将军饮马模型(终稿)
将军饮马问题16大模型
将军饮马问题16大模型将军饮马问题是一个经典的数学问题,被广泛应用于算法设计和逻辑推理。
在这个问题中,有一个有限数量的将军和马,将军们需要同时饮马,而且马的数量要足够多,以保证每个将军都能骑到马上。
然而,问题的难点在于,如果将军们不约定时间,他们同时骑上马的可能性很小。
为解决这个问题,已经提出了许多解决方案,下面我将介绍16种解决这个问题的模型。
1. 广播模型将军们可以通过广播的方式进行通信,每个将军都可以听到其他将军的广播信号。
在某个固定时间,将军们开始广播他们已准备好骑马的消息,并等待其他将军的回应。
只有当每个将军都收到了其他将军的回应信号,他们才会同时骑上马。
2. 协商模型将军们可以通过协商的方式进行通信,每个将军都可以与其他将军直接交流。
在某个固定时间,将军们开始与其他将军交流他们已准备好骑马的消息,并等待其他将军的回应。
只有当每个将军都收到了其他将军的回应信息,他们才会同时骑上马。
3. 仲裁者模型将军们委任一个仲裁者作为中介来传递消息。
每个将军将自己已准备好骑马的消息告诉仲裁者,仲裁者负责将该消息传递给所有其他将军。
只有当每个将军都收到其他将军的消息,他们才会同时骑上马。
4. 时钟模型在固定的时间间隔内,每个将军都可以检查时钟的状态。
他们会设定一个目标时间,当时钟的时间达到目标时间时,将军们会同时骑上马。
这样,他们可以通过同步的方式来保证同时骑马。
5. 群体模型将军们通过形成一个群体来解决这个问题。
在一个固定时间,将军们同时进入群体,并在一起饮马。
这种方式需要所有将军都同意进入群体,并时刻保持一致,才能保证同时骑马。
将军们依次传递一个令牌表示自己已准备好骑马。
当每个将军都收到了令牌并且已经骑上马时,他们才会将令牌传递给下一个将军。
这种方式需要将军们按照一定的规则来传递令牌,以保证同时骑马。
7. 树模型将军们通过构建一棵树来解决这个问题。
树的根节点是一个仲裁者,每个将军是树的叶子节点。
当仲裁者收到所有将军的准备好骑马的消息时,他会通知所有将军同步骑马。
将军饮马模型(终稿)教学提纲
将军饮马模型(终稿)将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM 交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d (动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。
初中数学58种模型之12、“将军饮马”三种模型详解
当两淀点A 、R 在克罐/何侧时,在亞线』上携一点几便|阳一户创最大°将军饮马”三种模型"将军饮马"问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
晋两定点A.U 在点线F 异創时-在肖践f 上找一点Pt 使PA+PB 锻小*述接也交h 纱/于点P.点卩閒为所求作的点.肖两远点上B 在直雜I 同测时,在直刻上拥一点P,使PA+PB 最小'作庖U 芸于宜线F 的对称点V ■连楼AB'交直线于点P.点P 即为用求作的点"―二I \PA-P^\荊卩址大值洵丽。
连接班并延长交直戦』十点几点卩即为所求作的点。
当两定点仏k 在直找门司侧时,在直线』上找一点人使PA-PB\^扎作点B 关于直统』的对称点B'h 谨接恋’井延快交宜鏡于点巴点F 即为所求作的点。
皓论PAPI1的颯小°PA-PB 的盘小值为AB'□冋-卿的最大值为上的动点,则户创的圮大值是多少?A ■B ■\A\PA-PB\的 1当两定点限廿在宜线/同删时,在直线丿上找--点片使f4-砂|最小“ 叫连接馭作■-朋的垂直平分钱交直线f 于点P ,点卩即沟所求作的点-最小值为叽模型实例例1一如图"止厅形的面积是1氛是等边三博形,点E 在止方刑ABCI )内“在对角纯蚯上有一点卩*则PD+FE 的艮小值为°^12.如圜已S11AABC 为辱展宜角匸角形…怔-氏=4”ZBCD 15".P 拘匚D热搜掃练I.如虱^AABC 中「ZACB-fJO 3,乃是就边的中点,II 是屈边b -动直+则LCIED 的最小悄是°])2・如图.点C的坐标为(3,y),当△ABC的周长最短时,求丿的值。
3.如图.正方形ABCD中,AB-7,M是DCI:的一点,且DM-3,N是AC上的一动点.求|DN-MN|的嚴小值与战大值.△PCD 周氏最小为点P 在ZAOB 的内部,在0B 上找点D,在0A 上找点C,使得△PCD 周长最小。
将军饮马模型(终稿)
将军饮马模型将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营 A 出发,先到河边饮马,然后再去河岸同侧的军营 B 开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“ 将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点 P,使动点 P 到两个定点 A 与 B 的距离之和最小,即 PA+PB 最小 .作法:连接 AB ,与直线l 的交点Q,Q 即为所要寻找的点,即当动点P 跑到了点 Q 处,PA+PB 最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接 AB ,与直线l 的交点Q,P为直线 l 上任意一点,在⊿ PAB 中,由三角形三边关系可知:AP+PB ≧ AB( 当且仅当 PQ 重合时取﹦ )例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 的和最小 .关键:找对称点作法:作定点 B 关于定直线l的对称点 C,连接 AC ,与直线 l 的交点 Q 即为所要寻找的点,即当动点 P 跑到了点 Q 处, PA+PB 和最小,且最小值等于 AC. 原理:两点之间,线段最短证明:连接 AC ,与直线l 的交点Q,P为直线 l 上任意一点,在⊿ PAC 中,由三角形三边关系可知:AP+PC≧ AC( 当且仅当 PQ 重合时取﹦ )2.两动一定型例3:在∠ MON 的内部有一点 A ,在 OM 上找一点 B ,在 ON 上找一点 C,使得△ BAC 周长最短.作法:作点 A 关于 OM 的对称点 A’,作点 A 关于 ON 的对称点 A’’,连接 A’ A ’’,与 OM 交于点 B,与 ON 交于点 C,连接 AB , AC ,△ ABC 即为所求.原理:两点之间,线段最短例 4:在∠ MON 的内部有点 A 和点 B ,在 OM 上找一点 C ,在 ON 上找一点 D ,使得四边形 ABCD 周长最短.作法: 作点 A 关于 OM 的对称点 A ’,作点 B 关于 ON 的对称点 B ’,连接 A ’ B ,’与 OM 交于点 C ,与 ON 交于点 D ,连接 AC , BD , AB ,四边形 ABCD 即为所求.原理: 两点之间,线段最短3. 两定两动型最值例 5:已知 A 、B 是两个定点, 在定直线 l 上找两个动点 M 与 N ,且 MN 长度等于定长 d (动点 M 位于动点 N 左侧),使 AM+MN+NB 的值最小 .提示:存在定长的动点问题一定要考虑平移作法一: 将点 A 向右平移长度 d 得到点 A ’, 作 A ’关于直线l 的对称点 A ’’,连接 A ’’B ,交直线 l于点 N ,将点 N 向左平移长度dM。
将军饮马(最完整讲义)
第1讲将军饮马模型➢知识点睛“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
一、定直线与两定点模型作法结论A、在直线l异侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l异侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最小.PB二、角到定点模型作法结论点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得PCD ∆周长最小.点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得MN PN +最小.点Q P 、在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得四边形PMNQ 周长最小.点M 在AOB ∠的外部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点M 在AOB ∠的内部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点Q P 、分别在AOB ∠的边OB OA 、是,在OA 上找一点M ,在OB 上找一点N ,使得MQ MN PN ++最小.二、两定点一定长模型作法结论如图在直线l 上找上两点N M 、(M 在左),使NB MN AM ++最小,且d MN =.如图,21//l l ,21l l 、之间的距离为d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,且NB MN AM ++最小.如图,21//l l ,43//l l ,21l l 、之间的距离为1d ,43//l l 之间的距离为2d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,在43l l 、上分别找Q P 、两点,使3l PQ ⊥且QB PQ NP MN AM ++++最小.如图,在⊙O 上找一点N ,在直线l 找一点M ,使得MN AM +最小.➢ 精讲精练例1:如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值.P OBAMN例2:如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值.例3:如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)第3题图 第4题图 第5题图例4:如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为( ) A .4B .5C .6D .7例5:如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________. PDCBAA BCDMNNMDCBA例6:如图,在Rt △ABD 中,AB =6,∠BAD =30°,∠D =90°,N 为AB 上一点且BN =2AN , M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值.例7:如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( ) A .3 B .4 C . D .第7题图 第8题图 第9题图例8:如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( ) A B .2 C .D .4例9:如图,在菱形ABCD 中,AC =BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( ) A .6B .C .D .4.5NMDBA E AFCDBNM DCBAEPDCBAM例10:如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( ) A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)3第10题图 第11题图 第12题图例11:如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B 两点距离之和PA +PB 的最小值为( ) A .B .C .D 例12:如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( )A .B .C .D .例13:如图,∠AOB =60°,点P 是∠AOB 内的定点且OP M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A B C .6D .3第13题图 第14题图 CBH FGEDCB AA BMOPN例14:如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 .例15:如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为___________.第15题图例16:如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.例17:如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.AB CD EFMx例18:如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,求PD+PE 的最小值。
将军饮马(最完整讲义)
第1讲将军饮马模型➢知识点睛一、“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题, 会与直线、角、三角形、四边形、圆、抛物线等图形结合, 在近年的中考和竞赛中经常出现, 而且大多以压轴题的形式出现。
二、定直线与两定点模型作法结论当两定点在直线异侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最大.当两定点在直线异侧时, 在直线上找上点, 使最大.当两定点在直线同侧时, 在直线上找上点, 使最小.二、角到定点模型作法结论点在的内部, 在上找一点, 在上找一点,使得周长最小.点在的内部, 在上找一点, 在上找一点,使得最小.点在的内部, 在上找一点, 在上找一点,使得四边形周长最小.点在的外部, 在射线上找一点, 使与点到射线的距离和最小.点在的内部, 在射线上找一点, 使与点到射线的距离和最小.点分别在的边是, 在上找一点, 在上找一点,使得最小.三、两定点一定长模型作法结论如图在直线上找上两点(在左), 使最小,且.如图, , 之间的距离为, 在上分别找两点, 使, 且最小.如图, , ,之间的距离为, 之间的距离为, 在上分别找两点, 使, 在上分别找两点, 使且最小.如图, 在⊙上找一点, 在直线找一点,使得最小.➢精讲精练例1: 如图, 点P是∠AOB内任意一点, ∠AOB=30°, OP=8, 点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值.例2: 如图, 正方形ABCD 的边长是4, M 在DC 上, 且DM=1, N 是AC 边上的一动点, 则△DMN 周长的最小值.A .例3: 如图, 在Rt △ABO 中, ∠OBA=90°, A (4,4), 点C 在边AB 上, 且AC:CB=1:3, 点D 为OB 的中点, 点P 为边OA 上的动点, 当点P 在OA 上移动时, 使四边形PDBC 周长最小的点P 的坐标为 B. ,C .,D .第3题图 第4题图 第5题图例4: 如图, 在△ABC 中, AC=BC, ∠ACB=90°, 点D 在BC 上, BD=3, DC=1, 点P 是AB 上的动点, 则PC+PD 的最小值为 A. 4 B. 5 C. 6 D. 7例5:如图, 在等边△ABC 中, AB=6, N 为AB 上一点且BN=2AN, BC 的高线AD 交BC 于点D, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值是___________.A BCDMN例6: 如图, 在Rt △ABD 中, AB=6, ∠BAD=30°, ∠D=90°, N 为AB 上一点且BN=2AN, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值.例7: 如图, 在Rt △ABC 中, ∠ACB=90°, AC=6. AB=12, AD 平分∠CAB, 点F 是AC 的中点, 点E 是AD 上的动点, 则CE+EF 的最小值为 A. 3 B. 4 C.D.第7题图 第8题图 第9题图A .例8: 如图, 在锐角三角形ABC 中, BC=4, ∠ABC=60°, BD 平分∠ABC, 交AC 于点D, M 、N 分别是BD, BC 上的动点, 则CM+MN 的最小值是B. 2C.D. 4例9: 如图, 在菱形ABCD 中, AC=, BD=6, E 是BC 的中点, P 、M 分别是AC.AB 上的动点, 连接PE 、PM, 则PE+PM 的最小值是A. 6B.C.D. 4.5E AFCDBNM DCBAEPDCBAMA .例10: 如图, 矩形ABOC 的顶点A 的坐标为(-4,5), D 是OB 的中点, E 是OC 上的一点, 当△ADE 的周长最小时, 点E 的坐标是B. C. D.第10题图 第11题图 第12题图例11: 如图, 在矩形ABCD 中, AB=6, AD=3, 动点P 满足, 则点P 到A.B 两点距离之和PA+PB 的最小值为A. B. C. D.例12: 如图, 矩形ABCD 中, AB=10, BC=5, 点E 、F 、G 、H 分别在矩形ABCD 各边上, 且AE=CG, BF=DH, 则四边形EFGH 周长的最小值为A. B. C. D.例13: 如图, ∠AOB=60°, 点P 是∠AOB 内的定点且OP=, 若点M 、N 分别是射线OA.OB 上异于点O 的动点, 则△PMN 周长的最小值是A. B. C. 6 D. 3第13题图 第14题图CBH FGEDCB AABMOPN例14: 如图, ∠AOB 的边OB 与x 轴正半轴重合, 点P 是OA 上的一动点, 点N (3,0)是OB 上的一定点, 点M 是ON 的中点, ∠AOB=30°, 要使PM+PN 最小, 则点P 的坐标为 .例15:如图, 已知正比例函数y=kx (k>0)的图像与x 轴相交所成的锐角为70°, 定点A 的坐标为(0, 4), P 为y 轴上的一个动点, M 、N 为函数y=kx (k>0)的图像上的两个动点, 则AM+MP+PN 的最小值为___________.第15题图例16: 如图, 在平面直角坐标系中, 矩形ABCD 的顶点B 在原点, 点A.C 在坐标轴上, 点D 的坐标为(6, 4), E 为CD 的中点, 点P 、Q 为BC 边上两个动点, 且PQ=2, 要使四边形APQE 的周长最小, 则点P 的坐示应为______________.例17:如图, 矩形ABCD 中, AD=2, AB=4, AC 为对角线, E 、F 分别为边AB 、CD 上的动点, 且EF ⊥AC 于点M,连接AF 、CE, 求AF+CE 的最小值.x例18: 如图, 正方形ABCD的面积是12, △ABE是等边三角形, 点E在正方形ABCD内, 在对角线AC上有一点P, 求PD+PE的最小值。
(完整word版)将军饮马问题的11个模型及例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A-P´B︱<︱PA-PB︱4. 已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l的对称点B´,连接B´A并延长交于点P,点P即为所求;理由:根据对称的性质知l为线段BB´的中垂线,由中垂线的性质得:PB=PB´,要使︱PA-PB︱最大,则需︱PA-PB´︱值最大,从而转化为模型3.典型例题1-1如图,直线y=2x+4与x轴、y轴分别交于点A和点B,点C、D分3别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为△CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P ,此时PC+PD 值最小.令y=23x+4中x=0,则y=4, ∴点B 坐标(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴CD 为△BAO 的中位线, ∴CD ∥x 轴,且CD=21AO=3,∵点D ′和点D 关于x 轴对称,∴O 为DD ′的中点,D ′(0,-1),∴OP 为△CDD ′的中位线,∴OP=21CD=23,∴点P 的坐标为(﹣32,0).在Rt △CDD ′中,CD ′=22D D CD '+=2243+=5,即PC+PD 的最小值为5.【小结】还可用中点坐标公式先后求出点C 、点P 坐标;若题型变化,C 、D 不是AB 和OB 中点时,则先求直线CD ′的解析式,再求其与x 轴的交点P 的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A 的坐标为(0,1),点B的坐标为(32,﹣2),点P 在直线y=﹣x 上运动,当|PA ﹣PB|最 大时点P 的坐标为_________,|PA ﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A 关于直线y=﹣x 对称点C ,连接BC ,可得直线BC 的方程;求得BC 与直线y=﹣x 的交点P 的坐标;此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作A 关于直线y=﹣x 对称点C ,易得C 的坐标为(﹣1,0);连接BC ,可得直线BC的方程为y=﹣54x ﹣54,与直线y=﹣x 联立解得交点坐标P 为(4,﹣4);此时|PA﹣PB|=|PC ﹣PB|=BC 取得最大值,最大值BC=2223)2()1(-++=241;【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4√5,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)变式训练1-2如图,菱形ABCD 中,对角线AC 和BD 交于点O ,AC=2,BD=2√3,E 为AB 的中点,P 为对角线AC 上一动点,则PE+PB 的最小值为__________.变式训练1-3如图,已知直线y=12x+1与y 轴交于点A ,与x 轴交于点D ,抛物线y=12x 2+bx+c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M ,使|AM ﹣MC|的值最大,求出点M 的坐标.拓展模型1. 已知:如图,A 为锐角∠MON 外一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:过点A 作AQ ⊥ON 于点Q ,AQ 与OM 相交于点P ,此时,AP+PQ 最小;理由:AP+PQ ≧AQ ,当且仅当A 、P 、Q 三点共线时,AP+PQ 取得最小值AQ ,根据垂线段最短,当AQ ⊥ON 时,AQ 最小.2. 已知:如图,A 为锐角∠MON 内一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:作点A关于OM的对称点A′,过点A′作AQ⊥ON于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型13.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A 2,连接 A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=A1P,AQ=A2Q,△APQ的周长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON内两个定点;要求:在OM上找一点P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A´,作点B关于直线ON的对称点B´,连接A´B´交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A´B´的长度之和;理由:AB长为定值,由基本模型将PA转化为PA´,将QB转化为QB´,当A´、P、Q、B´四点共线时,PA´+PQ+ QB´的值最小,即PA+PQ+ QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点A沿着平行于PQ的方向,向下平移至点A′,使得AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时,QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ最小.6.已知:如图,定点A、B分布于直线l两侧,长度为a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点A沿着平行于l的方向,向右移至A´,使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A´B+PQ,即A´B+a理由:易知四边形APQA´为平行四边形,则PA=QA´,当A´、Q、B三点共线时,QA´+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小.7.已知:如图,定点A、B分布于直线l的同侧,长度a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ 的位置,使得四边形APQB 周长最小分析:AB 长度确定,只需AP+PQ+QB 最小,通过作A 点关于l 的对称点,转化为上述模型3解:作A 点关于l 的对称点A ´,将点A ´沿着平行于l的方向,向右移至A ´´,使A ´A ´´=PQ=a ,连接A ´´B交l 于Q ,在l 上截取QP=a (P 在Q 左边),线段PQ 即为所求,此时四边形APQB 周长的最小值为A ´´B+AB+PQ ,即A ´´B+AB+a典型例题2-1如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为 .【分析】符合拓展模型2的特征,作点B 关于AC 的对称点E ,再过点E 作AB 的垂线段,该垂线段的长即BM+MN 的最小值,借助等面积法和相似可求其长度.【解答】作点B 关于AC 的对称点E ,再过点E 作EN ⊥AB 于N ,则BM+MN=EM+MN ,其最小值即EN 长;∵AB=10,BC=5,∴AC=22BC AB +=55,等面积法求得AC 边上的高为55510⨯=25,∴BE=45, 易知△ABC ∽△ENB ,∴,代入数据解得EN=8. 即BM+MN 的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=,点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .B .C .6D .3【分析】符合拓展模型3的特征;作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD. 【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,此时P点为直线OB与EF的交点,结合OB的解析式可得P点坐标;【解答】(1)在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题2-4如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.(1)求C、D两点的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、F点,结合直线的解析式和抛物线的对称轴可解出E、F坐标.【解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐标是(0,2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax2+bx+c,4a-2b+c=0由题意,得 16a+4b+c=0c=4解得a=-12,b=1,c=4,∴所求抛物线的解析式为y=-12x²+x+4;(3)只需AF+CE最短,抛物线y=-12x²+x+4的对称轴为x=1,将点A向上平移至A1(﹣2,1),则AF=A1E,作A1关于对称轴x=1的对称点A2(4,1),连接A2C,A2C与对称轴交于点E,E为所求,可求得A2C的解析式为y=-14x+2,当x=1时,y=74,∴点E的坐标为(1,74),点F的坐标为(1,34).【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练2-1几何模型:条件:如图1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A’,连接A’B交l于点P,即为所求.(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小是点P的横坐标是,此时PA+PB= .(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E.F分别是AG,AD上的两个动点,则EF+ED的最小值是.变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长的最小值是___________.变式训练2-3如图,已知直线l 1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .变式训练2-4如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A .(0,)B .(0,)C .(0,2)D .(0,)3.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A .B .C .5D .4.已知抛物线y=x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(,3),P 是抛物线y=x 2+1上一个动点,则△PMF 周长的最小值是( )A .3B .4C .5D .65.如图,点A (a ,3),B (b ,1)都在双曲线y=上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,D 、E 分别是AB 、BC 边上的动点,则AE+DE 的最小值为( )A .B .C .5D .7.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=6,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为 .8.如图,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .9.如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB+PM 的值最小时,PM 的长是( )A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是()A.6B.10 C.2D.212.如图,△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,P、E、F分别为线段AB、AD、DB上的任意点,则PE+PF的最小值是.13.如图,已知抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.15.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出 PM+PQ+QN 和的最小值.16.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.17.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM 的周长最小?请直接写出符合条件的点M的坐标.18.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),P是第一象限内抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.19.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=,y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P 运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色:1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
中考数学:'将军饮马'所有模型及变式——终极篇
中考数学:'将军饮马'所有模型及变式——终极篇以微课堂初中精品微课,数学奥林匹克国家一级教练执教。
一、模型展现(1)直线型模型1:在直线l上求作点P,使PA+PB最小.原理:两点之间,线段最短.PA+PB最小值即为AB长.模型2:在直线l上求作点P,使PA+PB最小.原理:和最小,同侧转异侧.两点之间,线段最短.模型3:在直线l上求作点P,使|PA-PB|最大.原理:两边之差小于第三边,|PA-PB|最大值即为AB长.模型4:在直线l上求作点P,使|PA-PB|最大.原理:差最大,异侧转同侧.两边之差小于第三边.变式:在直线l上求作点P,使l平分∠APB,与此作法相同.模型5:在直线l上求作点P,使|PA-PB|最小.原理:|PA-PB|最小为0,中垂线上的点到线段两端的距离相等.(2)角型模型6:在OA,OB上求作点M,N,使△PMN周长最小.原理:作两次对称,两点之间,线段最短.模型7:在OA,OB上求作点M,N,使四边形PQMN周长最小.原理:P,Q分别作对称,两点之间,线段最短.模型8:在OA,OB上求作点M,N,(1)使PM+MN最小.(2)使PN+MN最小.原理:先连哪个点,就先做关于那个点所在射线的对称点.垂线段最短.模型9:P,Q为OA,OB的定点,在OA,OB上求作点M,N,使PN+NM +MQ最小.原理:两点之间,线段最短,PN+NM+MQ最小值即为P’Q’的长.(3)平移型模型10:在直线l上求作点M,N,使MN=a,且AM+MN+NB最小.原理:将l上的MN转化到B’B.(问题情境:将军从军营A出发,去河边l饮马,饮马完在河边牵马散步a米,回军营B.可以转化为饮完马,直接去军营B,在到达之前散步.)模型11(造桥选址):直线l1∥l2,在l1上求作点M,在l2上求作点N,使MN⊥l1,且AM+MN +NB最小.原理:将MN转化为AA’.(可以理解为在A处先走过桥的路,再直达点B.)二、典型例题例1:(模型2)从点A(0,2)发出的一束光线,经x轴反射,过点B(4,3),求从点A到点B所经过的路径长.解析:例2:(模型4)已知点A(1,3)、B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为______解析:例3:(模型10)如图,当四边形PABN的周长最小时,a=______解析:例4:(模型11)解析:例5:(结合勾股)如图,在等边△ABC中,AB=6,N为AB上一点,且AN=2,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是_____解析:小结:所有类型已归纳完,更多内容,详见八上11讲期中专题一将军饮马类题型全覆盖暑假特辑10《轴对称》之“将军饮马”(上)暑假特辑11《轴对称》之“将军饮马”(下)本讲思考题:已知点A(-3,-4)和B(-2,1).(1)试在y轴上求一点P,使PA+PB的值最小(2)试在y轴上求一点P,使|QA-QB|的值最大(3)若C(0,m),D(0,m-2),当m为何值时,四边形ABCD的周长最小.答案:(1) P (0,-1)(2) Q (0,11)(3) m = -0.2End欢迎收看《以微课堂》微课,欢迎收看《以微课堂》微课,作者简介:四星级重点中学高级教师、数学名师。
将军饮马模型(终稿)(完整资料).doc
【最新整理,下载后即可编辑】将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B 的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ 重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B 的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l 的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB 和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PA C中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ 重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON 上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A 关于OM 的对称点A’,作点B 关于ON 的对称点B’ ,连接A’ B’,与OM 交于点C ,与ON 交于点D ,连接AC ,BD ,AB ,四边形ABCD 即为所求.原理:两点之间,线段最短3. 两定两动型最值例5:已知A 、B 是两个定点,在定直线l 上找两个动点M 与N ,且MN 长度等于定长d (动点M 位于动点N 左侧),使AM+MN+NB 的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A 向右平移长度d 得到点A’, 作A’关于直线l 的对称点A’’,连接A’’B ,交直线l 于点N ,将点N 向左平移长度d ,得到点M 。
将军饮马模型【范本模板】
将军饮马问题将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。
所谓轴对称是工具,即这类问题最常用的做法就是作轴对称.而最短距离是题眼,也就意味着归类这类的题目的理由。
比如题目经常会出现线段 a+b 这样的条件或者问题。
一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。
1。
将军饮马故事“将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B地,问怎样选择饮水的地点,才能使所走的路程最短?•A•B模型一:一条定直线,同侧两定点在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。
一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点.A'B即为最短距离 .理由:A'为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A'P。
所以PA+PB=PA’+PB。
这样问题就化成了求 A’到 B 的最短距离,直接相连就可以了。
例一:某供电部门准备在输电主干线L上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电。
已知两个居民小区A、B分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。
(1)如果居民小区A、B位于主干线L的两旁,如图(1)所示,那么分支点M 在什么地方时总路线最短?最短线路的长度是多少千米?(2)如果居民小区A、B位于主干线L的同旁,如图(2)所示,那么分支点M在什么地方时总路线最短?此时分支点M与A1的距离是多少千米?模型二:一条定直线,一定点,一动点如图,已知直线L 和定点A ,在直线K 上找一点M,在直线L 上找一点P ,使得AP+PB 值最小.模型三:一定点,两条定直线如图,在∠OAB 内有一点 P ,在 OA 和 OB 各找一个点 M 、N ,使得△PMN 周长最短(题 眼)。
(完整)初三复习将军饮马(终稿)
初三复习专题 最短路径问题——将军饮马班级: 姓名:将军饮马问题=最短距离问题=轴对称问题一、基本模型(2条线段和最小):1、如图,在定直线l 的同侧有两定点A,B,在直线l 上求作点P ,使PA+PB 最小。
二、模型变型(3条线段和最小) 2、如图,点P 是∠MON 内的一定点,分别在OM 、ON 上作点A 、B ,使△PAB 的周长最小。
【例1】如图,∠M O N =45°,P 是∠M O N 内一点,PO=10,A ,B 分别是O M 、O N 上的动点,则△ABP 周长的最小值为 。
【方法归纳:】1、作图的一般步骤是:①② ③ 2、计算最短线段长度的方法: 【例2】、已知抛物线2(1)4y x =--+交x 轴于A(-1,0)、B (3,0)两点,交y 轴于点D (0,3),又已知点E (2,3),点F (0,1)。
点G 为对称轴PQ 上一动点,试问在x 轴上是否存在一点H ,使D,G,H,F 四点所围成的四边形周长最小?若存在,求出这个最小值及点G ,H 的坐标;若不存在,请说明理由。
ON三、模型再变型(线段+点到线距离之和最小)3、如图,点P 是∠MON 内的一定点,在射线OM 、ON 上 分别找两个点A 、B ,使PA+AB 最小。
【例3】、如图2,菱形ABCD 中,AB=10,∠B=135°,E 是AB 上一动点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 .【变式】、已知直线1l 和2l 交于M 点,夹角为30°,点A 在1l 上且AM=10,P 是2l 上一动点,则P 点到A 点的距离与1l 的距离之和的最小值为 。
四、将军饮马+平移模型4、如图,已知有两个定点A 、B ,在定直线l 有两个动点P 、Q ,且PQ 长度不变,求作点P 、Q 使得AP+PQ+BQ 最小。
(A 、B 异侧) (A 、B 同侧)【例4】、如图,甲、乙两个单位分别位于一条河流的两边A 处和B 处,现准备合作修建一座桥,桥建在何处才能使由甲到乙的路线最短?请做出示意图。
最值模型之将军饮马模型(解析版)
最值模型之将军饮马模型模型一两定一动型(线段和差的最值问题)【模型解读】在一条直线m上,求一点P,使PA与PB的和最小;题目在一条直线m上,求一点P,使PA+PB最小;分类(1)点A、B在直线m两侧(2)点A、B在直线同侧原图辅助线作法连接AB交直线m于点P,此点P即为所求,PA+PB最小值为AB 作A关于直线m的对称点A',连接A'B交直线m于点P,此点P即为所求,PA+PB最小值为A'B原理三角形两边之和大于第三边【模型解读】在一条直线m上,求一点P,使PA与PB的差最大;题目在一条直线m上,求一点P,使|PA-PB|最大;分类(1)点A、B在直线m同侧:(2)点A、B在直线m异侧原图辅助线作法延长AB交直线m于点P,此点P即为所求,|PA-PB|最大值为AB 过点B作关于直线m的对称点B',连接AB'交点直线m于P,此点P即为所求,|PA-PB|最大值为AB'原理三角形两边之差小于第三边。
例题解析1如图,正方形ABCD的边长为4,点E在边BC上,且BE=1,F为对角线BD上一动点,连接CF,EF,则CF+EF的最小值为.【答案】17【分析】连接AE交BD于一点F,连接CF,根据正方形的对称性得到此时CF+EF=AE最小,利用勾股定理求出AE即可.【详解】解:如图,连接AE交BD于一点F,连接CF,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AF=CF,∴CF+EF=AF+EF=AE,此时CF+EF最小,∵正方形ABCD的边长为4,∴AD=4,∠ABC=90°,∵点E在AB上,且BE=1,∴AE=AB2+BE2=42+12=17,即CF+EF的最小值为17故答案为:17.2如图,在菱形ABCD中,∠ABC=120°,对角线AC、BD交于点O,BD=8,点E为OD的中点,点F为AB上一点,且AF=3BF,点P为AC上一动点,连接PE、PF,则PF-PE的最大值为.【答案】2【分析】作E的对称点E',连接FE'并延长交AC于点P',根据三角形三边关系可得到PF-PE=PF-PE≤E F,最后根据等边三角形的性质及菱形的性质即可解答.【详解】解:作E的对称点E ,连接FE'并延长交AC于点P ,∴PE=PE ,∴PF-PE≤E F,=PF-PE当F、E 、P 在同一条直线上时,PF-PE有最大值E F,∵在菱形ABCD中,∠ABC=120°,∴∠DAB=60°,AD=AB,∴△ABD是等边三角形,∴∠DAB=∠DBA=∠ADB=60°,,AD=AB=BD,∵BD=8,∴AB=8,∵AF=3BF,∴BF=2,∵点E为OD的中点,∴E 为OB的中点,∴BE =1BD=2,4∴BF=BE ,∴△BE F是等边三角形,∴E F=BF=2,故答案为2;变式训练1如图,菱形ABCD,点A、B、C、D均在坐标轴上,∠ABC=120°,点A-3,0,点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()3A.3B.5C.22D.32【答案】A【分析】直线AC上的动点P到E、D两定点距离之和最小属“将军饮马”模型,由D关于直线AC的对称点B,连接BE,则线段BE的长即是PD+PE的最小值.【详解】如图:连接BE,∵菱形ABCD,∴B、D关于直线AC对称,,∵直线AC上的动点P到E、D两定点距离之和最小∴根据“将军饮马”模型可知BE长度即是PD+PE的最小值.∵菱形ABCD,∠ABC=120°,点A-3,0,∴∠CDB=60°,∠DAO=30°,OA=3,∴OD=3,AD=DC=CB=23∴△CDB是等边三角形∴BD=23∵点E是CD的中点,∴DE=1CD=3,且BE⊥CD,∴BE=BD2-DE2=3故选:A.22如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB=4,则AE+OE的最小值是()A.42B.25+2C.213D.210【答案】D【分析】本题为典型的将军饮马模型问题,需要通过轴对称,作点A关于直线BC的对称点A ,再连接A O,运用两点之间线段最短得到A O为所求最小值,再运用勾股定理求线段A O的长度即可.【详解】解:如图所示,作点A关于直线BC的对称点A ,连接A O,其与BC的交点即为点E,再作OF⊥AB交AB于点F,∵A与A关于BC对称,∴AE=A E,AE+OE=A E+OE,当且仅当A ,O,E在同一条线上的时候和最小,如图所示,此时AE+OE=A E+OE=A O,∵正方形ABCD,点O为对角线的交点,AB=2,∴OF=FB=12∵对称,∴AB=BA =4,∴FA =FB+BA =2+4=6,在Rt△OFA 中,OA =FO2+FA 2=210,故选:D.3如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+ MF的最小值为()A.1B.2C.3D.2【答案】C【分析】连接AF,则AF的长就是AM+FM的最小值,证明△ABC是等边三角形,AF是高线,利用三角函数即可求解.【详解】解:连接AF,则AF的长就是AM+FM的最小值.∵四边形ABCD 是菱形,∴AB =BC ,又∵∠ABC =60°,∴△ABC 是等边三角形,∵CF =BF ∴F 是BC 的中点,∴AF ⊥BC .则AF =AB •sin60°=2×32=3.即MA +MF 的最小值是3.故选:C4如图,已知△ABC 为等腰直角三角形,AC =BC =6,∠BCD =15°,P 为直线CD 上的动点,则|PA -PB |的最大值为.【答案】6【分析】作A 关于CD 的对称点A ′,连接A ′B 交CD 于P ,则点P 就是使|PA -PB |的值最大的点,|PA -PB |=A ′B ,连接A ′C ,根据等腰直角三角形的性质得到∠CAB =∠ABC =45°,∠ACB =90°,根据角的和差关系得到∠ACD =75°,根据轴对称的性质得到A ′C =AC =BC ,∠CA ′A =∠CAA ′=15°,推出△A ′BC 是等边三角形,根据等边三角形的性质即可得到结论.【详解】如图,作A 关于CD 的对称点A ′,连接A ′B 并延长交CD 延长线于点P ,则点P 就是使PA -PB 的值最大的点,PA -PB =A ′B ,连接A ′C ,∵△ABC 为等腰直角三角形,AC =BC =6,∴∠CAB =∠ABC =45°,∠ACB =90°,∵∠BCD =15°,∴∠ACD =75°,∵点A 与A ′关于CD 对称,∴CD ⊥AA ′,AC =A ′C ,∠CA ′A =∠CAA ′,∴∠CAA ′=15°,∵AC =BC ,∴A ′C =BC ,∠CA ′A =∠CAA ′=15°,∴∠ACA ′=150°,∵∠ACB =90°,∴∠A ′CB =60°,∴△A ′BC 是等边三角形,∴A ′B =BC =6.故答案为:65如图,MN 是⊙O 的直径,MN =6,点A 在⊙O 上,∠AMN =30°,B 为AN的中点,P 是直径MN 上一动点,则PA +PB 的最小值是.【答案】32【分析】首先利用在直线L 上的同侧有两个点A 、B ,在直线L 上有到A 、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点P 的位置,然后根据弧的度数发现一个等腰直角三角形计算.【详解】作点B 关于MN 的对称点C ,连接AC 交MN 于点P ,连接OB ,则P 点就是所求作的点.此时PA +PB 最小,且等于AC 的长.连接OA ,OC ,∵∠AMN =30°,∴∠AON =60°,∵B 为AN的中点,∴AB =BN∴∠AOB =∠BON =30°,∵MN ⊥BC ,∴CN=BN,∴∠CON =∠NOB =30°,则∠AOC =90°,又OA =OC =3,则AC =32.故答案为:32.6如图,在矩形ABCD 中,AB =3,BC =5.动点P 满足S △PBC =13S 矩形ABCD.则点P 到B ,C 两点距离之和PB +PC 的最小值为。
中考复习讲义:将军饮马所有模型及变式——终极篇(直线型 角型 平移型)(练习无答案)
将军饮马所有模型及变式——终极篇一、模型展现(1)直线型模型1:在直线l上求作点P,使PA+PB最小.原理:两点之间,线段最短.PA+PB最小值即为AB长.模型2:在直线l上求作点P,使PA+PB最小.原理:和最小,同侧转异侧.两点之间,线段最短.模型3:在直线l上求作点P,使|PA-PB|最大.原理:两边之差小于第三边,|PA-PB|最大值即为AB长.模型4:在直线l上求作点P,使|PA-PB|最大.原理:差最大,异侧转同侧.两边之差小于第三边.模型5:在直线l上求作点P,使|PA-PB|最小.原理:|PA-PB|最小为0,中垂线上的点到线段两端的距离相等.(2)角型模型6:在OA,OB上求作点M,N,使△PMN周长最小.原理:作两次对称,两点之间,线段最短.模型7:在OA,OB上求作点M,N,使四边形PQMN周长最小.原理:P,Q分别作对称,两点之间,线段最短.模型8:在OA,OB上求作点M,N,(1)使PM+MN最小.(2)使PN+MN最小.原理:先连哪个点,就先做关于那个点所在射线的对称点.垂线段最短.模型9:P,Q为OA,OB的定点,在OA,OB上求作点M,N,使PN+NM+MQ最小.原理:两点之间,线段最短,PN+NM+MQ最小值即为P’Q’的长.(3)平移型模型10:在直线l上求作点M,N,使MN=a,且AM+MN+NB最小.原理:将l上的MN转化到B’B.(问题情境:将军从军营A出发,去河边l饮马,饮马完在河边牵马散步a米,回军营B.可以转化为饮完马,直接去军营B,在到达之前散步.)模型11(造桥选址):直线l1∥l2,在l1上求作点M,在l2上求作点N,使MN⊥l1,且AM+MN+NB 最小.原理:将MN转化为AA’.(可以理解为在A处先走过桥的路,再直达点B.)二、典型例题例1:(模型4)已知点A(1,3)、B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为______解析:例2:(模型11)解析:例3:(结合勾股)解析:练习反馈:1.在直线l上求作点P,使l平分∠APB,与此作法相同.2. 从点A(0,2)发出的一束光线,经x轴反射,过点B(4,3),求从点A到点B 所经过的路径长.3.已知点A(-3,-4)和B(-2,1).(1)试在y轴上求一点P,使PA+PB的值最小(2)试在y轴上求一点P,使|QA-QB|的值最大(3)若C(0,m),D(0,m-2),当m为何值时,四边形ABCD的周长最小.4. 如图,在等边△ABC中,AB=6,N为AB上一点,且AN=2,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是_____5.如图,当四边形PABN的周长最小时,a=______。
(完整版)将军饮马模型(终稿)
将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB。
原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PA C中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON 交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N 左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l 于点N,将点N向左平移长度d,得到点M.作法二:作点A关于直线l的对称点A1,将点A1向右平移长度d得到点A2,连接A2 B,交直线l于点Q,将点Q向左平移长度d,得到点Q。
(完整版)将军饮马问题的11个模型及例题
如图,菱形ABCD中,对角线AC和BD交于点O,AC=2,
BD=2 ,E为AB的中点,P为对角线AC上一动点,则PE+PB的
最小值为__________.
变式训练1-3
如图,已知直线y= x+1与y轴交于点A,与x轴交于点D,抛物线y= x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
点到l的距离不相等)
要求:在直线l上找一点P,使︱PA-PB︱的值最大
解:作点B关于直线l的对称点B´,连接B´A并延长交
于点P,点P即为所求;
理由:根据对称的性质知l为线段BB´的中垂线,由中垂
线的性质得:PB=PB´,要使︱PA-PB︱最大,则需
︱PA-PB´︱值最大 ,从而转化为模型3.
典型例题1-1
【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,
则MP=MC,NP=ND,OP=OD=OC= ,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
∴此时△PMN周长最小,作OH⊥CD于H,
如图,直线y= x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.
【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为 △CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.
完整word版将军饮马问题的11个模型及例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理2.三角形两边之和大于第三边,两边之差小于第三边;1.两点之间,线段最短;.垂线段最短3.中垂线上的点到线段两端点的距离相等;4.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小, 即为所求,点PP解:连接AB交直线l于点PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P′,连接AP′、BP′,在△ABP'中,AP′+BP′>AB,即AP′+BP′>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A′,连接A′B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA′的中垂线,由中垂线的性质得:PA=PA′,要使PA+PB最小,则需PA′+PB值最小,从而转化为模型1.3.两的同侧(A、B已知:如图,定点A、B分布在定直线l 的距离不相等)点到l︱的值最大P,使PA-PB︱要求:在直线l上找一点 P,点P即为所求;解:连接BA并延长,交直线l于点的一点P′,︱=AB,在l上任取异于点P此时︱理由:PA-PB ︱<AB,,由三角形的三边关系知︱P′A-P′B′连接AP、BP′︱PA-PB︱′A-P′B︱<即︱P两B分布在定直线l的两侧(A、已知:如图,定点A、B 4.的距离不相等)点到l︱的值最大上找一点P,使︱PA-PB要求:在直线l 并延长交连接B′A解:作点B关于直线l的对称点B′,P于点,点P即为所求;为线段BB′的中垂线,由中垂理由:根据对称的性质知l ′,要使︱PA-PB︱最大,则需线的性质得:PB=PB3.′︱值最大,从而转化为模型︱PA-PB1-1典型例题2分DA和点B,点Cx+4如图,直线y=与x轴、y轴分别交于点3最小时,为OA上一动点,当PC+PD、别为线段ABOB的中点,点P_________. _________,此时的最小值为PC+PD点P的坐标为,连轴的对称点D'的特征,作点【分析】符合基本模型2D关于x为CDx轴于点P,此时PC+PD 值最小,由条件知CD'接交长,从OPCDD'的中位线,易求△的中位线,△BAOOP为长,可用勾股定理CD'PC+PD而求出P点坐标;的最小值即.(或两点之间的距离公式,实质相同)计算轴x′交CD′,连接D轴的对称点x关于D,作点CD】连接解答【.2x=0,则y=4,于点P,此时PC+PD值最小.令y=x+4中322的坐标,∴点Ay=0∴点B坐标(0,4);令y=x+4中,则x+4=0,解得:x=﹣633的中位线,BAO的中点,∴CD为△为(﹣6,0).∵点C、D分别为线段AB、OB1AO=3CD=,∴CD∥x轴,且2′的中点,O为DDD∵点′和点D关于x轴对称,∴31OP=CD=-1D′(0,),∴OP为△CDD′的中位线,∴,223△CDD′中,∴点P的坐标为(﹣,0).在Rt22222?4DDCD3??5.CD′=的最小值为=5,即=PC+PD 坐标;若题型变、点P【小结】还可用中点坐标公式先后求出点C CD′的解析不是化,C、DAB和OB中点时,则先求直线.P的坐标式,再求其与x轴的交点1-2典型例题B ,点1)如图,在平面直角坐标系中,已知点A的坐标为(0,3最,点的坐标为(,﹣2)P在直线y=﹣x上运动,当|PA﹣PB|2_________. PB|的最大值是P大时点的坐标为_________,|PA﹣,y=【分析】符合基本模型4的特征,作A关于直线﹣x 对称点C x连接BC,可得直线BC的方程;求得BC与直线y=﹣的交点P的坐标;此时|PA﹣PB|=|PC﹣PB|=BC取得最大值,.再用两点之间的距离公式求此最大值BCBC,可得直线;连接的坐标为(﹣1,0)C解答【】作A 关于直线y=﹣x对称点,易得C44|PA);此时4P为(4,﹣的方程为y=﹣xy=﹣,与直线﹣x联立解得交点坐标552241)(?2(?1)?3 PB|=|PC﹣PB|=BCBC==取得最大值,最大值;﹣22.,需作一次对称点,连线得交点2和4】【小结“两点一线”大多考查基本模型1-1变式训练),,已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(50最短0D(,1),当CP+DPOBOB=45,点P是对角线上的一个动点,√时,点P的坐标为()510361,.)1. 00.A(,) B(,C((.) D,)77552.1-2变式训练AC=2,和如图,菱形ABCD中,对角线ACBD交于点O,的上一动点,则PE+PB3,E为AB的中点,P为对角线BD=2AC√__________. 最小值为1-3变式训练112与直线交于x+bx+cD,抛物线y=x+1如图,已知直线y=与y轴交于点A,与x轴交于点22.01,)A、E两点,与x轴交于B、C两点,且B点坐标为()求该抛物线的解析式;(1. 的值最大,求出点MC|M的坐标(2)在抛物线的对称轴上找一点M,使|AM﹣拓展模型1.已知:如图,A为锐角∠MON外一定点;,使上找一点Q上找一点P,在射线ON要求:在射线OM. AP+PQ的值最小解:过点A作AQ⊥ON于点Q,AQ与OM相交于点P,此时,AP+PQ最小;理由:AP+PQ≧AQ,当且仅当A、P、Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ON时,AQ最小.2.已知:如图,A为锐角∠MON内一定点;,使上找一点ONQ,在射线上找一点要求:在射线OMP.的值最小 AP+PQ.ONAQ⊥的对称点A′,过点A′作解:作点A关于OM AP+PQ最小;交OM于点P,此时于点Q,A′QAP+PQ最小,AP=A′P,要使理由:由轴对称的性质知1 P+PQ最小,从而转化为拓展模型只需A′为锐角∠MON内一定点;已知:如图,A 3.,使,在射线ON上找一点Q要求:在射线OM上找一点P 的周长最小△APQ的对,关于ON 解:分别作A点关于直线OM的对称点A1于点ONQ,点A交OM于点P,交称点A,连接 A221即为所求,此时△APQ周长最小,最小值P和点Q AA的长度;即为线段21,△APQ的周AP=AP,AQ=AQ理由:由轴对称的性质知21 A四点共线、P、Q、P+PQ+A长AP+PQ+AQ=AQ,当A2112. 时,其值最小内两个定点;B为锐角∠MON、已知:如图,A 4.四边形上找一点Q,使要求:在OM上找一点P,在ON APQB的周长最小,作点B关于直线A 关于直线OM的对称点A′解:作点 Q,P,交ON于交的对称点ONB′,连接A′B′OM于周长的、点Q即为所求,此时四边形APQB则点P′′B的长度之和;最小值即为线段AB和A ,将PA理由:AB长为定值,由基本模型将PA转化为′ B′四点共线时,、、′QB转化为QB,当A′P、Q . QBPQPA′+′+PAPQ QB的值最小,即++的值最小下方的定分别为m上方和n已知:如图,直线m∥n,A、B5.搭桥模型垂直)(直线AB不与m点,. 最小PQ,使得AP+PQ+BQ之间求作垂线段要求:在m、n 最小,可通过平移,使PQ为定值,只需AP+BQ分析:,转化为基本模型、Q“接头”P 的方向,向下平移至A沿着平行于PQ解:如图,将点交直线n于点′AA′=PQ,连接AB点A′,使得,线段PQ即⊥n,交直线m于点PQ,过点Q作PQ.为所求,此时AP+PQ+BQ最小′=PA,理由:易知四边形QPAA′为平行四边形,则QA +BQ最小,即、A′三点共线时,QA′当B、Q.AP+PQ+BQ最小AP+BQ最小,PQ长为定值,此时al两侧,长度为A、B分布于直线6.已知:如图,定点左边)上移动(P在Q (a为定值)的线段PQ在l最小要求:确定PQ的位置,使得AP+PQ+QB的值最小,可通过平移,PQ为定值,只需AP+QB 分析:,转化为基本模型、Q“接头”使P A′,使解:将点A沿着平行于l的方向,向右移至l上截取交直线Bl于点Q,在AA′=PQ=a,连接A′ PQ即为所求,此时在Q左边),则线段PQ=a (PB+a ′′B+PQ,即AAP+PQ+QB的最小值为A ′为平行四边形,则PA=QA,理由:易知四边形APQA′PA+QB +QB最小,即、QB三点共线时,QA′A当′、.值最小最小,又PQ长为定值此时PA+PQ+QBal的同侧,长度、7. 已知:如图,定点AB分布于直线左边)Q在P上移动(l在PQ的线段)为定值(a周长最小要求:确定PQ的位置,使得四边形APQB点分析:AB长度确定,只需AP+PQ+QB最小,通过作A3的对称点,转化为上述模型关于llAl的对称点A′,将点′沿着平行于解:作A点关于B ′A′′=PQ=a,连接A′′的方向,向右移至A′′,使A (P在Q左边),线段交l于Q,在l上截取QP=a APQB周长的最小值为PQ即为所求,此时四边形B+AB+aA′′′′B+AB+PQ,即A2-1典型例题、AC、N分别是线段如图,在矩形ABCD中,AB=10,BC=5,若点M .上的两个动点,则ABBM+MN 的最小值为,再过EAC的对称点关于【分析】符合拓展模型2的特征,作点B的最小值,借BM+MNAB的垂线段,该垂线段的长即点E作.助等面积法和相似可求其长度,BM+MN=EM+MN作EN⊥AB于N,则E解答【】作点B关于AC的对称点E,再过点,其最小值即EN长;∵AB=10,BC=522BCAB?5,∴=5AC=510?55, =2等面积法求得ACBE=4边上的高为,∴55,∴∽△ABCENBEN=8.易知△,代入数据解得 8.即BM+MN的最小值为】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作【小结有些题则作动点的定点或动点关于定直线的对称点,有些题作定点的对称点易解,.对称点易解2-2典型例题分别、NAOB内的定点且OP=,点MP如图,∠AOB=60°,点是∠)(的动点,OB上异于点O则△PMN周长的最小值是、是射线OAC..AB..6 D3分别交D,连接CDOA、OB的对称点C、【分析】符合拓展模型3的特征;作P点分别关于,OC、OD,此时△PMN周长最小,其值为CD长;根据对称性连接OA、OB于M、NCD.是顶角为120°的等腰三角形,作底边上高,易求底边分析条件知△OCD N,如图,、OB于M、的对称点OA、OBC、D,连接CD分别交OA【解答】作P点分别关于,BOD,∠AOP=∠AOC则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠°,∠AOC=2∠AOB=120PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∴,⊥CD于H∴此时△PMN周长最小,作OHOC=OH=,则CH=DH,∵∠OCH=30°,∴CD=2CH=3.CH=OH=,∴即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.2-3典型例题所在的直线为原点,OCABCO,以点O如图,已知平行四边形,,OC=6D,AD=2轴于点为x轴,建立直角坐标系,AB交y为点P所在的直线为OD的垂直平分线,∠A=60°,线段EF轴x与E′关于线段EF上的动点,PM⊥x轴于点M点,点E ′M.对称,连接BP、E ;(1)请直接写出点A坐标为,点B坐标为. 的坐标BP+PM+ME′的长度最小时,请求出点P(2)当的长即可解决;,BD【分析】(1)解直角三角形求出OD,可得OP=EM符合(2)“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,点为P′的长度最小,此时PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME 点坐标;OB与EF的交点,结合OB的解析式可得P直线 ADO中,∵∠A=60°,AD=2,(【解答】1)在Rt △,)°OD=2?tan60=2,∴A(﹣2,2∴,∵四边形ABCO是平行四边形,∴AB=OC=6)4B(,22=4∴DB=6﹣,∴,,∵如图,(2)连接OP.EF垂直平分线段ODPM⊥OC PEO=是矩形,°,∴四边形∠∠EOM=PMO=90OMPE∴∠′,∴,∵∴PM=OE=OE=OEPM=OE′,OE∥′,PM,′是平行四边形OPME∴四边形.′的长度最小,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+MEB共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=,x∴当O、P、.2,)(∴P(构造平行四边求没有公共端点的两条线段之和的最小值,一般通过作对称和平移【小结】.形)的方法,转化为基本模型2-4典型例题的顶点坐标分△AOB如图所示,在平面直角坐标系中,RtOAOB4),把△绕点)(﹣2,0,O(0,0),B(0,别为A 90°,得到△COD.按顺时针方向旋转C、D两点的坐标;(1)求三点的抛物线的解析式;、D(2)求经过A、BFE在点E(3)在(2)中抛物线的对称轴上取两点、F(点、求出E的上方),且EF=1,使四边形ACEF的周长最小,两点的坐标.F点,结合直线的F【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、、解析式和抛物线的对称轴可解出EF坐标. 解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐【,0)D),点的坐标是(4,标是(0,22,(2)设所求抛物线的解析式为y=ax+bx+c 4a-2b+c=016a+4b+c=0由题意,得 c=41,,b=1,c=4解得a=-21+4;x2+x y=-∴所求抛物线的解析式为21,+x+4的对称轴为x=1x2y=-最短,抛物线3)只需AF+CE(2A关于对称轴x=1的对称点,作2将点A向上平移至A(﹣,1),则AF=AE111的解析式,与对称轴交于点EE为所求,可求得ACCC1(A4,),连接A,A22223771y=+x2,当x=1时, )的坐标为,点)为y=-(1,E,∴点的坐标为F(1,.4444. 】解决此类题的套路是“对称、平移、连线”【小结;其中,作对称和平移的顺序可互换2-1变式训练几何模型: l同旁的两个定点.条件:如图1,A,B是直线的值最小.P问题:在直线l上确定一点,使PA+PB (不必证明)B交l于点P,即为所求.方法:作点A关于直线l的对称点A',连接A' 模型应用:轴上一动1),P为xA)如图2,已知平面直角坐标系中两定点(0,﹣1)和B(2,﹣(1 ,此时PA+PB= .点,则当PA+PB的值最小是点P的横坐标是,由BD的中点,P是AC上一动点,连接)如图3,正方形ABCD的边长为4,E为AB2(的最小PB+PEAC于P,则正方形对称性可知,B与D关于直线AC对称.连接ED交值是.分别F上一动点,E,DAB=60中,AB=10,∠°,P是对角线AC3()如图4,在菱形ABCD .的最小值是是线段AB和BC上的动点,则PE+PF分别是FE.°,点B=60G是边CD边的中点,点)如图(45,在菱形ABCD中,AB=6,∠.AD上的两个动点,则EF+ED的最小值是AG,变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长___________.的最小值是2-3变式训练的P到直线l,l、l之间的距离为8,点如图,已知直线l∥l11212距上有一动PQ=4l的距离为4,,在直线l离为6,点Q到直线12最小,此时,满足AB⊥l,且PA+AB+BQ点A,直线l上有一动点B22.PA+BQ=2-4变式训练在OC的边OA在y轴的正半轴上,中,直角梯形如图,已知在平面直角坐标系xOyOABC 按顺BD.将∠DBC绕点作OC=3,过点BBD⊥BC,交OA于点x轴的正半轴上,OA=AB=2, E和F.x 时针方向旋转,角的两边分别交y轴的正半轴、轴的正半轴于点 B、C三点的抛物线的解析式;(1)求经过A、)中抛物线的顶点时,求CF的长;(2)当BE经过(1BCPQPQ=1,要使四边形(点Q在点P的上方),且Q(3)在抛物线的对称轴上取两点P、 Q两点的坐标.的周长最小,求出P、中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△)的坐标是(E的周长最小时,点ADE.,)(0,2) D.(0(A.(0,) B.0,) C.1两点距、满足S=BS,则点P到A3.如图,在矩形ABCD中,AB=5,AD=3,动点P ABCDPAB△矩形3)离之和PA+PB的最小值为(.5C. DA. B.,2)的距离与到4.已知抛物线y=x+1具有如下性质:该抛物线上任意一点到定点F2x0(M的坐标为(y=,3),P是抛物线x+1 PMF周长2上一个动点,轴的距离始终相等,如图,点的最小值是()则△6DC..A.3 B45 .轴上的动点,轴,分别是xyD1B),(b,)都在双曲线y=上,点C,,,点5.如图,A(a3 )ABCD则四边形周长的最小值为(.CB.. D A.AE+DE边上的动点,则ABDAC=3中,在6.如图,Rt△ABC∠C=90°,,BC=4,、E分别是、BC 的最小值为().5DCA.B..上的动点,,中,∠如图,7.Rt△ABCBAC=90°,AB=3AC=6,点D,分别是边EBCAC,的最小值为则DA+DE .8.如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.9.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC )的长是(PM的值最小时,PB+PM上的动点,当..D. B. C. A分F交BC于D点,E,,10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8AD平分∠CAB AC,上的动点,则CE+EF的最小值为()别是AD6. D.A. B. COABC6的正方形11.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是PM+PNP 两点.△OMN的面积为10.若动点在x轴上,则N 的两边AB,BC分别相交于M,的最小值是()2.2 D..A.6 B10 CADBC则四边形翻折得到△ABD,AC=BC=212.如图,△ABC中,,AB=1,将它沿ABPE+PF上的任意点,则、形,的形状是 P、E、F分别为线段ABAD、DB .的最小值是D轴于,AB两点,交xC、y=y=13.如图,已知抛物线x+bx+c与直线x+3交于).,,0BC 2两点,连接AC、,已知A(,3)C(﹣30)求此抛物线的解析式;(1的值最大,并求出这个最(2)在抛物线对称轴MD||MB上找一点M,使﹣l 大值;轴y交⊥作,过点轴右侧抛物线上一动点,连接为)点(3PyPAPPQPAABC于点QP,AP,问:是否存在点Q,使得以,为顶点的三角形与△请说的坐标;若不存在,P相似?若存在,请求出所有符合条件的点.明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.,3),C(03A(﹣1,0),B(,0y=ax15.如图,抛物线+bx+c(a≠0)经过点的坐标;)2)三点.求抛物线的解析式及顶点M(1 N点的坐标;时,求N为抛物线上的点且在第四象限,当S=S(2)连接AC、BC,ABCNBC△△,(ml上,动点QPx轴,动点(m,3)在直线2(3)在()问的条件下,过点C作直线l∥ PM+PQ+QN的和最小,并求出m为何值时,PM+PQ+QNPM轴上,连接、PQ、NQ,当0)在x 和的最小值.,过A,两点的二次函数A16.如图,直线y=5x+5交x轴于点,交y轴于点C .的图2+4x+cy=axC象交x轴于另一点B )求二次函数的表达式;(1NDD,求线段⊥BC上的动点,作NDx轴交二次函数的图象于点是线段)连接(2BC,点N 长度的最大值;2)是该二次函数图象上一点,4,m图象的顶点,点H(3)若点为二次函数y=ax+4x+cM(的坐标.E,F的周长最小,求出点HEFM,使四边形E,F轴上分别找点y轴、x在.yB两点,与A0)与x轴从左至右交于,(x﹣2)(x+a)(a>y=17.如图1,已知抛物线 C.轴交于点,求抛物线的解析式;T(1,﹣)(1)若抛物线过点△ B、D三点为顶点的三角形与(2)在第二象限内的抛物线上是否存在点D,使得以A、 ABC相似?若存在,求a的值;若不存在,请说明理由.)是抛物线上的点,6,t1的坐标为(﹣1,),点Q(2(3)如图,在(1)的条件下,点PPQNM轴上移动到何处时,四边形MN=2,问MN在x两点,在x轴上,从左至右有M、N且 M 的坐标.的周长最小?请直接写出符合条件的点轴另一交点x5)两点,与((﹣1,0),C0,A18.如图,对称轴为直线x=2的抛物线经过),P是第一象限内抛物线上的动点.0F,,0(,1)E(a0),(a+1,MB为.已知)求此抛物线的解析式;(1 的面积的最大值,并求此时点)当2a=1时,求四边形MEFPP的坐标;(周长最小?请说为顶点的等腰三角形,求是以点)若△(3PCMPaPMEF为何值时,四边形明理由.P探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点19.1=P:P1得到结论三过构造直角角形利用图,(x(,y),Px,y)可通2112221的坐标公式:)P(x,y他还利用图2证明了线段PP的中点P21.,y=x=1)请你帮小明写出中点坐标公式的证明过程;( MN长度为;(﹣M2)①已知点(2,﹣1),N3,5),则线段运用:(为顶点的平行四边形顶点D),3(﹣B2,0),C(,﹣12A②直接写出以点(2,),;的坐标:D轴正半轴夹角的平≥x(x0)的图象OL与xy=n2P33拓展:()如图,点(,)在函数的周长最小,简要叙述作图FExOL分线上,请在、轴上分别找出点、,使△PEF 方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛2物线y=﹣x+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;2)若点P(x,y)是抛物线y=﹣x+2x+1上的任意一点,设点P到直线AB的距离为d,求d 2(关于x的函数解析式,并求d取最小值时点P的坐标;3)若点E在抛物线y=﹣x+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小2(值.,且OA∥ABC,使得BC21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形落在过原点且开口向下的抛物线上.B、C点)求这条抛物线的解析式;(1个单位的速度运动,2BAC 的方向以每秒P从点B出发,沿折线在图①中,(2)假设一动点P个单位的速度运动,当点沿点出发,x轴的负半轴方向以每秒1同时另一动点Q从O,使得tQP、的运动过程中,是否存在时间A运动到点时,P、Q都同时停止运动,在的值,若不存在,请说明理由;AB,若存在,求出tPQ⊥,在抛物线的对称边上找一点G,使BE=EF=1个单位,试在ABE3()在BC边上取两点、F 的周长最小,并求出周长的最小值.H,使得四边形EGHF轴上找一点本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买1.特色:由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
将军饮马问题16大模型
将军饮马问题16大模型将军饮马问题源于中国古代的一个寓言故事,讲述的是三位将军跟随他们的军队来到一座河边准备渡河,但只有一条小船,这条小船一次只能搭载两人。
如果将军A和将军B在船上,将军C在岸边,将军C将会受到辱骂,如果将军A和将军C在船上,将军B在岸边,将军B也会受到辱骂,问题是如何让这三位将军都安全地渡河而不受辱骂。
这个问题启发了许多数学家和逻辑学家,有各种不同的解法。
下面将介绍将军饮马问题的16种不同模型。
模型1:最直接的解法最直接的解法是将将军A和将军B一同乘坐小船去对岸,然后将将军A带船返回,将将军C载到对岸。
模型2:穷举法穷举法是一种比较笨拙但可以解决问题的方法,即穷尽所有可能的情况。
这种方法虽然有效,但耗时较长。
模型3:递归法递归法是将问题分解成较小规模的子问题,并逐步解决。
这种方法可以节省时间和精力,但需要较高的逻辑思维能力。
模型4:数学推导法通过数学推导,可以将将军饮马问题转化为数学模型,从而得出解答。
这种方法需要较强的数学功底。
模型5:逻辑推理法逻辑推理法是通过逻辑推理和思维分析,得出解决将军饮马问题的方法。
这种方法强调思维的逻辑性和推理能力。
模型6:图论模型图论是数学的一个分支,可以用来描述将军饮马问题中的交叉关系和路径规划。
通过构建相应的图模型,可以更清晰地解决问题。
模型7:概率模型概率模型是通过概率计算和推测,找出解决将军饮马问题的可能性和概率分布。
这种方法适用于对问题进行全面分析和评估。
模型8:动态规划法动态规划法是针对多阶段决策问题的一种解决方法,可以在问题空间中寻找最优解。
这种方法适用于将军饮马问题的场景。
模型9:模拟法模拟法是通过模拟将军饮马问题的场景,以实验测算的方式找出最佳解决方案。
这种方法可以直观地展示问题的复杂性和解决路径。
模型10:启发式算法启发式算法是通过启发性的思考和优化方法,寻找将军饮马问题的最佳解决方案。
这种方法可以在复杂问题中找到较好的解决途径。
将军饮马模型
从此,这个被称为“将军饮马”的问题广泛流传.
这个问题的解决并不难,据说海伦略加思索就解决了它.
解决
如图所示,从A出发向河岸引垂线,垂足为D,在AD的延长线 取A关于河岸的 对称点A‘,连结A’B,与河岸线相交于C,则C点就是饮马的地方,将军只要从A 出发,沿直线走到C,饮马之后,再由C沿直线走到B,走的路程就是最短的. 如果将军在河边的另外任一点C‘饮马,所走的路程就是AC’+C‘B,
解:∵在菱形ABCD中,AC与BD互相垂直平分, ∴点B、D关于AC对称, 连接ED,则ED就是所求的EF+BF的最小值的线段, ∵AB=AD, ∠DAB=60°
∴ △ABC是等边三角形 ∵E为AB的中点 ∴DE⊥AB,
Rt △ABC中, ED=6sin60º=3 3
但是,AC'+C'B=A'C'+C'B>A'B=A'C+CB=AC+CB. 可见,在C点外任何一点C'饮马,所走的路程都要远一些. 这有几点需要说明的: (1)由作法可知,河流l相当于线段AA中垂线,所以 AD=A‘D。 (2)由上一条知:将军走的路程就是AC+BC,就等于A’C+BC,
而两村庄,他们想在河流l的边上建立一个水泵站,已知每米 的管道费用是100元,A到河流的距离AD是1km,B到河流的距离BE是3km, DE长3km。请问这个水泵站应该建立在哪里使得费用最少?
解:如图所作,C点为水泵站的位置。
应用2
如图,在边长为6的菱形ABCD中,∠DAB=60°, E为AB的中点,F是AC上的一动点,则EF+BF的 最小值为 多少?
将军饮马模型(终稿)
將軍飲馬模型一、背景知識:【傳說】早在古羅馬時代,傳說亞曆山大城有一位精通數學和物理の學者,名叫海倫.一天,一位羅馬將軍專程去拜訪他,向他請教一個百思不得其解の問題.將軍每天從軍營A出發,先到河邊飲馬,然後再去河岸同側の軍營B開會,應該怎樣走才能使路程最短?這個問題の答案並不難,據說海倫略加思索就解決了它.從此以後,這個被稱為“將軍飲馬”の問題便流傳至今.【問題原型】將軍飲馬造橋選址費馬點【涉及知識】兩點之間線段最短,垂線段最短;三角形兩邊三邊關係;軸對稱;平移;【解題思路】找對稱點,實現折轉直二、將軍飲馬問題常見模型1.兩定一動型:兩定點到一動點の距離和最小例1:在定直線l上找一個動點P,使動點P到兩個定點A與Bの距離之和最小,即PA+PB 最小.作法:連接AB,與直線lの交點Q,Q即為所要尋找の點,即當動點P跑到了點Q處,PA+PB最小,且最小值等於AB.原理:兩點之間線段最短。
證明:連接AB,與直線lの交點Q,P為直線l上任意一點,在⊿PAB中,由三角形三邊關係可知:AP+PB≧AB(當且僅當PQ重合時取﹦)例2:在定直線l上找一個動點P,使動點P到兩個定點A與Bの距離之和最小,即PA+PBの和最小.關鍵:找對稱點作法:作定點B關於定直線lの對稱點C,連接AC,與直線lの交點Q即為所要尋找の點,即當動點P跑到了點Q處,PA+PB和最小,且最小值等於AC.原理:兩點之間,線段最短證明:連接AC,與直線lの交點Q,P為直線l上任意一點,在⊿PAC中,由三角形三邊關係可知:AP+PC≧AC(當且僅當PQ重合時取﹦)2.兩動一定型例3:在∠MONの內部有一點A,在OM上找一點B,在ON上找一點C,使得△BAC周長最短.作法:作點A關於OMの對稱點A’,作點A關於ONの對稱點A’’,連接A’ A’’,與OM 交於點B,與ON交於點C,連接AB,AC,△ABC即為所求.原理:兩點之間,線段最短例4:在∠MONの內部有點A和點B,在OM上找一點C,在ON上找一點D,使得四邊形ABCD周長最短.作法:作點A關於OMの對稱點A’,作點B關於ONの對稱點B’,連接A’ B’,與OM交於點C,與ON交於點D,連接AC,BD,AB,四邊形ABCD即為所求.原理:兩點之間,線段最短3.兩定兩動型最值例5:已知A、B是兩個定點,在定直線l上找兩個動點M與N,且MN長度等於定長d(動點M位於動點N左側),使AM+MN+NBの值最小.提示:存在定長の動點問題一定要考慮平移作法一:將點A向右平移長度d得到點A’,作A’關於直線lの對稱點A’’,連接A’’B,交直線l於點N,將點N向左平移長度d,得到點M。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将军饮马模型
一、背景知识:
【传说】
早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.
将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.
【问题原型】将军饮马造桥选址费马点
【涉及知识】两点之间线段最短,垂线段最短;
三角形两边三边关系;轴对称;平移;
【解题思路】找对称点,实现折转直
二、将军饮马问题常见模型
1.两定一动型:两定点到一动点的距离和最小
例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小.
作法:连接AB,与直线l的交点Q,
Q即为所要寻找的点,即当动点P跑到了点Q处,
PA+PB最小,且最小值等于AB.
原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,
在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)
例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.
关键:找对称点
作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.
原理:两点之间,线段最短
证明:连接AC,与直线l的交点Q,P为直线l上任意一点,
在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ
重合时取﹦)
2.两动一定型
例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.
作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.
原理:两点之间,线段最短
例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.
作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM 交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.
原理:两点之间,线段最短
3.两定两动型最值
例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d (动点M位于动点N左侧),使AM+MN+NB的值最小.
提示:存在定长的动点问题一定要考虑平移
作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。
作法二:作点A关于直线l的对称点A1,将点A1向右平移长度d得到点A2,连接A2 B,交直线l于点Q,将点Q向左平移长度d,得到点Q。
原理:两点之间,线段最短,最小值为A’’B+MN
例6:(造桥选址)将军每日需骑马从军营出发,去河岸对侧的瞭望台观察敌情,已知河流的宽度为30米,请问,在何地修浮桥,可使得将军每日的行程最短?
例6:直线l1∥l2,在直线l1上找一个点C,直线l2上找一个点D,使得CD⊥l2,且
AC+BD+CD最短.
作法:将点A沿CD方向向下平移CD长度d至点A’,连接A’B,交l2于点D,过点D 作DC⊥l2于点C,连接AC.则桥CD即为所求.此时最小值为A’B+CD
原理:两点之间,线段最短,
4.垂线段最短型
例7:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得AB+BC 最短.
原理:垂线段最短
点A是定点,OM,ON是定线,
点B、点C是OM、ON上要找的点,是动点.
作法:作点A关于OM的对称点A’,过点A’作A’C⊥ON,
交OM于点B,B、C即为所求。
例8:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之差最小,即PA-PB 最小.
作法:连接AB,作AB的中垂线与l的交点,即为所求点P
此时|PA-PB |=0
原理:线段垂直平分线上的点到线段两端的距离相等
例9:在定直线l上找一个动点C,使动点C到两个定点A与B的距离之差最大,即|PA-PB |最大
作法:延长BA交l于点C,点C即为所求,
即点B、A、C三点共线时,最大值为AB的长度。
原理:三角形任意两边之差小于第三边
例10:在定直线l上找一个动点C,使动点C到两个定点A与B的距离之差最大,即|PA-PB|最大
作法:作点B关于l的对称点B,连接AB,
交交l于点P即为所求,最大值为AB的长度。
原理:三角形任意两边之差小于第三边
典型例题三角形
1.如图,在等边△ABC中,AB = 6,AD⊥BC,E是AC上的一点,M是AD上的一点,且AE = 2,求EM+EC的最小值
解:点C 关于直线AD 的对称点是点B ,连接BE ,交AD 于点M ,则ME+MD 最小,
过点B 作BH ⊥AC 于点H ,
则EH = AH – AE = 3 – 2 = 1,BH = BC 2 - CH 2 = 62 - 32 = 3 3 在直角△BHE 中,BE = BH 2 + HE 2 = (33)2 + 12 = 27
D
B C D A C B。