人教版九年级数学一元二次方程与二次函数复习讲解学习

合集下载

人教版九年级上数学第22章二次函数22.2二次函数与一元二次方程(教案)

人教版九年级上数学第22章二次函数22.2二次函数与一元二次方程(教案)
2.通过分析二次函数图像,提升直观想象和数据分析的能力。
3.掌握一元二次方程的多种解法,培养问题解决和数学运算的能力。
4.将二次函数和一元二次方程应用于实际问题,增强数学建模和数学应用的意识。
5.在小组讨论和问题解决过程中,培养合作交流、批判性思维和创新意识。
三、教学难点与重点
1.教学重点
-二次函数与一元二次方程的关系:理解二次函数图像与一元二次方程解的关系,掌握二次函数标准形式及其图像特征。
-举例:求解x²-5x+6=0,展示不同解法并比较各自优劣。
-实际问题中的应用:学会将实际问题抽象为二次函数与一元二次方程模型,解决最值、交点等问题。
-举例:抛物线与直线的交点问题在实际情境中的应用,如物体抛掷的最高点问题。
2.教学难点
-图像与方程关系的理解:学生往往难以将二次函数图像与一元二次方程的解直观地联系起来。
在实践活动中,学生们的分组讨论进行得相当积极。他们能够将所学的理论知识应用到解决实际问题中去,这让我感到很欣慰。然而,我也观察到,在将实际问题抽象为数学模型的过程中,一些学生仍然感到困难。这告诉我,需要在后续的教学中加强对数学建模能力的培养。
在小组讨论环节,我尝试扮演了一个引导者和启发者的角色,鼓励学生们提出自己的观点和问题。我注意到,当他们被鼓励去探索和发现时,他们的思考变得更加深入。不过,我也发现时间管理上存在一些问题,有时候讨论可能会拖沓,影响到了课堂的整体进度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版九年级数学上册22.2.1《二次函数与一元二次方程》说课稿

人教版九年级数学上册22.2.1《二次函数与一元二次方程》说课稿

人教版九年级数学上册22.2.1《二次函数与一元二次方程》说课稿一. 教材分析《二次函数与一元二次方程》是人教版九年级数学上册第22章的第2节,这一节内容是在学生已经学习了函数、方程等基础知识的基础上进行讲解的。

二次函数和一元二次方程是中学数学中的重要内容,也是高考的必考内容。

本节内容主要介绍了二次函数的定义、性质以及一元二次方程的解法。

通过本节内容的学习,使学生能够掌握二次函数和一元二次方程的基本概念和性质,能够运用一元二次方程解决实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于函数、方程等概念已经有了初步的认识。

但是,对于二次函数和一元二次方程的性质和应用可能还不是很清楚。

因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握二次函数和一元二次方程的概念和性质。

三. 说教学目标1.知识与技能:理解二次函数的定义和性质,掌握一元二次方程的解法,能够运用二次函数和一元二次方程解决实际问题。

2.过程与方法:通过观察、实验、探究等方法,培养学生的动手能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。

四. 说教学重难点1.教学重点:二次函数的定义和性质,一元二次方程的解法。

2.教学难点:二次函数和一元二次方程的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:利用多媒体课件、教学模具、实物模型等辅助教学。

六. 说教学过程1.导入:通过一个实际问题,引入二次函数和一元二次方程的概念。

2.讲解:讲解二次函数的定义和性质,演示一元二次方程的解法。

3.实践:让学生动手操作,进行实验和探究,加深对二次函数和一元二次方程的理解。

4.应用:通过解决实际问题,运用二次函数和一元二次方程的知识。

5.总结:对本节内容进行总结,强化学生的记忆。

七. 说板书设计板书设计要简洁明了,能够突出二次函数和一元二次方程的概念和性质。

人教版九年级上册数学课件:二次函数与一元二次方程

人教版九年级上册数学课件:二次函数与一元二次方程

x
人教版九年级上册数学课件:二次函 数与一 元二次 方程
人教版九年级上册数学课件:二次函 数与一 元二次 方程
归纳:
当二次函y数 a x2 bxc,当给定y的值时,则二次函数
可转化为一元二次. 方程
如:二次函数 y x24x的值为 3,求自变量 x的值, 可以解一元二次方x程 2 4x 3(即x2 4x30). 反过来,解方程x2 4x30又可以看作已知二次 函数y x24x3的值为 0,球自变量 x的值.
如果h=20,那50-20t2= 20 ,
如果h=0,那50-20t2= 0 。 如果要想求t的值,那么我们可以求 方程
人教版九年级上册数学课件:二次函 数与一 元二次 方程
的解。
人教版九年级上册数学课件:二次函 数与一 元二次 方程
问题:王明手里抛出的篮球的飞行路线是一条抛物线,如果
不考虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t
人教版九年级上册数学课件:二次函 数与一 元二次 方程
呢?
∴当球飞行2s时,它的高度为4m。 (3)解方程4.1=4t-t2 即: t2-4t+4.1=0
因为(-4)2-4×4.1<0,所以方程无解,
从上面我们看出, 对于二次函数 高为个度什时为么间3在球mh其 二两的=?实 次4就 方(t –是程4t)∴2把的t中球1解=函解的,0方,t飞数。程已2=行0值4知=高4hht换度-的t2达成值不常,即到数:求4.,1t时2m-求4间。t=一t0,元
人教版九年级上册数学课件:二次函 数与一 元二次 方程
拓展升华
二次函数 yax2 bxc(a0)的图像如图,
根据图像解答下列问题:
(1)写出方程 ax2bxc0的两个根;

二次函数与一元二次方程(知识点考点)-九年级数学上册知识点考点(解析版)

二次函数与一元二次方程(知识点考点)-九年级数学上册知识点考点(解析版)

二次函数与一元二次方程(知识点考点一站到底)知识点☀笔记知识点一 利用判别式判断抛物线与x 轴的交点个数判别式 Δ=b 2- 4ac二次函数y =ax 2+bx +c 一元二次方程ax 2+bx +c =0(a ≠0)图象图象与x 轴 的交点个数根的情况Δ>0a >0与x 轴有 2个交点有两个不相等的实数根a <0Δ=0a >0与x 轴有 1个交点有两个相等的 实数根a <0Δ<0a >00个交点没有实数根a <0二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标,就是对应方程ax 2+bx +c =0(a ≠0)的根.考点☀梳理解题指导:①确定一元二次方程ax 2+bx +c +k =0的根的情况,可以利用二次函数y =ax 2+bx +c 的图象与y =-k 的图象的交点情况进行判断.②用图象法求一元二次方程的近似根的步骤:(1)画出函数的图象,并由图象确定方程根的个数; (2)由图象交点的位置确定交点横坐标的范围; (3)估计方程的近似根.考点1:二次函数与一元二次方程的关系必备知识点:①二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标,就是对应方程ax 2+bx +c =0(a ≠0)的根.题型1 图形法确定一元二次方程的近似根例1.(2022·全国·九年级专题练习)下表是若干组二次函数25y x x c =-+的自变量x 与函数值y 的对应值: x …1.31.41.51.61.7…y … 0.36 0.13 ﹣0.08 ﹣0.27 ﹣0.44 … 那么方程x 2﹣5x +c =0的一个近似根(精确到0.1)是( )A .3.4 B .3.5 C .3.6 D .3.7【答案】B【分析】观察表格可得-0.08更接近于0,得到方程的一个近似根(精确到0.1)是1.5,再由25y x x c =-+的对称轴为x =52得到方程250x x c -+=的另一个近似根(精确到0.1)是3.5【详解】解:∵二次函数25y x x c =-+, ∵对称轴为直线x =52,观察表格得:方程250x x c -+=的一个近似根(精确到0.1)是1.5, ∵另一个近似根m 满足 1.52m +=52, ∵m =3.5, 故选:B.【点睛】此题考查了图象法求一元二次方程的近似根,弄清表格中的数据是解本题的关键.=ax 2+bx +c 的图象,并求得一个近似根为x =﹣4.3,则方程的另一个近似根为( )(精确到0.1)A .x =4.3B .x =3.3C .x =2.3D .x =1.3【答案】C【分析】根据抛物线与x 轴的一个交点为(﹣4.3,0),又抛物线的对称轴为:x =﹣1,即可求解. 【详解】解:∵抛物线与x 轴的一个交点为(﹣4.3,0),又抛物线的对称轴为:x =﹣1, ∵另一个交点坐标为:(2.3,0), 则方程的另一个近似根为x =2.3,故选:C .【点睛】本题考查了根据二次函数图象求方程的近似根,掌握抛物线的对称性是解题的关键.练习1.(2022·全国·九年级专题练习)根据表格中二次函数y =ax 2+bx +c 的自变量x 与函数值y 的对应值,可以判断方程 ax 2+bx +c =0的一个解x 的范围是( )x 00.5 1 1.5 2 y =ax 2+bx +c 1-0.5-13.57A .0<x <0.5B .0.5<x <1C .1<x <1.5D .1.5<x <2【答案】B【分析】利用二次函数和一元二次方程的性质.【详解】解:观察表格可知:当x =0.5时,y =-0.5;当x =1时,y =1, ∵方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是0.5<x <1. 故选:B .【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.练习2.(2022.浙江湖州.九年级期末)在二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则方程ax 2+bx +c =0的一个解x 的范围是( ) x (1)1.11.2 1.3 1.4 … y …-1-0.490.040.591.16…A .1<x <1.1B .1.1<x <1.2C .1.2<x <1.3D .1.3<x <1.4【答案】B【分析】根据表格中自变量与函数的值的变化情况得出当y =0时相应的自变量的取值范围即可. 【详解】由表格中数据可知,当x =1.1时,y =-0.49. 当x =1.2时,y =0.04于是可得,当y =0时,相应的自变量x 的取值范围为1.1<x <1.2 故选B【点睛】本题考查了用图像法求一元二次方程的近似根,解题的关键是找到y 由正变为负时自变量的取值即可.练习2.(2022·全国·九年级课时练习)如表,是二次函数()y f x =的自变量x 与函数值y 的几组对应值.那么方程()0f x =的一个近似解是( )x 0.9 1 1.1 1.2 1.3 1.4 y -1.49-1-0.490.040.591.16A .1B .1.1C .1.2D .1.3【答案】C【分析】由表格可得抛物线与x 轴的一个交点在(1.1,0)和(1.2,0)之间且距离(1.2,0)较近,进而求解. 【详解】解:由表格可得 1.1x =时,0y <, 1.2x =时,0y >,()0f x ∴=的一个解在1.1与1.2之间, |0.49|0.04>,()0f x ∴=的一个近似解是1.2,故选:C .【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数与方程的关系.练习4.(2022·江苏·九年级专题练习)观察下列表格,估计一元二次方程2350x x +-=的正数解在( )x-1 0 1 2 3 425x x +- -7 -5 -1 5 13 23A .-1和0之间B .0和1之间C .1和2之间D .2和3之间【答案】C【分析】令y =x 2+3x -5根据x =﹣1和x =5时的函数值,即可得到答案. 【详解】解:令y =x 2+3x -5, 当1x =时,10y =-<, 当2x =时,50y =>,∴x 2+3x -5=0的一个正数x 的取值范围为1<x <2,故选C .【点睛】本题考查二次函数的与坐标轴的交点问题,掌握二次函数的性质是解题关键. 例1.(2022·吉林省实验中学九年级阶段练习)抛物线253y x x =-+-与y 轴的交点坐标是( ) A .()0,3 B .()0,3-C .()0,5-D .()0,5【答案】B【分析】把x =0代入253y x x =-+-求得y 的值,即可得到答案. 【详解】解:∵当x =0时,253y x x =-+-=﹣3, ∵抛物线253y x x =-+-与y 轴的交点坐标是(0,﹣3).故选:B例2.(2022·全国·九年级专题练习)已知二次函数y =x 2﹣6x +5.函数图象与x 轴交点坐标为_____,与y 轴的交点坐标为__________;【答案】 (5,0),(1,0) (0,5)【分析】利用y =0解方程得到图象与轴的交点,利用x =0求图象与y 轴的交点即可. 【详解】把y =0代入y =x 2﹣6x +5得0=x 2﹣6x +5, 解得x 1=5,x 2=1,∵抛物线与x 轴交点坐标为(5,0),(1,0), 把x =0代入y =x 2﹣6x +5得y =5, ∵抛物线与y 轴交点坐标为(0,5), 故答案为:(5,0),(1,0);(0,5).【点睛】此题考查了二次函数图象与坐标轴的交点坐标,解一元二次方程,正确掌握计算方法是解题的关键.练习1.(2021·江苏·南通市八一中学九年级阶段练习)抛物线y =23x +4x +2与x 轴的交点个数是_____. 【答案】0【分析】先计算判别式的值,然后根据判别式的意义进行判断. 【详解】解:∵Δ=24-4×3×2=-8<0, ∵抛物线与x 轴没有交点. 故答案为:0.【点睛】本题考查了抛物线与x 轴的交点,解题关键是把求二次函数y =2ax +bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程的根的判别式的应用进行解决. 练习2.(2022·浙江温州·九年级期中)已知二次函数1y x k =--+的图象过点0,3.(1)求该二次函数的表达式.(2)求该二次函数图象与x 轴的交点坐标. 【答案】(1)()214y x =--+ (2)()1,0-,()3,0【分析】(1)把点()0,3代入函数解析式,求出k 的值即可得到函数表达式; (2)取y =0,得到()2140x --+=,求出x 的值,即可得到答案. (1)解:把()0,3代入()21y x k =--+得:()2013k --+=,解得:4k =,∵该二次函数的表达式是()214y x =--+; (2)当0y =时,()2140x --+=, 解得:11x =-或23x =,∵该二次函数图象与x 轴的交点坐标是()1,0-,()3,0.【点睛】此题考查了待定系数法求二次函数的表达式、二次函数图象与x 轴的交点等知识,熟练掌握方法是解题的关键.练习3.(2022·全国·九年级专题练习)如图,已知二次函数223y ax x ++=的图象与x 轴交于点A (﹣1,0)和点B ,与y 轴交于点C .(1)求二次函数的解析式和点B 的坐标; (2)直接写出y 的最大值为 .【答案】(1)2y x 2x 3=-++;B (3,0); (2)4【分析】(1)运用待定系数法即可求得二次函数的解析式,令y =0,解一元二次方程即可求得点B 的坐标; (2)运用配方法将二次函数解析式化为顶点式,即可得出答案. (1)∵抛物线223y ax x ++=经过点A (﹣1,0), ∵a ﹣2+3=0, 解得:a =﹣1,∵二次函数的解析式为2y x 2x 3=-++, 令y =0,得2230x x -++=, 解得:13x =,21x =- ∵B (3,0); (2)∵()222314y x x x =-++=--+, ∵当x =1时,4y =最大值. 故答案为:4.【点睛】本题考查了待定系数法求函数解析式,抛物线与x 轴交点坐标,二次函数最值等,难度较小,是常见的基础题.练习4.(2021·江西上饶·九年级阶段练习)如图,抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D .(1)求抛物线的解析式; (2)求∵BOC 的面积. 【答案】(1)223y x x --+= (2)92【分析】(1)根据抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),即可得到关于a 、b 的方程,从而可以求得a 、b 的值,然后即可写出抛物线的解析式;(2)根据(1)中抛物线的解析式,可以写出点C 的坐标,然后再根据点B 的坐标,即可得到OC 和OB 的长,再根据三角形面积公式,即可求得∵BOC 的面积. (1)解:∵抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),∵309330a b a b ++=⎧⎨-+=⎩, 解得12a b =-⎧⎨=-⎩,∵抛物线的解析式为223y x x --+=. (2)解:由(1)知,223y x x --+=,∵点C 的坐标为(0,3), ∵OC =3,∵点B 的坐标为(﹣3,0), ∵OB =3, ∵∵BOC =90°, ∵∵BOC 的面积是2OB OC ⋅=33922⨯=. 【点睛】本题主要考查抛物线与x 轴的交点、待定系数法求二次函数解析式、二次函数的性质、三角形的面积,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答. 例1.(2022·福建省长汀县第二中学九年级阶段练习)定义:min{a ,b }=(),().a a b b a b ⎧≤⎨>⎩若函数y =min{x +1,223x x -++ },则该函数的最大值为___________.【答案】3【分析】根据定义画出函数图象,设直线y =x +1,抛物线2y x 2x 3=-++,联立直线与抛物线方程得抛物线与直线交点坐标,结合图象求解.【详解】解:依题意,设直线y =x +1,抛物线2y x 2x 3=-++, 联立直线与抛物线方程得2123y x y x x =+⎧⎨=-++⎩, 解得23x y =⎧⎨=⎩或10x y =-⎧⎨=⎩,∵直线与抛物线交点坐标为(-1,0),(2,3), 如图,∵x ≤-1时,y =223x x -++,函数最大值为y =0,-1<x ≤2时,y =x +1,函数最大值为y =3, 当x >2时,y =223x x -++,y <3, ∵x =2时,函数取最大值为3, 故答案为:3.【点睛】本题考查二次函数的性质,解题关键是掌握函数与方程及不等式的关系.通过数形结合求解. 例2.(2022·全国·九年级课时练习)抛物线223y x x =-,当1y =-时,自变量的值为_________. 【答案】1或12【分析】把y =1代入解析式中得到关于x 的方程,解方程即可 【详解】解:223y x x =-, 当1y =-时,2231x x -=-, 解得11x =,212x =, 故答案为:1或12.【点睛】本题考查函数值以及自变量,解题的关键是掌握函数值的计算方法.练习.(全国八年级课时练习)已知,当时,的值为;当时,y 的值等于9. 【答案】 3 0或6【分析】令y =0即可得到关于x 的一元二次方程,求出x 的值即可;令y =9即可得到关于x 的一元二次方程,求出x 的值即可.【详解】解:∵y =x 2-6x +9中的值为0, ∵令x 2-6x +9=0,解得x =3; ∵y =x 2-6x +9中的值为9, ∵令x 2-6x +9=9,即x 2-6x =0, 解得1206x x ==,. 故答案为:3;0或6.【点睛】本题考查了二次函数与一元二次方程,根据函数值得到关于x 的元二次方程,求出x 的值是解答此题的关键.练习.(全国九年级课时练习)如图,抛物线与轴交于、两点,且点、B 都在原点右侧,抛物线的顶点为点P ,当ABP △为直角三角形时,m 的值为________.【答案】2【分析】设点A (x 1,y 1),B (x 2,y 2),则AB =|x 2-x 1|,求出点P (m ,-(m -1)2),由抛物线的对称性知∵ABP 为等腰直角三角形,建立方程|x 2-x 1|=2(m -1)2,根据根与系数关系可求得m 值. 【详解】解:设点A (x 1,y 1),B (x 2,y 2),则AB =|x 2-x 1|, 令y =0得22210x mx m -+-=,∵x 1+x 2=2m ,x 1·x 2=2m -1,则|x 2-x 1|2=4m 2-8m +4=4(m -1)2,由抛物线2221y x mx m =-+-=(x -m )2-(m -1)2得顶点坐标为P (m ,-(m -1)2), 抛物线的对称性知∵ABP 为等腰直角三角形, ∵|x 2-x 1|=2(m -1)2, 即4(m -1)2=4(m -1)4, 解得:m =2或m =0或m =1,∵抛物线2221y x mx m =-+-与x 轴交于A 、B 两点,且点A 、B 都在原点右侧, ∵2m >0且m ≠1且2m -1>0,即m >12且m ≠1, ∵m =2, 故答案为:2.【点睛】本题考查二次函数的图象与性质、等腰直角三角形的判定与性质、根与系数的关系、解高次方程等知识,熟练掌握二次函数的性质是解答的关键.意创造非凡、探索未来.某商店准备用2400元购进一批冰墩墩钥匙扣出售.假如每个钥匙扣的进价降低20%,则可以多买50个.(1)求每个冰墩墩钥匙扣的进价;(2)市场调查发现:当每个冰墩墩钥匙扣的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.设每个冰墩墩钥匙扣的售价是x 元(x 是大于20的正整数),每周总利润是w 元. ①求w 与x 的函数关系,并求每周总利润的最大值;②当每周总利润大于1870元时,直接写出每个冰墩墩钥匙扣的售价. 【答案】(1)每个冰墩墩钥匙扣的进价为12元(2)①2105204800w x x =-+-,最大值为1960元;②每个冰墩墩钥匙扣的售价为24元或25元或26元或27元或28元【分析】(1)设每个冰墩墩钥匙扣的进价为x 元,根据题意列出分式方程,进而计算求解即可;(2)①根据题意列出二次函数关系,根据二次函数的性质求得最大利润即可;②根据题意列出方程,根据二次函数的性质求得x 的范围,根据题意取整数解即可.(1)设每个冰墩墩钥匙扣的进价为x 元,由题意得:()2400240050120%x x +=-,解得12x =,经检验,12x =是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2)①()()122001020w x x =---⎡⎤⎣⎦2105204800x x =-+-()210261960x =--+ ∵0a <且x 是大于20的正整数∵当26x =时,w 有最大值,最大值为1960元②由题意得,21052048001870x x -+-=,解得23x =或29∵抛物线开口向下,x 是大于20的正整数∵当2329x <<时,每周总利润大于1870元,∵售价为24元或25元或26元或27元或28元.【点睛】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是解题的关键.练习.(全国九年级课时练习)如图,已知二次函数的图象经过点.(1)求a 的值和图象的顶点坐标;(2)点(,)Q m n 在该二次函数图象上;①当11n =时,求m 的值,②当m <x <m -3时,该二次函数有最小值2,请直接写出m 的取值范围. 【答案】(1)2a =;()1,2-(2)①4m =-或2;②41m -<-【分析】(1)将点P 的坐标代入二次函数解析式可得关于a 的方程,再解方程即可得出a 的值.将二次函数的解析式进行配方,即可得到图象的顶点坐标;(2)①将点Q 的坐标代入二次函数解析式,求解方程即可得到m 的值;②根据当1x =-时,二次函数取最小值为2,得出13m m -≤+<,解关于m 的不等式组即可.(1)解:∵二次函数21y x ax a =+++的图象经过点()2,3P -,∵()()23221a a =-+⨯-++.解得:a =2;∵二次函数的解析式为()222312y x x x =++=++.∵图象的顶点坐标是()1,2-.(2)①∵点(),Q m n 在该二次函数图象上,且n =11,∵21123m m =++.解得14m =-,22m =,∵m 的值为-4或2;②∵二次函数()222312y x x x =++=++的最小值为2,∵13m m -≤+<,解得:41m -≤-<,∵m 的取值范围是41m -≤-<.【点睛】本题考查了二次函数的图象和性质,解一元二次方程,二次函数的最值,能够正确应用数形结合思想是解题关键.题型4 根据二次函数系数求对应方程根的情况或与x 轴交点情况例1.(2022·全国·九年级专题练习)如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为(2,4)A -,(1,1)B ,则方程2ax bx c =+的解是________________.【答案】12x =-,21x =【分析】二次函数图象与一次函数图象交点的横坐标即为2ax bx c =+的解:12x =-,21x =.【详解】解:抛物线 2y ax =与直线y bx c =+的两个交点坐标分别为 ()2,4A - , ()1,1B ,∴方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩ ,2211x y =⎧⎨=⎩ , 即关于x 的方程 20ax bx c --=的解为12x =-,21x =,所以方程2ax bx c =+ 的解是 12x =-,21x =,故答案为: 12x =-,21x =.【点睛】本题考查了函数图象与方程的解的关系,函数与方程是密不可分的,方程的根的个数问题,往往可以转化为两个函数图象的交点问题.例2.(2022·福建南平·九年级期末)如图,抛物线2y ax bx c =++的对称轴为1x =,点P 是抛物线与x 轴的一个交点,若点P 的坐标为()4,0,则关于x 的一元二次方程20ax bx c ++=的解为__________.【答案】124,2x x ==-【分析】根据函数的对称轴和点P 的坐标可以得出与x 轴的另一交点坐标,从而得出结论.【详解】解:∵抛物线2y ax bx c =++的对称轴为x =1,点P 是抛物线与x 轴的一个交点,坐标为(4,0),∵抛物线与x 轴的另一个交点坐标为(−2,0),∵关于x 的一元二次方程20ax bx c ++=的解为:124,2x x ==-.故答案为:124,2x x ==-.【点睛】本题考查抛物线与x 轴的交点问题,关键是对二次函数性质的掌握和运用.练习1.(2022·全国·九年级课时练习)已知抛物线2y x bx c =++的部分图像如图所示,则方程20x bx c ++=的解是___________【答案】11x =-或23x =【分析】根据抛物线的轴对称性即可求得抛物线与x 轴的另一个交点的坐标,这两个交点的横坐标就是方程20x bx c ++=的解.【详解】解:由图像可知抛物线与x 轴的一个交点坐标为(1,0)-,对称轴为直线1x =,设抛物线与x 轴的另一个交点为2(,0)x ,则2112x -+=, 解得:23x =.∵方程20x bx c ++=的解为11x =-或23x =.故答案为:11x =-或23x =【点睛】本题考查的是利用二次函数的图像求解一元二次方程,以及抛物线的对称性问题,正确理解抛物线与x 轴的交点的横坐标与相应的一元二次方程的根之间的关系是解题的关键.练习2.(2021·湖北·武汉二中广雅中学九年级阶段练习)如图,已知抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,直线25y kx k =-+与它有三个公共点时,则k 值为______.【答案】222-+或53【分析】先确定A 、B 、C 三点坐标,y =kx -2k +5=k (x -2)+5,可得直线经过定点(2,5)画出图形,分别找到两个极限位置,求出k 的值.【详解】解:∵223y x x =--∵当y =0时,解得x =-1或x =3;当x =0时,解得y =3∵A (-1,0),B (3,0),C (0,3)∵y =kx -2k +5=k (x -2)+5∵直线25y kx k =-+必过定点(2,5)要使直线y =kx -2k +5与图像有三个公共点,则可得到如图所示的两个极限位置,①直线经过A 、N ,此时将点A (-1,0)代入可得:0=-k -2k +5,解得:k =53②直线经过点N 与抛物线相切时,由题意可得:22325x x kx k -++=-+整理得:2(2)220x k x k +--+=2(2)4(22)0k k ∆=---+=,解得222k =-±由图像可知,k >0,则222k =-+综上可知,25y kx k =-+与223y x x =--有三个公共点时,则k 值为222-+或53. 故答案为222-+或53.【点睛】本题主要考查了一次函数与抛物线的交点问题,根据题意找到恰好有3个公共点的位置以及数形结合思想的运用是解答本题的关键.练习3.(2020·北京房山·九年级期中)若二次函数23y kx x =--的图象与轴有交点,则k 的取值范围是_______.【答案】13k ≥-且0k ≠##k ≠0且k ≥13- 【分析】根据二次函数的定义可知0k ≠,由题意令0y =,得出一元二次方程,根据一元二次方程根的判别式大于或等于0,解不等式即可求解.【详解】解:∵二次函数223y kx x =--的图象与x 轴有交点,令0y =,则2230kx x --=,∵4120k =+≥且0k ≠,解得13k ≥-且0k ≠. 故答案为:13k ≥-且0k ≠. 【点睛】本题考查了二次函数的定义以及二次函数与x 轴交点问题,转为一元二次方程根的判别式是解题的关键,注意不要漏掉0k ≠.练习.(全国九年级专题练习)已知抛物线与轴的一个交点为,则代数式2225m m -+=_____________. 【答案】15【分析】把点(,0)m 代入二次函数解析式可得25m m -=,然后问题可求解.【详解】解:把点(,0)m 代入二次函数解析式得:250m m --=,则有25m m -=,∵()222252515m m m m -+=-+=; 故答案为15.【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.。

人教版-数学-九年级上册-知识归纳:二次函数与一元二次方程

人教版-数学-九年级上册-知识归纳:二次函数与一元二次方程

知识归纳:二次函数与一元二次方程二次函数、一元二次方程这二个“二次式”不仅是初中代数的重要内容,而且有着密切的联系,形成一个完整的知识体系,涉及知识面广,可带动初中数与式,方程与函数的知识联系,运用灵活性大,可强化解题方法、技巧的训练,形成能力.二次函数是主体,一元二次方程为二次函数函数值为零(零点)情况,一般讨论二次函数主要是将其通过一元二次方程和一元二次不等式来讨论,而讨论一元二次方程又要将其与相应的二次函数相联,通过二次函数图象揭示解(集)的几何特征.即1.1二次函数的几何特征:设二次函22224(0)424b ac by ax bx c a x a b aca a-⎛⎫=++=++≠∆=-⎪⎝⎭,,,则(1)二次函数的图象:(2)抛物线张口方向与极值:张口向上,有极小值,244ac b y a-=; 张口向下,有极大值,244ac b y a-=; (3)对称轴:2b x a=-. 对称轴在原点左侧a b ⇔,同号;对称轴在原点右侧a b ⇔,异号;对称轴与y 轴重合0b ⇔=.(4)顶点2424b ac b M aa ⎛⎫-- ⎪⎝⎭,. M 在x 轴上方a ⇔∆,异号;在轴下方a ⇔∆,同号;M 在x 轴上0⇔∆=,M 在直线y kx t=+上2424kb ac b t a a-⇔+=. (5)图象过点()m n ,,图象过点2()m n am bm c n ⇔++=,,特别地:0m c n =⇔=(为截距);00m n c ==⇔=;100m n a b c =±=⇔±+=,.1.2、二次函数与一元二次方程:函数2(0)y ax bx c a =++≠,当0y =时,即为一元二次方程20ax bx c ++=,故一元二次方程的解又叫二次函数的零点.令方程0y =的根为12x x ,,则有:二次函数的零点⇔抛物线与x 轴的交点⇔方程0y =的根.(1)交点个数:有两个交点12(0)(0)x x ⇔,,,方程0y =有不等实根0⇔∆>;有一个交点1(0)x ⇔,方程0y =有等实根0⇔∆=; 无交点⇔方程0y =无实根0⇔∆<.(2)交点位置:两交点在原点两侧⇔方程0y =有异号根00ac ∆>⎧⇔⎨<⎩; 两交点在原点同侧⇔方程0y =有同号根00ac ∆>⎧⇔⎨>⎩;两交点在原点右侧⇔方程0y =有两正根000ac ab ∆>⎧⎪⇔>⎨⎪<⎩;两交点在原点左侧⇔方程0y =有两负根000ac ab ∆>⎧⎪⇔>⎨⎪>⎩;两交点在两数αβ,之间或之外22()()0a b c a b c ααββ⇔++++>⇔方程1200()()0y x x αβ∆>⎧=⎨--<⎩; 两交点一个在在两数αβ,之间22()()0a b c a b c ααββ⇔++++>⇔方程121200()()0()()y x x x x ααββ∆>⎧⎪=--⎨<⎪--⎩; 两交点在数α的两侧2()0a a b c αα⇔++<⇔方程1200()()0y x x αα∆>⎧=⎨--<⎩;两交点在数α的同侧 2()0a a b c αα⇔++>⇔方程1200()()0y x x αα∆>⎧=⎨-->⎩; (3)两交点间距离12(0)d x x a∆⇔=-=∆≥. 例1已知二次函数2(0)y ax bx c a =++≠的图象如图所示: (1)试判断a b c ,,及24b ac -的符号; (2)若|OA |=|OB |,试证明.分析:解本题主要是应用抛物线的几何特性(张口方向,对称轴,截距,与x 轴交点个数)及函数零点(方程)的有关知识,即(1)由抛物线张口方向、对称轴位置、截距及与x 轴交点个数,立即可得:0a >,20040b c b ac <<->,,.(2)由方程22402A A b b ac x OA x ax bx c a OB c OA OB ⎧⎫---=⇒=⎪⎪++=⇔⇔⎨⎬⎪⎪=-=⎩⎭,结论.例2已知二次函数244y x x m =++的图象与x 轴两交点和对称轴的交点构成一个正三角形的三个顶点,求函数解析式.分析:求解析式,即求m ,主要是应用抛物线的顶点、对称轴与轴的交点(即解方程)和三角形的有关知识,即: 由方程2121211440(10)1m x x m x m x x m -±-++=⇒-⇒-=-,,≥,由抛物线顶点102A ⎛⎫-± ⎪ ⎪⎝⎭,由两点间距离公式求出102A ⎛⎫--⎪ ⎪⎝⎭和102A ⎛⎫-+ ⎪ ⎪⎝⎭的距离: 1214AC x x m =-⇒=(1m =舍去). 例3 m 为何值时,关于x 的方程28(1)(7)0x m x m --+-=的两根:(1)为正数根;(2)为异号根且负根绝对值大于正根;(3)都大于1;(4)一根大于2,一根小于2;(5)两根在0,2之间.分析:关于方程根的讨论,结合二次函数图象与x 轴的交点位置的充要条件即可求:即设方程两根为12x x ,则(1)12120079250x x m m x x ∆⎧⎪+>⇒<⎨⎪>⎩或≥≤≥;(2)12120010x x m x x ∆>⎧⎪+<⇒<⎨⎪<⎩;(3)12120225(1)(2)0x x m x x ∆⎧⎪+>⇒⎨⎪-->⎩≥≥; (4)12027(2)(2)0m x x ∆>⎧⇒>⎨--<⎩; (5)121212007925270(2)(2)0x x m m x x x x ∆⎧⎪+>⎪⇒<<⎨>⎪⎪-->⎩或≥≤≤.例4证明关于的不等式2(32)210k x kx k -++-<与2211012k x kx ⎛⎫-++> ⎪⎝⎭,当k 为任意实数时,至少有一个恒成立. 分析:证明不等式恒成立,实质是证明对应抛物线恒在轴的上方或下方的问题,故只要求抛物线恒在轴上方或下方的充要条件即可.即由2(32)210k x kx k -++-<恒成立⇔对应抛物线恒在轴下方 23201244(32)(1)0k k k k k -<⎧⇔⇒<⎨---<⎩; 由2211012k x kx ⎛⎫-++> ⎪⎝⎭恒成立⇔对应抛物线恒在轴上方 2221012111334012k k k k k ⎧->⎪⎪⇔⇒<->⎨⎛⎫⎪--< ⎪⎪⎝⎭⎩或. 因此,当k 为任意实教时,上述两充要条件至少有一个成立,命题得证.例5已知关于x 的方程222460x mx m -+-=两根为αβ,,试求22(1)(1)αβ-+-的极值. 分析:求22(1)(1)αβ-+-的极值,即应用方程根与系数的关系和判别式,求二次函数的条件极值的问题.即αβ,为方程的两根2022246m m m αβαβ⎧∆>⎪⇒+=⇒⎨⎪=-⎩≤22221(1)(1)()2()22152n u m αβαβαβαβ⎛⎫=-+-=+-+-+⇒=-++ ⎪⎝⎭, 又max min 2215642m u u -==-,。

人教版九年级上册数学第22章 二次函数 二次函数与一元二次方程之间的关系

人教版九年级上册数学第22章 二次函数  二次函数与一元二次方程之间的关系
第二十二章二次函数
22.2二次函数与一元二次方程
第1课时二次函数与一元二 次方程之间的关系
1 课堂讲解 二次函数
一元二次方程 实数根的个数
2 课时流程
逐点 导讲练
课堂 小结
课后 作业
以前我们从一次函数的角度看一元一次方程, 认识了一次函数与一元一次方程的联系.本节 我们从二次函数的角度看一元二次方程,认识 二次函数与一元二次方程的联系.先来看下面 的问题.
3 A.x1<-1<2<x2B.-1<x1<2<x2 4 C.-1<x1<x2<2D.x1<-1<x2<2
知2-导
知识点 2 二次函数与其图象与x轴的交点个数之间的关系
二次函数y=x2+x-2,y=x2-6x+9,y=x2–x+1的图象如图所示.
(1)每个图象与x轴有几个交点? (2)一元二次方程x2+x-2=0,x2-6x+9=0有几个根? 验证一下一元二次方程x2–x+1=0有根吗? (3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一 元 二次方程ax2+bx+c=0的根有什么关系?
由“数” 到“形”
由“形” 到“数”
图象
与x轴交点情况
完成教材中习题
解:无实根
知2-导
二次函数
与x轴交点坐 标
相应方程的根
y=x2+x-2 (-2,0),(3,0)
x1=x2=3
y=x2-x+1 无交点 无实根
归纳
知2-讲
通过二次函数y=ax2+bx+c(a≠0)的图象可知, (1)如果抛物线y=ax2+bx+c(a≠0)与x轴有公 共点,公共点的横坐标是x0,那么当x=x0时, 函数的值为0,因此x=x0就是方程ax2+bx+ c=0的一个根.

九年级上《22.2二次函数与一元二次方程》课件

九年级上《22.2二次函数与一元二次方程》课件

2.自主探究:
问题1
以 40 m/s 的速度将小球沿与地面成 30°角的 方向击出时,小球的飞行路线将是一条抛物线. 如果不考虑空气阻力,小球的飞行高度 h (单位 :m )与飞行时间t(单位:s)之间具有函数关 系 h = 20t - 5t 2. (2)小球的飞行高度能否达到 20 m? 如能,需 要多少飞行时间?
归纳 一般地,从二次函数 y = ax 2 + bx + c 的图象可知: (1)如果抛物线 y = ax 2 + bx + c 与 x 轴有公共点, 公共点的横坐标是 x0,那么当 x = x0 时,函数值是 0, 因此 x = x0 是方程 ax 2 + bx + c = 0 的一个根. (2)二次函数 y = ax 2 + bx + c 的图象与 x 轴的位置 关系有三种:没有公共点,有一个公共点,有两个公共 点. 这对应着一元二次方程 ax 2 + bx + c = 0 的根的三种 情况:没有实数根,有两个相等的实数根,有两个不等 的实数根.
y=ax2+bx+c的图 象和x轴交点
方程ax2+bx+c=0 的根
b2-4ac
函数的图象
y . o y o y o . x
有两个交点
方程有两个不相等 b2-4ac 的实数根
> 0
只有一个交点 方程有两个相等 b2-4ac = 0
的实数根
x
没有交点
方程没有实数根
b2-4ac
< 0
x
2.小组合作,类比探究
1.复习知识,回顾方法
问题1:一次函数y=kx+b与一次方程 kx+b=0之间有什么关系?

人教版初中数学九年级上册精品教学课件 第22章 二次函数 22.2 二次函数与一元二次方程

人教版初中数学九年级上册精品教学课件 第22章 二次函数 22.2 二次函数与一元二次方程

2
3
4
5
6
7
7.利用二次函数的图象求方程1
1 2
x +x+2=0的近似解(精确到0.1).
2
解: 函数 y=-2x2+x+2 的图象如图.
1 2
设-2x +x+2=0
的两根分别为 x1,x2,且 x1<x2,观察图象可知
-2<x1<-1,3<x2<4.
1
因为当 x=-1 时,y=-2×(-1)2-1+2=0.5>0,
的交点个数是3.故选A.
A
解析
关闭
答案
快乐预习感知
1
2
3
4
5
6
7
3.已知二次函数y=x2-2ax+a2-2a-4(a为常数)的图象与x轴有交点,且
当x>3时,y随x的增大而增大,则a的取值范围是(
)
A.a≥-2
B.a<3
C.-2≤a<3
D.-2≤a≤3
关闭
D
答案
快乐预习感知
1
2
3
4
5
6
7
4.(2023·浙江宁波中考)已知二次函数y=ax2-(3a+1)x+3(a≠0),下列说
1
时,y=-2×(-1.5)2-1.5+2=-0.625<0,
当 x=-1.5
所以-1.5<x1<-1.
因为当 x=3
1 2
时,y=-2×3 +3+2=0.5>0,当
1
时,y=- ×3.52+3.5+2=-0.625<0,

人教版九年级上册数学二次函数与一元二次方程、不等式

人教版九年级上册数学二次函数与一元二次方程、不等式
平移m(m>0)个单位后,所得的抛物线的关系式为y =a(x-h)2+k+m;当抛物线y=a(x-h)2+k向下 平移m(m>0)个单位后,所得的抛物线的关系式为y =a(x-h)2+k-m.
(2)左、右平移:当抛物线y=a(x-h)2+k向左 平移n(n>0)个单位后,所得的抛物线的关系式为y =a(x-h+n)2+k;当抛物线y=a(x-h)2+k向右 平移n(n>0)个单位后,所得的抛物线的关系式为y =a(x-h-n)2+k.
将(-6,0)代入,得
1 0=2(
-6+3)2+h,解得h=-29,
人教版九年级上册数学 22.2 二次函数与一元二次方程、不等式
x1<x<x2
无解
无解
人教版九年级上册数学 22.2 二次函数与一元二次方程、不等式
考点3
二次函数图象的平移
将抛物线y=ax2+bx+c(a≠0)用配方法化成y =a(x-h)2+k(a≠0)的形式,而任意抛物线y= a(x-h)2+k均可由抛物线y=ax2平移得到,具体 平移方法如图15-1:
抛物线y=ax2 +bx+c与x轴
的交点个数
判别式Δ=b2- 4ac
的符号
方程ax2+bx+c =0有实根 的个数
2个 1个 没有
Δ>0 Δ=0 Δ<0
两个_不__相__等___实根 两个_相__等_____实根
__没__有____实根
考点2 二次函数y=ax2+bx+c(a≠0)的图 象特征与a、b、c及判别式b2-4ac的符号之间 的关系
项目 字母
a
b
字母的符号
a>0 a<0 b=0
ab>0(b与a同号)

人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)

人教版数学九年级上册22.2  二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O

数学人教版九年级上册一元二次方程与二次函数

数学人教版九年级上册一元二次方程与二次函数

复习预习1.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x 轴交点的横坐标即为一元一次方程kx+b=0的解.2.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?二、知识讲解易错点1 探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系易错点2 二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.考点3 一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.三、例题精析【例题1】【题干】二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是()A.k<-3 B.k>-3 C.k<3 D.k>3【答案】D.【解析】∵当ax2+bx+c≥0,y=ax2+bx+c(a≠0)的图象在x轴上方,∴此时y=|ax2+bx+c|=ax2+bx+c,∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴上方部分的图象,∵当ax2+bx+c<0时,y=ax2+bx+c(a≠0)的图象在x轴下方,∴此时y=|ax2+bx+c|=﹣(ax2+bx+c)∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象,∵y=ax2+bx+c(a≠0)的顶点纵坐标是﹣3,∴函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象的顶点纵坐标是3,∴y=|ax2+bx+c|的图象如图,∵观察图象可得当k≠0时,函数图象在直线y=3的上方时,纵坐标相同的点有两个,函数图象在直线y=3上时,纵坐标相同的点有三个,函数图象在直线y=3的下方时,纵坐标相同的点有四个,∴若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则函数图象应该在y=3的上边,故k>3.【例题2】【题干】已知关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是( )A .a x <B .b x >C .b x a <<D .a x <或b x >【答案】C【解析】∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),∴二次函数y=x2+mx+n与x轴的交点坐标分别是(a,0)、(b,0)(a<b),且抛物线的开口方向向上,∴该二次函数的图象如图所示:根据图示知,符合条件的x的取值范围是:a<x<b四、课堂运用【基础】1、已知二次函数y=-x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程022=++-m x x 的解为。

人教版九年级数学上册课件:22.2二次函数与一元二次方程 (共12张PPT)

人教版九年级数学上册课件:22.2二次函数与一元二次方程 (共12张PPT)
(2)若该抛物线的对称轴为直线x=5/2. ①求该抛物线的函数解析式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的 抛物线与x轴只有一个公共点.
能力提升
挑战中考
12.(2016·江苏省宿迁)若二次函数y=ax2﹣2ax+c的图象
经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为( C )
与y轴的交点坐标是_(__0_,__3_)____.
8.若二次函数y=mx2-2x+1的图像与x轴只有一个交点,则 m=____1_____.
9.画出抛物线y=x2-3x-4的图像,根据图像回答: (1)方程x2-3x-4=0的解是什么? (2)不等式x2-3x-4>0的解是什么? (3)不等式x2-3x-4<0的解是什么?
的对称轴是直线___X_=_-_1___.
类比精练
1.二次函数
的图象与x轴有两个交点,其中
一个交点坐标为(-1,0)则一元二次方程

解为__X__1_=_-1_,__X_2_=_3___.
课堂精讲
知识点2.运用一元二次方程根的判别式处理二次函数图
象与"轴的交点问题
例2.若二次函数
的图象与x轴有交点,则k
6.如果关于x的二次函数y=x2﹣2x+k与x轴只有1个交点, 则k= 1 .
7.若抛物线

= 10 .
经过点(-1,10),
课前小测
8.二次函数y=ax+bx+c的图象如图所示,则函数值y<0时 x的取值范围是 - 1<x元二次方程的关系
例1.方程
的两根为-3和1,那么抛物线
能力提升
10.如图是二次函数y=ax2+bx+c的图象,则下列说法: ① a>0;②2a+b=0; ③a+b+c=0; ④当-1<x<3时,y>0. 其中正确的个数为( B )

人教版九年级上册数学《二次函数与一元二次方程》二次函数研讨说课复习课件

人教版九年级上册数学《二次函数与一元二次方程》二次函数研讨说课复习课件
根。
教学新知
利用函数图象求方程x2-2x-2=0的实数根(结果保
留小数点后一位)。
解:画出函数y=x2-2x-2的图象(如图),
它与x轴的公共点的横坐标大约是-0.7,2.7.
所以方程x2-2x-2=0的实数根为
x1≈-0.7,x2≈2.7.
知识梳理
知识点1:二次函数y=ax2+bx+c与一元二次方程
公共点个数 横坐标
y=
x2-x+1
0个
1个
0
x2-6x+9=0,x1=x2=3
2个
-2, 1
x2+x-2=0,x1=-2,x2=1
y = x2-6x+9
y=
y = x2+x-2
相应的一元二次




x2-x+1=0无解
y = x2-6x+9
x2-x+1
y = x2+x-2
1
知识要

二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次
3 , .
0)
x2+x-10=0的两个根是x
2
4.若一元二次方程 x 2 mx n 0 无实根,则抛物线y x mx n
图象位于(
A

A.x轴上方
B.第一、二、三象限
C.x轴下方
D.第二、三、四象限
能力提升
已知二次函数
(1)方程
(2)x取什么值时,y>0 ?
的图象,利用图象回答问题:
关系h=20t-5t2.考虑以下问题:
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
解:(1)解方程15=20t-5t2。t2-4t+3=0。

【特荐】九年级上册数学 人教版 二次函数与一元二次方程的关系(知识点+练习题)

【特荐】九年级上册数学 人教版 二次函数与一元二次方程的关系(知识点+练习题)

课题:二次函数与一元二次方程的关系(一)二次函数与坐标轴的交点 环节一、求函数与坐标轴的交点坐标1、求一次函数36y x =+与x 轴、y 轴的交点坐标. 解:当x=0时,y=∴函数36y x =+与 轴的交点坐标是( , ) 当y=0时,得方程 解得∴函数36y x =+与 轴的交点坐标是( , ) 2、求二次函数y=x 2-4x+3与x 轴,y 轴的交点坐标. 解:当x=0时,y=∴函数与 轴的交点坐标是( , ); 当y=0时,得方程 解得∴函数与 轴的交点坐标是( , )与( , ).3、求二次函数962++=x x y 与x 轴,y 轴的交点坐标解:4、求二次函数322+-=x x y 与x 轴,y 轴的交点坐标解:环节二:两个函数的交点坐标1、如图,已知直线x y =与直线3+-=x y 相交 于点A , 则交点A 的坐标是即方程组⎩⎨⎧+-==3x y xy 的解是直线x y =与直线3+-=x y 的交点坐标(x ,y )是方程组⎩⎨⎧+-==3x y xy 的 .5、求二次函数y=x 2和y=21x+3的交点坐标. 解:依题意,得方程组⎩⎨⎧解得⎩⎨⎧∴二次函数y=x 2和y=21x+3的交点坐标是 . 3、由上题还可知:方程x 2=21x+3的解是 .归纳总结:1、二次函数与一元二次方程的关系:抛物线2(0)y ax bx c a =++≠与x 轴的交点的横坐标12,x x 是一元二次方程 的根.2、(1)当24b ac - 0 时,方程20(0)ax bx c a ++=≠有两个不相等的实数根,二次函数2(0)y ax bx c a =++≠与x 轴有 个不同的交点;(2)当24b ac -=0 时,方程20(0)ax bx c a ++=≠有 根,二次函数2(0)y ax bx c a =++≠与x 轴有 个交点;(3)当24b ac - 0 时,方程20(0)ax bx c a ++=≠没有实数根,二次函数2(0)y ax bx c a =++≠与x 轴 交点;环节三、巩固练习 A 组1、抛物线y=x 2-5x-6 与y 轴的交点坐标( , );与x 轴交点的坐标( , )和( , ).2、抛物线y=--2x 2+3x+2 与y 轴的交点坐标( , );与x 轴交点的坐标( , )和( , ).3、已知方程2x 2-3x+5=0的两个根是25,-1,则二次函数y=2x 2-3x-5与x 轴两个交点坐标( , )和( , ),两交点间距离为 .4、不论m 为何实数时,抛物线y=x 2-mx -1与x 轴的交点( ).A.有0个B.有1个C.有2个D.无法确定5、已知直线y=-2x+3与抛物线y=x 2相交于A 、B 两点,求A 、B 两点的坐标.6、已知:二次函数y=2x 2-4x-6,求:(1)函数图象的开口方向、对称轴和顶点坐标,(2)求函数图象与y 轴交点、与x 轴交点坐标,并画出草图 ※(3)以此函数与x 轴,y 轴交点为顶点的三角形的面积 解:(二)、二次函数与一元二次不等式之间的关系 环节一、例题学习例1、已知:二次函数y=x 2-3x-4的图象(如图)(1)方程x 2-3x-4=0的解是 ,则二次函数与x 轴交点的坐标是( , )和( , );图象与y 轴交点坐标是( , );(2)看图得:当x 或x 时,y>0;此时不等式x 2-3x-4>0 的解集为(3)看图得:当 <x< 时,y<0;此时不等式x 2-3x-4<0的解集为 例2、已知y=x 2+4x-12,当x 取何值时y>0, 当x 取何值时y <0?解:函数2412y x x =+-,开口向 ,对称轴 ,顶点坐标 ;函数y= x 2+4x-12与x 轴交点坐标( , )和( , ) 根据开口方向、顶点坐标和对称轴与x 轴交点坐标,画出函数草图: 看图回答:不等式x 2+4x-12>0的解集由上图,可得,不等式x 2+4x-12<0的解集是 .小结:二次函数2(0)y ax bx c a =++≠与x 轴的交点为()()0,0,21x x : ① 0>a当 时,0>y 即ax 2+bx+c>0;当 时,0<y 即ax 2+bx+c<0; ② 0<a当 时,0>y 即ax 2+bx+c>0;当 时,0<y 即ax 2+bx+c<0. 环节二、巩固练习 A 组1、抛物线如图所示:①当x 时,y=0; ②当x= 时,y 有最 值.③当x<-1或x>3时,y 0;当-1<x<3时,y 0; -11 2 3xyO —1 —22、抛物线y=x 2-2x-8开口 ,对称轴 ,顶点坐标 , 与y 轴的交点坐标( , )与x 轴交点的坐标( , )和( , )。

人教版九年级数学上册第22章 二次函数2 二次函数与一元二次方程

人教版九年级数学上册第22章 二次函数2 二次函数与一元二次方程
以40 m/s的速度将球沿与地面成30°角的方向击出时,球的飞行
路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h
(单位:m)与飞行时间t(单位:s)之间具有函数关系: =
− .考虑以下问题:
球的飞行高度能否达到15 m?如果能,需要多少飞行时间?
说一说为什么会有两个时间点,球的飞行高度是15m?


D. x₁=-1, x₂=


例5:如图,抛物线y=ax²+bx+c 经过点A(0,3),B(2,3),C(-1,0), 直线 y=mx+n
经过点 B,C.
(1)该抛物线的对称轴为直线 ___________.
x=1
x₁=-1,x2=3
(2)关于x的一元二次方程αx²+bx+c=0 的解为 ___________.
22.2 二次函数与一元二次方程
1.通过类比的方法理解一元二次方程 2 + + = ( ≠ 0)
根的情况与抛物线 = 2 + + 和直线 = 交点的情
况之间的关系,提高学生分析问题、解决问题的能力.
2.通过对“小球飞行”问题的探究,使学生理解二次函数与一
(3)观察图象求得方程的解(由于作图或观察存在误差,故由
图象求得的解一般是近似的)
教师讲评
知识点3.二次函数与不等式(难点)
1.函数值y与某个数值m之间的不等关系,一般要转化成关于x的不
等式,解不等式求得自变量x的取值范围。
2.利用两个函数图象在直角坐标系中的上下位置关系求自变量的取
值范围,可作图利用交点直观求解,也可以利用两个函数解析式
自主探究
2.画出函数ℎ = 20 − 52的图象,思考:

九年级数学《二次函数与一元二次方程不等式关系-复习课》课件

九年级数学《二次函数与一元二次方程不等式关系-复习课》课件
二次函数与一元二次方程与一元 二次不等式之间的关系复习课
二次函数 y=ax2+bx+c的图
象和x轴交点
a一x2+元bLxO二+RcE次M=0方IP的S程U根M DOLaOxR别一2+式b元xΔ+二c==次b02根方-4的程ac判
有两个交个相等的实数根
没有实数根
(2)直接写出使y1>y2时x的取值范围
交流总结
同学们, 通过这节课的学习,你收获了什么?
求m的值
例题讲解
• 2 二次函数y=ax2+bx+c图像如图 • (1)写出方程y=ax2+bx+c=0的两个根 • (2)写出不等式ax2+bx+c>0的解集 • (3)若方程ax2+bx+c=K有两个不相等的
实数根,求K的值
巩固练习
7、如图,A(-1,0),B(2,-3)在一次函数y=x+m与二次函数y=ax2+bx-3的图象上。 (1)求m的值和二次函数的表达式
自主学习,学会新知 • 1.自学课本32页的阅读与思考。 1 x取何值时y=0? 2 x取何值时y<0? 3 x取何值时y>0?
合作探究,学会质疑
根据自学思考题,师友互说并组议交流上面问题
展示师友 秀出风采 • 师友展示:解释以上问题
例题讲解
• 1 二次函数y=ax2+bx图像如图
• (1) 求一元二次方程ax2+bx=0的解 • (2) 求一元二次方程ax2+bx+3=0的解 • (3) 若一元二次方程ax2+bx+m=0有实根,

人教版九年级数学上《二次函数与一元二次方程》知识全解

人教版九年级数学上《二次函数与一元二次方程》知识全解

《二次函数与一元二次方程》知识全解课标要求:1.了解一元二次方程的根的几何意义,掌握用二次函数图象求解一元二次方程的根;2.会利用二次函数的图象求一元二次方程的近似解.知识结构:内容解析:1.一般地,从二次函数2(0)y ax bx c a =++≠的图象可知,(1)如果抛物线2y ax bx c =++与x 轴有公共点,公共点的横坐标是0x ,那么当0x x =时,函数的值是0,因此0x x =就是方程20ax bx c ++=的一个根. (2)二次函数的图象与x 轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程20ax bx c ++=的根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.2.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.重点难点:这节课是在学生学习了二次函数的概念、图象、性质及其相关应用的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况.这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法和数形结合、代数与几何的转化思想.这也突出了课标的要求:注重知识与实际问题的联系.教学重点:1.体会方程与函数之间的联系.2.能够利用二次函数的图象求一元二次方程的近似根.对于探索得出二次函数与一元二次方程的关系,用二次函数的图象求一元二次方程的方法和数形结合、转化思想,学生认识上不够深刻,实际运用的经验不足,故学生如何探索程与函数之间关系、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系并灵活运用结论以及相关数学思想去解决实际问题是本节课的难点.教学难点:1.探索方程与函数之间关系的过程.2.理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系.教法导引:针对本节课的内容特点、教学目标、学生已有经验和认知水平,采取了分组交流合作法、启发式教学法、多媒体辅助教学等多种方法相结合.注重数学与生活的联系,创设有启发性、挑战性的问题情景激发学生学习的兴趣,引导学生用数学的眼光思考问题、发现规律.注重学生的个性差异,因材施教,分层教学.注重师生互动、生生互动,让不同层次的学生动眼、动脑、动手、动口,参与数学思维活动,充分发挥学生的主体作用.二次函数与一元二次方程的关系通过小球飞行这样的实际问题加以体会.在这个问题中,将问题中h 的值代入函数解析式2205h t t =-,就得到关于t 的一元二次方程.这三个问题对应了一元二次方程有两个不等的实数根、有两个相等的根、没有实数根的三种情况.所以,我们可以利用二次函数2y ax bx c =++ 深入讨论一元二次方程20ax bx c ++=.接着,让学生思考:下列函数的图象与x 轴有公共点吗?如果有,公共点的横坐标是多少?当x 取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?(1)22y x x =+-;(2)269y x x =-+;(3)21y x x =-+.结合三个函数图象,让学生自由讨论得出什么结论.然后,在教师引导下,一起总结出二次函数与一元二次方程根的关系.最后由上面得到的结论,可以利用二次函数的图象求一元二次方程的根.师生一起讨论,利用函数图象求方程220x x x --=的实数根(精确到0.1). 最后,教师可以简单提一下,这种方法求方程也适用于更高次的方程,甚至更复杂的方程,有兴趣的同学可以了解相关的知识学法建议:可以先从发现解决某些函数问题就相当于解一元二次方程开始,进而再联想到二次函数解析式2(0)y ax bx c a =++≠与一元二次方程的一般形式20ax bx c ++=很相似,只需要令0y =即可,体现到图象上就是抛物线2y ax bx c =++与x 轴的交点,即如果抛物线2y ax bx c =++与x 轴有公共点,公共点的横坐标是0x ,那么当0x x =时,函数的值是0,就是方程20ax bx c ++=的一个根,所以,也就有了通过根的判别式来判断抛物线与x 轴是否有交点,交点有几个?最后就是通过函数图象可以求解方程,给解方程又添了一种方法……对比及联系二次函数与一元二次方程之间的关系,从函数的解析式及图象上掌握与方程的关系,并能用图象法求得方程的根.积极参与提出问题、分析问题和解决问题的过程中,使自己得到多样的发展.增强自己的思维能力,同时,应该联系实际问题,提高自己的综合分析能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级二次函数复习提纲
知识要点梳理
知识点一:二次函数的定义一般地,如果是常数,,那么叫做的二次函数.
知识点二:二次函数的图象与性质
1.二次函数由特殊到一般,可分为以下几种形式:
①;②;③;④,
其中;⑤.
几种特殊的二次函数的图象特征如下:
函数解析式
开口方向
对称轴
顶点坐标


开口向上 当

开口向下
(轴)
(0,0)
(轴)
(0,) (,0)
(,)
()
2.抛物线的三要素:
开口方向、对称轴、顶点.
(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开
口向下;
相等,抛物线的开口大小、形状相同.
(2)平行于轴(或重合)的直线记作.特别地,轴记作直线
.
3.抛物线
中,
的作用
(1)决定开口方向及开口大小,这与中的完全一样.
(2)和共同决定抛物线对称轴的位置.由于抛物线
的对称
轴是直线

故:①时,对称轴为轴;②(即、同号)时,对称轴在
轴左侧;③(即、异号)时,对称轴在轴右侧.
(3)的大小决定抛物线与轴交点的位置.
当时,
,∴抛物线
与轴有且只有一个交点(0,
): ①
,抛物线经过原点; ②,与轴交于正半轴;③,与
轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,
则 .
4。

二次函数图象的平移规律
任意抛物线y a x h k =-+()2可以由抛物线y ax =2
经过适当的平移得到,移动规
律可简记为:[左加右减,上加下减],具体平移方法如下表所示。

5.用待定系数法求二次函数的解析式
(1)一般式:.已知图象上三点或三对、的值,通常选择
一般式. (2)顶点式:.已知图象的顶点或对称轴,通常选择顶点式.
(可以看成
的图象平移后所对应的函数.)
(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:
.(由此得根与系数的关系!) 知识点三:二次函数与一元二次方程的关系

数,
当时,得到一元二次方

,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.
(1)当二次函数的图象与x 轴有两个交点,这时,则方程有
两个不相等实根;
(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;
(3)当二次函数的图象与x 轴没有交点,这时,则方程没有
实根.
通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象
的解
方程有两个不等实数

方程有两个相等实数
解方程没有实数解
知识点四:利用二次函数解决实际问题
利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.
利用二次函数解决实际问题的一般步骤是:
(1)建立适当的平面直角坐标系;
(2)把实际问题中的一些数据与点的坐标联系起来;
(3)用待定系数法求出抛物线的关系式;
(4)利用二次函数的图象及其性质去分析问题、解决问题.
方法指导:
1.求抛物线的顶点、对称轴的方法
(1)公式法:,∴顶点是
,对称轴是直线.
(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相同两点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
2.直线与抛物线的交点
(1)轴与抛物线得交点为(0,).
(2)与轴平行的直线与抛物线有且只有一个交点(,
).
(3)抛物线与轴的交点
二次函数的图象与轴的两个交点的横坐标、,是对应一元二次方程
的两个实数根.抛物线与轴的交点情况可以由对应的一
元二次方程的根的判别式
判定:
①有两个交点抛物线与轴相交;
②有一个交点(顶点在轴上)抛物线与轴相切;
③没有交点抛物线与轴相离.
(4)平行于轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交
点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.
次函数的图象与二次函数的图象的交
点,由方程
组的解的数目来确定:①方程组有两组不同的解时
与有两个交点;②方
程组只有一组解时与只有一个交点;③方程组无解时与没有交点.
(6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,
由于、是方程的两个根,故
.。

相关文档
最新文档