cm/s,点Q 运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t的值;若不能,请说明理由.(3)当t为何值时,△BPQ是直角三角形?(第23题)答案一、1.A 2.B3.C4.C5.D6.B7.B8.D9.A 10.B 思路点睛:作点P 关于BD 的对称点P ′,连接P ′Q 交BD 于E ,此时PE+EQ 的值最小.二、11.612.40°13.(2,4)或(-2,2)14.(1)60°(2)8三、15.解:(1)如图,△A 1B 1C 1即为所求.(第15题)(2)如图,△A 2B 2C 2即为所求.(3)(m -5,-n ).16.解:(答案不唯一)①②;③∵∠1+∠2=180°,∴AD ∥EF ,∴∠3=∠D .∵∠3=∠A ,∴∠A =∠D ,∴AB ∥CD ,∴∠B =∠C .四、17.解:(1)∵一次函数y =kx +b 的图象经过点(-2,10),(3,0),∴2k +b =10,k +b =0,=-2,=6,∴一次函数的表达式为y =-2x +6,∴m =-2×1+6=4.(2)∵-2<0,∴y 随x 的增大而减小.当y =-4时,-4=-2x +6,解得x =5;当y =8时,8=-2x +6,解得x =-1.∴当-4≤y ≤8时,x 的取值范围为-1≤x ≤5.18.解:(1)如图,点E 为所作.(第18题)(2)如图,点D为所作.五、19.解:(1)D(2)在△ABO和△DCO ∠AOB=∠DOC,∠ABO=∠DCO,AB=DC,∴△ABO≌△DCO,∴OA=OD.即测量OD的长度,就等于OA的长度,即点A的高度.20.(1)证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD.∵OA=OB,OC=OD,∴△AOC≌△BOD,∴AC=BD.(2)解:设AC与BO交于点M,则∠AMO=∠BMP.∵△AOC≌△BOD,∴∠OAC=∠OBD,∴180°-∠OAC-∠AMO=180°-∠OBD-∠BMP,∴∠APB=∠AOM=60°.六、21.解:(1)当x=1时,y=3x=3,∴C点坐标为(1,3).直线y=kx+b经过(-2,6)和(1,3),-2k+b=6,k+b=3,k=-1,b=4.(2)x<1.(3)由(1)知,直线AB的表达式为y=-x+4,当x=0时,y=-x+4=4,∴D点坐标为(0,4),∴OD=4.设点M的横坐标为m,则M(m,-m+4),N(m,3m),∴MN=3m-(-m+4)=4m-4.∵MN=2DO,∴4m-4=8,解得m=3,∴M点坐标为(3,1).11七、22.解:(1)由题意得y =1.2×20x +1×25×(100-x )+1.2×15×(70-x )+0.8×20×[80-(70-x )]=-3x +3920,即所求的函数表达式为y =-3x +3920,其中0≤x ≤70,其图象如图所示.(第22题)(2)当x =70时,y 的值最小.∴当从甲仓库运往A 地70t 水泥时,总运费最省,最省的总运费为3710元.八、23.解:(1)当点Q 到达点C 时,PQ 与AB 垂直.理由如下:∵AB =BC =AC =12cm ,∴当点Q 到达点C 时,t =122=6,∴AP =6×1=6(cm),∴点P 为AB 的中点.∵△ABC 是等边三角形,∴AC =BC ,∴PQ ⊥AB .(2)能.∵△BPQ 是等边三角形,∴BP =PQ =BQ .由题意得AP =t cm ,BQ =2t cm ,∴BP =(12-t )cm ,∴2t =12-t ,解得t =4.∴当t =4时,△BPQ 是等边三角形.(3)易知AP =t cm ,BQ =2t cm ,BP =(12-t )cm.当∠BQP =90°时,∵∠PBQ =60°,∴∠BPQ =30°,∴BQ =12BP ,即2t =12(12-t ),解得t =2.4;当∠BPQ =90°时,同理可得12×2t =12-t ,解得t =6.综上所述,当t =2.4或t =6时,△BPQ 是直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(沪科版)(上)期末测试卷考试时间:120分钟 满分150分一、精心选一选(本大题共10小题,每小题4分,共40分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题目后的括号内. 1、下列各条件中,能作出惟一的ABC ∆的是 ( ) A 、AB=4,BC=5,AC=10 B 、AB=5,BC=4 40A ︒∠= C 、90A ︒∠=,AB=8 D 、60A ︒∠=,50B ︒∠= ,AB=52、在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ). A 、 4cm B 、 5cm C 、9cm D 、 13cm3、李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )4、下列语句不是命题的是………………………………………………( )A 、x 与y 的和等于0吗?B 、不平行的两条直线有一个交点C 、两点之间线段最短D 、对顶角不相等。
5、在下图中,正确画出AC 边上高的是( ).(A ) (B ) (C ) (D ) 6、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b < 7、在以下四个图形中。
对称轴条数最多的一个图形是( ).8、如图(8),已知在△ABC 中,AD 垂直平分BC ,AC=EC ,点B 、D 、C 、E 在同一直线上,则BBBBEE A B C D下列结论○1AB=AC ○2∠CAE=∠E ○3AB+BD=DE ○4∠BAC=∠ACB 正确的个数有( )个A 、1B 、2C 、3D 、49、已知如图(9),AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( ) A 、BD+ED=BC B 、DE 平分∠ADB C 、AD 平分∠EDC D 、ED+AC>AD10、如图(10),在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕点P 旋转时,下列结论错误的有( )A 、EF=APB 、△EPF 为等腰直角三角形C 、AE=CFD 、12ABC AEPF S SΔ四边形二、细心填一填(本大题共6小题,每小题5分,共30分)把答案直接写在题中的横线上. 11、写一个图象交y 轴于点(0,-3),且y 随x 的增大而增大的一次函数关系式________ . 12、如图(12)在等腰△ABC 中,AB=BC ,∠A=360,BD 平分∠ABC ,问该图中等腰三角形有___个13、如图13,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”。
14、如图(14),在RT △ABC 中,∠A=900,BD 平分∠ABC 交AC 于D ,S △BDC =4,BC=8,则AD=___15、若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.图(8)B A图(9)ECDBA图(10)FEPCBA图(12)DCBA图(13)E DCBA图(14)DCBAABCD x 第16题1234551015206t/时s/千米l l 1216、如图(16),△ABC 边BC 长是10,BC 边上的高是6cm,D 点在BC 上运动,设BD 长为x,请写出△A CD 的面积y 与x 之间的函数关系式: __________,自变量x 的取值范围是________ 。
三、专心解一解,解答题应写出文字说明、演算步骤17、(本小题8分)判断下列命题的真假,若是假命题,举出反例.(1)若两个角不是对顶角,则这两个角不相等; (2)若ab=0,则a+b=0.18、(本小题9分)已知:E 是AB 、CD 外一点,∠D=∠B+∠E ,求证:AB ∥CD 。
19、(本小题9分)如图,1l 反映了甲离开A 的时间与离A 地的距离的关系,2l 反映了乙离开A 地的时间与离A 地的距离之间的关系,根据图象填空:(1)当时间为2小时时,甲离A 地__________ 千米,乙离A 地__________千米。
(2)当时间__________ 时,甲、乙两人离A 地距离相等。
(3)当时间 __________ 时,甲在乙的前面,当时间__________时,乙超过了甲.(4)1l 对应的函数表达式为 __________,2l 对应的函数表达式为__________ .20、(本小题9分)△ABC 在平面直角坐标系中的位置如图所示.DFEBAC(1)作出△ABC 关于y 轴对称的△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标; (2)将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2 各顶点的坐标;(3)观察△A 1B 1C 和△A 2B 2C 2,它们是否关于某直线对称?若是,请用粗线 条画出对称轴.21、(本题9分)已知:如图,△ABC 是等腰三角形,AB =AC ,且∠1=∠2, 求证:OA 平分∠BAC .22、(本小题12分)探究与思考(1)如图1,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A =30°,则∠ABC +∠ACB=__________度,∠XBC +∠XCB =__________度;(2)如图2,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ 仍然分别经过点B 、C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小,并证明你的结论。
AB C 1 2 3 4 5 6 7 -1 -2 -3 1 O 2xy23、(本小题12分)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一些有趣现象,即鞋子的号码与鞋子的长(cm)之间存在着某种联系,经过收集数据,得到下表:鞋长x (cm )…22 23 24 25 26 …码数y…34 36 38 40 42 …请你代替小明解决下列问题:(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪一种图形上?(2)猜想y与x之间满足怎样的函数关系式,并求出y与x之间的函数关系式,验证这些点的坐标是否满足函数关系式.(3)当鞋码是40码时,鞋长是多长?24、已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.参考答案(仅供参考)一:1、D 2、C 3、C 4、A 5、C 6、B 7、B 8、C 9、B 10、A二:11、答案不唯一,如:y=x-3; 12、3; 13、HL;14、1。
15、x<2 16、y=-3x+30,0≤x<10.三:17、(1)假命题.如:两条直线平行,内错角相等(2)假命题.如:a=5和b=022 23 24 25 263436384042xyO18、证明:∵∠D=∠B+∠E ( 已知 )∠BFD=∠B+∠E (三角形的一个外角等于与它不相留邻的两个内角的和) ∴∠D=∠BFD (等式的性质 )∴ AB ∥CD (内错角相等,两直线平行)19、解:(1)15 10 (2)(3)等于4;(4)小于4;大于4 (5)y 1=2. 5 x +10, y 2=5x 20、(1)作图略, 各顶点的坐标为:A 1(0,4) B 1 (2,2) C 1(1,1); 3分(2)图形略, 各顶点的坐标为:A 2 (6,4) B 2 (4,2) C 2(5,1) 3分 (3)是关于某直线对称,对称轴画图略(直线x=3). 2分21、证明略22、(1)∠ABC +∠ACB = 150 度 ∠XBC +∠XCB = 90 度; (2)∠ABX +∠ACX 的大小不变化;∠ABX +∠ACX =60o。
略证:∵∠ABX +∠ACX=(∠ABC +∠ACB )-(∠XBC +∠XCB )=(180O-∠A )-(180O-∠X )=(180O-30O)-(180O-90O)=150O-90O=60o即∠ABX +∠ACX =60o。
23、(1)在直线上;(2)一次函数,210y x =-;(3)当y =40时,x =2524、题:证明:①连结∵AB AC = ∠BAC =90° D 为BC 的中点∴AD ⊥BC BD =AD ∴∠B =∠DAC =45° 又BE =AF∴△BDE ≌△ADF (S.A.S ) ∴ED =FD ∠BDE =∠ADF∴∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠BDA =90° ∴△DEF 为等腰直角三角形 6分 ②若E ,F 分别是AB ,CA 延长线上的点,如图所示.连结AD∵AB =AC ∠BAC =90° D 为BC 的中点 ∴AD =BD AD ⊥BC ∴∠DAC =∠ABD =45° ∴∠DAF =∠DBE =135° 又AF =BE∴△DAF ≌△DBE (S.A.S ) ∴FD =ED ∠FDA =∠EDB∴∠EDF =∠EDB +∠FDB =∠FDA +∠FDB =∠ADB =90° ∴△DEF 仍为等腰直角三角形 6分。