第十四章偏微分方程
偏微分方程重点知识点总结
偏微分方程重点知识点总结一、偏微分方程的基本概念1. 偏导数偏微分方程是指含有多个自变量的函数的偏导数的方程。
在一元函数中,我们只需要考虑函数关于一个自变量的变化率,而在多元函数中,我们需要考虑函数关于每一个自变量的变化率,这就是偏导数的概念。
假设有一个函数f(x, y),它对x的偏导数记作∂f/∂x,对y的偏导数记作∂f/∂y。
分别表示函数f关于x和y的变化率。
2. 偏微分方程的定义偏微分方程是一类包含多个自变量的偏导数的方程。
它通常表示物理、化学或工程问题中的一些基本规律。
偏微分方程通常可以用数学语言描述为F(x, y, u, ∂u/∂x, ∂u/∂y, ∂^2u/∂x^2, ∂^2u/∂y^2,…) = 0其中u是未知函数,x和y是自变量,F是已知函数。
二、偏微分方程的分类1. 齐次偏微分方程和非齐次偏微分方程齐次偏微分方程是指方程中不含有常数项或只含有未知函数及其偏导数项的方程,非齐次偏微分方程是指方程中含有常数项或者其他函数的项的方程。
2. 线性偏微分方程和非线性偏微分方程线性偏微分方程是指偏微分方程中未知函数及其各阶偏导数只含一次且不含未知函数的乘积的方程,非线性偏微分方程是指未知函数及其各阶偏导数含有未知函数的乘积的方程。
3. 定解问题定解问题是指在偏微分方程中,给出一些附加条件,使得可以从整个解的集合中找到符合这些条件的特定解。
定解问题通常包括边界条件和初始条件。
三、偏微分方程的解法1. 分离变量法分离变量法是对于一些特定形式的偏微分方程,可以通过假设解具有特定的形式来进行求解。
例如,对于一些可以分离变量的方程,我们可以假设解为u(x, y) = X(x)Y(y),然后将方程进行变形,从而可以将偏微分方程化简为两个常微分方程,然后对这两个常微分方程分别求解。
2. 特征线法对于二阶线性偏微分方程,可以通过引入特征线的方法进行求解。
特征线方法可以将二阶偏微分方程化为两个一阶偏微分方程,然后对这两个一阶偏微分方程进行分别求解。
《偏微分方程》课件
非线性偏微 分方程:方 程中含有偏 导数,且偏 导数项的系 数不是常数
椭圆型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 是常数
抛物型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 不是常数
双曲型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 是常数,但 方程的解不 是实数
边界条件:确定求解区域和边界条件,如Dirichlet边界条件、 Neumann边界条件等
初值条件:确定求解区域的初值条件,如Cauchy问题、初边值问题等
稳定性和收敛性:分析求解方法的稳定性和收敛性,确保解的准确性和 可靠性
应用实例:通过具体实例,展示求解方法的应用和效果
课件结构
课件目录
偏微分方程的应用
物理领域:描述 流体力学、热力 学、电磁学等现 象
工程领域:解决 结构力学、材料 力学、电子工程 等问题
生物领域:模拟 生物系统的生长、 扩散、反应等过 程
经济领域:用于 金融、经济模型、 风险管理等方面
偏微分方程的求解方法
分析法:通过分析方程的性质,寻找解的性质和形式
数值法:通过数值计算,求解偏微分方程的数值解
偏微分方程的求解方法:展示偏微分方程的求解方法,如分离变量法、积分因子法等
公式素材
偏微分方程的 定义和性质
偏微分方程的 应用实例
偏微分方程的 求解方法
偏微分方程的 扩展和研究进
展
动画素材
动画类型:2D动画、3D动画、Flash动画等 动画内容:偏微分方程的求解过程、应用实例等 动画风格:简洁明了、生动有趣、易于理解 动画时长:根据课件内容需要,控制在5-10分钟以内
偏微分方程PPT课件
(高等数学) 偏微分方程
第十四章 偏微分方程物理、力学、工程技术和其他自然科学经常提出大量的偏微分方程问题.由于实践的需要和一些数学学科(如泛函分析,计算技术)的发展,促进了偏微分方程理论的发展,使它形成一门内容十分丰富的数学学科.本章主要介绍一阶偏微分方程、线性方程组及二阶线性偏微分方程的理论.在二阶方程中,叙述了极值原理、能量积分及惟一性定理.阐明了一些解的性质和物理意义,介绍典型椭圆型、双曲型、抛物型方程的常用解法:分离变量法,基本解,格林方法,黎曼方法,势位方法及积分变换法.最后,扼要地介绍了有实用意义的数值解法:差分方法和变分方法.§1 偏微分方程的一般概念与定解问题[偏微分方程及其阶数] 一个包含未知函数的偏导数的等式称为偏微分方程.如果等式不止一个,就称为偏微分方程组.出现在方程或方程组中的最高阶偏导数的阶数称为方程或方程组的阶数.[方程的解与积分曲面] 设函数u 在区域D 内具有方程中所出现的各阶的连续偏导数,如果将u 代入方程后,能使它在区域D 内成为恒等式,就称u 为方程在区域D 中的解,或称正规解. ),,,(21n x x x u u = 在n +1维空间),,,,(21n x x x u 中是一曲面,称它为方程的积分曲面. [齐次线性偏微分方程与非齐次线性偏微分方程] 对于未知函数和它的各阶偏导数都是线性的方程称为线性偏微分方程.如()()()()y x f u y x c yuy x b x u y x a ,,,,=+∂∂+∂∂就是线性方程.在线性方程中,不含未知函数及其偏导数的项称为自由项,如上式的f (x,y ).若自由项不为零,称方程为非齐次的.若自由项为零,则称方程为齐次的.[拟线性方程与半线性方程] 如果一个方程,对于未知函数的最高阶偏导数是线性的,称它为拟线性方程.如()()()()()()0,,,,,,,,,,,,22222122211=+∂∂+∂∂+∂∂+∂∂∂+∂∂u y x c y uu y x b x u u y x a yu u y x a y x u u y x a x u u y x a就是拟线性方程,在拟线性方程中,由最高阶偏导数所组成的部分称为方程的主部.上面方程的主部为()()()22222122211,,,,,,yuu y x a y x u u y x a x u u y x a ∂∂+∂∂∂+∂∂如果方程的主部的各项系数不含未知函数,就称它为半线性方程.如()()()()0,,,,,,2222=∂∂+∂∂+∂∂+∂∂y yu y x d x y u y x c yu y x b x u y x a就是半线性方程.[非线性方程] 不是线性也不是拟线性的方程称为非线性方程.如1)()1(222=∂∂+∂∂+yux u u就是一阶非线性偏微分方程.[定解条件] 给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程.如果附加一些条件(如已知开始运动的情况或在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件.表示开始情况的附加条件称为初始条件,表示在边界上受到约束的条件称为边界条件.[定解问题] 给定了泛定方程(在区域D 内)和相应的定解条件的数学物理问题称为定解问题.根据不同定解条件,定解问题分为三类.1︒ 初值问题 只有初始条件而没有边界条件的定解问题称为初值问题或柯西问题. 2︒ 边值问题 只有边值条件而没有初始条件的定解问题称为边值问题.3︒ 混合问题 既有边界条件也有初始条件的定解问题称为混合问题(有时也称为边值问题).[定解问题的解] 设函数u 在区域D 内满足泛定方程,当点从区域D 内趋于给出初值的超平面或趋于给出边界条件的边界曲面时,定解条件中所要求的u 及它的导数的极限处处存在而且满足相应的定解条件,就称u 为定解问题的解.[解的稳定性] 如果定解条件的微小变化只引起定解问题的解在整个定义域中的微小变化,也就是解对定解条件存在着连续依赖关系,那末称定解问题的解是稳定的.[定解问题的适定性] 如果定解问题的解存在与惟一并且关于定解条件是稳定的,就说定解问题的提法是适定的.§2 一阶偏微分方程一、 柯西-柯娃列夫斯卡娅定理[一阶偏微分方程的通解] 一阶偏微分方程的一般形式 是0),,,,,,,,(2121=∂∂∂∂∂∂n n x ux u x u u x x x F或()0,,,,,,,211=n n p p p u x x F ,其中()n i x up ii ,,2,1 =∂∂=如解出p 1,可得:p 1 = f (x 1 , x 2 ,…, x n , u , p 2 ,…, p n )当方程的解包含某些“任意元素”(指函数),如果适当选取“任意元素”时,可得方程的任意解(某些“奇异解”除外),则称这样的解为通解.在偏微分方程的研究中,重点在于确定方程在一些附加条件(即定解条件)下的解,而不在于求通解.[一阶方程的柯西问题]()()⎪⎩⎪⎨⎧==∂∂=n x x n n x x u p p u x x x f x u,,|,,,,,,,22211011 ϕ 称为柯西问题,式中),,(2n x x ϕ为已知函数,对柯西问题有如下的存在惟一性定理.[柯西-柯娃列夫斯卡娅定理] 设 f ( x 1 , x 2 ,, x n , u , p 2 ,, p n ) 在点 ( x 10 , x 20 ,, x n 0 , u 0 , p 20 ,, p n 0 ) 的某一邻域内解析,而),,(2n x x ϕ在点( x 20 ,, x n 0 ) 的某邻域内解析,则柯西问题在点 ( x 10 ,, x n 0 ) 的某一邻域内存在着惟一的解析解.这个定理应用的局限性较大,因它要求f 及初始条件都是解析函数,一般的定解问题未必能满足这种条件.对高阶方程也有类似定理.二、 一阶线性方程1. 一阶齐次线性方程[特征方程∙特征曲线∙初积分(首次积分)] 给定一阶齐次线性方程在有些书中写作0),,,,,,,,,(121=∂∂∂∂∂∂nn x u x u t u u x x x t F()()0,,,,,,211211=∂∂++∂∂nn n n x u x x x a x u x x x a (1) 式中a i 为连续可微函数,在所考虑的区域内的每一点不同时为零(下同).方程组()n i ix x x a tx ,,,d d 21 = ( i = 1,2,, n ) 或()()()n n n n n x x x a x x x x a x x x x a x ,,,d ,,,d ,,,d 2121222111 === (2)称为一阶齐次线性偏微分方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n )满足特征方程(2),就称曲线l 为一阶齐次线性方程的特征曲线.如果函数ψ ( x 1 , x 2 ,, x n )在特征曲线),,2,1()(n i t x x i i ==上等于常数,即ψ ( x 1(t ) , x 2(t ) ,, x n (t ) ) = c就称函数ψ ( x 1, x 2,, x n )为特征方程(2)的初积分(首次积分). [齐次方程的通解]1o 连续可微函数u = ψ ( x 1, x 2,, x n ) 是齐次线性方程(1)的解的充分必要条件是: ψ ( x 1, x 2,, x n )是这个方程的特征方程的初积分.2o 设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 是特征方程(2)在区域D 上连续可微而且相互独立的初积分(因此在D 内的每一点,矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂---n n n n n n x x x x x x x x x 121112221212111ψψψψψψψψψ的秩为n 1-) ,则u = ω ( ψ1 ( x 1 , x 2 ,, x n ) ,, ψn -1 ( x 1 , x 2 ,, x n ) )是一阶齐次线性方程(1)的通解,其中ω为n 1-个变量的任意连续可微函数. [柯西问题] 考虑方程的柯西问题()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni i n i x x u x u x x x a ,,|0,,,2121011 ϕ 式中ϕ ( x2 ,, x n )为已知的连续可微函数.设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 为特征方程的任意n 1-个相互独立的初积分,引入参变量 i ψ (1,,2,1-=n i ),从方程组()()()⎪⎪⎩⎪⎪⎨⎧===--120112201212011,,,,,,,,,n n n n n x x x x x x x x x ψψψψψψ解出x 2 ,, x n 得()()⎪⎩⎪⎨⎧==--12112122,,,,,,n n nn x x ψψψωψψψω 则柯西问题的解为u = ϕ ( ω2 ( ψ1 , ψ2 ,, ψn -1 ) ,, ωn ( ψ1 , ψ2 ,, ψn -1 ) )2. 非齐次线性方程它的求解方法与拟线性方程相同.三、 一阶拟线性方程一阶拟线性方程为()()∑==∂∂ni n in i u x x x R x uu x x x a 12121,,,,,,,, 其中a i 及R 为x 1 , x 2 ,, x n , u 的连续可微函数且不同时为零. [一阶拟线性方程的求解和它的特征方程]()()⎪⎩⎪⎨⎧===u x x x R tun i u x x x a t x n n i i,,,,d d ),,2,1(,,,,d d 2121 或()()()u x x R uu x x a x u x x a x n n n n n ,,,d ,,,d ,,,d 11111 ===为原拟线性方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n ) , u = u (t ) 满足特征方程,则称它为拟线性方程的特征曲线.设 ψi ( x 1 ,, x n ,u ) ( i = 1,2,, n ) 为特征方程的n 个相互独立的初积分,那末对于任何连续可微函数ω,ω ( ψ1 ( x 1,, x n , u ) , ψ2 ( x 1,, x n , u ) ,, ψn ( x 1,, x n , u ) ) = 0都是拟线性方程的隐式解.[柯西问题] 考虑方程的柯西问题()()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni n i ni x x u u x x x R x u u x x x a ,,|,,,,,,,,212121011 ϕ ϕ为已知的连续可微函数.设 ψ1 ( x 1 , x 2 ,, x n , u ) ,, ψn ( x 1 , x 2 ,, x n , u ) 为特征方程的n 个相互独立的初积分,引入参变量 n ψψψ,,,21 , 从()()()⎪⎪⎩⎪⎪⎨⎧===nn n n n u x x x u x x x u x x x ψψψψψψ,,,,,,,,,,,,2012201212011解出 x 2 ,, x n , u()()()⎪⎪⎩⎪⎪⎨⎧===n n n n n u x x ψψψωψψψωψψψω,,,,,,,,,21212122 则由()()()()()()()0,,,,,,,,,,,,,,,,,,,,,,2121221221121=-≡n n n n n n u x x x u x x x u x x x V ψψψωψψψωϕψψω给出柯西问题的隐式解.四、 一阶非线性方程[完全解·通解·奇异解] 一阶非线性方程的一般形式为()()n i x up p p p u x x x F ii n n ,,2,10,,,,,,,,2121 =∂∂== 若一阶偏微分方程的解包含任意n 个独立的常数,则称这样的解为完全解(全积分). 若V ( x 1, x 2 ,, x n , u , c 1 , c 2,, c n ) = 0为方程的完全解,从()n i c VV i,,2,10,0 ==∂∂= 消去c i ,若得一个解,则称它为方程的奇异解(奇积分).以两个独立变量为例说明完全解与通解、奇异解的关系,设方程()yzq x z p q p z y x F ∂∂=∂∂==,,0,,,,有完全解V (x ,y ,z ,a ,b )=0 ( a ,b 为任意常数),则方程等价于从方程组()⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂=0,00,,,,q z Vy V p z V x V b a z y x V 消去a ,b 所得的方程.利用常数变易法把a ,b 看作x , y 的函数,将V (x ,y ,z ,a ,b )=0求关于x , y 的偏导数,得00=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂ybb V y a a V q z V y V xbb V x a a V p z V x V那末0,0=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂yb b V y a a V x b b V x a a V 与V=0联立可确定a ,b .有三种情况:1︒0≡∂∂≡∂∂bVa V ,将其与V (x ,y ,z ,a ,b )=0联立可确定不含任意常数的奇异解. 2︒ 如0=∂∂=∂∂=∂∂=∂∂yb x b y a x a ,即回到完全解. 3︒ 当0/,0/≡∂∂≡∂∂bVa V 时,必有()()0,,=∂∂y xb a ,这时,如果不属于情形2︒ ,则a 与b 存在函数关系:b=ω(a ),这里ω为任意可微函数,并从方程V (x ,y ,z ,a ,b )=0和()∂∂∂∂ωV a Vba +'=0消去a ,b ,可确定方程的通解.定理 偏微分方程的任何解包含在完全解内或通解内或奇异解内. [特征方程·特征带·特征曲线·初积分] 在一阶非线性方程:()F x x x u p p p n n 12120,,,,,,,, =中,设F 对所有变量的二阶偏导数存在且连续,称()n i uFp x F t p p F p t u p Ft x i i i ni iii i ,,2,1)(d d d d ,1 =∂∂+∂∂-=∂∂=∂∂=∂∂∑=或u F p x F p u F p x F p p Fp up F x p F x p F x n n n n i i i n n ∂∂+∂∂-==∂∂+∂∂-=∂∂=∂∂==∂∂=∂∂∑=d d d d d d 11112211 为非线性方程的特征方程.设特征方程的解为x i =x i (t ), u=u (t ), p i =p i (t ) (i =1,2,…,n )称它为非线性方程的特征带.在x 1,x 2,, x n ,u 空间的曲线x i =x i (t ), u=u (t ) (i=1,2,…,n )称为非线性方程的特征曲线.如果函数()n n p p p u x x x G ,,,,,,,,2121 在特征方程的任一解x i =x i (t ) (i =1,2,, n ), u=u (t ), p i =p i (t ) (i =1,2,, n )上等于常数,即()()()()()()()()G x t x t x t u t p t p t p t C n n 1212,,,,,,,, = 那末函数()n n p p p u x x x G ,,,,,,,,2121 称为特征方程的初积分. [求完全解的拉格朗日-恰比方法] 考虑两个变量的情况.对于方程F (x ,y ,z ,p ,q )=0,选择使雅可比式()()0,,≠∂∂q p G F 的一个初积分G (x ,y ,z ,p ,q ).解方程组()()F x y z p q G x y z p q a,,,,,,,,==⎧⎨⎪⎩⎪0(a 为任意常数) 得p (x ,y ,z ,a )及q (x ,y ,z ,a ).则方程d z=p d x+q d y的通解V (x ,y ,z ,a ,b )=0(b 是积分d z=p d x+q d y 出现的任意常数)就是方程F (x ,y ,z ,p ,q )=0的完全解.例 求方程()z p q x y 22222+=+的完全解.解 方程的特征方程为()()()qy x z y qp q p z x p q p z z q z y p z x 22222222222d 22d 2d 2d 2d +-=+-=+== 这里成立zpxx p z z p d d d =+ 所以特征方程的一个初积分为z 2p 2 -x 2 .解方程组 ()()z p q x y z p x a22222222+-+=-=⎧⎨⎪⎩⎪ (a 为任意常数) 得 p a x z q y a z=+=-22, 积分微分方程dz a x z dx y a zdy =++-22得完全解z x x a y y a a x x a y y ab 22222=++-++++-+ln (b 为任意常数)[某些容易求完全解的方程] 1︒ 仅含p ,q 的方程F (p ,q )=0G =p 是特征方程的一个初积分.从F (p ,q )=0与p=a (a 为任意常数)得q=ψ(a ),积分d z=a d x+ψ(a )d y得完全解z=ax+ψ(a )y+b (b 为任意常数)2︒ 不显含x ,y 的方程F (z ,p ,q )=0 特征方程为zFqqz F p p q F q p F p z q F y p F x ∂∂-=∂∂-=∂∂+∂∂=∂∂=∂∂d d d d d 因此q d p-p d q =0,显然G qp=为一个初积分,由F (z ,p ,q )=0,q=pa (a 为任意常数)解得p=ψ(z ,a ).于是由d z=ψ(z ,a )d x+a ψ(z ,a )d y得()⎰++=b ay x a z z,d ψ (b 为任意常数)可确定完全解.3︒ 变量分离形式的方程()f x p i i i i n,=∑=10特征方程为n n n n i i iin n n x f p x f p p f p z p f x p f x ∂∂-==∂∂-=∂∂=∂∂==∂∂∑=d d d d d 1111111 可取初积分G i =f i (x i ,p i ) , (i =1,2,, n ).从f i (x i ,p i )=a i (i =1,2,, n )解出p i =ϕi (x i ,a i )得完全解()∑⎰=+=ni i i i i b x a x z 1d ,ϕ式中a i ,b 为任意常数,且a i i n=∑=10. [克莱罗方程] 方程()z p xf p p p i in i n=+=∑121,,,称为克莱罗方程,其完全解为()z c xf c c c i in i n=+=∑121,,,对c i 微分得x fc i i=-∂∂ (i =1,2,…,n ) 与完全解的表达式联立消去c i 即得奇异解.例 求方程z -xp -yq -pq =0的完全解和奇异解. 解 这是克莱罗方程,它的完全解是z=ax+by+ab对a,b 微分,得x=-b,y=-a ,消去a ,b 得奇异解z=-xy[发甫方程] 方程P (x,y,z )d x+Q (x,y,z )d y+R (x,y,z )d z=0 (1)称为发甫方程,如果P,Q,R 二次连续可微并满足适当条件,那末方程可积分.如果可积分成一关系式时,则称它为完全可积.1︒ 方程完全可积的充分必要条件 当且仅当P,Q,R 满足条件0)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂yP x Q R x R z P Q z Q y R P (2) 时,存在一个积分因子μ(x,y,z ),使d U 1=μ(P d x+Q d y+R d z )从而方程的通解为U 1(x,y,z )=c特别,当0,0,0=∂∂-∂∂=∂∂-∂∂=∂∂-∂∂yP x Q x R z P z Q y R 时,存在一个函数U (x,y,z )满足 zU R y U Q x U P ∂∂=∂∂=∂∂=,,从而 d U=P d x+Q d y+R d z 所以方程的通解为U (x,y,z )=c所以完全可积的发甫方程的通解是一单参数的曲面族.定理 设对于发甫方程(1)在某区域D 上的完全可积条件(2)成立,则对D 内任一点M (x,y,z )一定有方程的积分曲面通过,而且只有一个这样的积分曲面通过. 2︒ 方程积分曲面的求法设完全可积条件(2)成立.为了构造积分曲面,把z 看成x,y 的函数(设R (x,y,z )≠0),于是原方程化为y RQ x R P z d d d --=由此得方程组()()()()⎪⎪⎩⎪⎪⎨⎧≡-=∂∂≡-=∂∂4,,3,,11z y x Q R Q y z z y x P R P xz发甫方程(1)与此方程组等价.把方程(3)中的y 看成参变量,积分后得一个含有常数 c的通解 ()cy x z ~;,ϕ= 然后用未知函数()~cy 代替常数 c ,将()()z x y c y =ϕ,;~代入方程(4),在完全可积的条件下,可得()~cy 的一个常微分方程,其通解为 ()()~,cy y c =ψ c 为任意常数,代回()()z x y cy =ϕ,;~中即得发甫方程的积分曲面 z=ϕ(x,y,ψ(y,c ))由于发甫方程关于x,y,z 的对称性,在上面的讨论中,也可把x 或y 看成未知函数,得到同样的结果.例 求方程yz d x+2xz d y+xy d z=0的积分曲面族.解 容易验证完全可积条件成立,显然存在一个积分因子μ=1xyz,用它乘原方程得 0d d 2d =++zz y y x x 积分后得积分曲面族xy 2z=c也可把方程化为等价的方程组⎪⎪⎩⎪⎪⎨⎧-=∂∂-=∂∂y z yz x z xz 2 把y 看成参变量,积分xzx z -=∂∂得通解 zx c= 用未知函数()~cy 代替 c ,将()y c zx ~=代入方程y z y z 2-=∂∂得 ()()yy cy y c ~2d ~d -= 积分后有()~cy c y =2所以原方程的积分曲面族是xy 2z=c五、 一阶线性微分方程组[一阶线性偏微分方程组的一般形式] 两个自变量的一阶线性方程组的形式是()n i F u C x u B t u A i n j j ij n j n j jij j ij ,,2,10111 ==++∂∂+∂∂∑∑∑=== 或()n i f u b x u a t u i n j j ij n j j ij i,,2,1011 ==++∂∂+∂∂∑∑== (1) 其中A ij ,B ij ,C ij ,F i ,a ij ,b ij ,f i 是(x,t )的充分光滑函数. [特征方程·特征方向·特征曲线]⎩⎨⎧=≠==-j i j i t xa ij ij ij ,1,0,0)d d det(δδ称为方程组(1)的特征方程.在点(x,t )满足特征方程的方向txd d 称为该点的特征方向.如果一条曲线l ,它上面的每一点的切线方向都和这点的特征方向一致,那末称曲线l 为特征曲线. [狭义双曲型方程与椭圆型方程] 如果区域D 内的每一点都存在n 个不同的实的特征方向,那末称方程组在D 内为狭义双曲型的.如果区域D 内的每一点没有一个实的特征方向,那末称方程组在D 内为椭圆型的. [狭义双曲型方程组的柯西问题] 1︒ 化方程组为标准形式——对角型因为det(a ij -δij λ)=0有n 个不同的实根λ1(x,t ) ,, λn (x,t ),不妨设),(),(),(21t x t x t x n λλλ<<<那末常微分方程()()n i t x txi ,,2,1,d d ==λ 的积分曲线l i (i =1,2,…,n )就是方程组(1)的特征曲线. 方程()()aijk ij k i i n-==∑λδλ1的非零解(λk (1) ,, λk (n ))称为对应于特征方向λk 的特征矢量. 作变换()()n i u v nj jj i i ,,2,11 ==∑=λ可将方程组化为标准形式——对角型()()()()n i t x v t x a x v t x t v i nj j ij ii i ,,2,1,,,1=+=∂∂+∂∂∑=βλ所以狭义双曲型方程组可化为对角型,而一般的线性微分方程组(1)如在区域D 内通过未知函数的实系数可逆线性变换可化为对角型的话,(此时不一定要求 λi 都不相同),就称这样的微分方程组在D 内为双曲型的. 2︒ 对角型方程组的柯西问题 考虑对角型方程组的柯西问题()()()()()()n i x x v t x v t x a x v t x tv i inj i j ij i i i,,2,10,,,,1 =⎪⎩⎪⎨⎧=+=∂∂+∂∂∑=ϕβλ ϕi (x )是[a,b ]上的连续可微函数.设αij ,βi ,λi 在区域D 内连续可微,在D 内可得相应的积分方程组()()()n i tv x t x v il i n j j ij i i i ,,2,1d ,~1 =⎥⎦⎤⎢⎣⎡++=⎰∑=βαϕ 式中 l i 为第i 条特征曲线l i 上点(x,t )与点(x i ,0)之间的一段,(x i ,0)为l i与x 轴上[a,b ]的交点.上式可以更确切地写为()()[]()[]()[]()[]⎰∑⎭⎬⎫⎩⎨⎧+⋅+==t n j i i i j i ij i i i t x x t x x v t x x a t x x t x v 01d ,,,,,,,,,0,,,τττβττττϕ(i =1,2,, n )式中x i =x i (x ︒,t ︒,t )为过点(x ︒,t ︒)的第i 条特征曲线,利用逐次逼近法可解此积分方程.为此令()()()[]()()()()[]()[]()()[]()[]()()()()[]()[]()()[]()[]()n i t x x t x x v t x x a t x x t x v n i t x x t x x v t x x a t x x t x v n i t x x t x v i i tnj i k j i ij i i k ii i t nj i j i ij i i i i i i ,,2,1d ,,,,,,,,,0,,,,,2,1d ,,,,,,,,,0,,,,,2,10,,,}{}{01101010=+⋅+==+⋅+===⎰∑⎰∑=-=τττβττττϕτττβττττϕϕ序列{v i (k )} (k =0,1,2 ,)一致收敛于积分方程的连续可微解v i (x,t ) (i =1,2,, n ),这个v i (x,t )也就是对角型方程组的柯西问题的解.设在区域D 内对角型方程组的柯西问题的解存在,那末解与初值有下面的关系:(i) 依赖区间:过D 中任意点M (x,t )作特征曲线l 1,l n ,交x 轴于B,A ,称区间[A,B ]为M 点的依赖区间(图14.1(a )),解在M 点的值由区间[A,B ]的初值确定而与[A,B ]外的初值无关. (ii) 决定区域:过点A,B 分别作特征曲线l n ,l 1,称l n ,l 1 与区间[A,B ]围成的区域D 1为区间[A,B ]的决定区域(图14.1(b )),在区域D 1中解的值完全由[A,B ]上的初值决定.(iii) 影响区域:过点A,B 分别作特征曲线l 1,l n ,称l 1,l n 与[A,B ]围成的区域D 2为区间[A,B ]的影响区域(图14.1(c )).特别当区间[A,B ]缩为一点A 时,A 点的影响区域为D 3(图14.1(d )).在区域D 2中解的值受[A,B ]上的初值影响,而在区域D 2外的解的值则不受[A,B ]上的初值影响.图14.1[线性双曲型方程组的边值问题] 以下列线性方程组来说明:()⎪⎪⎩⎪⎪⎨⎧<++=∂∂+∂∂++=∂∂+∂∂2122221111λλλλc v b u a x v t v c v b u a xu t u (1) 1︒ 第一边值问题(广义柯西问题) 设在平面(x,t )上给定曲线段⋂AB ,它处处不与特征方向相切.过A,B 分别引最左和最右的特征曲线l 1及l 2.要求函数u (x,t ),v (x,t )在⋂AB ,l 1及l 2围成的闭区域D 上满足方程组,且在⋂AB 上取给定的函数值(图14.2(a )).2︒ 第二边值问题(古沙问题) 设l 1是过P 点的第一族特征线,l 2是第二族特征线,在l 1的一段PA 上给定v (x,t )的数值,在l 2的一段PB 上给定u (x,t )的数值,过A 点作第二族特征线,过B 点作第一族特征线相交于Q .求在闭区域PAQB 上方程组的解(图14.2(b )).3︒ 第三边值问题 设AB 为非特征曲线的曲线弧,AC 为一特征线弧,且在AB 与AC 之间不存在过A 点的另外特征曲线,过C 点作第二族特征线与过B 点的第一族特征线交于E 点,在AC 上给定v (x,t )的数值,在AB 上给定u (x,t )的数值,求ACEBA 所围成的闭区域D 上的方程组的解(图14.2(c )).图14.2[边值问题的近似解——特征线法] 以上定解问题,可用逐步逼近法求解,也可用特征线法求解的近似值.以第一边值问题为例说明.在曲线AB 上取n 个分点A 1,A 2,, A n ,并记A 为A 0,B 为A n +1,过A 0按A 0的第二特征方向作直线与过A 1按A 1的第一特征方向作直线相交于B 0;过A 1按A 1第二特征方向作直线与过A 2按A 2的第一特征方向作直线相交于B 1 ,最后得到B n (图14.3).用如下的近似公式来确定方程组(1)的解u (x,t ),v (x,t )在B i (i =0,1,2,…,n )的数值:()()()()()()(){}()[]()()()()()()(){}()[]u B u A B A a A u A b A v A c A A v B v A B A a A u A b A v A c A A i i i i i i i i i i i i i i i i i i i i -=++⨯+-=++⨯+⎧⎨⎪⎩⎪+++++++--11111111112122212121211λλ图14.3于是在一个三角形网格的节点上得到u,v 的数值.再经过适当的插值,当n 相当大,A i 、A i +1的距离相当小时,就得到所提问题的足够近似的解.[特殊形式的拟线性方程组——可化约系统] 一般的拟线性方程组的问题比较复杂,目前研究的结果不多,下面介绍一类特殊形式的拟线性方程组——可化约系统.如果方程组⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂0022221111x v D t v C x u B tu A xv D t v C x u B t uA 中所有的系数只是u,v 的函数,称它为可化约系统. 考虑满足条件()()0,,≠∂∂t x v u 的方程组的解u=u (x,t ),v=v (x,t ).x,t 可以表示成u,v 的函数,且()()()()()()()()v u t x u t x v v u t x u x t v v u t x v tx u v u t x v x t u ,,,,,,,,,,∂∂∂∂=∂∂∂∂∂∂-=∂∂∂∂∂∂-=∂∂∂∂∂∂=∂∂ 原方程化为⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂-∂∂-∂∂=∂∂+∂∂-∂∂-∂∂0022221111u t D u x C v t B vx A ut D u x C v t B v xA 这是关于自变量u,v 的线性方程组.这样就把求拟线性方程组满足()()0,,≠∂∂t x v u 的解,化为解线性方程组的问题.而此线性方程组满足条件()()0,,≠∂∂v u t x 的解,在(x,t )平面上的象即为原来拟线性方程组的解.§3 二阶偏微分方程一、 二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程()0),,,,,,(111,2=∂∂∂∂+∂∂∂∑=nnnj i j i ij x u x u u x x F y x u x a (1) 式中a ij (x )=a ij (x 1,x 2,…,x n )为x 1,x 2,…,x n 的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程()01,=∑=nj i jiijaa x a称为二阶方程(1)的特征方程;这里a 1,a 2,…,a n 是某些参数,且有012≠∑=ni i a .如果点x ︒=(x 1︒,x 2︒,…,x n ︒)满足特征方程,即()01,o =∑=nj i jiijaa x a则过x ︒的平面()01o=-∑=nk kk k x x a 的法线方向l :(a 1,a 2,…,a n )称为二阶方程的特征方向;如果一个(n 1-)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n 1-)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n 个自变量方程的分类与标准形式] 在点P (x 1︒,x 2︒,…,x n ︒),根据二次型()∑=nj i j i n ija a x x xa 1,o o 2o 1,,, (a i 为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P 为椭圆型.(ii) 特征根都不为零,有n 1-个具有同一种符号 ,余下一个符号相反,称方程在点P 为双曲型.(iii) 特征根都不为零,有m n -个具有同一种符号(n >m >1),其余m 个具有另一种符号,称方程在点P 为超双曲型.(iv) 特征根至少有一个是零,称方程在点P 为抛物型.若在区域D 内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D 内是椭圆型、双曲型或抛物型.在点P 作自变量的线性变换可将方程化为标准形式:椭圆型:∑==+∂∂ni ix u1220Φ双曲型:∑==+∂∂-∂∂n i ix ux u 2222120Φ超双曲型:()10112222>>=+∂∂-∂∂∑∑=+=m n x ux u m i nm i ii Φ抛物型:()00122>=+∂∂∑-=m x umn i iΦ 式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为0,,,,222222122211=⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂+∂∂∂+∂∂y u x u u y x F y u a y x u a x u a (2) a 11,a 12,a 22为x ,y 的二次连续可微函数,不同时为零. 方程a 11d y 22-a 12d x d y +a 22d x 2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线. 在某点P (x 0,y 0)的邻域D 内,根据Δ=a 122-a 11a 12的符号将方程分类: 当Δ>0时,方程为双曲型; 当Δ=0时,方程为抛物型; 当Δ<0时,方程为椭圆型.在点P 的邻域D 内作变量替换,可将方程化为标准形式:(i ) 双曲型:因Δ>0,存在两族实特征曲线11),(c y x =ϕ,22),(c y x =ϕ,作变换),(1y x ϕξ=,),(2y x ϕη=和,,ηηξ-=+=s t s 方程化为标准形式),,,,(2222tus u u t s t u s u ∂∂∂∂=∂∂-∂∂Φ或),,,,(12ηξηξΦηξ∂∂∂∂=∂∂∂uu u u (ii ) 抛物型: 因Δ=0,只存在一族实的特征曲线c y x =),(ϕ,取二次连续可微函数),(y x ψ,使0),(),(≠∂∂y x ψϕ,作变换),(y x ϕξ=,),(y x ψη=,方程化为标准形式 ),,,,(222ηξηξΦη∂∂∂∂=∂∂uu u u (iii ) 椭圆型:因Δ<0,不存在实特征曲线,设c y x i y x y x =+=),(),(),(21ϕϕϕ为11221121212d d a a a a a x y -+=的积分,y x ϕϕ,不同时为零,作变量替换),(1y x ϕξ=,),(2y x ϕη=,方程化为标准形式),,,,(32222ηξηξΦηξ∂∂∂∂=∂∂+∂∂uu u u u二、 极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用. [椭圆型方程的极值原理与解的惟一性定理]1︒ 极值原理 设D 为n 维欧氏空间E n 的有界区域,S 是D 的边界,在D 内考虑椭圆型方程()()()()x x x x f u c x ub x x u a Lu ni i i n j i j i ij =+∂∂+∂∂∂≡∑∑==11,2式中a ij (x ),b i (x ),c (x ),f (x )在D 上连续,c (x )≤0且二次型()∑=nj i j i ij a a a 1,x 正定,即存在常数μ>0,对任意x D ∈和任意的a i 有()∑∑==≥ni i nj i jiija aa a 121,μx定理1 设u (x )为D 内椭圆型方程的解,它在D 内二次连续可微,在D 上连续,且不是常数,如f (x )≤0(或f (x )≥0),则u (x )不能在D 的内点取非正最小值(或非负最大值). 如果过边界S 上的任一点P 都可作一球,使它在P 点与S 相切且完全包含在区域D 内,则有 定理2 设u (x )为椭圆型方程在D 内二次连续可微,在D 上连续可微的解,且不是常数,并设f (x )≤0(或f (x )≥0).若u (x )在边界S 上某点M 处取非正最小值(或非负最大值),只要外法向导数错误!未定义书签。
北京大学数学物理方程讲义第十四章:分离变量法
分离变量法的基本步骤
1. 分离变量 必要条件: 偏微分方程和边界条件都是齐次的. 结果: 得到每一个一元函数满足的常微分方程. 其中包括齐次常微分方程+齐次边界条件的本征值问题.
2. 求解本征值问题. 即求非零解.
3. 求特解, 并叠加出一般解. 还是因为偏微分方程和边界条件都是齐次的. 另外, 本征函数的全体是完备的: 任何满足同样边界条件的, 足够“好” (一般要求连续, 分段光滑) 的函 数都可以展开为
∞
nπ
nπ
nπ
u(x, t) =
Cn sin
l
at + Dn cos
at l
sin
l
x
n=1
这种形式的解称为一般解.
利用本征函数的正交性定叠加系数 一般解满足方程和边界条件. 适当选择叠加系数 Cn 和 Dn, 使之满足初始条件
∞
nπ
u(x, 0) = Dn sin l x = φ(x)
(8)
n=1
n=1
∞
nπ
Ψ(x) = βn sin l x,
n=1
其中
1 αn = l
1 βn = l
l
nπ
2
Φ(x) sin xdx =
−l
l
l
l
nπ
2
Ψ(x) sin xdx =
−l
l
l
l
nπ
φ(x) sin xdx,
0
l
l
nπ
ψ(x) sin xdx.
0
l
与分离变量法的解比较,
αn = Dn,
nπa βn = l Cn.
第一项表示由初位移激发的行波, t = 0 时波形为 φ(x), 以后分成相等的两部分, 独立地向左右传播, 速率 为 a;
1. 偏微分方程的一般概念与定解问题
第十四章 偏微分方程物理、力学、工程技术和其他自然科学经常提出大量的偏微分方程问题.由于实践的需要和一些数学学科(如泛函分析,计算技术)的发展,促进了偏微分方程理论的发展,使它形成一门内容十分丰富的数学学科.本章主要介绍一阶偏微分方程、线性方程组及二阶线性偏微分方程的理论.在二阶方程中,叙述了极值原理、能量积分及惟一性定理.阐明了一些解的性质和物理意义,介绍典型椭圆型、双曲型、抛物型方程的常用解法:分离变量法,基本解,格林方法,黎曼方法,势位方法及积分变换法.最后,扼要地介绍了有实用意义的数值解法:差分方法和变分方法.§1 偏微分方程的一般概念与定解问题[偏微分方程及其阶数] 一个包含未知函数的偏导数的等式称为偏微分方程.如果等式不止一个,就称为偏微分方程组.出现在方程或方程组中的最高阶偏导数的阶数称为方程或方程组的阶数.[方程的解与积分曲面] 设函数u 在区域D 内具有方程中所出现的各阶的连续偏导数,如果将u 代入方程后,能使它在区域D 内成为恒等式,就称u 为方程在区域D 中的解,或称正规解. ),,,(21n x x x u u = 在n +1维空间),,,,(21n x x x u 中是一曲面,称它为方程的积分曲面.[齐次线性偏微分方程与非齐次线性偏微分方程] 对于未知函数和它的各阶偏导数都是线性的方程称为线性偏微分方程.如()()()()y x f u y x c yu y x b x u y x a ,,,,=+∂∂+∂∂ 就是线性方程.在线性方程中,不含未知函数及其偏导数的项称为自由项,如上式的f (x,y ).若自由项不为零,称方程为非齐次的.若自由项为零,则称方程为齐次的.[拟线性方程与半线性方程] 如果一个方程,对于未知函数的最高阶偏导数是线性的,称它为拟线性方程.如()()()()()()0,,,,,,,,,,,,22222122211=+∂∂+∂∂+∂∂+∂∂∂+∂∂u y x c y u u y x b x u u y x a yu u y x a y x u u y x a x u u y x a 就是拟线性方程,在拟线性方程中,由最高阶偏导数所组成的部分称为方程的主部.上面方程的主部为()()()22222122211,,,,,,yu u y x a y x u u y x a x u u y x a ∂∂+∂∂∂+∂∂ 如果方程的主部的各项系数不含未知函数,就称它为半线性方程.如()()()()0,,,,,,2222=∂∂+∂∂+∂∂+∂∂y y u y x d x y u y x c yu y x b x u y x a 就是半线性方程.[非线性方程] 不是线性也不是拟线性的方程称为非线性方程.如1)()1(222=∂∂+∂∂+yu x u u 就是一阶非线性偏微分方程.[定解条件] 给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程.如果附加一些条件(如已知开始运动的情况或在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件.表示开始情况的附加条件称为初始条件,表示在边界上受到约束的条件称为边界条件.[定解问题] 给定了泛定方程(在区域D内)和相应的定解条件的数学物理问题称为定解问题.根据不同定解条件,定解问题分为三类.1︒初值问题只有初始条件而没有边界条件的定解问题称为初值问题或柯西问题.2︒边值问题只有边值条件而没有初始条件的定解问题称为边值问题.3︒混合问题既有边界条件也有初始条件的定解问题称为混合问题(有时也称为边值问题).[定解问题的解] 设函数u在区域D内满足泛定方程,当点从区域D内趋于给出初值的超平面或趋于给出边界条件的边界曲面时,定解条件中所要求的u及它的导数的极限处处存在而且满足相应的定解条件,就称u为定解问题的解.[解的稳定性] 如果定解条件的微小变化只引起定解问题的解在整个定义域中的微小变化,也就是解对定解条件存在着连续依赖关系,那末称定解问题的解是稳定的.[定解问题的适定性] 如果定解问题的解存在与惟一并且关于定解条件是稳定的,就说定解问题的提法是适定的.。
偏微分方程的解法
顾
1、定解问题的边界条件 2、定解问题的分类与适定性 3、二阶线性偏微分方程的有关概念
4、常系数线性偏微分方程的通解
1
方程的通解和特解
例子 7.4 二阶线性非齐次偏微方程 uxy
2
2 y x 的通解是
1 2 u x, y xy x y F x G y , 2
u x, t f1 x at f 2 x at
x at ,则有 f1 x at f1 x ' .这表明在相对于
原来坐标轴以速度 a 运动的坐标系中来看,通解中的第一部分贡献是和 时间无关的;回到原来坐标系中观察 ,则第一部分贡献的波形随时间变 化以速度 a 沿 x 轴正向移动.同理,通解中第二部分可以看作另外一列 反向传播的行波的贡献.
总可以化为如下标准形式:
, xn aij xi x j bi xi c
i , j 1 i 1
2 i n
n
n
f x1 ',
, xn ' di x ' bi ' xi ' c ' 二次型的主轴定理
i 1 i 1
3
n
类似地,二阶线性偏微分方程
a u
一维无界弦自由振动(即无外力)定解问题为:
utt a 2uxx 0 u x, 0 x ut x, 0 x
8
在本问题中,泛定方程是常系数的;根据前边的讨论,该方程的附
2 2 a 0 ;且解为 a .故原方程的通解可以表示为: 加方程为:
常系数线性偏微分方程
如果在二阶线性偏微分方程
a u
偏微分方程理论的归纳与总结
偏微分方程理论的归纳与总结一、偏微分方程的分类:1.齐次与非齐次:一个偏微分方程中,如果所有出现的偏导数项的次数相同,且不含常数项,则称其为齐次方程;如果存在常数项,则称其为非齐次方程。
2.线性与非线性:一个偏微分方程中若只包含未知函数及其偏导数的一次项,并且未知函数的系数不依赖于未知函数自身及其偏导数,则称其为线性方程;反之,则是非线性方程。
3.定常与非定常:一个偏微分方程中,如果未知函数及其偏导数的系数不依赖于自变量,则称其为定常方程;反之,则是非定常方程。
4.高阶与低阶:一个偏微分方程中,若最高阶偏导数的阶数大于1,则称其为高阶方程;若最高阶偏导数的阶数为1,则称其为一阶方程。
二、偏微分方程的求解方法:1.分离变量法:对于一些特殊的偏微分方程,可以通过分离变量的方式将其转化为一阶常微分方程进行求解。
2.特征线法:对于一些具有特殊形式的偏微分方程,可以通过特征线法来求解。
该方法将方程中的自变量替换为新的变量,使得方程在新的变量系综下变得简单。
3.变换法:通过适当的变量代换,将原方程转化为形式简单的方程或标准的数学物理方程进行求解。
5.数值解法:对于一些复杂的偏微分方程,可以采用数值解法进行近似求解,如有限差分法、有限元法、谱方法等。
三、偏微分方程的应用:1.物理学:偏微分方程在物理学中有着广泛的应用,如热传导方程、波动方程、扩散方程等。
2.工程学:偏微分方程在工程学中也有重要应用,如电磁场方程、流体力学方程、固体力学方程等。
3. 经济学:偏微分方程在经济学中的应用主要用于建模和分析经济系统的动态变化,如Black-Scholes方程、Hamilton-Jacobi-Bellman方程等。
4. 生物学:偏微分方程在生物学中的应用主要用于描述群体的扩散、生物图像处理和生物电传导等问题,如Fisher方程、Gray-Scott方程等。
综上所述,偏微分方程理论是数学中的重要分支之一、通过对偏微分方程的分类、求解方法及其应用的归纳与总结,不仅可以帮助我们更好地理解偏微分方程的本质与特点,还能够为我们解决实际问题提供一个有效的数学工具。
第十四章SECTION4偏微分方程的数值解法
§4 偏微分方程的数值解法一、 差分法差分法是常用的一种数值解法.它是在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值. 1. 网格与差商在平面 (x ,y )上的一以S 为边界的有界区域D 上考虑定解问题.为了用差分法求解,分别作平行于x 轴和y 轴的直线族.⎩⎨⎧====jhy y ihx x i i (i ,j =0,±1,±2,…,±n ) 作成一个正方形网格,这里h 为事先指定的正数,称为步长;网格的交点称为节点,简记为(i ,j ).取一些与边界S 接近的网格节点,用它们连成折线S h ,S h 所围成的区域记作D h .称D h 内的节点为内节点,位于S h 上的节点称为边界节点(图14.7).下面都在网格D h + S h 上考虑问题:寻求各个节点上解的近似值.在边界节点上取与它最接近的边界点上的边值作为解的近似值,而在内节点上,用以下的差商代替偏导数:()()[]()()[]()()()[]()()()[]()()()[]y x u h y x u y h x u h y x u hy x u h y x u y x u h y x u hy u y h x u y x u y h x u h x u y x u h y x u hyu y x u y h x u h x u ,),(,,1,,2,1,,2,1,,1,,122222222++-+-+≈∂∂∂-+-+≈∂∂-+-+≈∂∂-+≈∂∂-+≈∂∂注意, 1︒ 式中的差商()()[]y x u y h x u h ,,1-+称为向后差商,而()()[]y h x u y x u h,,1--称为向前差商,()()[]y h x u y h x u h,,21--+称为中心差商.也可用向前差商或中心差商代替一阶偏导数.2︒ x 轴与y 轴也可分别采用不同的步长h ,l ,即用直线族⎩⎨⎧====jhy y ihx x j i (i,j =0, ±1, ±2 , ) 作一个矩形网格.图14.72. 椭圆型方程的差分方法[五点格式] 考虑拉普拉斯方程的第一边值问题()()⎪⎪⎩⎪⎪⎨⎧=∈=∂∂+∂∂y x u D y x y ux u S ,,02222μ式中μ(x ,y )为定义在D 的边界S 上的已知函数.采用正方形网格,记u (x i ,y j )=u ij ,在节点(i ,j )上分别用差商 u u u h u u u h i j ij i j i j ij i j -+-+-+-+11211222,,,,,代替2222,yux u ∂∂∂∂,对应的差分方程为u u u h u u u hi j ij i j i j ij i j -+-+-++-+=112112220,,,, (1) 或u u u u u ij i j i j i j i j =+++-+-+141111,,,,即任一节点(i ,j )上u ij 的值等于周围相邻节点上解的值的算术平均,这种形式的差分方程称为五点格式,在边界节点上取()()()h j i ij S j i y x u ∈=,,**μ(2) 式中(x i *,y j *)是与节点(i ,j )最接近的S 上的点.于是得到了以所有内节点上的u ij 值为未知量的若干个线性代数方程,由于每一个节点都可列出一个方程,所以未知量的个数与方程的个数都等于节点的总数,于是,可用通常的方法(如高斯消去法)解此线性代数方程组,但当步长不很大时,用高斯消去法将会遇到很大困难,可用下面介绍的其他方法求解. 若h →0时,差分方程的解收敛于微分方程的解,则称差分方程为收敛的.在计算过程中,由于进行四则运算引起舍入误差,每一步计算的舍入误差都会影响以后的计算结果,如果这种影响所产生的计算偏差可以控制,而不至于随着计算次数的增加而无限增大,则称差分方程是稳定的.[迭代法解差分方程] 在五点格式的差分方程中,任意取一组初值{u ij },只要求它们在边界节点(i ,j )上取以已知值μ(x i *,y j *),然后用逐次逼近法(也称迭代法)解五点格式:()()()()()[]() ,2,1,0411,1,,1,11=+++=+-+-+n u u u u u n j i n j i n j i n j i n ij 逐次求出{u ij (n )}.当(i+1,j ),(i -1,j ),(i ,j -1),(i ,j+1)中有一点是边界节点时,每次迭代时,都要在这一点上取最接近的边界点的值.当n →∞时,u ij (n )收敛于差分方程的解,因此n 充分大时,{u ij (n )}可作差分方程的近似解,迭代次数越多,近似解越接近差分方程的解.[用调节余数法求节点上解的近似值] 以差商代替Δu 时,用节点(i+1,j ),(i -1,j ),(i ,j+1),(i ,j -1)上u 的近似值来表示u 在节点(i ,j )的值将产生的误差,称此误差为余数R ij ,即()()()()()ij j i j i j i j i j i R y x u h y x u h y x u y h x u y h x u =--+++-++,4,,,,设在(i ,j )上给u ij 以改变量δu ij ,从上式可见R ij 将减少4δu ij ,而其余含有u (x i ,y j )的差分方程中的余数将增加δu ij ,多次调整δu ij 的值就可将余数调整到许可的有效数字的范围内,这样可获得各节点上u (x ,y )的近似值.这种方法比较简单,特别在对称区域中计算更简捷.例 求Δu =0在内节点A ,B ,C ,D 上解的近似值.设在边界节点1,2,3,4上分别取值为1,2,3,4(图14.8) 解 记u (A )=u A ,点A ,B ,C ,D 的余数分别为-4u A + u B + u c +5=R A u A -4 u B + u D +7=R Bu A-4 u c + u D +3=R Cu B + u c -4u D +5=R D以边界节点的边值的算术平均值作为初次近似值,即u A (0)=u B (0)=u C (0)=u D (0)=2.5则相应的余数为:R A =0, R B =2, R C = -2, R D =0最大余数为±2.先用δu C =-0.5把R C 缩减为零,u C 相应地变为2,这时R A , R D 也同时缩减(-0.5),新余数是R A =-0.5,R B =2,0=C R , R D =-0.5.类似地再变更δu B =0.5,从而 u B 变为3,则得新余数为0====D C B A R R R R .这样便可消去各节点的余数,于是u 在各节点的近似值为:u A =2.5, u B =3, u C =2, u D =2.5现将各次近似值及余数列表如下:次数调 整 值第n 次近似值及余数u A R A u B R B u C R C u D R D 0 1 2δu C = -0.5 δu B = 0.5 2.5 2.5 2.5 0 -0.5 0 2.5 2.5 3 2 2 0 2.5 2 2 -2 0 0 2.5 2.5 2.5 0 -0.5 0 结果近似值2.5322.5[解重调和方程的差分方法] 在矩形D (x 0≤x ≤x 0+a ,y 0≤y ≤y 0+a )中考虑重调和方程024*******=∂∂+∂∂∂+∂∂=yuy x u x u u ∆取步长h an=,引直线族图14.8⎩⎨⎧+=+=jh y y ihx x 00 (i , j = 0, 1, 2,, n ) 作成一个正方形网格.用差商代替偏导数()()()()()[]{()()()()[]()()()()[]}h y x u h y x u y h x u y h x u h y h x u h y h x u h y h x u h y h x u h y x u h y x u y h x u y h x u y x u 2,2,,2,2,,,,2,,,,8201,-+++-++---++-+-++++--+++-++=上式表明了以(x ,y )为中心时,u (x ,y )的函数值与周围各点函数值的关系,但对于邻近边界节点的点(x ,y ),如图14.9中的A ,就不能直接使用上式,此时将划分网格的直线族延伸,在延伸线上定出与边界距离为h 的点,称这些点为外邻边界节点,如图14.9以A 为中心时,点E ,C 为边界节点,点J ,K 为E ,C 的外邻边界节点,用下法补充定义外邻边界节点J 处函数的近似值u J ,便可应用上面的公式.1︒ 边界条件为()()()S P P x uP u SS ∈==21,μ∂∂μ 时,定义u J =u A -2μ2(E )h .2︒ 边界条件为()()()S P P xuP u SS ∈=∂∂=2221,μμ时,定义u J =2μ1(E )-u A -h 2μ2(E ). [其他与Δu 有关的网格] 1︒ 三角网格(图14.10(a ))取P 0(x ,y )为中心,它的周围6个邻近节点分别为:()()⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫⎝⎛+++h y h x P h y h x P y h x P h y h x P h y h x P y h x P 23,2,23,2,,23,223,2,,654321则 R u h u u u h i i +∆+∆=⎪⎭⎫⎝⎛-∑=226102161632式中u i =u (P i ), u 0=u (P 0),R 表示余项. 2︒ 六角网格(图14.10(b ))取P 0(x ,y )为中心,它的三个邻近节点分别为图14.9()⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++h y h x P y h x P h y h x P 23,2,,23,2321则 R u u u h i i +∆=⎪⎭⎫⎝⎛-∑=0312334.图14.103︒ 极坐标系中的网格(图14.10(c ))取P 0(r ,θ)为中心,它的四个邻近节点分别为()()()()l r P h r P l r P h r P ++--θθθθ,,,,,,4321而拉普拉斯方程01122222=∂∂+∂∂+∂∂=θ∆u r r u r ru u的相应的差分方程为()()()011221110222134222312=⎪⎭⎫ ⎝⎛+--++++u l r h u u rh u u l r u u h 3. 抛物型方程的差分方法 考虑热传导方程的边值问题()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥==<<=><<=∂∂-∂∂0,,,,00,0,0,0,021222t t t b u t t u bx x x u t b x x u a t u μμϕ 将[0,b ]分为n 等份,每段长为∆x bn=.引两族平行线(图14.11)图14.11x =x i =i ∆x (i =0,1,2,, n )y =y j =j ∆t (j =0,1,2,, ∆t 取值见后)作成一个长方形的网格,记u (x i ,t j )为u ij ,节点(x i ,t j )为(i ,j ),在节点(i ,j )上分别用(),2,1,1,,2,1Δ2,Δ2,1,11,=-=+---++j n i x u u u t u u ji ij j i ij j i 代替22,xut u ∂∂∂∂,于是边值问题化为差分方程()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===-===-==+----++ ,2,1,0,Δ,Δ1,,2,1,Δ,2,1,0,1,,2,10Δ2Δ21002,1,121,j t j u t j u n i x i u j n i x u u u a tu u nj j i j i ij j i ijj i μμϕ 记()22x ta ∆∆=λ,差分方程可写成 () ,2,1,1,,2,121,1,11,=-=+-+=-++j n i u u u u ji ij j i j i λλλ (1)由此可按t 增加的方向逐排求解.在第0排上u i 0的值由初值ϕ(i ∆x )确定,j +1排u i ,j +1的值可由第j 排的三点(i +1,j ),(i ,j ),(i -1,j )上的值u i +1,j , u ij ,u i -1,j 确定,而u 0,j +1,u n ,j +1已由边界条件μ1((j +1)∆t )及μ2((j +1)∆t )给定,于是可逐排计算一切节点上的u ij 值.当ϕ(x ), μ1(x )和μ2(x )充分光滑,且λ≤12时,差分方程收敛而且稳定.所以利用差分方程(1)计算时,必须使λ≤12,即()22Δ21Δx at ≤.热传导方程还可用差分方程()0Δ2Δ21,11,1,121,=+---+-++++x u u u a t u u j i j i j i ij j i 代替,此时如已知前j 排u ij 的值,为求第j +1排的u i ,j +1 必须解包含n -1个未知量u u j n j 1111,,,,+-+ 的线性代数方程组,这种差分方程称为隐式格式的差分方程,前面所提的差分方程称为显式格式差分方程.隐式格式差分方程对任意的λ都是稳定的.4. 双曲型方程的差分方法 考虑弦振动方程的第一边值问题()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥==<<=∂∂=><<=∂∂-∂∂0,,,,00),()0,(,0,0,0,02122222t t t b u t t u b x x t x u x x u t b x x u a tu μμψϕ 用矩形网格,列出对应的差分方程:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===-=∆=∆-==-==+--+--+-+ ,2,1,0,Δ,Δ1,,2,1),(,Δ,2,1,1,,2,1,0Δ2)(Δ22100102,1,1221,1,j t j u t j u n i x i t u u x i u j n i x u u u a t u u u nj j i i i j i ij j i j i ij j i μμψϕ 记ω=a tx∆∆与上段一样,利用u u n 022,和在第0排及第1排的已知数值(初始条件)u i 0 , u i 1可计算u i 2,然后用已知的u i 1 , u i 2及u u n 033,可计算u i 3,类似地可确定一切节点上的u ij 值.当ϕ(x ),ψ(x ),μ1(x )和μ2(x )充分光滑,且ω≤1时,差分方程收敛且稳定,所以要取∆∆t ax ≤1.二、 变分方法1. 自共轭边值问题将§3定义的共轭微分算子的概念推广到一般方程.设D 是n E 中的有界区域,S 为其边界,在D 上考虑2k 阶线性微分方程()x f x x uaLu km mi i i ni m m i i n n n=∂∂≡∑∑==++201111 ∂ 的齐次边值问题()r j u l Sj ,,2,10==式中f (x )是D 内的已知函数,l j u 是线性微分算子. 将 ⎰DvLud Ω分部积分k 次得()⎰∑⎰⎪⎪⎭⎫ ⎝⎛+=Ω=S j j j D S v R u R v u vLu d ~,Λd k 1 式中Λ(u ,v )是一个D 上的积分,其被积函数包含u ,v 的k 阶导数;R j 和 R j 是定义在边界S 上的两个线性微分算子.再将Λ(u ,v )分部积分k 次得()()⎰∑⎰⎪⎪⎭⎫⎝⎛-Ω=Λ=S k j j j D S u R v R v uL v u d ~d ,1***式中L*是一个2k 阶的微分算子,称为L 的共轭微分算子.若L=L*,则称L 为自共轭微分算子.从上面可推出格林公式()()⎰∑⎰=-=Ω-Skj jjjjDS u R v R v R u R v uL vLu 1***d ~~d 如从l j u |S =l j v |S =0可推出在边界S 上()∑==-kj jjjju R v R v R u R 1**0~~ 则称l j u |S =0为自共轭边界条件.如果微分算子及边界条件都是自共轭的,则称相应的边值问题为自共轭边值问题,此时有()0d ][=Ω-⎰DuLv vLu每个边值问题对应于某希尔伯特空间H (例如L 2(D ),见第九章§7)中的一个算子A ,其定义域M A 是H 中一线性稠密集合,它由足够次连续可微且满足边界条件的函数组成,在M A 上,Au 的数值与Lu 的数值相同,从而求解边值问题化为解算子方程Au f = 的问题.设A 为定义在实的希尔伯特空间H 中的某线性稠密集合M A 上的线性算子.若对于M A 的任意非零元素,,v u 成立(Au ,v )=(u ,Av )则称A 为对称算子.若对任意非零元素u 成立()0,>u Au 则称A 为正算子.如成立更强的不等式(Au ,u )≥r ||u ||2 (r>0)则称A 为正定算子.此处(u ,v )表示希尔伯特空间的内积,||u ||2=(u ,u ). 2. 变分原理与广义解定理 设A 是正定算子,u 是方程Au =f 在M A 上的解的充分必要条件是: u 使泛函F (u )=(Au ,u )-2(f ,u )取极小值.上述将边值问题化为等价的求泛函极值问题的方法称为能量法.在算子的定义域不够大时,泛函F (u )的极值问题可能无解.不过对于正定算子,可以开拓集合M A ,使在开拓了的集合上,泛函的极值问题有解.为开拓M A ,在M A 上引进新的内积[u ,v ]=(Au ,v ),定义模||u ||2=[u ,u ]=(Au ,u ),在模||u ||的意义下,补充极限元素,得到一个新的完备希尔伯特空间H 0,在H 0上,泛函F (u )仍然有意义,而泛函的极值问题有解.但必须注意,此时使泛函F (u )取极小的元素u 0不一定属于M A ,因此它不一定在原来的意义下满足方程Au=f 及边界条件.称u 0为广义解. 3. 极小化序列与里兹方法在处理变分问题中,极小化序列起着重要的作用.考虑泛函F (u )=(Au ,u )-2(f ,u )以d 表示泛函的极小值.设在希尔伯特空间中存在一列元素{u n } (n =1,2 ,),使()d u F n n =∞→lim则称{u n }为极小化序列.定理 若算子A 是正定的,则F (u )的每一个极小化序列既按H 空间的模也按H 0的模收敛于使泛函F (u )取极小的元素.这个定理不但指出利用极小化序列可求问题的解,而且提供一种近似解的求法,即把极小化序列中的每一个元素当作问题的近似解.设算子A 是正定的,构造极小化序列的里兹方法的主要步骤是:(1) 在线性集合M A 中选取H 0中完备的元素序列{ϕi } , (i =1,2 ,) 并要求对任意的n ,ϕ1,ϕ2,…,ϕn 线性无关.称这样的元素为坐标元素.(2) 令u a n k k k n==∑ϕ1 ,其中a k 为待定系数.代入泛函F (u ),得自变量a 1,a 2,…,a n 的函数()()()∑∑==-=nj jjn k j kjkj n f a A a a u F 11,,2,ϕϕϕ(3) 为使函数F (u n )取极小,必须()()n j a u F jn ,,2,10 ==∂∂,从而求出a k (k =1,2,…,n ).序列{u n }即为极小化序列,u n 可作为问题的近似解. 4. 里兹方法在特征值问题上的应用 算子方程Au -λu =0的非零解λ称为算子A 的特征值,对应的非零解u 称为λ所对应的特征函数. 对线性算子A ,若存在常数K ,使对任何M A 的元素ϕ成立(A ϕ,ϕ)≥K ||ϕ||2则称A 为下有界算子,正定算子是下有界的(此时K =0).记(A ϕ,ϕ)/||ϕ||2的下确界为d . 定理1 设A 为下有界对称算子,若存在不为零的元素ϕ0∈M A ,使()d A =200,ϕϕϕ则d 就是A 的最小特征值,ϕ0为对应的特征函数.于是求下有界对称算子的最小特征值问题化为变分问题,即在希尔伯特空间中求使泛函(A ϕ,ϕ)/||ϕ||2取极小的元素,或在||ϕ||=1的条件下求使泛函(A ϕ,ϕ)取极小的元素.定理2 设A 是下有界对称算子,λ1≤λ2≤…≤λn 是它的前n 个特征值,ϕ1,ϕ2,…,ϕn 是对应的标准正交特征函数,如果存在不为零的元素1+n ϕ,在附加条件(ϕ,ϕ)=1, (ϕ,ϕ1)=0, (ϕ,ϕ2)=0, …, (ϕ,ϕn )=0下使泛函(A ϕ,ϕ)取极小,则ϕn +1是算子A 的特征函数,对应的特征值()11,++=n n A ϕϕλ就是除λ1 ,,λn 外的最小的一个特征值.于是求第n +1个特征值就化为变分问题,即在附加条件(ϕ,ϕ)=1, (ϕ,ϕ1)=0, (ϕ,ϕ2)=0 ,, (ϕ,ϕn )=0 下求使泛函(A ϕ,ϕ)取极小的元素.为了利用里兹方法求特征值,在M A 中选取一列在H 0中完备的坐标元素序列{ϕi },(i =1,2 ,), 令u a n k k k n==∑ϕ1,确定a k ,使在条件 (u n ,u n )=1下,(Au n ,u n )取极小,这个问题化为求n个变元a 1,a 2,…,a n 的函数()()∑==nm k m k k m n n a a A u Au 1,,,ϕϕ在条件()()∑===nm k m k m k n n a a u u 1,1,,ϕϕ下的极值问题,一般可用拉格朗日乘数法解(见第九章§3,t ),此时()()()()()()()()()()()()0,,,,,,,,,,,,11222121111111=------n n n n n n n n n n A A A A A A ϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕ的最小的根即为特征值的近似值,如果将上式的根按大小排列,就依次得后面的特征值的近似值,但精确度较差. 对一般算子方程Au -λBu=0如果A 为下有界对称算子,B 为正定算子,则()()()()()()()()()()()()0,,,,,,,,,,,,11222121111111=------n n n n n n n n n n B A B A B A B A B A B A ϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕ的根就是特征值的近似值. 5. 迦辽金方法用里兹方法解数学物理问题有很多限制,最主要的限制是要求算子正定,但很多问题不一定满足这个条件,迦辽金方法弥补了这个缺陷. 迦辽金方法的主要步骤是:(1) 在M A 中选取在空间H 中完备的元素序列{ϕi } (i =1,2 ,),其中任意n 个元素线性无关,称{ϕi } (i =1,2,…)为坐标元素序列. (2) 把方程的近似解表示为u a n k k k n==∑ϕ1式中a k 是待定常数,把u n 代入方程Au=f 中的u ,两端与ϕj (j =1,2,…,n )求内积,得 a k 的n 个代数方程()()()n j f A a j n k j k k,,2,1,,1 ==∑=ϕϕϕ(3) 求出a k ,代回u n 的表达式,便得方程的近似解u n .在自共轭边值问题中,当算子是正定时,由迦辽金方法和里兹方法得到的关于a k 的代数方程组是相同的.。
偏微分方程及其求解实例ppt课件
(hn1-2.*h(k,n)+h(k,n-1))./dr.^2);
end plot(r(3:n)./ra,p(k,3:n).*theta.*2./rb)
h hi1 hi1 r i 2r
2h hi1 2hi hi1
r 2
r 2
i
P
1 rb 4
1
r
h r
2h r 2
偏微分方程的求解实例2:
2u A x2
2u B
xy
C
2u y 2
D u x
E u y
Fu
f
x,
y,u,
u x
,
u y
(1) 导热方程:
u 2u
t x2 (2) 拉普拉斯方程: 如稳态静电场和稳态温度分布模型
2u 2u 0
x2 y2
(3) 波动方程: 一维弦振动模型
2u 2 2u
t 2
x2
偏微分方程的边界条件
function PDE1Dd_CrankNicolson % 使用Crank-Nicolson有限差分方法求解一维动态传
热模型
c1 = 100; c2 = 0; a = 10; b = 8; alpha = 2; n = 6; m = 8; U = CrankNicolson(@ic,c1,c2,a,b,alpha,n,m)
h t 3 9c
9c
h3 h33
4h r 4
3
h5 4h4
6h3 4h2 r 4
h1
h t
n
V
r i 2r
2h hi1 2hi hi1
r 2
r 2
i
3h r 3
hi2
2hi1 2hi1 2r 3
高等数学同济下册教材目录
高等数学同济下册教材目录第一章无穷级数1.1 数项级数1.1.1 数项级数的概念1.1.2 数项级数的性质1.1.3 极限形式的级数1.2 幂级数1.2.1 幂级数的概念1.2.2 幂级数的收敛域1.2.3 幂级数的和函数1.3 函数项级数1.3.1 函数项级数的概念1.3.2 函数项级数的一致收敛性第二章傅里叶级数2.1 傅里叶级数的定义2.1.1 周期函数的傅里叶级数2.1.2 奇偶延拓的傅里叶级数2.2 傅里叶级数的性质2.2.1 傅里叶级数的线性性质2.2.2 傅里叶级数的逐项积分与逐项微分 2.2.3 傅里叶级数的逐项积分和逐项微分 2.3 傅里叶级数的收敛性2.3.1 傅里叶级数一致收敛的性质2.3.2 周期函数的傅里叶级数收敛性2.3.3 局部函数化的傅里叶级数第三章一元函数积分学3.1 定积分3.1.1 定积分的定义3.1.2 定积分的性质3.1.3 线性运算与换元积分法3.2 反常积分3.2.1 第一类反常积分3.2.2 第二类反常积分3.3 微积分基本定理3.3.1 牛顿-莱布尼茨公式3.3.2 积分求导法3.3.3 函数定积分的应用第四章多元函数微分学4.1 多元函数的极限与连续4.1.1 多元函数的极限4.1.2 多元函数的连续性4.2 多元函数的偏导数与全微分 4.2.1 多元函数的偏导数4.2.2 多元函数的全微分4.3 隐函数与参数方程的偏导数 4.3.1 隐函数的偏导数4.3.2 参数方程的偏导数第五章多元函数的积分学5.1 二重积分5.1.1 二重积分的概念5.1.2 二重积分的性质5.1.3 二重积分的计算方法5.2 三重积分5.2.1 三重积分的概念5.2.2 三重积分的性质5.2.3 三重积分的计算方法5.3 曲线积分与曲面积分5.3.1 第一类曲线积分5.3.2 第二类曲线积分5.3.3 曲面积分第六章多元函数的向量微积分6.1 多元函数的梯度、散度与旋度 6.1.1 多元函数的梯度6.1.2 多元函数的散度6.1.3 多元函数的旋度6.2 多元函数的曲线积分与曲面积分 6.2.1 多元函数的第一类曲线积分 6.2.2 多元函数的第二类曲线积分6.2.3 多元函数的曲面积分第七章序列与函数的多元极限7.1 多元函数的序列极限7.1.1 多元函数序列极限的概念7.1.2 多元函数序列极限的性质7.2 多元函数的函数极限7.2.1 多元函数函数极限的概念7.2.2 多元函数函数极限的性质第八章多元函数的泰勒展开8.1 函数的多元Taylor展开8.1.1 函数的多元Taylor展开定理 8.1.2 函数的多元Taylor展开的应用 8.2 隐函数存在定理与逆函数存在定理 8.2.1 隐函数存在定理8.2.2 逆函数存在定理第九章向量场与散度定理9.1 向量场9.1.1 向量场的定义9.1.2 向量场与流线9.2 散度与散度定理9.2.1 向量场的散度9.2.2 散度定理的概念与性质第十章曲线积分与斯托克斯定理10.1 向量值函数的曲线积分10.1.1 向量值函数的曲线积分的定义 10.1.2 向量值函数的曲线积分的计算 10.2 Stokes定理10.2.1 Stokes定理的概念与性质第十一章重积分与高斯定理11.1 二重积分与三重积分的概念11.1.1 二重积分与三重积分的定义 11.1.2 二重积分与三重积分的性质 11.2 高斯定理11.2.1 高斯定理的概念与性质第十二章序列与级数的广义极限12.1 无穷小量和无穷大量12.1.1 无穷小量的概念与性质12.1.2 无穷大量的概念与性质12.2 级数极限与广义极限12.2.1 级数极限的概念与性质12.2.2 广义极限的概念与性质第十三章多项式逼近与傅里叶级数近似13.1 约束方程组的最小二乘解13.1.1 约束方程组的最小二乘解的概念 13.1.2 约束方程组的最小二乘解的计算 13.2 多项式逼近13.2.1 多项式逼近的概念与性质13.2.2 最佳一致逼近13.3 傅里叶级数的近似13.3.1 傅里叶级数的收敛性13.3.2 傅里叶级数的部分和逼近第十四章偏微分方程初步14.1 偏导数14.1.1 偏导数的定义与性质14.1.2 高阶偏导数14.2 偏微分方程的分类与例子14.2.1 第一阶偏微分方程14.2.2 二阶线性偏微分方程14.2.3 泊松方程与拉普拉斯方程第十五章全微分方程初步15.1 微分方程的定义与解15.1.1 微分方程的概念与性质15.1.2 微分方程解的存在唯一性 15.2 一阶线性微分方程15.2.1 齐次线性微分方程15.2.2 非齐次线性微分方程15.3 可降阶的高阶线性微分方程15.3.1 可降阶的高阶线性微分方程第十六章复变函数初步16.1 复数的性质与运算16.1.1 复数的概念与性质16.1.2 复数的运算与表示16.2 复变函数的导数16.2.1 复变函数的导数的定义 16.2.2 复变函数的导数的性质 16.3 复变函数的积分16.3.1 复变函数的积分的定义 16.3.2 复变函数的积分的性质第十七章应用篇17.1 牛顿法与割线法17.1.1 牛顿迭代法17.1.2 割线法17.2 微分方程的应用17.2.1 放射性衰变方程17.2.3 流体的入口速度与出口速度之间的关系17.3 级数的应用17.3.1 泰勒级数的应用17.3.2 调和级数的收敛性与发散性希望以上内容能满足您对《高等数学同济下册教材目录》的需求,如有任何疑问或其他需求,请随时告知。
格林函数--偏微分方程解的积分表示
第十四章 格林函数 --偏微分方程解的积分表示解偏微分方程主要有两种方法:数理方法中的分离变量法:正交的无穷级数解,特别的边界条件。
理论物理中的Green 函数方法:有理形式解,任意的边界条件。
1,Green 函数的意义:物理上:点源产生的场(函数)在时空中的分布 1) 空间:源函数 2) 时空:传播函数数学上: 具有点源的偏微分方程在齐次边界条件或者无界、初值条件下的解。
2,Green 函数的分类:边界值Green 函数:(,')G r r 源函数 初始值Green 函数:(,,',')G r t r t 传播函数 3,Green 函数的性质:1)对称性:(,')(',)G r r G r r = 与定解问题相关,即与厄米性相关。
2)时间传播函数没有对称性:(,,',')(',',,)G r t r t G r t r t ≠.3)存在的必要条件:设方程2()(,')(')G r r r r λδ∇+=--,若λ是对应齐次方程的本征值,即2ϕλϕ∇=- 和附加齐次边界条件,则(,')G r r 不存在(既有点源又无流,物理上自相矛盾!)4,Green 函数边值条件:设边值条件具有人为性,但要求简单并保证算子的厄米性。
1)齐次边值条件:()|0.GG n αβ∑∂+=∂ 2) |0r G →∞=有解:基本解。
5,Green 函数的用途: 偏微分方程的积分解法: 1)求(,')G r r2)利用迭加原理给出待求解()u r 的积分形式6,Green 函数的求法:1) 特殊方法:21(').|'|G r r G r r δ∇=--⇒=-。
2)本征函数展开法:相应算子在同一边界条件下的本征函数作为基矢。
3)方程齐次化方法:将非齐次项变成边值条件和初值条件。
4)积分变化法:LT ,FT 。
Green's function
解偏微分方程主要有两种方法: 数理方法中的分离变量法:正交的无穷级数解,特别的边界条件。 理论物理中的 Green 函数方法:有理形式解,任意的边界条件。 1,Green 函数的意义: 物理上:点源产生的场(函数)在时空中的分布 1) 空间:源函数 2) 时空:传播函数 数学上: 具有点源的偏微分方程在齐次边界条件或者无界、初值条件下的解。 2,Green 函数的分类: 边界值 Green 函数: G (r , r ') 源函数 初始值 Green 函数: G (r , t , r ', t ') 传播函数 3,Green 函数的性质: 1)对称性: G(r , r ') G(r ', r ) 与定解问题相关,即与厄米性相关。 2)时间传播函数没有对称性: G(r , t , r ', t ') G(r ', t ', r , t ) . 3)存在的必要条件:设方程 (2 )G(r , r ') (r r ') ,若λ是对应齐次方程 的本征值,即 2 和附加齐次边界条件,则 G (r , r ') 不存在(既有点 源又无流,物理上自相矛盾! ) 4,Green 函数边值条件: 设边值条件具有人为性,但要求简单并保证算子的厄米性。 G G ) | 0. 1)齐次边值条件: ( n 2) G |r 0 有解:基本解。 5,Green 函数的用途: 偏微分方程的积分解法: 1)求 G (r , r ') 2)利用迭加原理给出待求解 u (r ) 的积分形式
L G (r , r ') (r r '), L G ( r r '), 0 L G1 0, 例如: G | f (). G1 | f (). G0 | 0;
偏微分方程的解法
只表示P(x)一个确定的函数.
3、一阶线性非齐次微分方程的解法——常数变易法
由方程特点,设一阶线性非齐次微分方程的通解为
y C ( x )e
P ( x ) dx
(5)
对(5)式求导得 P ( x ) dx P ( x ) dx dy C ( x )e P ( x )C ( x )e . (6) dx 将(5)和(6)代入方程(3)并整理得
化简,得
10x 10 y C
(其中C C1 ln10)
把初始条件 y x1 0 代入上式 ,得 C 11.
于是所求微分方程的特解为
10x 10 y 11.
5
二、齐次型微分方程
1. 定义 形如
dy y f( ) dx x ( 2)
的微分方程, 称为齐次型微分方程.
x
用常数变易法,设非齐次方程的通解为
1 y C ( x) 2 x
则 1 2 y C ( x ) 2 3 C ( x ) x x
把 y 和 y 代入原方程并化简 , 得 C ( x) x 1.
1 2 C( x) x x C 两边积分,得 2 1 1 C 因此,非齐次方程的通解为 y 2 2 x x 1 将 初 始 条 件y x 1 0 代 入 上 式 , 得C . 故所求微分方程的特解为 2
2
3.步骤
(1)分离变量,得 dy f ( x )dx g( y ) (2) 两边积分,得
( g ( y ) 0)
(3) 求得积分,得
dy f ( x )dx g( y )
G( y ) F ( x ) C
1 其 中G( y ), F ( x )分 别 是 , f ( x )的 原 函 数 . g( y )
第十四章 格林函数 --偏微分方程解的积分表示
第十四章 格林函数 --偏微分方程解的积分表示解偏微分方程主要有两种方法:数理方法中的分离变量法:正交的无穷级数解,特别的边界条件。
理论物理中的Green 函数方法:有理形式解,任意的边界条件。
1,Green 函数的意义:物理上:点源产生的场(函数)在时空中的分布 1) 空间:源函数 2) 时空:传播函数数学上: 具有点源的偏微分方程在齐次边界条件或者无界、初值条件下的解。
2,Green 函数的分类:边界值Green 函数:(,')G r r 源函数 初始值Green 函数:(,,',')G r t r t 传播函数 3,Green 函数的性质:1)对称性:(,')(',)G r r G r r = 与定解问题相关,即与厄米性相关。
2)时间传播函数没有对称性:(,,',')(',',,)G r t r t G r t r t ≠.3)存在的必要条件:设方程2()(,')(')G r r r r λδ∇+=--,若λ是对应齐次方程的本征值,即2ϕλϕ∇=- 和附加齐次边界条件,则(,')G r r 不存在(既有点源又无流,物理上自相矛盾!)4,Green 函数边值条件:设边值条件具有人为性,但要求简单并保证算子的厄米性。
1)齐次边值条件:()|0.GG n αβ∑∂+=∂ 2) |0r G →∞=有解:基本解。
5,Green 函数的用途: 偏微分方程的积分解法: 1)求(,')G r r2)利用迭加原理给出待求解()u r 的积分形式6,Green 函数的求法:1) 特殊方法:21(').|'|G r r G r r δ∇=--⇒=-。
2)本征函数展开法:相应算子在同一边界条件下的本征函数作为基矢。
3)方程齐次化方法:将非齐次项变成边值条件和初值条件。
4)积分变化法:LT ,FT 。
偏微分方程知识点总结
偏微分方程知识点总结1. 什么是偏微分方程?偏微分方程是描述多个自变量和它们的偏导数之间关系的方程。
它在数学和物理学中起着重要的作用,并被广泛应用于各个领域。
2. 偏微分方程的分类偏微分方程可以分为几个主要的类型,包括:- 椭圆型方程:以拉普拉斯方程为代表,通常用于描述稳定的分布或调和情况。
- 抛物型方程:以热方程和扩散方程为代表,通常用于描述物质传导或扩散过程。
- 双曲型方程:以波动方程为代表,通常用于描述波动或振动的传播过程。
3. 常见的偏微分方程以下是几个常见的偏微分方程:- 热方程(Heat Equation):用于描述温度在空间和时间中的传导过程。
- 波动方程(Wave Equation):用于描述波动的传播过程,如声波、光波等。
- 扩散方程(Diffusion Equation):用于描述物质在空间中的扩散过程。
- 广义拉普拉斯方程(Generalized Laplace Equation):用于描述稳定的分布情况,例如电势分布。
4. 解偏微分方程的方法解偏微分方程的方法有多种,常见的方法包括:- 分离变量法:将方程中的未知函数表示为多个独立变量的乘积形式,从而将偏微分方程转化为一组常微分方程。
- 特征线法:根据偏微分方程的特征曲线,将方程转化为常微分方程,并通过求解常微分方程得到解析解。
- 有限差分法:将偏微分方程中的偏导数用差商近似表示,将区域离散化为一个个小区域,利用差分方程逐步逼近解析解。
- 有限元法:将区域划分为有限个子区域,通过对子区域进行逼近,得到整个区域的近似解。
5. 偏微分方程在实际应用中的重要性偏微分方程在各个领域中都有着广泛的应用,如:- 物理学:用于描述波动、传热、扩散等物理现象。
- 工程学:用于解决结构强度、热传导、流体力学等工程问题。
- 经济学:用于建立经济模型,描述经济增长、分配等问题。
- 生物学:用于研究生物传输、生物过程等生命科学问题。
以上是我对偏微分方程的知识点进行的简要总结,请您参考。
高等数学自学教材目录
高等数学自学教材目录第一章函数与极限1.1 函数的概念与性质1.1.1 函数的定义1.1.2 函数的分类1.1.3 函数的图像与性质1.2 极限的概念与性质1.2.1 极限的定义1.2.2 极限的性质1.2.3 极限存在的判定方法第二章导数与微分2.1 导数的定义与性质2.1.1 导数的定义2.1.2 导数的性质与运算法则2.1.3 导数存在的条件2.2 微分的概念与应用2.2.1 微分的定义2.2.2 微分的应用:局部线性化与近似计算 2.2.3 高阶导数与高阶微分第三章微分中值定理与导数应用3.1 微分中值定理3.1.1 罗尔定理3.1.2 拉格朗日中值定理3.1.3 柯西中值定理3.2 函数的单调性与曲线的凹凸性3.2.1 函数的单调性及其判定方法3.2.2 曲线的凹凸性及其判定方法3.3 各种中值定理的应用3.3.1 利用中值定理证明不等式3.3.2 利用中值定理证明函数性质第四章不定积分与定积分4.1 不定积分的概念与性质4.1.1 不定积分的定义4.1.2 不定积分的基本性质与运算法则4.2 定积分的概念与性质4.2.1 定积分的定义4.2.2 定积分的性质与运算法则4.3 牛顿-莱布尼茨公式与变限积分4.3.1 牛顿-莱布尼茨公式的推导与应用4.3.2 变限积分的概念与性质第五章微分方程5.1 微分方程的基本概念与解法5.1.1 微分方程的定义与分类5.1.2 一阶常微分方程的解法5.1.3 二阶常系数齐次线性微分方程的解法 5.2 高阶线性常系数微分方程5.2.1 特征根与齐次线性微分方程的解5.2.2 叠加原理与非齐次线性微分方程的解 5.2.3 欧拉方程及其特解的求法第六章无穷级数6.1 数项级数的概念与性质6.1.1 数项级数的定义6.1.2 数项级数的收敛与发散6.1.3 常用数项级数的性质6.2 幂级数与泰勒级数6.2.1 幂级数的概念与性质6.2.2 幂级数的收敛域与求和6.2.3 泰勒级数的推导与应用第七章多元函数微分学7.1 多元函数的概念与性质7.1.1 多元函数的定义7.1.2 多元函数的极限与连续性 7.1.3 多元函数的偏导数与全微分 7.2 方向导数与梯度7.2.1 方向导数的概念与计算7.2.2 梯度的定义与性质7.2.3 梯度的应用与几何意义7.3 隐函数与参数方程7.3.1 隐函数定理与求导公式7.3.2 参数曲线方程与对弧长的求解第八章重积分8.1 二重积分的概念与性质8.1.1 二重积分的定义8.1.2 二重积分的计算与性质8.1.3 二重积分的应用8.2 三重积分与坐标变换8.2.1 三重积分的定义与计算8.2.2 三重积分的性质8.2.3 坐标变换与积分域的变换第九章曲线积分与曲面积分9.1 第一类曲线积分9.1.1 第一类曲线积分的概念与性质 9.1.2 第一类曲线积分的计算9.2 第二类曲线积分9.2.1 第二类曲线积分的概念与性质9.2.2 第二类曲线积分的计算9.3 曲面积分9.3.1 曲面积分的概念与性质9.3.2 曲面积分的计算与应用第十章空间解析几何10.1 空间直线与平面的方程10.1.1 点、直线与平面的方程10.1.2 直线与平面的位置关系与夹角 10.2 空间曲线与曲面10.2.1 参数方程与直纹面10.2.2 旋转曲面与曲线的切线与法平面 10.3 二次曲面与空间直角坐标系10.3.1 二次曲面的方程与图像10.3.2 空间直角坐标系第十一章向量代数与空间解析几何11.1 向量的概念与运算11.1.1 向量的定义与性质11.1.2 向量的线性运算与数量积11.2 平面与空间解析几何11.2.1 向量方程与点、向量与直线的位置关系 11.2.2 点、向量与平面的位置关系与夹角11.3 空间平面与直线的方程11.3.1 空间平面的方程11.3.2 空间直线的方程与位置关系第十二章广义重积分12.1 重积分的概念与性质12.1.1 重积分的定义12.1.2 重积分的性质与计算12.2 多元函数的均值与中值定理12.2.1 平均值定理与均值公式12.2.2 中值定理与均值不等式12.3 可积函数与不可积函数12.3.1 可积函数与不可积函数的定义12.3.2 可积函数的判定与性质第十三章常微分方程初值问题的解法13.1 齐次线性常微分方程13.1.1 一阶齐次线性常微分方程的解法13.1.2 二阶齐次线性常微分方程的解法13.1.3 高阶齐次线性常微分方程的解法13.2 非齐次线性常微分方程13.2.1 一阶非齐次线性常微分方程的通解与特解 13.2.2 二阶非齐次线性常微分方程的通解与特解 13.3 可降阶的高阶常微分方程13.3.1 可降阶的高阶常微分方程的解法13.3.2 高阶常微分方程的特解与通解第十四章偏微分方程14.1 偏导数与偏微分方程的概念14.1.1 偏导数的定义与性质14.1.2 偏微分方程的定义与分类14.2 常见偏微分方程的解法14.2.1 齐次线性偏微分方程的特征曲线法14.2.2 分离变量法与变数分离法 14.3 热传导方程与波动方程14.3.1 热传导方程的解法与应用 14.3.2 波动方程的解法与应用。
第十四章偏微分方程
.§3 二阶偏微分方程一、一、二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程(1) 式中a ij(x)=a ij(x1,x2,…,x n)为x1,x2,…,x n的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程称为二阶方程(1)的特征方程;这里a1,a2,…,a n是某些参数,且有.如果点x︒=(x1︒,x2︒,…,x n︒)满足特征方程,即则过x︒的平面的法线方向l:(a1,a2,…,a n)称为二阶方程的特征方向;如果一个(n)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n个自变量方程的分类与标准形式] 在点P(x1︒,x2︒,…,x n︒),根据二次型(a i为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P为椭圆型.(ii) 特征根都不为零,有n个具有同一种符号,余下一个符号相反,称方程在点P为双曲型.(iii) 特征根都不为零,有个具有同一种符号(n>m>1),其余m个具有另一种符号,称方程在点P为超双曲型.(iv) 特征根至少有一个是零,称方程在点P为抛物型.若在区域D内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D内是椭圆型、双曲型或抛物型.在点P作自变量的线性变换可将方程化为标准形式:椭圆型:双曲型:超双曲型:抛物型:式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为(2) a11,a12,a22为x,y的二次连续可微函数,不同时为零.方程a11d y2a12d x d y+a22d x2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线.在某点P(x0,y0)的邻域D内,根据Δ=a122-a11a12的符号将方程分类:当Δ>0时,方程为双曲型;当Δ=0时,方程为抛物型;当Δ<0时,方程为椭圆型.在点P的邻域D内作变量替换,可将方程化为标准形式:(i)(i)双曲型:因Δ>0,存在两族实特征曲线,,作变换,和方程化为标准形式或(ii)(ii)抛物型:因Δ=0,只存在一族实的特征曲线,取二次连续可微函数,使,作变换,,方程化为标准形式(iii)(iii)椭圆型:因Δ<0,不存在实特征曲线,设为的积分,不同时为零,作变量替换,,方程化为标准形式二、极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用.[椭圆型方程的极值原理与解的惟一性定理]1︒极值原理设D为n维欧氏空间E n的有界区域,S是D的边界,在D内考虑椭圆型方程式中a ij(x),b i(x),c(x),f(x)在上连续,c(x)≤0且二次型正定,即存在常数μ>0,对任意和任意的a i有定理1设u(x)为D内椭圆型方程的解,它在D内二次连续可微,在上连续,且不是常数,如f(x)≤0(或f(x)≥0),则u(x)不能在D的内点取非正最小值(或非负最大值).如果过边界S上的任一点P都可作一球,使它在P点与S相切且完全包含在区域D内,则有定理2设u(x)为椭圆型方程在D内二次连续可微,在上连续可微的解,且不是常数,并设f(x)≤0(或f(x)≥0).若u(x)在边界S上某点M处取非正最小值(或非负最大值),只要外法向导数在点M存在,则(或)2︒定解问题(i) 第一边值问题(狄利克莱问题)(S)(ii) 第二边值问题(诺伊曼问题)(S)其中N为S的外法线方向.(iii) 第三边值问题(混合问题)(S)a(),b(),()在S上连续,N是S的外法线方向,a()≥0,b()≤0,且a2()+b2()≠0.3︒解的惟一性问题设c(x)及b()不同时恒等于零,如果定解问题Lu=f,lu=的解存在,则是惟一的,设c(x)及b()都恒等于零,如果定解问题Lu=f,lu=的解存在,则除相差一个常数外,解是惟一的.[抛物型方程的极值原理与解的惟一性定理]设为柱体,在柱体内部考虑抛物型方程式中a ij(x,t),b i(x,t),c(x,t),f(x,t)在上连续,且正定.1︒强极值原理设u(x,t)为抛物型方程Lu=f(x,t)在D×(0,T)内连续可微在上连续的解.并设f(x)=0,若u(x,t)在D×(0,T]的某点(x0,t0)取非负的最大值,即则对任意满足下列条件的点P(x,t),都有u(x,t)=m:点P(x,t)满足t<t0,且可用完全在D×(0,T] 内的连续曲线x=x(t)与点(x0,t0)相连.如在的侧边界Γ:S×[0,T]上(S是D的边界)任一点P都可作一球,使它在P点与Γ相切且完全在D×(0,T)内,则有定理设u(x,t)在上连续,在D×(0,T]内满足抛物型方程Lu=f,且不是常数,设f≤0,若u(x,t)在Γ上某点M处取非正最小值,只要外法向导数在点M存在,则2︒柯西问题与混合问题柯西问题的初值条件是混合问题按下列的定解条件分别称为(i) 第一边值问题:,;(ii) 线性边值问题:,,其中N为Γ的外法线方向为已知函数,a≥0,b≤0,a2+b2≠03︒解的惟一性定理如果抛物型方程Lu=f的混合问题的解存在,那末它是惟一的.如果柯西问题存在有界的解,那末在有界函数类中,解是惟一的.[波动方程的能量积分与解的惟一性定理]1︒波动方程的柯西问题与混合问题设波动方程为柯西问题的初值条件是如果在有界区域Q:D×(0,T]中考虑波动方程,记的侧边界为Γ,则混合问题的定解条件是(i) (i) 第一边值问题(ii) (ii) 第二边值问题(iii) (iii) 第三边值问题式中N为Γ的外法线方向,φ(x),ψ(x)为D上的已知函数,为定义在Γ上的已知函数,.2︒解的惟一性定理波动方程的混合问题与柯西问题的解如果存在必定惟一.惟一性定理可用下面能量积分证明.3︒能量积分积分*称为波动方程的能量积分.满足齐次波动方程及u|Γ=0(或)的函数u(x,t)成立:能量守恒原理E(t)=E(0).能量不等式式中满足齐次波动方程及的函数,在上面能量不等式E(t)中增加一项,上面关系仍成立.对于柯西问题,在特征锥(R为大于零的常数)中考虑齐次波动方程的解u,记特征锥与t=t0的截面为,关于能量积分成立下面的能量不等式式中πt是t=常数的超平面与以为上底所作的柱体(母线平行于Ot轴)的交截面.*是的简写,下同.三、三种典型方程1. 波动方程研究下面形式的波动方程式中f(x,y,z,t)为已知函数.许多物体的运动规律可用波动方程来描述.如弦振动可用一维波动方程描述;膜的振动可用二维波动方程描述;声波和电磁波的振荡可用三维波动方程描述.[齐次方程柯西问题的解]设齐次波动方程的柯西问题满足下面初始条件:并设三次连续可微,二次连续可微,那末解u的表达式分别为1︒三维(克希霍夫公式)式中S at表示球面:,d S表示球面的面积元素.2︒二维(泊松公式)式中K at表示圆:.3︒一维(达兰贝尔公式)利用降维法可从高维的解推得低维的解.[非齐次方程柯西问题的解]非齐次波动方程柯西问题的解等于上面齐次方程柯西问题的解添加一项所谓推迟势.1︒三维式中积分区域是以(x,y,z)为中心,at为半径的球体,2︒二维式中.一维[解的物理意义]波动方程解的表达式具有明确的物理意义.1︒波的传播以弦振动为例,在达兰贝尔公式中,形如(x-at)的解描写了弦振动以常速度a向右传播,称(x-at)为右传播波,(x+at)为左传播波,a为波速.2︒依赖区间过点P(x,t)作两条特征线x=c1,x+at=c2交x轴于x1,x2,则区间[x1,x2]称为点P的依赖区间,由达兰贝尔公式可见解在P点的值只与[x1,x2]上初始条件有关,而与区间外(x),(x)的值无关.3︒决定区域过x轴上两点x1,x2(x1<x2)分别作特征线x=x1+at,x=x2则三角形区域x1+at≤x≤x2(t>0)称为[x1,x2]的决定区域(图14.4(a)),在区域中解的数值由[x1,x2]上的初始条件完全决定.任意改变初始条件在[x1,x2]外的数值,解在此区域中不会发生任何变化.图14.44︒影响区域过x轴上两点分别作特征线x=x1,x=x2+at称区域x1-at≤x≤x2(t>0)为[x1,x2]的影响区域(图14.4(b)).在此区域中,解的数值受到[x1,x2]上初始条件的影响,而在此区域外,解的值不受[x1,x2]上的初始条件影响,当区域[x1,x2]缩为一点x0时,点x0的影响区域为x轴上区间(图14.4(c))x0≤x≤x0+at (t>0)对二维波动方程,点(x0,y0,t0)的依赖区域为t=0上的圆.(x-x0)2+(y-y0)2≤a2t02在t=0上圆(x-x0)2+(y-y0)2≤a2t02的决定区域是以(x0,y0,t0)为顶点的圆锥体区域(图14.5(a)).(x-x0)2+(y-y0)2≤a2(t-t0)2 (t≤t0)初始平面t=0上一点(x0,y0,0)的影响区域为圆锥体(图14.5(b)).(x-x0)2+(y-y0)2≤a2t2 (t>0) (1) 初始平面t=0上某一区域的影响区域,就是由此区域上每一点所作的圆锥体(1)的包络面所围成的区域.图14.5对三维波动方程,点(x0,y0,z0,t0)的依赖区域为t=0上的球面(x-x0)2+(y-y0)2+(z-z0)2=a2t02初始平面t=0上的球体(x-x0)2+(y-y0)2+(z-z0)2≤a2t02的决定区域是以它为底,以(x0,y0,z0,t0)为顶点的圆锥体区域(x-x0)2+(y-y0)2+(z-z0)2≤a2(t-t0)2 (t≤t0)在初始平面t=0上点(x0,y0,z0,0)的影响区域为锥面(x-x0)2+(y-y0)2+(z-z0)2=a2t2 (t>0) (2) 初始平面上某一区域的影响区域就是它上面的每一点所作的锥面(2)的包络面围成的区域.二维与三维波的传播存在着下述本质区别.5︒惠更斯原理对三维波动方程,点(x0,y0,z0,0)的影响区域为(x-x0)2+(y-y0)2+(z-z0)2≤a2t2 (t>0)若在某一有界区域Ω有一个初始扰动,在时刻t受到此初始扰动的影响区域就是所有以点为中心,以at为半径的球面全体,当t足够大时,这种球面族有内外包络面,称外包络面为传播波的前阵面,内包络面为后阵面.前阵面以外的部分表示扰动尚未传到的区域,后阵面以内的部分是波已传过并恢复了原来状态的区域,前后阵面之间的区域就是受到扰动影响的部分,在三维,波的传播有清晰的前阵面与后阵面,称为惠更斯原理或称无后效现象.6︒波的弥散对二维波动方程,点(x0,y0)的影响区域为(x-x0)2+(y-y0)2≤a2t2若在有界区域Ω内有一个初始扰动,则波的传播只有前阵面而无后阵面,所以当Ω的初始扰动传到某点后,扰动对此点的影响不会消失,不过随时间的增加而逐渐减弱.这种现象称为波的弥散,或说波具有后效现象.2. 热传导方程热传导方程的一般形式为式中f(x,t)为连续有界函数.热传导方程是描述热的传导过程,分子的扩散过程等物理规律的.对于n维热传导方程的柯西问题的初值条件为式中为连续有界函数,方程的解的表达式为3. 拉普拉斯方程研究重力场、静力场、磁场以及一些物理现象(如振动、热传导、扩散)的平衡或稳定过程,通常得到椭圆型方程,最典型的方程为拉普拉斯方程Δu=0及泊松方程Δu=ρ式中ρ为已知函数,Δ为拉普拉斯算子,[圆或球的狄利克莱问题解的泊松积分] 当区域为圆或球时,分别采用极坐标(r,)或球坐标(r,θ,)较为方便.Δu=0的极坐标形式为Δu=0的球坐标形式为狄利克莱问题解的泊松积分为1︒区域是圆时,Δu=0, u|r=a=,解为泊松积分式中为已知连续函数,.2︒区域是球时,Δu=0, u|r=a=,解为泊松积分式中为已知连续函数,[调和函数的性质] 二维拉普拉斯方程的连续解称为调和函数,它具有以下重要性质:1︒设函数u(x,y)在以S为边界的有界区域D内调和,在上有连续一阶偏导数,则式中为外法向导数.2︒算术平均值定理设函数u(x,y)在圆的内部调和,在闭圆上连续,则u(x,y)在圆心的值等于它在圆周上的值的算术平均值.3︒每一个调和函数u(x,y)对x,y无穷次可微.4︒哈拉克第一定理(一致收敛定理)设{u k(x,y)}, (k=1,2)在有界区域D内调和,在上连续,如果u k(x,y)在D的边界上一致收敛,则在D内也一致收敛,并且极限函数在D内调和.5︒哈拉克第二定理(单调性定理)设调和函数列{u k(x,y)}, (k=1,2,…)在D的某一内点收敛,且对于任意k,u k+1(x,y)≥u k(x,y)则u k(x,y)在D内处处收敛于某调和函数,同时在D的每一有界闭子区域上一致收敛.6︒刘维尔定理如函数u(x,y)在全平面上调和且不是常数,则它不可能有上界和下界.7︒可去奇点定理设u(x,y)在A点的一个邻域(除A点外)调和且有界,但在A点没有定义,则可定义函数u(x,y)在A点的值,使u在整个A点的邻域(包括A点)内是调和函数.[李雅普诺夫闭曲面与内、外边值问题] 设S为E n的有限闭曲面,如果满足下列条件,那末S称为李雅普诺夫闭曲面:(i) 曲面到处有切面.(ii) 存在常数d>0,对曲面上每一点P,可作一个以P为中心、d为半径的球,使曲面在此球内的部分和任意一条与P点法线平行的直线相交不多于一点(iii) 曲面上任意二点P1及P2的法线的夹角γ(P1,P2)满足式中A,δ为正常数,0<δ≤1,是点P1与P2之间的距离.(iv) 从空间任意一点P0看曲面的任一部分σ的立体角有界,即||≤k (k为常数)(从点P0看曲面S的立体角为式中表示矢量,N P表示S在点P的外法线矢量,d S P表示点P的面积元素.)设D为E n的有界区域,其边界S为李雅普诺夫闭曲面.求在D内满足Δu=0而在S上满足给定边界条件的解称为内边值问题;求在D外满足Δu=0而在S上满足给定边界条件的解称为外边值问题.[狄利克莱问题与诺伊曼问题的解]狄利克莱问题Δu=0,诺伊曼问题Δu=0,式中M S∈S,为S上的已知连续函数,为外法向导数.1︒狄利克莱问题的解可表示为面积分.式中v(P)称为面密度,面积分u(M)称为双层位势,r PM为点M与变点P之间的距离,r PM为矢量,N P为S在点P的外法线矢量,v(M)满足第二类弗雷德霍姆积分方程(第十五章§1):(i) 内边值问题(ii) 外边值问题2︒诺伊曼问题的解可表示为面积分式中(P)称为面密度,面积分u(M)称为单层位势,(P)满足第二类弗雷德霍姆积分方程:(i) 内边值问题(ii) 外边值问题定理:狄利克莱的内外边值问题及诺伊曼的外边值问题有惟一解,而诺伊曼的内边值问题解存在的充分必要条件是:[泊松方程] 在区域D内,泊松方程Δu=ρ(ρ为已知连续函数)有特解:三维:体势位二维:对数势位式中r PM为点M与变点P之间的距离.如果已知泊松方程的一个特解U(M),则=u-U满足Δ=0,从而泊松方程的边值问题可化为拉普拉斯方程相应的边值问题.四、基本解与广义解[共轭微分算子与自共轭微分算子]算子称为二阶线性微分算子,式中a ij,b i,c为x1,x2,…,x n的二次连续可微函数.由公式决定的算子L*称为L的共轭微分算子.如果L=L*,则称L为自共轭微分算子.[格林公式]1︒算子L的格林公式是式中S为区域D的边界,N为S的外法线矢量,e i为x i的轴的矢量(0,…,0,,0,…,0),cos(N,e i)表示矢量N与e i的夹角的余弦,2︒三维拉普拉斯算子的格林公式其中是外法向导数.3︒算子的格林公式式中L*为L的共轭微分算子,N为外法线矢量,i,j分别为x轴,y轴上的单位矢量.[基本解]1︒方程Lu=f的基本解:设M,M0为E n中的点,满足方程的解U(M,M0)称为方程Lu=f的基本解,有时也称为方程Lu=0的基本解,式中(M-M0)称为n维狄拉克函数(-函数).基本解U(M,M0)满足(i) LU(M,M0)=0,当M≠M0,(ii) 对任意充分光滑的函数f(M),于是U(M,M0)满足Lu=f(M) .所以有时也就把满足条件(i)、(ii)的函数U(M,M0)定义为方程Lu=f(M)的基本解.(a) Δu=0的基本解二维:三维:n维:式中表示点M与M0之间的距离.(b) n维空间的多重调和方程m u=0的基本解(c) 热传导方程的基本解(d) 波动方程的基本解一维:二维:三维:2︒柯西问题的基本解(i) 称满足的解为波动方程柯西问题的基本解,它的形式为一维:二维:三维:(ii) 称满足的解为热传导方程柯西问题的基本解,它的形式是同样方法可以定义其他定解问题的基本解.由定义可见,基本解表示由集中量(如点热源,点电荷等)所产生的解,下段介绍的格林函数,黎曼函数也具有这种特点,统称它们为点源函数,或影响函数.[广义解]在区域D中给定二阶线性方程式中f在D上连续.1︒设u n(x)为D上充分光滑(如二阶连续可微)的函数序列,当n→∞时,u n(x)一致(或在适当意义下)收敛于函数u(x),同时Lu n也一致(或在适当意义下)收敛于f(x),则称u(x)为Lu=f的广义解.2︒设函数u(x)在区域D内连续,如果对于任意二次连续可微且在与D的边界距离小于某一正数的点上恒等于零的函数(与无关,称为D的试验函数)有那末称u(x)为方程Lu=f的广义解.有时为了区别广义解,称以前定义的解为古典解,古典解一定是广义解.但因广义解不一定光滑,甚至不可微,所以不一定是古典解.例如,当(x),(x)只是x的连续函数时,函数u(x,t)=(x+t)-(x-t)为波动方程的广义解,但不是古典解.五、二阶偏微分方程的常用解法1.分离变量法它是解线性微分方程常用的一种方法,特别当区域是矩形、柱体、球体时使用更为普遍.这种方法是先求满足边界条件的特解,利用迭加原理,作这些特解的线性组合,得到定解问题的解.求特解时常归结为求某些常微分方程边值问题的特征值和特征函数.以下对不同类型方程说明分离变量法的具体解法.[弦振动方程]1︒两端固定的弦振动齐次方程混合问题设u(x,t)=X(x)T(t),具体解法如下:(1) X(x),T(t)满足的常微分方程:(2) 用此二常微分方程的解的乘积表示弦振动方程的特解u n(x,t).解边值问题当时,有非零解称λn为边值问题的特征值,X n(x)为特征函数.把λn代入T(t)的方程,得式中A n,B n为任意常数,这样就得到弦振动方程的特解:(3) 把u n(x,t)迭加,形式上作级数(4) 利用特征函数的正交性,确定系数A n,B n.把(x)及(x)展开成傅立叶级数式中利用初始条件可得于是混合问题的形式解为若(i) (x)具有一阶和二阶连续导数,三阶导数逐段连续,且(0)=(l),"(0)="(l)=0;(ii)(x)连续可微,二阶导数逐段连续,(0)=(l)=0,那末形式解右端的级数一致收敛,形式解就是混合问题的正规解.2︒解的物理意义弦的这种形式的振动称为驻波,点(m=0,1n) 为不动的点,称为节点;点(m=0,1,2n-1)处振幅最大,称为腹点;称为弦振动的固有频率;弦线发出的最低音的频率为(τ为张力,ρ为弦的线密度)称为该弦的基音,其他频率都是它的整数倍,称为泛音.3︒非齐次方程的混合问题将u(x,t)和f(x,t)展开成傅立叶级数:那末根据定解条件再利用1︒中(x)与(x)的傅立叶展开式,有所以形式解为若(x)具有一、二阶连续导数,三阶导数逐段连续,(x)和f(x,t)连续可微,二阶导数逐段连续,同时(0)=(l)="(0)="(l)=0(0)=(l)=f(0,t)=f(l,t)=0则级数一致收敛,形式解就是非齐次方程混合问题的正规解.4 遇到非齐次边界条件作变换可化为关于v(x,t)的齐次边界条件求解.[热传导方程]热传导方程的第一边值问题设u(x,t)=X(x)T(t),得X"(x)+2X(x)=0T'(t)+a22T(t)=0特征值,对应的特征函数为,而作形式解式中c n等于(x)的傅立叶系数即.当(x)具有一、二阶连续导数,三阶导数逐段连续,(0)=(l)=0,则上述级数一致收敛,形式解就是正规解了.[拉普拉斯方程]球内定常温度分布的狄利克莱问题—拉普拉斯方程的狄利克莱问题.选用球坐标令u(r,,)=v(r,)().代入方程,分离变量得"()+k2()=0 (1)(2) 利用对于变量的周期性,u(r, ,)=u(r, ,+2),可知方程(1)中的k只能取m(m=0,1),那末()取{cos m,sin m}.再将方程(2)分离变量,令v=R(r)H(),得(3)(4) 方程(4)的解可用勒让德多项式表示,为了使解有界,λ只能取λn2=n(n+1) (n=0,1,2,…)对应的解H()=P n(m)(cos),,P n(x)为勒让德多项式方程(3)可写成这是欧拉方程,其有界解为R(r)=c1r n.最后将u的特解迭加,利用边界条件和球函数的正交性得式中P n(m)(cos)为一般勒让德函数.如果二次连续可微,则表示的级数一致收敛,它就是狄利克莱问题的解.[高阶方程]梁的横向振动方程为(a为常数) (1) 定解条件为设y (x,t )=X (x )T (t ),那末方程(2)满足X"(0)=X"(l )=0的特征值,特征函数(n =1,2),方程(3)的解为所以方程(1)的形式解为由y (x,0)=x (l -x )得最后得到方程(1)的解.2. 双曲型方程的黎曼方法 考虑拉普拉斯双曲型方程[古沙问题的特征线法] 古沙问题是设a (x,y ),b (x,y ),c (x,y ),f (x,y )为连续函数;连续可微且,令则古沙问题化为下面积分方程组的求解问题它可用逐次逼近法求解,显然x=x 0,y=y 0为拉普拉斯双曲型方程的特征线,所以此法也称为特征线法. [广义柯西问题的黎曼方法] 广义柯西问题是设a (x,y ),b (x,y ),c (x,y ), 1(x )及(x )为连续可微函数,且'(x )≠0,而f (x,y )及2(x )为连续函数.设M (x 0,y 0)不是y=(x )上的点,过点M 作特征线x=x 0,y=y 0交y=(x )于P 及Q ,记曲边三角形PMQ 为D (图14.6),在D 上用格林公式(本节,四)得设v (x,y ;x 0,y 0)为下面古沙问题的解:那末广义柯西问题解的黎曼公式为式中v (x,y ;x 0,y 0)称为黎曼函数,这个方法称为黎曼方法.一般可用特征线法求黎曼函数.但对常系数偏微分方程(c 为常数)也可用下法求黎曼函数.设v=v (z ),,则方程化为贝塞耳方程图14.6黎曼函数就是满足此贝塞耳方程及条件v(0)=1的零阶贝塞耳函数,对常系数的拉普拉斯双曲型方程通过变换可化为的形式,它的黎曼函数就是上式.3.椭圆型方程的格林方法在区域D考虑椭圆型方程式中a ij,b i,c,f为x1,…,x n的连续可微函数,a ij=a ji,二次型是正定的.[格林函数及其性质] 若Lu=0的共轭方程L*u=0的基本解G(x,)在D的边界S上满足G(x,)=0, x∈S则称G(x,)为方程Lu=0的格林函数,式中x=(x1,…,x n),ξ为参变点,=(1,…,n),即G(x,)=G(x1,…,x n;1,…,n).格林函数具有对称性质:设G(x,),V(x,)分别为方程Lu=0及其共轭方程的格林函数,则成立对称关系G(x,)=V(x,)特别如果Lu为自共轭微分算子,则有G(x,)=G(,x)[利用格林函数解边值问题]1︒一般公式在区域D上应用格林公式(本节,四),并取v=G(x,),则方程Lu=f的狄利克莱问题u|s=的解为式中(N是S的外法线方向)2︒对于球体(球心为O,半径为a),u=0的基本解为,r为P(x,y,z)与参变点的距离,作M关于球面的反演点M1,记r1为M1与P的距离,则格林函数为.狄利克莱问题u|s=的解为式中S为球面.引用球坐标时,解为泊松积分(本节,三,3).3︒在圆上(半径为a),u=0的格林函数为式中r为P(x,y)与参变点的距离,r1为P与M点关于圆的反演点M1的距离,圆上狄利克莱问题的解为泊松积分.4.积分变换法积分变换法是解线性微分方程,特别是常系数方程的一种有效方法,它是把方程的某一独立变量看成参变量,作未知函数的积分变换,这样可减少原方程独立变量的个数而将方程化为简单形式(最简单的情况是常微分方程,甚至是代数方程).解此简化方程的对应定解问题并通过逆积分变换就得到原定解问题的解.下面举例说明傅立叶变换和拉普拉斯变换方法.例1 用傅立叶变换法解弦振动方程的柯西问题解把t作为参变量,作u(x,t)关于x的傅立叶变换F原来的柯西问题化为下面的定解问题把p看作参数,其解为由傅立叶变换的反演公式得到原问题的解例2 用拉普拉斯变换法解热传导方程的定解问题解 把x 当作参变量,作u (x,t )关于t 的拉普拉斯变换L原问题化为通解为要求解有界.c 2必须为零,所以,查拉普拉斯变换表(第十一章)得式中erfc(y )为余误差函数.§4 偏微分方程的数值解法一、 一、 差分法差分法是常用的一种数值解法.它是在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值. 1. 网格与差商在平面 (x , y )上的一以S 为边界的有界区域D 上考虑定解问题.为了用差分法求解,分别作平行于x 轴和y 轴的直线族.(i , j =0,1,2,…,n )作成一个正方形网格,这里h 为事先指定的正数,称为步长;网格的交点称为节点,简记为(i , j ).取一些与边界S 接近的网格节点,用它们连成折线,所围成的区域记作.称内的节点为内节点,位于上的节点称为边界节点(图14.7).下面都在网格上考虑问题:寻求各个节点上解的近似值.在边界节点上取与它最接近的边界点上的边值作为解的近似值,而在内节点上,用以下的差商代替偏导数:注意, 1︒ 式中的差商称为向后差商,而称为向前差商,称为中心差商.也可用向前差商或中心差商代替一阶偏导数.2︒ x 轴与y 轴也可分别采用不同的步长h , l ,即用直线族(i ,j =0, ±1, ±2)作一个矩形网格.2. 椭圆型方程的差分方法[五点格式] 考虑拉普拉斯方程的第一边值问题式中为定义在D 的边界S 上的已知函数.采用正方形网格,记,在节点(i , j )上分别用差商代替,对应的差分方程为(1)或即任一节点(i , j )上的值等于周围相邻节点上解的值的算术平均,这种形式的差分方程称为五点格式,在边界节点上取(2)图14.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.§3 二阶偏微分方程一、一、二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程(1) 式中a ij(x)=a ij(x1,x2,…,x n)为x1,x2,…,x n的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程称为二阶方程(1)的特征方程;这里a1,a2,…,a n是某些参数,且有.如果点x︒=(x1︒,x2︒,…,x n︒)满足特征方程,即则过x︒的平面的法线方向l:(a1,a2,…,a n)称为二阶方程的特征方向;如果一个(n)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n个自变量方程的分类与标准形式] 在点P(x1︒,x2︒,…,x n︒),根据二次型(a i为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P为椭圆型.(ii) 特征根都不为零,有n个具有同一种符号,余下一个符号相反,称方程在点P为双曲型.(iii) 特征根都不为零,有个具有同一种符号(n>m>1),其余m个具有另一种符号,称方程在点P为超双曲型.(iv) 特征根至少有一个是零,称方程在点P为抛物型.若在区域D内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D内是椭圆型、双曲型或抛物型.在点P作自变量的线性变换可将方程化为标准形式:椭圆型:双曲型:超双曲型:抛物型:式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为(2) a11,a12,a22为x,y的二次连续可微函数,不同时为零.方程a11d y2a12d x d y+a22d x2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线.在某点P(x0,y0)的邻域D内,根据Δ=a122-a11a12的符号将方程分类:当Δ>0时,方程为双曲型;当Δ=0时,方程为抛物型;当Δ<0时,方程为椭圆型.在点P的邻域D内作变量替换,可将方程化为标准形式:(i)(i)双曲型:因Δ>0,存在两族实特征曲线,,作变换,和方程化为标准形式或(ii)(ii)抛物型:因Δ=0,只存在一族实的特征曲线,取二次连续可微函数,使,作变换,,方程化为标准形式(iii)(iii)椭圆型:因Δ<0,不存在实特征曲线,设为的积分,不同时为零,作变量替换,,方程化为标准形式二、极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用.[椭圆型方程的极值原理与解的惟一性定理]1︒极值原理设D为n维欧氏空间E n的有界区域,S是D的边界,在D内考虑椭圆型方程式中a ij(x),b i(x),c(x),f(x)在上连续,c(x)≤0且二次型正定,即存在常数μ>0,对任意和任意的a i有定理1设u(x)为D内椭圆型方程的解,它在D内二次连续可微,在上连续,且不是常数,如f(x)≤0(或f(x)≥0),则u(x)不能在D的内点取非正最小值(或非负最大值).如果过边界S上的任一点P都可作一球,使它在P点与S相切且完全包含在区域D内,则有定理2设u(x)为椭圆型方程在D内二次连续可微,在上连续可微的解,且不是常数,并设f(x)≤0(或f(x)≥0).若u(x)在边界S上某点M处取非正最小值(或非负最大值),只要外法向导数在点M存在,则(或)2︒定解问题(i) 第一边值问题(狄利克莱问题)(S)(ii) 第二边值问题(诺伊曼问题)(S)其中N为S的外法线方向.(iii) 第三边值问题(混合问题)(S)a(),b(),()在S上连续,N是S的外法线方向,a()≥0,b()≤0,且a2()+b2()≠0.3︒解的惟一性问题设c(x)及b()不同时恒等于零,如果定解问题Lu=f,lu=的解存在,则是惟一的,设c(x)及b()都恒等于零,如果定解问题Lu=f,lu=的解存在,则除相差一个常数外,解是惟一的.[抛物型方程的极值原理与解的惟一性定理]设为柱体,在柱体内部考虑抛物型方程式中a ij(x,t),b i(x,t),c(x,t),f(x,t)在上连续,且正定.1︒强极值原理设u(x,t)为抛物型方程Lu=f(x,t)在D×(0,T)内连续可微在上连续的解.并设f(x)=0,若u(x,t)在D×(0,T]的某点(x0,t0)取非负的最大值,即则对任意满足下列条件的点P(x,t),都有u(x,t)=m:点P(x,t)满足t<t0,且可用完全在D×(0,T] 内的连续曲线x=x(t)与点(x0,t0)相连.如在的侧边界Γ:S×[0,T]上(S是D的边界)任一点P都可作一球,使它在P点与Γ相切且完全在D×(0,T)内,则有定理设u(x,t)在上连续,在D×(0,T]内满足抛物型方程Lu=f,且不是常数,设f≤0,若u(x,t)在Γ上某点M处取非正最小值,只要外法向导数在点M存在,则2︒柯西问题与混合问题柯西问题的初值条件是混合问题按下列的定解条件分别称为(i) 第一边值问题:,;(ii) 线性边值问题:,,其中N为Γ的外法线方向为已知函数,a≥0,b≤0,a2+b2≠03︒解的惟一性定理如果抛物型方程Lu=f的混合问题的解存在,那末它是惟一的.如果柯西问题存在有界的解,那末在有界函数类中,解是惟一的.[波动方程的能量积分与解的惟一性定理]1︒波动方程的柯西问题与混合问题设波动方程为柯西问题的初值条件是如果在有界区域Q:D×(0,T]中考虑波动方程,记的侧边界为Γ,则混合问题的定解条件是(i) (i) 第一边值问题(ii) (ii) 第二边值问题(iii) (iii) 第三边值问题式中N为Γ的外法线方向,φ(x),ψ(x)为D上的已知函数,为定义在Γ上的已知函数,.2︒解的惟一性定理波动方程的混合问题与柯西问题的解如果存在必定惟一.惟一性定理可用下面能量积分证明.3︒能量积分积分*称为波动方程的能量积分.满足齐次波动方程及u|Γ=0(或)的函数u(x,t)成立:能量守恒原理E(t)=E(0).能量不等式式中满足齐次波动方程及的函数,在上面能量不等式E(t)中增加一项,上面关系仍成立.对于柯西问题,在特征锥(R为大于零的常数)中考虑齐次波动方程的解u,记特征锥与t=t0的截面为,关于能量积分成立下面的能量不等式式中πt是t=常数的超平面与以为上底所作的柱体(母线平行于Ot轴)的交截面.*是的简写,下同.三、三种典型方程1. 波动方程研究下面形式的波动方程式中f(x,y,z,t)为已知函数.许多物体的运动规律可用波动方程来描述.如弦振动可用一维波动方程描述;膜的振动可用二维波动方程描述;声波和电磁波的振荡可用三维波动方程描述.[齐次方程柯西问题的解]设齐次波动方程的柯西问题满足下面初始条件:并设三次连续可微,二次连续可微,那末解u的表达式分别为1︒三维(克希霍夫公式)式中S at表示球面:,d S表示球面的面积元素.2︒二维(泊松公式)式中K at表示圆:.3︒一维(达兰贝尔公式)利用降维法可从高维的解推得低维的解.[非齐次方程柯西问题的解]非齐次波动方程柯西问题的解等于上面齐次方程柯西问题的解添加一项所谓推迟势.1︒三维式中积分区域是以(x,y,z)为中心,at为半径的球体,2︒二维式中.一维[解的物理意义]波动方程解的表达式具有明确的物理意义.1︒波的传播以弦振动为例,在达兰贝尔公式中,形如(x-at)的解描写了弦振动以常速度a向右传播,称(x-at)为右传播波,(x+at)为左传播波,a为波速.2︒依赖区间过点P(x,t)作两条特征线x=c1,x+at=c2交x轴于x1,x2,则区间[x1,x2]称为点P的依赖区间,由达兰贝尔公式可见解在P点的值只与[x1,x2]上初始条件有关,而与区间外(x),(x)的值无关.3︒决定区域过x轴上两点x1,x2(x1<x2)分别作特征线x=x1+at,x=x2则三角形区域x1+at≤x≤x2(t>0)称为[x1,x2]的决定区域(图14.4(a)),在区域中解的数值由[x1,x2]上的初始条件完全决定.任意改变初始条件在[x1,x2]外的数值,解在此区域中不会发生任何变化.图14.44︒影响区域过x轴上两点分别作特征线x=x1,x=x2+at称区域x1-at≤x≤x2(t>0)为[x1,x2]的影响区域(图14.4(b)).在此区域中,解的数值受到[x1,x2]上初始条件的影响,而在此区域外,解的值不受[x1,x2]上的初始条件影响,当区域[x1,x2]缩为一点x0时,点x0的影响区域为x轴上区间(图14.4(c))x0≤x≤x0+at (t>0)对二维波动方程,点(x0,y0,t0)的依赖区域为t=0上的圆.(x-x0)2+(y-y0)2≤a2t02在t=0上圆(x-x0)2+(y-y0)2≤a2t02的决定区域是以(x0,y0,t0)为顶点的圆锥体区域(图14.5(a)).(x-x0)2+(y-y0)2≤a2(t-t0)2 (t≤t0)初始平面t=0上一点(x0,y0,0)的影响区域为圆锥体(图14.5(b)).(x-x0)2+(y-y0)2≤a2t2 (t>0) (1) 初始平面t=0上某一区域的影响区域,就是由此区域上每一点所作的圆锥体(1)的包络面所围成的区域.图14.5对三维波动方程,点(x0,y0,z0,t0)的依赖区域为t=0上的球面(x-x0)2+(y-y0)2+(z-z0)2=a2t02初始平面t=0上的球体(x-x0)2+(y-y0)2+(z-z0)2≤a2t02的决定区域是以它为底,以(x0,y0,z0,t0)为顶点的圆锥体区域(x-x0)2+(y-y0)2+(z-z0)2≤a2(t-t0)2 (t≤t0)在初始平面t=0上点(x0,y0,z0,0)的影响区域为锥面(x-x0)2+(y-y0)2+(z-z0)2=a2t2 (t>0) (2) 初始平面上某一区域的影响区域就是它上面的每一点所作的锥面(2)的包络面围成的区域.二维与三维波的传播存在着下述本质区别.5︒惠更斯原理对三维波动方程,点(x0,y0,z0,0)的影响区域为(x-x0)2+(y-y0)2+(z-z0)2≤a2t2 (t>0)若在某一有界区域Ω有一个初始扰动,在时刻t受到此初始扰动的影响区域就是所有以点为中心,以at为半径的球面全体,当t足够大时,这种球面族有内外包络面,称外包络面为传播波的前阵面,内包络面为后阵面.前阵面以外的部分表示扰动尚未传到的区域,后阵面以内的部分是波已传过并恢复了原来状态的区域,前后阵面之间的区域就是受到扰动影响的部分,在三维,波的传播有清晰的前阵面与后阵面,称为惠更斯原理或称无后效现象.6︒波的弥散对二维波动方程,点(x0,y0)的影响区域为(x-x0)2+(y-y0)2≤a2t2若在有界区域Ω内有一个初始扰动,则波的传播只有前阵面而无后阵面,所以当Ω的初始扰动传到某点后,扰动对此点的影响不会消失,不过随时间的增加而逐渐减弱.这种现象称为波的弥散,或说波具有后效现象.2. 热传导方程热传导方程的一般形式为式中f(x,t)为连续有界函数.热传导方程是描述热的传导过程,分子的扩散过程等物理规律的.对于n维热传导方程的柯西问题的初值条件为式中为连续有界函数,方程的解的表达式为3. 拉普拉斯方程研究重力场、静力场、磁场以及一些物理现象(如振动、热传导、扩散)的平衡或稳定过程,通常得到椭圆型方程,最典型的方程为拉普拉斯方程Δu=0及泊松方程Δu=ρ式中ρ为已知函数,Δ为拉普拉斯算子,[圆或球的狄利克莱问题解的泊松积分] 当区域为圆或球时,分别采用极坐标(r,)或球坐标(r,θ,)较为方便.Δu=0的极坐标形式为Δu=0的球坐标形式为狄利克莱问题解的泊松积分为1︒区域是圆时,Δu=0, u|r=a=,解为泊松积分式中为已知连续函数,.2︒区域是球时,Δu=0, u|r=a=,解为泊松积分式中为已知连续函数,[调和函数的性质] 二维拉普拉斯方程的连续解称为调和函数,它具有以下重要性质:1︒设函数u(x,y)在以S为边界的有界区域D内调和,在上有连续一阶偏导数,则式中为外法向导数.2︒算术平均值定理设函数u(x,y)在圆的内部调和,在闭圆上连续,则u(x,y)在圆心的值等于它在圆周上的值的算术平均值.3︒每一个调和函数u(x,y)对x,y无穷次可微.4︒哈拉克第一定理(一致收敛定理)设{u k(x,y)}, (k=1,2)在有界区域D内调和,在上连续,如果u k(x,y)在D的边界上一致收敛,则在D内也一致收敛,并且极限函数在D内调和.5︒哈拉克第二定理(单调性定理)设调和函数列{u k(x,y)}, (k=1,2,…)在D的某一内点收敛,且对于任意k,u k+1(x,y)≥u k(x,y)则u k(x,y)在D内处处收敛于某调和函数,同时在D的每一有界闭子区域上一致收敛.6︒刘维尔定理如函数u(x,y)在全平面上调和且不是常数,则它不可能有上界和下界.7︒可去奇点定理设u(x,y)在A点的一个邻域(除A点外)调和且有界,但在A点没有定义,则可定义函数u(x,y)在A点的值,使u在整个A点的邻域(包括A点)内是调和函数.[李雅普诺夫闭曲面与内、外边值问题] 设S为E n的有限闭曲面,如果满足下列条件,那末S称为李雅普诺夫闭曲面:(i) 曲面到处有切面.(ii) 存在常数d>0,对曲面上每一点P,可作一个以P为中心、d为半径的球,使曲面在此球内的部分和任意一条与P点法线平行的直线相交不多于一点(iii) 曲面上任意二点P1及P2的法线的夹角γ(P1,P2)满足式中A,δ为正常数,0<δ≤1,是点P1与P2之间的距离.(iv) 从空间任意一点P0看曲面的任一部分σ的立体角有界,即||≤k (k为常数)(从点P0看曲面S的立体角为式中表示矢量,N P表示S在点P的外法线矢量,d S P表示点P的面积元素.)设D为E n的有界区域,其边界S为李雅普诺夫闭曲面.求在D内满足Δu=0而在S上满足给定边界条件的解称为内边值问题;求在D外满足Δu=0而在S上满足给定边界条件的解称为外边值问题.[狄利克莱问题与诺伊曼问题的解]狄利克莱问题Δu=0,诺伊曼问题Δu=0,式中M S∈S,为S上的已知连续函数,为外法向导数.1︒狄利克莱问题的解可表示为面积分.式中v(P)称为面密度,面积分u(M)称为双层位势,r PM为点M与变点P之间的距离,r PM为矢量,N P为S在点P的外法线矢量,v(M)满足第二类弗雷德霍姆积分方程(第十五章§1):(i) 内边值问题(ii) 外边值问题2︒诺伊曼问题的解可表示为面积分式中(P)称为面密度,面积分u(M)称为单层位势,(P)满足第二类弗雷德霍姆积分方程:(i) 内边值问题(ii) 外边值问题定理:狄利克莱的内外边值问题及诺伊曼的外边值问题有惟一解,而诺伊曼的内边值问题解存在的充分必要条件是:[泊松方程] 在区域D内,泊松方程Δu=ρ(ρ为已知连续函数)有特解:三维:体势位二维:对数势位式中r PM为点M与变点P之间的距离.如果已知泊松方程的一个特解U(M),则=u-U满足Δ=0,从而泊松方程的边值问题可化为拉普拉斯方程相应的边值问题.四、基本解与广义解[共轭微分算子与自共轭微分算子]算子称为二阶线性微分算子,式中a ij,b i,c为x1,x2,…,x n的二次连续可微函数.由公式决定的算子L*称为L的共轭微分算子.如果L=L*,则称L为自共轭微分算子.[格林公式]1︒算子L的格林公式是式中S为区域D的边界,N为S的外法线矢量,e i为x i的轴的矢量(0,…,0,,0,…,0),cos(N,e i)表示矢量N与e i的夹角的余弦,2︒三维拉普拉斯算子的格林公式其中是外法向导数.3︒算子的格林公式式中L*为L的共轭微分算子,N为外法线矢量,i,j分别为x轴,y轴上的单位矢量.[基本解]1︒方程Lu=f的基本解:设M,M0为E n中的点,满足方程的解U(M,M0)称为方程Lu=f的基本解,有时也称为方程Lu=0的基本解,式中(M-M0)称为n维狄拉克函数(-函数).基本解U(M,M0)满足(i) LU(M,M0)=0,当M≠M0,(ii) 对任意充分光滑的函数f(M),于是U(M,M0)满足Lu=f(M) .所以有时也就把满足条件(i)、(ii)的函数U(M,M0)定义为方程Lu=f(M)的基本解.(a) Δu=0的基本解二维:三维:n维:式中表示点M与M0之间的距离.(b) n维空间的多重调和方程m u=0的基本解(c) 热传导方程的基本解(d) 波动方程的基本解一维:二维:三维:2︒柯西问题的基本解(i) 称满足的解为波动方程柯西问题的基本解,它的形式为一维:二维:三维:(ii) 称满足的解为热传导方程柯西问题的基本解,它的形式是同样方法可以定义其他定解问题的基本解.由定义可见,基本解表示由集中量(如点热源,点电荷等)所产生的解,下段介绍的格林函数,黎曼函数也具有这种特点,统称它们为点源函数,或影响函数.[广义解]在区域D中给定二阶线性方程式中f在D上连续.1︒设u n(x)为D上充分光滑(如二阶连续可微)的函数序列,当n→∞时,u n(x)一致(或在适当意义下)收敛于函数u(x),同时Lu n也一致(或在适当意义下)收敛于f(x),则称u(x)为Lu=f的广义解.2︒设函数u(x)在区域D内连续,如果对于任意二次连续可微且在与D的边界距离小于某一正数的点上恒等于零的函数(与无关,称为D的试验函数)有那末称u(x)为方程Lu=f的广义解.有时为了区别广义解,称以前定义的解为古典解,古典解一定是广义解.但因广义解不一定光滑,甚至不可微,所以不一定是古典解.例如,当(x),(x)只是x的连续函数时,函数u(x,t)=(x+t)-(x-t)为波动方程的广义解,但不是古典解.五、二阶偏微分方程的常用解法1.分离变量法它是解线性微分方程常用的一种方法,特别当区域是矩形、柱体、球体时使用更为普遍.这种方法是先求满足边界条件的特解,利用迭加原理,作这些特解的线性组合,得到定解问题的解.求特解时常归结为求某些常微分方程边值问题的特征值和特征函数.以下对不同类型方程说明分离变量法的具体解法.[弦振动方程]1︒两端固定的弦振动齐次方程混合问题设u(x,t)=X(x)T(t),具体解法如下:(1) X(x),T(t)满足的常微分方程:(2) 用此二常微分方程的解的乘积表示弦振动方程的特解u n(x,t).解边值问题当时,有非零解称λn为边值问题的特征值,X n(x)为特征函数.把λn代入T(t)的方程,得式中A n,B n为任意常数,这样就得到弦振动方程的特解:(3) 把u n(x,t)迭加,形式上作级数(4) 利用特征函数的正交性,确定系数A n,B n.把(x)及(x)展开成傅立叶级数式中利用初始条件可得于是混合问题的形式解为若(i) (x)具有一阶和二阶连续导数,三阶导数逐段连续,且(0)=(l),"(0)="(l)=0;(ii)(x)连续可微,二阶导数逐段连续,(0)=(l)=0,那末形式解右端的级数一致收敛,形式解就是混合问题的正规解.2︒解的物理意义弦的这种形式的振动称为驻波,点(m=0,1n) 为不动的点,称为节点;点(m=0,1,2n-1)处振幅最大,称为腹点;称为弦振动的固有频率;弦线发出的最低音的频率为(τ为张力,ρ为弦的线密度)称为该弦的基音,其他频率都是它的整数倍,称为泛音.3︒非齐次方程的混合问题将u(x,t)和f(x,t)展开成傅立叶级数:那末根据定解条件再利用1︒中(x)与(x)的傅立叶展开式,有所以形式解为若(x)具有一、二阶连续导数,三阶导数逐段连续,(x)和f(x,t)连续可微,二阶导数逐段连续,同时(0)=(l)="(0)="(l)=0(0)=(l)=f(0,t)=f(l,t)=0则级数一致收敛,形式解就是非齐次方程混合问题的正规解.4 遇到非齐次边界条件作变换可化为关于v(x,t)的齐次边界条件求解.[热传导方程]热传导方程的第一边值问题设u(x,t)=X(x)T(t),得X"(x)+2X(x)=0T'(t)+a22T(t)=0特征值,对应的特征函数为,而作形式解式中c n等于(x)的傅立叶系数即.当(x)具有一、二阶连续导数,三阶导数逐段连续,(0)=(l)=0,则上述级数一致收敛,形式解就是正规解了.[拉普拉斯方程]球内定常温度分布的狄利克莱问题—拉普拉斯方程的狄利克莱问题.选用球坐标令u(r,,)=v(r,)().代入方程,分离变量得"()+k2()=0 (1)(2) 利用对于变量的周期性,u(r, ,)=u(r, ,+2),可知方程(1)中的k只能取m(m=0,1),那末()取{cos m,sin m}.再将方程(2)分离变量,令v=R(r)H(),得(3)(4) 方程(4)的解可用勒让德多项式表示,为了使解有界,λ只能取λn2=n(n+1) (n=0,1,2,…)对应的解H()=P n(m)(cos),,P n(x)为勒让德多项式方程(3)可写成这是欧拉方程,其有界解为R(r)=c1r n.最后将u的特解迭加,利用边界条件和球函数的正交性得式中P n(m)(cos)为一般勒让德函数.如果二次连续可微,则表示的级数一致收敛,它就是狄利克莱问题的解.[高阶方程]梁的横向振动方程为(a为常数) (1) 定解条件为设y (x,t )=X (x )T (t ),那末方程(2)满足X"(0)=X"(l )=0的特征值,特征函数(n =1,2),方程(3)的解为所以方程(1)的形式解为由y (x,0)=x (l -x )得最后得到方程(1)的解.2. 双曲型方程的黎曼方法 考虑拉普拉斯双曲型方程[古沙问题的特征线法] 古沙问题是设a (x,y ),b (x,y ),c (x,y ),f (x,y )为连续函数;连续可微且,令则古沙问题化为下面积分方程组的求解问题它可用逐次逼近法求解,显然x=x 0,y=y 0为拉普拉斯双曲型方程的特征线,所以此法也称为特征线法. [广义柯西问题的黎曼方法] 广义柯西问题是设a (x,y ),b (x,y ),c (x,y ), 1(x )及(x )为连续可微函数,且'(x )≠0,而f (x,y )及2(x )为连续函数.设M (x 0,y 0)不是y=(x )上的点,过点M 作特征线x=x 0,y=y 0交y=(x )于P 及Q ,记曲边三角形PMQ 为D (图14.6),在D 上用格林公式(本节,四)得设v (x,y ;x 0,y 0)为下面古沙问题的解:那末广义柯西问题解的黎曼公式为式中v (x,y ;x 0,y 0)称为黎曼函数,这个方法称为黎曼方法.一般可用特征线法求黎曼函数.但对常系数偏微分方程(c 为常数)也可用下法求黎曼函数.设v=v (z ),,则方程化为贝塞耳方程图14.6黎曼函数就是满足此贝塞耳方程及条件v(0)=1的零阶贝塞耳函数,对常系数的拉普拉斯双曲型方程通过变换可化为的形式,它的黎曼函数就是上式.3.椭圆型方程的格林方法在区域D考虑椭圆型方程式中a ij,b i,c,f为x1,…,x n的连续可微函数,a ij=a ji,二次型是正定的.[格林函数及其性质] 若Lu=0的共轭方程L*u=0的基本解G(x,)在D的边界S上满足G(x,)=0, x∈S则称G(x,)为方程Lu=0的格林函数,式中x=(x1,…,x n),ξ为参变点,=(1,…,n),即G(x,)=G(x1,…,x n;1,…,n).格林函数具有对称性质:设G(x,),V(x,)分别为方程Lu=0及其共轭方程的格林函数,则成立对称关系G(x,)=V(x,)特别如果Lu为自共轭微分算子,则有G(x,)=G(,x)[利用格林函数解边值问题]1︒一般公式在区域D上应用格林公式(本节,四),并取v=G(x,),则方程Lu=f的狄利克莱问题u|s=的解为式中(N是S的外法线方向)2︒对于球体(球心为O,半径为a),u=0的基本解为,r为P(x,y,z)与参变点的距离,作M关于球面的反演点M1,记r1为M1与P的距离,则格林函数为.狄利克莱问题u|s=的解为式中S为球面.引用球坐标时,解为泊松积分(本节,三,3).3︒在圆上(半径为a),u=0的格林函数为式中r为P(x,y)与参变点的距离,r1为P与M点关于圆的反演点M1的距离,圆上狄利克莱问题的解为泊松积分.4.积分变换法积分变换法是解线性微分方程,特别是常系数方程的一种有效方法,它是把方程的某一独立变量看成参变量,作未知函数的积分变换,这样可减少原方程独立变量的个数而将方程化为简单形式(最简单的情况是常微分方程,甚至是代数方程).解此简化方程的对应定解问题并通过逆积分变换就得到原定解问题的解.下面举例说明傅立叶变换和拉普拉斯变换方法.例1 用傅立叶变换法解弦振动方程的柯西问题解把t作为参变量,作u(x,t)关于x的傅立叶变换F原来的柯西问题化为下面的定解问题把p看作参数,其解为由傅立叶变换的反演公式得到原问题的解例2 用拉普拉斯变换法解热传导方程的定解问题解 把x 当作参变量,作u (x,t )关于t 的拉普拉斯变换L原问题化为通解为要求解有界.c 2必须为零,所以,查拉普拉斯变换表(第十一章)得式中erfc(y )为余误差函数.§4 偏微分方程的数值解法一、 一、 差分法差分法是常用的一种数值解法.它是在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值. 1. 网格与差商在平面 (x , y )上的一以S 为边界的有界区域D 上考虑定解问题.为了用差分法求解,分别作平行于x 轴和y 轴的直线族.(i , j =0,1,2,…,n )作成一个正方形网格,这里h 为事先指定的正数,称为步长;网格的交点称为节点,简记为(i , j ).取一些与边界S 接近的网格节点,用它们连成折线,所围成的区域记作.称内的节点为内节点,位于上的节点称为边界节点(图14.7).下面都在网格上考虑问题:寻求各个节点上解的近似值.在边界节点上取与它最接近的边界点上的边值作为解的近似值,而在内节点上,用以下的差商代替偏导数:注意, 1︒ 式中的差商称为向后差商,而称为向前差商,称为中心差商.也可用向前差商或中心差商代替一阶偏导数.2︒ x 轴与y 轴也可分别采用不同的步长h , l ,即用直线族(i ,j =0, ±1, ±2)作一个矩形网格.2. 椭圆型方程的差分方法[五点格式] 考虑拉普拉斯方程的第一边值问题式中为定义在D 的边界S 上的已知函数.采用正方形网格,记,在节点(i , j )上分别用差商代替,对应的差分方程为(1)或即任一节点(i , j )上的值等于周围相邻节点上解的值的算术平均,这种形式的差分方程称为五点格式,在边界节点上取(2)图14.7。