高中数学统计与概率测试题

合集下载

高中数学统计与概率测试题

高中数学统计与概率测试题

高中数学统计与概率测试题高中数学统计与概率测试题选择题1.某校期末考试后,为了分析该校高一年级1000名学生的研究成绩,从中随机抽取了100名学生的成绩单。

以下说法中正确的是()A。

1000名学生是总体B。

每名学生是个体C。

每名学生的成绩是所抽取的一个样本D。

样本的容量是1002.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图。

以下说法不正确的是()A。

获得参与奖的人数最多B。

各个奖项中三等奖的总费用最高C。

购买奖品的费用平均数为9.25元D。

购买奖品的费用中位数为2元3.XXX为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查。

为此将他们随机编号1,2,⋯,2000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间[1,820]的人做问卷A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A。

23B。

24C。

25D。

264.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=()A。

13B。

12C。

10D。

95.A、B、C、D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或D妈妈的车概率是A。

1/15B。

C。

D。

6.如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图。

根据频率分布直方图,下列说法正确的是①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍A。

2023-2024学年山东省高中数学人教B版 必修二统计与概率同步测试-3-含解析

2023-2024学年山东省高中数学人教B版 必修二统计与概率同步测试-3-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年山东省高中数学人教B 版 必修二统计与概率同步测试(3)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1616.3216.3415.961. 矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为 ( )A. B. C. D.2. 甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,分别表示甲、乙两名运动员这项测试成绩的平均数,, 分别表示甲、乙两名运动员这项测试成绩的标准差,则有( )A. B. C. D.6306156005703. 某中学高一年级共有学生1200人,为了解他们的身体状况,用分层抽样的方法从中抽取一个容量为80的样本,若样本中共有男生42人,则该校高一年级共有女生( )A. B. C. D. 1个2个3个4个4. 先后抛掷两枚质地均匀的骰子,甲表示事件“第一枚骰子掷出的点数是1”,乙表示事件“第二枚骰子掷出的点数是2”,丙表示事件“两枚骰子掷出的点数之和是8”,丁表示事件“两枚骰子掷出的点数之和是7”,则下列说法正确的有( )①甲与乙相互独立②乙与丁相互独立③乙与丙不互斥但相互独立④甲与丙互斥但不相互独立A. B. C. D.5. 盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也摸出新球的概率为( )A.B.C.D.6805854671596. 某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为8的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001,002,003……899,900.若采用随机数表法抽样,并按照以下随机数表进行读取,从第一行的第5个数开始,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.则样本编号的75%分位数为( )05 26 93 70 60 22 35 85 58 51 51 03 51 59 77 59 56 78 06 83 52 91 05 70 7407 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 5151 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 48A. B. C. D. 100万元10万元7.5万元 6.25万元7. 一商场在某日促销活动中,对9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售为()A. B. C. D. 0.800.750.600.488. 周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.80,做对两道题的概率为0.60,则预估计做对第二道题的概率为( )A. B. C. D. 9. 如图,点是正方形两条对角线的交点.从这个正方形的四个顶点中随机选取两个,那么这两个点关于点对称的概率为()A. B. C. D.1210.右图实线是函数y=f (x )(0≤x≤2a )的图象,它关于点A (a ,a )对称.如果它是一条总体密度曲线,则正数a 的值为( )A. B. C. D.11. 容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70],2.则样本在区间(10,50]上的频率为( )0.50.70.250.05A. B. C. D. 2436464712. 从某班50名同学中选出5人参加户外活动,利用随机数表法抽取样本时,先将50名同学按01,02,,50进行编号,然后从随机数表的第1行第5列和第6列数字开始从左往右依次选取两个数字,则选出的第5个个体的编号为( )(注:表为随机数表的第1行与第2行)0347437386369647366146986371629774246792428114572042533237321676A. B. C. D. 13. 《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(" "表示一根阳线," "表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为.14. 某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了了解普通话在该校教师中的推广普及情况,用分层随机抽样的方法,从全体教师中抽取一个容量为70人的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是 .15. 利用简单抽样法抽查某校150名男学生,其中身高为1.65米的有32人,若在此校随机抽查一名男学生,则他身高为1.65米的概率大约为 .(保留两位小数)16. 设随机变量ξ只可能取5,6,7,…,16这12个值,且取每个值的概率均相同,则P (ξ≥9)= ;P (6<ξ≤14)= .17. 某风景区对 , 两个旅游景点一周内的日游客数量(单位:千人)进行了一次调查,统计数据如下茎叶图所示.(1) 以各组平均数为依据,试比较哪个景点更加吸引游客;(2) 若 , 两个旅游景点的门票价格分别为20元/人和30元/人,以各景点平均日游客数量估计每日游客数量,预计该风景区在这两景点一个月(30天)的门票收入.18. 某科研课题组通过一款手机 软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表:周跑量(周)人数100120130180220150603010(1) 在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:(2) 根据以上图表数据,试求样本的中位数(保留一位小数).(3) 根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表:周跑量小于20公里20公里到40公里不小于40公里类别休闲跑者核心跑者精英跑者装备价格(单位:元)250040004500根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?19. 顺义某商场举行有奖促销活动,顾客购买满一定金额商品后即可抽奖,每次抽奖都从装有8个红球、4个黑球的甲箱和装有6个红球、6个黑球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖,若没有红球,则不获奖.(Ⅰ)求顾客抽奖1次能获奖的概率;(Ⅱ)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X的分布列和数学期望.20. 现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1) 求这4个人中恰有2人去参加甲游戏的概率;(2) 求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3) 用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.21. 随着如今人们生活水平的不断提高,旅游成了一种生活时尚,尤其是老年人的旅游市场在不断扩大.为了了解老年人每年旅游消费支出(单位:元)的情况,相关部门抽取了某地区名老年人进行问卷调查,并把所得数据列成如下所示的频数分布表:组别频数1202603402502010(1) 求所得样本平均数(精确到元);(2) 根据样本数据,可近似地认为老年人的旅游费用支出X服从正态分布,若该地区共有老年人95000人,试估计有多少位老年人旅游费用支出在5000元以上;(3) 已知样本数据中旅游费用支出在范围内的10名老人中有7名女性,3名男性.现想选其中3名老人回访,记选出的男生人数为,求的分布列.附:若,,, .答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)(3)19.20.(1)(2)(3)21.(1)(2)(3)。

高中数学-阶段验收评价(三)统计与概率跟踪测试卷及答案

高中数学-阶段验收评价(三)统计与概率跟踪测试卷及答案

阶段验收评价(三)统计与概率一、单项选择题(本大题共8小题,每小题5分,共40分)1.某学校共有36个班级,每班50人,现要求每班派3名代表参加会议,在这个问题中,样本容量是( )A .30B .50C .108D .150解析:选C 由样本的定义知,样本容量n =36×3=108.2.小波一星期的总开支分布如图①所示,一星期的食品开支如图②所示,则小波一星期的鸡蛋开支占总开支的百分比为( )A .1%B .2%C .3%D .5%解析:选C 由题图②知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%.3.某校高三级部分为甲、乙两个级部,现用分层抽样的方法从高三级部中抽取30名老师去参加教研会.已知乙级部中每名老师被抽到的可能性都为13,则高三级部的全体老师的人数为( )A .10B .30C .60D .90解析:选D 因为乙级部中每名老师被抽到的可能性都为13,所以高三年级中每名老师被抽到的可能性都为13,由30÷13=90(人),可得全体老师人数.4.从装有5个红球和3个白球的口袋内任取3个球,那么,互斥而不对立的事件是 ( )A .至少有一个红球;都是红球B .至少有一个红球;都是白球C .至少有一个红球;至少有一个白球D .恰有一个红球;恰有两个红球解析:选D 根据互斥事件、对立事件的定义可得.5.已知一组数据8,9,10,x ,y 的平均数为9,方差为2,则x 2+y 2= ( )A .162B .164C .168D .170解析:选D 由题意可知15(8+9+10+x +y )=9,15[(8-9)2+(9-9)2+(10-9)2+(x -9)2+(y -9)2]=2,解得x 2+y 2=170.6.如图是一容量为100的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为( ) A .11 B .11.5 C .12D .12.5解析:选C 由频率分布直方图得组距为5,故样本质量在[5,10),[10,15)内的频率分别为0.3和0.5,从而中位数为10+0.20.5×5=12,故选C. 7.种植两株不同的花卉,若它们的成活率分别为p 和q ,则恰有一株成活的概率为( )A .p +q -2pqB .p +q -pqC .p +qD .pq解析:选A 恰有一株成活的概率为p (1-q )+q (1-p )=p +q -2pq .8.(2020·新高考山东卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%解析:选C 不妨设该校学生总人数为100,既喜欢足球又喜欢游泳的学生人数为x ,则100×96%=100×60%-x +100×82%,解得x =46,所以既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选C. 二、多项选择题(本大题共4小题,每小题5分,共20分) 9.下列说法正确的是( )A .一组数据不可能有两个众数B.一组数据的方差必须是正数C.将一组数据中的每一个数据都加上或减去同一常数后,方差不变D.在频率分布直方图中,每个小长方形的面积等于相应小组的频率解析:选CD A错,众数可以有多个;B错,方差可以为0.10.不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而非对立的事件是()A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色解析:选ABD从6张卡片中一次取出2张卡片的所有情况有“2张都为红色”“2张都为绿色”“2张都为蓝色”“1张红色1张绿色”“1张红色1张蓝色”“1张绿色1张蓝色”,在选项给出的四个事件中,与“2张卡片都为红色”互斥而非对立的事件有“2张卡片都不是红色”“2张卡片恰有一张红色”“2张卡片都为绿色”,而“2张卡片至少有一张红色”包含事件“2张卡片都为红色”,二者并非互斥事件.故选A、B、D.11.在一个古典概型中,若两个不同的随机事件A,B发生的概率相等,则称A和B是“等概率事件”,如:随机抛掷一个骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”.关于“等概率事件”,以下判断正确的是()A.在同一个古典概型中,所有的样本点之间都是“等概率事件”B.若一个古典概型的事件总数大于2,则在这个古典概型中除样本点外没有其他“等概率事件”C.因为所有必然事件的概率都是1,所以任意两个必然事件都是“等概率事件”D.同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件”解析:选AD对于A,由古典概型的定义知,所有样本点的概率都相等,故所有的样本点之间都是“等概率事件”,故A正确;对于B,如在1,3,5,7,9五个数中,任取两个数,所得和为8和10这两个事件发生的概率相等,故B错误;对于C,由题可知“等概率事件”是针对同一个古典概型的,故C错误;对于D,同时抛掷三枚硬币一次共有8种不同的结果,其中“仅有一个正面”包含3种结果,其概率为38,“仅有两个正面”包含3种结果,其概率为38,故这两个事件是“等概率事件”,故D正确.故选A、D.12.下列对各事件发生的概率判断正确的是 ( )A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是13D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A不发生的概率相同,则事件A 发生的概率是29解析:选AC 对于A ,该生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为 1-132×13=427,故A 正确; 对于B ,用A ,B ,C 分别表示甲、乙、丙三人能破译出密码,则P (A )=15,P (B )=13,P (C )=14,“三个人都不能破译出密码”发生的概率为45×23×34=25,所以此密码被破译的概率为1-25=35B 错误;对于C ,该试验的样本空间Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},记A 为“取出的2个数之差的绝对值为2”,则A ={(1,3),(2,4)},故所求概率为13,故C 正确;对于D ,易得P (A ∩B )=P (B ∩A ), 即P (A )P (B )=P (B )P (A ), 即P (A )[1-P (B )]=P (B )[1-P (A )], 所以P (A )=P (B ),又P (A ∩B )=19,所以P (A )=P (B )=13所以P (A )=23,故D 错误.故选A 、C.三、填空题(本大题共4小题,每小题5分,共20分)13.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人):篮球组 书画组 乐器组 高一 45 30 a 高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________. 解析:由题意知,1245+15=30120+a,解得a =30.答案:3014.一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“有缘数”的概率为________.解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数为6个,由1,3,4组成的三位自然数为6个,由2,3,4组成的三位自然数为6个,共有24个.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个,所以三位数为“有缘数”的概率为1224=12. 答案:1215.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________. 解析:∵x =10×0.97+20×0.98+10×0.9910+20+10=0.98,∴经停该站高铁列车所有车次的平均正点率的估计值为0.98. 答案:0.9816.一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出白球的概率为______;摸出红球的概率为________.解析:由题意知A =“摸出红球或白球”与B =“摸出黑球”是对立事件,又P (A )=0.58,∴P (B )=1-P (A )=0.42,又C =“摸出红球或黑球”与D =“摸出白球”也是对立事件,∵P (C )=0.62,∴P (D )=0.38.设事件E =“摸出红球”,则P (E )=1-P (B ∪D )=1-P (B )-P (D )=1-0.42-0.38=0.2. 答案:0.38 0.2四、解答题(本大题共6小题,共70分)17.(10分)某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:天数111221 2用水量/吨22384041445095(1)在这10天中,该公司用水量的平均数是多少?(2)在这10天中,该公司每天用水量的中位数是多少?(3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量更合适?解:(1)x=110(22+38+40+2×41+2×44+50+2×95)=51(吨).(2)中位数为41+442=42.5(吨).(3)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下,故用中位数描述每天的用水量更合适.18.(12分)小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率.解:用A,B,C分别表示这三列火车正点到达的事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P(A-)=0.2,P(B-)=0.3,P(C-)=0.1.(1)由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为P1=P(A-BC)+P(A B-C)+P(AB C-)=P(A-)P(B)P(C)+P(A)P(B-)P(C)+P(A)P(B)P(C-)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P2=1-P(A-B-C-)=1-P(A-)P(B-)P(C-)=1-0.2×0.3×0.1=0.994.19.(12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2.乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小?(2)哪台机床的生产状况比较稳定?解:(1)x甲=(1+0+2+0+2+3+0+4+1+2)×110 1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x甲>x乙,∴乙机床次品数的平均数较小.(2)s2甲=110×[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙机床的生产状况比较稳定.20.(12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.(1)若以A表示和为6的事件,求P(A).(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.解:(1)样本空间与点集S={(x,y)|x∈N*,y∈N*,1≤x≤5,1≤y≤5}中的元素一一对应.因为S中点的总数为5×5=25(个),所以样本点总数为n=25.事件A包含的样本点共5个,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P(A)=525=15.(2)B与C不是互斥事件,因为事件B与C可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.(3)这种游戏规则不公平.结合(1)知和为偶数的样本点个数为13个,即甲赢的概率为13 25,乙赢的概率为12 25,所以这种游戏规则不公平.21.(12分)某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数x与数学成绩相应分数段的人数y之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 解:(1)由频率分布直方图知(2a+0.02+0.03+0.04)×10=1,解得a=0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.22.(12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付方式支付金额不大于2 000元大于2 000元仅使用A27人3人仅使用B24人1人(1)估计该校学生中上个月A,B两种支付方式都使用的人数.(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率.(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000 元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A,B两种支付方式都使用的人数为40100×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)=125=0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.。

高一数学统计与概率试题

高一数学统计与概率试题

高一数学统计与概率试题1.【答案】(1) 这是一个古典概型,事件A的基本事件为(0,0),(0,1),(1,0),(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4).而基本事件的总数为5×5=25,所以事件A发生的概率是.(2) 如图,试验的全部结果所构成的区域为一个正方形区域,面积为SΩ=25,事件A所构成的区域为A={()/ 0≤a<5,0 ≤b<5,-2<a-b<2},即图中的阴影部分,面积为SA=16,这是一个几何概型,所以P(A)=SA/SΩ=.【解析】略2.从装有个红球和个黒球的口袋内任取个球,那么互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个黒球与都是黒球C.至少有一个黒球与至少有个红球D.恰有个黒球与恰有个黒球【答案】D【解析】A中至少有一个黒球包括都是黑球,不是互斥的;B中至少有一个黒球包括都是黑球,不是互斥的;C中两个事件都可能是1黑球1红球;D中是互斥事件但不对立【考点】互斥事件与对立事件3.甲乙两人进行相棋比赛,甲获胜的概率是0.4,两人下成和棋的概率是0.2,则甲不输的概率是()A.0.6B.0.8C.0.2D.0.4【答案】A【解析】甲不输包含甲获胜或两人和棋,为互斥事件,所以概率相加,所以【考点】互斥事件的概率4. 10名工人某天生产同一零件,生产的件数是设其平均数为,中位数为,众数为,则有A.B.C.D.【答案】D【解析】由数据可知众数c=17,中位数b=15,平均数a=14.7,故选D.【考点】平均数中位数众数的概念.5.从学号为1号至50号的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,所选5名学生的学号可能是A.1,2,3,4,5B.5,15,25,35,45C.2,4,6,8,10D.4,13,22,31,40【答案】B【解析】系统抽样抽取的元素编号构成等差数列,公差为组距,本题中组距为10,因此B选项正确【考点】系统抽样6.现有7根铁丝,长度(单位:cm)分别为2.01,2.2,2.4,2.5,2.7,3.0,3.5,若从中一次随机抽取两根铁丝,则它们长度恰好相差0.3cm 的概率是.【答案】【解析】从7根铁丝中依次随机抽取两根铁丝可能发生的基本事件有:共21种,其中长度恰好相差0.3cm 的有共3种,因此所求的概率为【考点】古典概型;7.(本小题满分12分)为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表.组号分组回答正确的人数回答正确的人数占本组的频率180.99(1)分别求出的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.【答案】(1)a=5,b=27,x=0.9,y=0.2;(2)第2,3,4组每组各抽取2人,3人,1人;(3)。

高中数学概率与统计概率分布练习题及答案

高中数学概率与统计概率分布练习题及答案

高中数学概率与统计概率分布练习题及答案1. 离散型随机变量问题1一次买彩票,抽奖号码是从1到30的整数,每个号码中奖的概率是相等的。

求以下事件的概率:a) 中奖号码小于等于10b) 中奖号码是偶数c) 中奖号码是质数解答1a) 中奖号码小于等于10的概率为10/30,即1/3。

b) 中奖号码是偶数的概率为15/30,即1/2。

c) 中奖号码是质数的概率为8/30,即4/15。

问题2某商品的销售量每天可以是0、1、2或3箱,各箱销售的概率分别为0.1、0.3、0.4和0.2。

求销售量的概率分布表。

解答2销售量的概率分布表如下:销售量 | 0 | 1 | 2 | 3--- | --- | --- | --- | ---概率 | 0.1 | 0.3 | 0.4 | 0.22. 连续型随机变量问题3某地每天的气温符合正态分布,均值为20摄氏度,标准差为3摄氏度。

求以下事件的概率:a) 气温大于等于15摄氏度b) 气温在15摄氏度到25摄氏度之间解答3a) 气温大于等于15摄氏度的概率可以通过计算标准正态分布的累积概率得到,约为0.8413。

b) 气温在15摄氏度到25摄氏度之间的概率可以通过计算标准正态分布的累积概率得到,约为0.6827。

问题4某工厂生产的铆钉的长度符合正态分布,均值为5毫米,标准差为0.2毫米。

若从工厂中随机抽取一只铆钉,求其长度在5.2毫米到5.5毫米之间的概率。

解答4将问题转化为标准正态分布,得到长度在1到2.5之间的概率约为0.3944。

以上是高中数学概率与统计概率分布的练习题及答案。

2023-2024学年陕西省高中数学人教B版 必修二统计与概率同步测试-10-含解析

2023-2024学年陕西省高中数学人教B版 必修二统计与概率同步测试-10-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年陕西省高中数学人教B 版 必修二统计与概率同步测试(10)姓名:____________班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)34561. 从某小学随机抽取100名学生,将他们的身高数据(单位:厘米)按, , , , 分组,绘制成频率分布直方图(如图).从身高在 ,, 三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在内的学生中选取的人数应为 ()A. B. C.D. 183654722. 某校有200位教职员工,其每周用于锻炼所用时间的频率分布直方图如图所示.据图估计,每周锻炼时间在小时内的人数为( )A. B. C. D. 3. 一次选拔运动员,测得7名选手的身高(单位: )分布茎叶图如图,已知7人的平均身高为,有一名选手的身高记录不清楚,其末位数记为 ,则 的值是( )8765A. B. C. D. 23与2626与3024与3032与264. 在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A. B. C. D. s 1>s 2s 1=s 2s 1<s 2不确定5. 甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如图).s 1、s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是()A. B. C. D. 6. 两名同学分4本不同的书,其中一人没有分到书,另一人分得4本书的概率为( )A. B. C. D.626364657.右图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是()A. B. C. D. 事件A 与事件B 互斥事件A 与事件B 对立事件A 与事件B 不互斥以上判断都不对开始8. 口袋中装有大小、形状、质地完全相同的3个红球和2个黑球,每个球编有不同的号码,现从中任意取出2个小球,事件A :恰有1个红球;事件B :恰有2个红球,则A 、B 关系正确的是( )A. B. C. D. 频率分布直方图中a 的值为0.017这100位居民中有50位居民的年龄不低于60岁9. 为了解某地区的人口年龄分布情况,某机构从该地区年龄在内的居民中随机抽取了100位进行调查,并将年龄按,,,,,分组,得到如图所示的频率分布直方图.则下列说法正确的是()A. B.估计这100位居民的平均年龄为53岁该地区人口年龄分布在 的人数与分布在 的人数分别记为 ,则 一定成立C. D. 2022.522.752510. 某科技研究所对一批新研发的产品长度进行检测(单位:mm ),如图是检测结果的频率分布直方图,据此估计这批产品的中位数为( )A. B. C. D. 0.0130.040.0020.00311. 有一批同一型号的产品,已知其中由一厂生产的占30%,二厂生产的占50%,三厂生产的占20%.又知这三个厂的产品次品率分别为2%,1%,1%,则从这批产品中任取一件是次品的概率是( )A. B. C. D. 12. 如图所示的长方形内,两个半圆均以长方形的一边为直径且与对边相切,在长方形内随机取一点,则此点取自阴影部分的概率是( )A. B. C. D.13. 有10种不同的零食,每100克可食部分包含的能量(单位:k )如下:100,120,125,165,430,190,175,234,425,310这10种零食每100克可食部分的能量的第60百分位数为 .14. 某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取 18 所学校,中学中抽取 所学校.15. 在一次射击训练中,两人射击同一个目标,甲击中目标的概率为0.8,乙击中目标的概率为0.7,则甲乙均未击中目标的概率为 .16. 对某实验项目进行测试,测试方法:①共进行3轮测试;②每轮测试2次,若至少合格1次,则本轮通过,否则不通过.已知测试1次合格的概率为 , 如果各次测试合格与否互不影响,则在一轮测试中,通过的概率为 ;在3轮测试中,通过的次数X 的期望是 .17. 某校有高中生2000人,其中男女生比例约为5:4,为了获得该校全体高中生的身高信息,采用比例分配的分层随机抽样方法,抽收了样本容量为的样本,得到频数分布表和频率分布直方图.身高(单位:cm)频数64(1) 根据图表信息,求,并补充完整频率分布直方图.估计该校高中生的身高均值;同一组中的数据以这组数据所在区间中点的值为代表(2) 若身高在的6人中,男生有3人,女生有3人,选出2人参加团委活动,求选出的2人性别不同的概率.18. 某市约有30万户居民,为了实现绿色发展,避免浪费资源,市政府计划对居民用电采用阶梯收费的方法,即制定每户居民月用电量的临界值,若居民某月用电量不超过度则按第一阶梯电价标准收费,价格为0.5元/度;若某月用电量超过度,超出部分则按第二阶梯电价标准收费,价格为元/度,未超出部分按第一阶梯电价标准收费.为此,相关部门在该市随机调查了200户居民的某月用电量,以了解这个城市家庭用电量情况,进行统计分析后得到如图所示的频率分布直方图,根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).(1) 若该市政府希望让全市70%的居民在使用阶梯电价前后缴纳的电费保持不变,临界值应定为多少?并估计全市居民月用电量的众数和平均数;(2) 在(1)的条件下,假定使用阶梯电价之后,月用电量未超过度的居民用电量保持不变;月用电量超过度的居民节省“超出部分”的40%,试估计全市居民每月节约的电量;(3) 在(1)(2)的条件下,若使用阶梯电价前后全市缴纳电费总额不变,求第二阶梯电价.(结果保留两位有效数字)19. 某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100附:(1) (i)将列联表补充完整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2) 从样本中的运动达人中抽取7人参加“幸运抽奖”活动,通过抽奖共产生2位幸运用户,求这2位幸运用户恰好男用户和女用户各一位的概率.20. 甲、乙、丙、丁四支球队进行单循环小组赛(每两支队比赛一场),比赛分三轮,每轮两场比赛,第一轮第一场甲乙比赛,第二场丙丁比赛;第二轮第一场甲丙比赛,第二场乙丁比赛;第三轮甲对丁和乙对丙两场比赛同一时间开赛,规定:比赛无平局,获胜的球队记3分,输的球队记0分.三轮比赛结束后以积分多少进行排名,积分相同的队伍由抽签决定排名,排名前两位的队伍小组出线.假设四支球队每场比赛获胜概率以近10场球队相互之间的胜场比为参考.队伍近10场胜场比队伍甲乙甲丙甲丁乙丙乙丁丙丁(1) 三轮比赛结束后甲的积分记为,求;(2) 若前二轮比赛结束后,甲、乙、丙、丁四支球队积分分别为3、3、0、6,求甲队能小组出线的概率.21. 某机械零件工厂为了检验产品的质量,质检部门随机在生产线上抽取了个零件并称出它们的重量(单位:克).重量按照,,…,分组,得到频率分布直方图如图所示.(1) 估计该工厂生产的零件重量的平均数;(每组数据用该组的中点值作代表)(2) 估计该工厂生产的零件重量的80%分位数;(3) 按各组零件数量比例用分层随机抽样方法从样本里重量不低于525克的零件中抽取6个零件,再从这6个零件中任取2个,求这2个零件的重量均在内的概率.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)(1)(2)(3)19.(1)(2)20.(1)(2)21.(1)(2)(3)。

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集概率与统计是高中数学中一门重要的学科,也是高考数学考试的一部分。

在概率与统计中,我们需要通过概率的计算和统计的方法来分析和解决实际问题。

为了帮助同学们复习和准备高考数学考试,本文整理了高考数学2024概率与统计历年题目全集,希望能对同学们有所帮助。

1. 单项选择题1) 已知概率为P(A) = 0.2,P(B) = 0.4,事件A、B相互独立,求P(A并B)的值。

2) 一次抛掷一硬币,设正面向上的概率为p,反面向上的概率为q。

连续抛掷3次硬币,求正面朝上的次数不超过2次的概率。

3) 某音乐社有男生40人,女生60人。

从中随机抽取一人,求抽到女生的概率。

2. 典型案例题1) 某超市中购买了100个某品牌产品,其中有5个是次品。

现从中不放回地连续抽取3个产品,求至少有一个次品的概率。

2) 某餐厅的饭菜有4个主食和6个副食。

现从中选择2个饭菜,求至少有一个主食的概率。

3. 解答题1) 设事件A与事件B相互独立,且P(A) = 0.3,P(B) = 0.5。

求下列事件的概率:a) P(A并B)b) P(A或B)c) P(A的对立事件)2) 设P(A) = 0.4,P(B) = 0.3,P(A并B) = 0.1,求下列事件的概率:a) P(A的对立事件)b) P(B的对立事件)c) P(A或B)3) 有一批产品,其中20%是次品。

现从中不放回地连续抽取3个产品,求以下事件的概率:a) 已抽出的3个产品都是次品;b) 至少有一个次品。

(提示:利用组合数学中的排列、组合知识进行计算)本文仅列举了一部分高考数学2024概率与统计历年题目,希望能给同学们提供一些复习和备考的参考。

在备考过程中,同学们还需结合教材和课堂上的知识,多进行习题训练和模拟考试,提高解题能力和应试技巧。

祝同学们取得优异的高考成绩!。

高考数学-概率与统计(含22年真题讲解)

高考数学-概率与统计(含22年真题讲解)

高考数学-概率与统计(含22年真题讲解)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】>70%,所以A错;讲座前中位数为70%+75%2讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3 ,4),(3,5),(3,6),(4,5),(4,6),(5,6)15种情况,其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6)6种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】=7.4,A选项结论正确.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.1=8.50625>8,16B选项结论正确.=0.375<0.4,对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616C选项结论错误.=0.8125>0.6,对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316D选项结论正确.故选:C4.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p;该棋手在第二盘与乙比赛且连胜两盘的概率p乙;该棋手在第二盘与丙比赛且连胜两盘甲的概率p丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p甲则p甲=2(1−p2)p1p3+2p2p1(1−p3)=2p1(p2+p3)−4p1p2p3记该棋手在第二盘与乙比赛,且连胜两盘的概率为p乙则p乙=2(1−p1)p2p3+2p1p2(1−p3)=2p2(p1+p3)−4p1p2p3记该棋手在第二盘与丙比赛,且连胜两盘的概率为p丙则p丙=2(1−p1)p3p2+2p1p3(1−p2)=2p3(p1+p2)−4p1p2p3则p甲−p乙=2p1(p2+p3)−4p1p2p3−[2p2(p1+p3)−4p1p2p3]=2(p1−p2)p3<0p 乙−p丙=2p2(p1+p3)−4p1p2p3−[2p3(p1+p2)−4p1p2p3]=2(p2−p3)p1<0即p甲<p乙,p乙<p丙,则该棋手在第二盘与丙比赛,p最大.选项D判断正确;选项BC判断错误;p与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D5.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有C72=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率P=21−721=23.故选:D.6.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有n=C84=70个结果,这4个点在同一个平面的有m=6+6=12个,故所求概率P=mn =1270=635.故答案为:635.7.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C53=10甲、乙都入选的方法数为C31=3,所以甲、乙都入选的概率P=310故答案为:3108.【2022年新高考2卷】已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为X∼N(2,σ2),所以P(X<2)=P(X>2)=0.5,因此P(X>2.5)=P(X>2)−P(2<X ≤2.5)=0.5−0.36=0.14.故答案为:0.14.9.【2022年浙江】现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P(ξ=2)=__________,E(ξ)=_________.【答案】 1635, 127##157 【解析】 【分析】利用古典概型概率公式求P(ξ=2),由条件求ξ分布列,再由期望公式求其期望. 【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有C 73种取法,其中所抽取的卡片上的数字的最小值为2的取法有C 41+C 21C 42种,所以P(ξ=2)=C 41+C 21C 42C 73=1635,由已知可得ξ的取值有1,2,3,4, P(ξ=1)=C 62C 73=1535,P(ξ=2)=1635,,P(ξ=3)=C 32C 73=335,P(ξ=4)=1C 73=135所以E(ξ)=1×1535+2×1635+3×335+4×135=127,故答案为:1635,127.10.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率; (2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【解析】 【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算K 2,再利用临界值表比较即可得结论. (1)根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M , 则P(M)=240260=1213;B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则P(N)=210240=78.A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=500×(240×30−210×20)2260×240×450×50≈3.205>2.706,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.11.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立. (1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.【答案】(1)0.6;(2)分布列见解析,E(X)=13.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为A,B,C,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.(1)设甲在三个项目中获胜的事件依次记为A,B,C,所以甲学校获得冠军的概率为P=P(ABC)+P(A BC)+P(AB̅C)+P(ABC)=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.16+0.16+0.24+0.04=0.6.(2)依题可知,X的可能取值为0,10,20,30,所以,P(X=0)=0.5×0.4×0.8=0.16,P(X=10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44,P(X=20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34,P(X=30)=0.5×0.6×0.2=0.06.即X的分布列为期望E(X)=0×0.16+10×0.44+20×0.34+30×0.06=13.12.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2)和材积量(单位:3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(x i−x̅)n i=1(y i −y̅)√∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.【答案】(1)0.06m 2;0.39m 3 (2)0.97 (3)1209m 3 【解析】 【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值. (1)样本中10棵这种树木的根部横截面积的平均值x̅=0.610=0.06样本中10棵这种树木的材积量的平均值y̅=3.910=0.39据此可估计该林区这种树木平均一棵的根部横截面积为0.06m 2, 平均一棵的材积量为0.39m 3 (2)r =∑(x i −x)10i=1(y i −y)√∑10i=1(x i −x)2∑10i=1(y i −y)2=∑10i=1i i 10xy√(∑10i=1x i 2−10x2)(∑10i=1y i 2−10y 2)=0.2474−10×0.06×0.39√(0.038−10×0.062)(1.6158−10×0.392)=0.0134√0.0001896≈0.01340.01377≈0.97则r ≈0.97 (3)设该林区这种树木的总材积量的估计值为Y m 3, 又已知树木的材积量与其根部横截面积近似成正比, 可得0.060.39=186Y,解之得Y =1209m 3. 则该林区这种树木的总材积量估计为1209m 313.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.P(B|A)P(B ̅|A)与P(B|A )P(B ̅|A )的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:R =P(A|B)P(A |B)⋅P(A |B ̅)P(A|B ̅);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̅)的估计值,并利用(ⅰ)的结果给出R 的估计值.附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),【答案】(1)答案见解析 (2)(i )证明见解析;(ii)R =6; 【解析】【分析】(1)由所给数据结合公式求出K2的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i)结合已知数据求R.(1)由已知K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200(40×90−60×10)250×150×100×100=24,又P(K2≥6.635)=0.01,24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为R=P(B|A)P(B̅|A)⋅P(B̅|A)P(B|A)=P(AB)P(A)⋅P(A)P(AB̅)⋅P(A B̅)P(A)⋅P(A)P(A B),所以R=P(AB)P(B)⋅P(B)P(A B)⋅P(A B̅)P(B̅)⋅P(B̅)P(AB̅)所以R=P(A|B)P(A|B)⋅P(A|B̅) P(A|B̅),(ii)由已知P(A|B)=40100,P(A|B̅)=10100,又P(A|B)=60100,P(A|B̅)=90100,所以R=P(A|B)P(A|B)⋅P(A|B̅)P(A|B̅)=614.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式P(A)=1−P (A)即可解出;(3)根据条件概率公式即可求出.(1)平均年龄x̅=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023 +55×0.020+65×0.012+75×0.006+85×0.002)×10=44.65(岁).(2)设A={一人患这种疾病的年龄在区间[20,70)},所以P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89.(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式可得P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014.15.【2022年北京】在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【答案】(1)0.4(2)75(3)丙【解析】【分析】(1)由频率估计概率即可(2)求解得X的分布列,即可计算出X的数学期望.(3)计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4(2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3P(X=0)=P(A1̅̅̅A2̅̅̅A3̅̅̅)=0.6×0.5×0.5=3,20P(X=1)=P(A1A2̅̅̅A3̅̅̅)+P(A1̅̅̅A2A3̅̅̅)+P(A1̅̅̅A2̅̅̅A3)=0.4×0.5×0.5+0.6×0.5×0.5+0.6×0.5×0.5=8,20P(X=2)=P(A1A2A3̅̅̅)+P(A1A2̅̅̅A3)+P(A1̅̅̅A2A3)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=7,20P(X=3)=P(A1A2A3)=0.4×0.5×0.5=2.20∴X的分布列为∴E(X)=0×320+1×820+2×720+3×220=75 (3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.1.(2022·河南省杞县高中模拟预测(理))某市有11名选手参加了田径男子100米赛的选拔比赛,前5名可以参加省举办的田径赛,如果各个选手的选拔赛成绩均不相同,选手小强已经知道了自己的成绩,为了判断自己能否参加省举办的田径赛,他还需要知道这11名选手成绩的( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【解析】 【分析】中位数恰好是第6名,比中位数成绩高即可确认自己能否进入省田径赛. 【详解】因为11名选手成绩的中位数恰好是第6名,知道了第6名的成绩,小强就可以判断自己是否能参加省举办的田径赛了,其余数字特征不能反映名次. 故选:B .2.(2022·黑龙江·大庆实验中学模拟预测(理))2021年5月30日清晨5时01分,天舟二号货运飞船在成功发射约8小时后,与中国空间站天和核心舱完成自主快速交接.如果下次执行空间站的任务由3名航天员承担,需要在3名女性航天员和3名男性航天员中选择,则选出的3名航天员中既有男性航天员又有女性航天员的概率为( ) A .67B .910 C .25D .415【答案】B 【解析】 【分析】利用对立事件和古典概型的概率公式求解即可. 【详解】设“选出的3名航天员中既有男性航天员又有女性航天员”为事件M ,则()333336C C 91C 10P M ==+-.故选:B.3.(2022·全国·模拟预测(文))如图是一组实验数据的散点图,拟合方程()0by c x x=+>,令1t x=,则y 关于t 的回归直线过点()2,5,()12,25,则当()1.01,1.02y ∈时,x 的取值范围是( )A .()0.01,0.02B .()50,100C .()0.02,0.04D .()100,200【答案】D 【解析】 【分析】 先令1t x =可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得522512b c b c=+⎧⎨=+⎩从而求得21y t =+,再由y 的范围求得t 的范围,进而求得x 的范围. 【详解】根据题意可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得:522512b cb c =+⎧⎨=+⎩,所以2,1b c ==, 所以21y t =+,由()1.01,1.02y ∈可得1.0121 1.02t <+<, 所以0.0050.01t <<, 所以10.0050.01x<<,所以100200x <<, 故选:D4.(2022·辽宁实验中学模拟预测)某国计划采购疫苗,现在成熟的疫苗中,三种来自中国,一种来自美国,一种来自英国,一种由美国和德国共同研发,从这6种疫苗中随机采购三种,若采购每种疫苗都是等可能的,则买到中国疫苗的概率为( ) A .16B .12C .910D .1920【答案】D 【解析】 【分析】由对立事件的概率公式计算. 【详解】没有买到中国疫苗的概率为13611C 20P ==, 所以买到中国疫苗的概率为119120P P =-=. 故选:D .5.(2022·四川省泸县第二中学模拟预测(理))食物链亦称“营养链”,是指生态系统中各种生物为维持其本身的生命活动,必须以其他生物为食物的这种由食物联结起来的链锁关系.如图为某个生态环境中的食物链,若从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,则这两种生物不能构成摄食关系的概率( )A .35B .25C .23D .13【解析】 【分析】用列举法写出构成的摄食关系,计数后可求得概率. 【详解】从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,共有10种选法:鹰麻雀,鹰兔,鹰田鼠,鹰蝗虫,麻雀兔,麻雀田鼠,麻雀蝗虫,兔田鼠,兔蝗虫,田鼠蝗虫.其中田鼠鹰,兔鹰,麻雀鹰,蝗虫麻雀共四种可构成摄食关系,不能构成摄食关系的有6种,所以概率为63105P ==. 故选:A .6.(2022·山东潍坊·模拟预测)Poisson 分布是统计学里常见的离散型概率分布,由法国数学家西莫恩·德尼·泊松首次提出,Poisson 分布的概率分布列为()()e 0,1,2,!kP X K k k λλ-===⋅⋅⋅,其中e 为自然对数的底数,λ是Poisson 分布的均值.当二项分布的n 很大()20n ≥而p 很小()0.05p ≤时,Poisson 分布可作为二项分布的近似.假设每个大肠杆菌基因组含有10000个核苷酸对,采用20.05/J m 紫外线照射大肠杆菌时,每个核苷酸对产生嘧啶二体的概率均为0.0003,已知该菌株基因组有一个嘧啶二体就致死,则致死率是( ) A .31e -- B .3e - C .313e -- D .314e --【答案】A 【解析】 【分析】结合题意1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似条件,再计算二项分布的均值为Poisson 分布的均值λ,再代入公式先求不致死的概率,再用对立事件的概率和为1计算即可 【详解】由题, 1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似的条件,此时100000.00033λ=⨯=,故不致死的概率为()03330e e 0!P X --===,故致死的概率为()3101e P X --==-7.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】 【分析】根据正态分布的性质求出()22P X ≥,从而估计出人数; 【详解】 解:因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人); 故选:B8.(2022·河南·模拟预测)某公司生产的一种产品按照质量由高到低分为A ,B ,C ,D 四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息:下列推断合理的是( ) A .改进生产工艺后,A 级产品的数量没有变化B.改进生产工艺后,D级产品的数量减少C.改进生产工艺后,C级产品的数量减少D.改进生产工艺后,B级产品的数量增加了不到一倍【答案】C【解析】【分析】由题可得改进生产工艺前后四个等级的生产量,逐项分析即得.【详解】设原生产总量为1,则改进生产工艺后生产总量为2,所以原A,B,C,D等级的生产量为0.3,0.37,0.28,0.05,改进生产工艺后四个等级的生产量为0.6,1.2,0.12,0.08,故改进生产工艺后,A级产品的数量增加,故A错误;改进生产工艺后,D级产品的数量增加,故B错误;改进生产工艺后,C级产品的数量减少,故C正确;改进生产工艺后,B级产品的数量增加超过2倍,故D错误.故选:C.9.(2022·河南安阳·模拟预测(文))为推动就业与培养有机联动、人才供需有效对接,促进高校毕业生更加充分更高质量就业,教育部今年首次实施供需对接就业育人项目.现安排甲、乙两所高校与3家用人单位开展项目对接,若每所高校至少对接两家用人单位,则两所高校的选择涉及到全部3家用人单位的概率为()A.12B.23C.34D.1316【答案】D【解析】【分析】由古典概型与对立事件的概率公式求解即可【详解】因为每所高校至少对接两家用人单位,所以每所高校共有2333314C C+=+=种选择,所以甲、乙两所高校共有4416⨯=种选择,其中甲、乙两所高校的选择涉及两家用人单位的情况有233C =种,所以甲、乙两所高校的选择涉及到全部3家用人单位的概率为31311616P =-=, 故选:D10.(2022·江苏·南京师大附中模拟预测)某同学在课外阅读时了解到概率统计中的马尔可夫不等式,该不等式描述的是对非负的随机变量X 和任意的正数a ,都有()()(),P X a f E X a ≥≤,其中()(),f E X a 是关于数学期望()E X 和a 的表达式.由于记忆模糊,该同学只能确定()(),f E X a 的具体形式是下列四个选项中的某一种.请你根据自己的理解,确定该形式为( ) A .()aE X B .()1aE XC .()a E XD .()E X a【答案】D 【解析】 【分析】根据期望的计算公式,以及m x a ≥即可求解. 【详解】设非负随机变量X 的所有可能取值按从小到大依次为0,i x i N *>∈,对应的概率分别为,0i i p p >设满足i x a ≥的有,,,m a a x k m n m N k N **≤≤∈∈,()ani i k P X a p =≥=∑,()111a ai nk i iii n i ii k i ax pE ax p x pX a -===+==∑∑∑,因为m x a ≥,所以1mx a≥()()()1111a a aaannniiiiiik k i k i k i k ii i i i x px px px p p P X a P X a E aa aaaX --=====⎛⎫+≥+=+≥≥≥ ⎪⎝⎭=∑∑∑∑∑故选:D11.(2022·吉林·三模(理))为了切实维护居民合法权益,提高居民识骗防骗能力,守好居民的“钱袋子”,某社区开展“全民反诈在行动——反诈骗知识竞赛”活动,现从参加该活动的居民中随机抽取了100名,统计出他们竞赛成绩分布如下:(1)求抽取的100名居民竞赛成绩的平均分x 和方差2s (同一组中数据用该组区间的中点值为代表);(2)以频率估计概率,发现该社区参赛居民竞赛成绩X 近似地服从正态分布()2,N μσ,其中μ近似为样本成绩平均分x ,2σ近似为样本成缋方差2s ,若2μσμσ-<≤+X ,参赛居民可获得“参赛纪念证书”;若2μσ>+X ,参赛居民可获得“反诈先锋证书”,①若该社区有3000名居民参加本次竞赛活动,试估计获得“参赛纪念证书”的居民人数(结果保留整数);②试判断竞赛成绩为96分的居民能否获得“反诈先锋证书”. 附:若()2,XN μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.【答案】(1)75x =,2100s = (2)①2456 ;②能 【解析】 【分析】(1)利用公式直接求出均值、方差即可;(2)①结合给的概率和正态分布的性质,确定获得“参赛纪念证书”,进而计算可得人数; ②利用正态分布的知识求出2μσ>+X ,即95>X ,进而可得结果. (1)100名居民本次竞赛成绩平均分24224028445556575859575100100100100100100=⨯+⨯+⨯+⨯+⨯+⨯=x , 100名居民本次竞赛成绩方差22222422(4575)(5575)(6575)100100100=-⨯+-⨯+-⨯s 22240284(7575)(8575)(9575)100100100100+-⨯+-⨯+-⨯=, (2)①由于μ近似为样本成绩平均分x ,2σ近似为样本成绩方差2s , 所以,275,100μσ==,可知,10σ=,由于竞赛成绩X 近似地服从正态分布()2,N μσ,因此竞赛居民可获得“参赛纪念证书”的概率 (2)P X μσμσ-<≤+11()(22)22μσμσμσμσ=-<≤++-<≤+P X P X 110.68270.95450.818622≈⨯+⨯= 30000.81862455.82456⨯=≈估计获得“参赛纪念证书”的居民人数为2456;②当2μσ>+X 时,即95>X 时,参赛居民可获得“反诈先锋证书”, 所以竞赛成绩为96分的居民能获得“反诈先峰证书”.12.(2022·贵州·贵阳一中模拟预测(文))“十四五”规划纲要提出,全面推动长江经济带发展,协同推动生态环境保护和经济发展长江水资源约占全国总量的36%,长江流域河湖、水库、湿地面积约占全国的20%,珍稀濒危植物占全国的39.7%,淡水鱼类占全国的33%.长江经济带在我国生态文明建设中占据重要位置.长江流域某地区经过治理,生态系统得到很大改善,水生动物数量有所增加.为调查该地区某种水生动物的数量,将其分成面积相近的100个水域,从这些水域中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,2,,20,i i x y i =其中i x 和i y 分别表示第i 个样区的水草覆盖面积(单位:公顷)和这种水生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021-)120,i i x x ==∑(2021-)9000,i i y ==∑(y 201-)-)1000.i iix x y ==∑((y (1)求该地区这种水生动物数量的估计值(这种水生动物数量的估计值等于样区这种水生动物数量的平均数乘以地块数); (2)求样本()(),1,2,,20i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间水草覆盖面积差异很大.为提高样本的代表性以获得该地区这种水生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数-)-) 1.732.niix y x r =≈∑((y【答案】(1)6000 (2)0.96(3)采用分层抽样的方法,理由见解析 【解析】 【分析】(1)根据该地区这种水生动物数量的估计值的计算方法求解即可; (2)根据相关系数的公式求解即可;(3)根据(2)中的结论各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性考虑即可 (1)样区水生动物平均数为201111200602020i i y ==⨯=∑, 地块数为100,该地区这种水生动物的估计值为100606000⨯=. (2)样本()(),1,2,,20i i x y i =⋯的相关系数为()()20,0.96.iix x y y r -===≈∑ (3)由(2)知各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性,由于各地块间水草覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大,所以采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种水生动物数量更准确的估计.13.(2022·河南开封·模拟预测(理))大豆是我国重要的农作物,种植历史悠久.某种子实验基地培育出某大豆新品种,为检验其最佳播种日期,在A ,B 两块试验田上进行实验(两地块的土质等情况一致).6月25日在A 试验田播种该品种大豆,7月10日在B 试验田播种该品种大豆.收获大豆时,从中各随机抽取20份(每份1千粒),并测量出每份的质量(单位:克),按照[)100,150,[)150,200,[]200,250进行分组,得到如下表格:。

数学高考概率与统计历年真题精选2024

数学高考概率与统计历年真题精选2024

数学高考概率与统计历年真题精选2024概率与统计是高中数学的重要内容之一,在高考中占有相当的比重。

为了帮助广大考生更好地备考概率与统计,本文整理了数学高考概率与统计的历年真题,并进行了精选,希望对考生的备考有所帮助。

1. 选择题精选1)(2015年广东高考)设事件A、B独立,P(A)=0.3,P(A∪B)=0.7,则P(B)为()A. 0.2B. 0.3C. 0.4D. 0.5解析:由独立事件的性质可得,P(A∪B) = P(A) + P(B) - P(A)·P(B),代入已知条件可得,0.7 = 0.3 + P(B) - 0.3·P(B),整理得P(B) = 0.4,故选C。

2)(2016年江苏高考)某人参加驾驶证考试,第一道选择题有5个选项,有且只有1个正确选项,则某人随机选择答案的通过率为()。

A. 5%B. 20%C. 25%D. 80%解析:某人随机选择答案的通过率为正确答案的比例,即为1/5,转换成百分数为20%,故选B。

2. 解答题精选1)(2017年北京高考)某地下车库共有4层,每层有16个停车位,小明停车习惯于停在第1层,而小红停车习惯于停在第2层,他们同时来到车库停车,请问小明和小红停在同一层的概率是多少?解析:小明停在第1层的概率为1/4,小红停在第2层的概率为1/4,由于小明和小红是同时来到车库停车的,因此小明和小红停在同一层的概率为(1/4)·(1/4) = 1/16。

2)(2018年福建高考)某地区的夏季天气,可以分为晴天、多云、阴天三种情况,以往观测数据表明:晴天、多云、阴天的概率分别为0.4、0.3、0.3。

今有一天这个地区天气为晴天,已知当天多云、阴天的概率为x和y,求概率x与y之和的最大值。

解析:根据题意,晴天的概率为0.4,多云和阴天的概率之和为0.6,因此x+y=0.6。

根据概率的性质,x和y的取值范围为[0, 0.3],且x+y的最大值为0.6。

高三数学练习题:概率与统计

高三数学练习题:概率与统计

高三数学练习题:概率与统计
问题1:
某班有40名学生,其中有30名学生参加了一个数学竞赛。

现在我们从这些学生中随机抽取一名学生,请计算以下概率:
a) 抽中一位参加了数学竞赛的学生;
b) 抽中一位未参加数学竞赛的学生。

问题2:
某班有50名学生,其中30人喜欢数学,20人喜欢英语,15人同时喜欢数学和英语。

现在我们从这些学生中随机选择一位学生,请计算以下概率:
a) 抽中一位喜欢数学的学生;
b) 抽中一位喜欢英语的学生;
c) 抽中一位同时喜欢数学和英语的学生。

问题3:
某地区的天气预报表明,星期一下雨的概率是0.3,星期二下雨的概率是0.4。

而星期一和星期二都下雨的概率是0.15。

现在,我们从这两个星期中随机选择一个天气预报,请计算以下概率:
a) 抽中星期一下雨;
b) 抽中星期二下雨;
c) 抽中星期一和星期二都下雨。

问题4:
某班有90名学生,其中40人喜欢数学,60人喜欢英语,20人同时喜欢数学和英语。

现在我们从这些学生中选择两个学生,请计算以下概率:
a) 抽中两位喜欢数学的学生;
b) 抽中两位喜欢英语的学生;
c) 抽中一位喜欢数学的学生和一位喜欢英语的学生。

问题5:
某打印店收到100份订单,其中有20份订单有错误。

现在,我们从这些订单中随机抽取一份,请计算以下概率:
a) 抽中一份有错误的订单;
b) 抽中一份没有错误的订单。

高一数学概率与统计试题

高一数学概率与统计试题

高一数学概率与统计试题概率与统计综合测试卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一所中学有高一.高二.高三共三个年级的学生1600名,其中高三学生400名.如果通过分层抽样的方法从全体高中学生中抽取一个容量为80人的样本,那么应当从高三年级的学生中抽取的人数是()A.10 B.20 C.30 D.402.从总体中抽取的样本数据共有m个a,n个b,p个c,则总体的平均数的估计值为( )A. B. C.D.3.甲.乙两人独立地解同一问题,甲解出这个问题的概率是,乙解出这个问题的概率是,那么其中至少有1人解出这个问题的概率是()A. B.C. D.4.若的展开式中各项的系数和为128,则项的系数为( )A.189 B.252 C.-189 D.-2525.甲.乙.丙.丁四名射击选手在选拨赛中所得的甲乙丙丁8998S25.76.25.76.4平均环数及其方差S2如下表所示,则选送参加决赛的最佳人选是A.甲B.乙C.丙 D.丁6.已知n为奇数,且n≥3,那么被9除所得的余数是( )A.0 B.1 C.7D.87.某仪表显示屏上有一排八个编号小孔,每个小孔可显示红或绿两种颜色灯光.若每次有且只有三个小孔可以显示,但相邻小孔不能同时显示,则每次可以显示()种不同的结果.A.20 B.40 C.80 D.1608.现有20个零件,其中16个一等品,4个二等品.若从20个零件中任取2个,那么至少有一个是一等品的概率是()A.B.C.D.9.七张卡片上分别写有0.0.1.2.3.4.5,现从中取出三张后排成一排,组成一个三位数,则共能组成( )个不同的三位数.A.100 B.105 C.145D.15010.把一枚质地不均匀的硬币连掷5次,若恰有一次正面向上的概率和恰有两次正面向上的概率相同(均不为0也不为1),则恰有三次正面向上的概率是()A. B.C.D.二.填空题:本大题共6小题,每小题5分,共30分.11.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装宽带,调查结果如下表所示:宽带动迁户原住户已安装6035未安装4560则该小区已安装宽带的户数估计有户12.如下是一个容量为200的样本的频率分布直方图,根据图中数据填空:(1)样本数据落在范围[5,9)的频率为_______;(2)样本数据落在范围[9,13)的频数为_______.13.在某市高三数学统考的抽样调查中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为_____________人.14.方程的解集是____________________.15.若某人投篮的命中率为p,则他在第n次投篮才首次命中的概率是________________.16.从1到10这10个数中任取不同的三个数,相加后能被3整除的概率是_____________.戴南高级中学_~_学年度下学期月考高二年级数学科答卷二.填空题:111213141516三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)有A.B.C.D四封信和1号.2号.3号三个信箱,若四封信可以随意投入信箱,投完为止.(1)求3号信箱恰好有一封信的概率;(2)求A信没有投入1号信箱的概率.18.(本小题满分12分)一个口袋中装有三个红球和两个白球.第一步:从口袋中任取两个球,放入一个空箱中;第二步:从箱中任意取出一个球,记下颜色后放回箱中.若进行完第一步后,再重复进行三次第二步操作,分别求出从箱中取出一个红球.两个红球.19.(本小题满分12分)若非零实数m.n满足2m+n=0,且在二项式(a_gt;0,b_gt;0)的展开式中当且仅当常数项是系数最大的项,(1)求常数项是第几项;(2)求的取值范围.20.(本小题满分12分)在一次由甲.乙.丙三人参加的围棋争霸赛中,比赛按以下规则进行,第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者.根据以往战绩可知,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,(1)求比赛以乙连胜四局而告终的概率;(2)求比赛以丙连胜三局而告终的概率.21.(本小题满分12分)在矩形ABCD中,AB=4,BC=3,E为DC边的中点,沿AE将ΔAED 折起,使二面角D-AE-B为60°.(1)求DE与平面AC所成角的大小;(2)求二面角D-EC-B的大小.(1)(2)22.(本小题满分12分)已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.(1) 第一小组做了三次实验,求至少两次实验成功的概率;(2) 第二小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.戴南高级中学___学年度下学期期中考试高二年级数学科试卷参考答案一.B.D.D.C.CC.D.D.B.A二.(11)9500; (12)0.32,72;(13)810;(14){1,3};(15); (16)三.(17) (1)设3号信箱恰好有一封信的概率为P1,-------(1分)则P1 == ;------(5分)(2)设A信没有投入1号信箱的概率为P2, -------(6分)则.------(10分)(18)设从箱中取出一个红球.两个红球.三个红球的概率分别为----(1分)从箱中取出一个红球时,完成事件只有一种可能:第一步取出的2个球1红1白,此时事件发生的概率为--------(6分)从箱中取出两个红球时,完成事件只有一种可能:第一步取出的2个球1红1白,此时事件发生的概率为-------(12分)解法二:设从箱中取出一个红球.两个红球.三个红球的概率分别为----(1分)第一步操作结束后,箱子中没有红球的概率为,箱子中有1个红球的概率为,箱子中有2个红球的概率为,-------(5分)则,--------(8分),--------(12分)(19)(1)设为常数项, ------(1分)则可由------(3分)解得 r=4, ------(5分)所以常数项是第5项. ------(6分)(2)由只有常数项为最大项且a_gt;0,b_gt;0,可得-------(10分)解得------(12分) (20)(1)设乙连胜四局的概率为,则-------(6分)(2)设丙连胜三局的概率为,则------(12分)(21)解:(1)在图(2)中,作平面,为垂足,作,为垂足,连结,则∴为二面角的平面角∴在中,在中,∵平面∴为与平面所成的角------------(6分)(2)在图(2)中过作于,为垂足,连结,则∴为二面角的平面角则∴∴二面角的平面角为.----------(12分)(22)(1) 第一小组做了三次实验,至少两次实验成功的概率是.------------(6分)(2) 第二小组在第4次成功前,共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,其各种可能的情况种数为.因此所求的概率为. ----------(12分)。

高中数学《计数原理与概率统计》练习题(含答案解析)

高中数学《计数原理与概率统计》练习题(含答案解析)

高中数学《计数原理与概率统计》练习题(含答案解析)一、单选题1.某校有学生800人,其中女生有350人,为了解该校学生的体育锻炼情况,按男、女学生采用分层抽样法抽取容量为80的样本,则男生抽取的人数是( ) A .35B .40C .45D .602.数据3.2,3.4,3.8,4.2,4.3,4.5,,6.6x 的65百分位数是4.5,则实数x 的取值范围是( ) A .[4.5,)+∞ B .[4.5,6.6) C .(4.5,)+∞D .(4.5,6.6]3.若书架上放的工具书、故事书、图画书分别是5本、3本、2本,则随机抽出一本是故事书的概率为( )A .15B .310 C .35D .124.已知随机变量X 服从二项分布(),XB n p ,若()54E X =,()1516=D X ,则p =( )A .14B .13C .34D .455.总体由编号01,02,…,29,30的30个个体组成.利用下面的随机数表选取6个个体,选取方法是从如下随机数表的第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为( )第1行78 16 62 32 08 02 62 42 62 52 53 69 97 28 01 98 第2行32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81 A .27B .26C .25D .196.已知随机变量X 的分布列为设23Y X =+,则()D Y 等于( ) A .83B .53C .23D .137.将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.88.为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在[)25,35内的产品为一等品,则该企业生产的产品为一等品的概率约为( )A .0.38B .0.61C .0.122D .0.759.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A .甲与丙相互独立 B .甲与丁相互独立 C .乙与丙相互独立D .丙与丁相互独立10.在一副去掉大小王的52张扑克牌中随机抽取1张,记M 表示事件“取到红桃”,N 表示事件“取到J”,有以下说法:①M 与N 互斥;①M 与N 相互独立;①M 与N 相互独立.则上述说法中正确说法的序号为( ) A .①B .①C .①①D .①①二、填空题11.已知随机变量X 服从正态分布2(1,)N σ,且(01)0.4P X <≤=,则(2)P x >=_______.12.从1,2,3,4,5中随机取三个不同的数,则其和为奇数这一事件包含的样本点个数为___________. 13.已知随机变量X ,Y 分别满足(),X B n p ,()5,4Y N ,且均值()()E X E Y =,方差()()D X Y D =,则p =________.14.若随机变量X 服从二项分布115,4B ⎛⎫⎪⎝⎭,则使()P X k =取得最大值时,k =______.三、解答题15.某科技公司研发了一项新产品A ,经过市场调研,对公司1月份至6月份销售量及销售单价进行统计,销售单价x (千元)和销售量y (千件)之间的一组数据如下表所示:(1)试根据1至5月份的数据,建立y 关于x 的回归直线方程;(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过065.千件,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?参考公式:回归直线方程ˆˆˆybx a =+,其中i ii 122ii 1ˆnnx y n x yb xnx==-⋅⋅=-∑∑.参考数据:5i i i 1392x y ==∑,52i i 1502.5x ==∑.16.某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)如下: 甲班:75、78、80、89、85、92、96. 乙班:75、80、80、85、90、90、95.求甲、乙两班学生成绩的方差,并从统计学角度分析该校应选择甲班还是乙班参赛.17.第24届冬季奥运会将于2022年2月在北京和张家口举办,为了普及冬奥知识,京西某校组织全体学生进行了冬奥知识答题比赛,从全校众多学生中随机选取了20名学生作为样本,得到他们的分数统计如下: 我们规定60分以下为不及格;60分及以上至70分以下为及格;70分及以上至80分以下为良好;80分及以上为优秀.(I )从这20名学生中随机抽取2名学生,恰好2名学生都是优秀的概率是多少?(II )将上述样本统计中的频率视为概率,从全校学生中随机抽取2人,以X 表示这2人中优秀人数,求X 的分布列与期望.18.某保险公司根据官方公布的2011—2020年的营业收入,制成表格如下:表1由表1,得到下面的散点图:根据已有的函数知识,某同学选用二次函数模型2y bx a =+(b 和a 均为常数)来拟合y 和x 的关系,这时,可以令2t x =,得y bt a =+,由表1可得t 与y 的相关数据如表2(1)根据表2中数据,建立y 关于t 的回归直线方程(系数精确到个位数);(2)根据(1)中得到的回归直线方程估计2023年的营业收入以及营业收入首次超过4000亿元的年份.参考公式;回归直线方程ˆˆˆvu βα=+中,()()()121ˆnii i nii uu v v uu β==--=-∑∑,ˆˆv u αβ=-. 参考数据:38.5t =,703.45y =,()102411.05110i i t t=-=⨯∑,()()10512.32710i i i t ty y =--=⨯∑.参考答案与解析:1.C【解析】利用分层抽样的定义直接求解即可 【详解】由题意可得男生抽取的人数是8003508045800-⨯=. 故选:C 2.A【分析】根据%p 分位数的定义判断求解.【详解】因为65%8 5.2⨯=,第65百分位数是4.5,故这组数据的第65百分位数是第六个数,所以x 的取值范围是[4.5,)+∞, 故选:A. 3.B【分析】由古典概率模型的计算公式求解.【详解】样本点总数为10,“抽出一本是故事书”包含3个样本点,所以其概率为310. 故选:B. 4.A【分析】由二项分布的均值和方差公式列方程组求解. 【详解】由题意5415(1)16np np p ⎧=⎪⎪⎨⎪-=⎪⎩,解得145p n ⎧=⎪⎨⎪=⎩. 故选:A . 5.D【分析】根据随机数表法的步骤即可求得答案.【详解】由题意,取出的数有23,20,80(超出范围,故舍去),26,24,26(重复,故舍去),25,25(重复,故舍去),36(超出范围,故舍去),99(超出范围,故舍去),72(超出范围,故舍去),80(超出范围,故舍去),19. 故选:D. 6.A【分析】根据分布列求出()E X ,()D X ,再根据条件得()()4D Y D x =,计算答案即可. 【详解】由X 的分布列得()1110121333E X =⨯+⨯+⨯=,()()()()22211120111213333D X =-⨯+-⨯+-⨯=,因为23Y X =+, 则()()843D Y D x == 故选:A. 7.C【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610, 故选:C. 8.B【分析】利用频率=频率组距⨯组距,即可得解. 【详解】根据频率分布直方图可知,质量指标值在[)25,35内的概率()0.0800.04250.12250.61P =+⨯=⨯=故选:B 9.B【分析】根据独立事件概率关系逐一判断【详解】11561()()()()6636366P P P P =====甲,乙,丙,丁, , 1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁, 1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙, 故选:B【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立 10.D【分析】根据互斥事件和相互独立事件的定义逐一判断即可得出答案. 【详解】解:因为M 表示事件“取到红桃”,包括“取到红桃J ”, N 表示事件“取到J”, 包括“取到红桃J ”, 所以事件,M N 可以同时发生,所以事件,M N 不是互斥事件,故①错误; 52张扑克牌中有13张红桃,4张J , 所以()()()1314113,,1524521344P M P N P M =====-=, 事件M N ⋂表示“取到红桃J ”,有1张, 事件MN 表示“取到除了红桃J 的J ”,有3张,所以()()()152P M N P M P N ⋂==,()()()352P M N P M P N ⋂==, 所以M 与N 相互独立,M 与N 相互独立, 故①①正确. 故选:D. 11.0.1【分析】利用正态分布对称性可求解. 【详解】由正态分布密度曲线对称性可知, (1)(01)(0)0.5P X P X P X ≤=<≤+<=,所以(0)0.1P X <=,所以(2)P x >=(0)0.1P X <=,故答案为:0.1. 12.4【分析】直接列举基本事件即可.【详解】从1,2,3,4,5中随机取三个不同的数有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种情况,其中(1,2,4),(1,3,5),(2,3,4),(2,4,5)中三个数字之和为奇数,共有4种. 故答案为:4.13.15##0.2【分析】由二项分布和正态分布的期望、方差公式建立方程,求解即可. 【详解】解:因为随机变量X ,Y 分别满足(),XB n p ,()5,4Y N ,所以()()5E X np E Y ===,()()()14D X np p D Y =-==, 解得125,5n p ==,故答案为:15.14.3或4【分析】先求得()P X k =的表达式,利用列不等式组的方法来求得使()P X k =取得最大值时k 的值. 【详解】依题意015,N k k ≤≤∈,依题意()1515151515151********C 1C C 344444kkk k k kk k k P X k ----⎛⎫⎛⎫==⋅⋅-=⋅⋅=⋅⋅ ⎪⎪⎝⎭⎝⎭,()()15150151141515151513130C 3,1C 354444P X P X ⎛⎫⎛⎫==⋅⋅===⋅⋅=⨯ ⎪ ⎪⎝⎭⎝⎭,()151154P X ⎛⎫== ⎪⎝⎭,()()()1501P X P X P X =<=<=,所以()0P X =、()15P X =不是()P X k =的最大项, 当114k ≤≤时,由1511615151515151141515151511C 3C 34411C 3C 344k k k k k k k k ----+-⎧⋅⋅≥⋅⋅⎪⎪⎨⎪⋅⋅≥⋅⋅⎪⎩,整理得1151511515C 3C 3C C k k k k -+⎧≥⎨≥⎩,即()()()()()()15!15!3!15!1!16!15!15!3!15!1!14!k k k k k k k k ⎧≥⨯⎪⨯--⨯-⎪⎨⎪⨯≥⎪⨯-+⨯-⎩, 整理得131631151k kk k ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,163343315k k k k k -≥⎧⇒≤≤⎨+≥-⎩, 所以当k 为3或4时,()P X k =取得最大值. 故答案为:3或415.(1)ˆ3240y x =-+.;(2)是.【分析】(1)先由表中的数据求出,x y ,再利用已知的数据和公式求出,b a ,从而可求出y 关于x 的回归直线方程;(2)当8x =时,求出y 的值,再与15比较即可得结论 【详解】(1)因为()199.51010.511105x =++++=,()1111086585y =++++=,所以23925108ˆ 3.2502.5510b-⨯⨯==--⨯,得()ˆ8 3.21040a=--⨯=, 于是y 关于x 的回归直线方程为 3.240ˆyx =-+; (2)当8x =时,ˆ 3.284014.4y=-⨯+=, 则ˆ14.4150.60.65yy -=-=<, 故可以认为所得到的回归直线方程是理想的. 16.该校应该选择乙班参赛.【分析】设有n 个数据为i x (1≤i≤n ,*i ∈N ),则其平均数为11n i i x x n ==∑,其方差为()2211n ii s x x n ==-∑,据此代入题干数据即可计算求解. 【详解】由题意,知75788089859296857x ++++++==甲,75808085909095857x ++++++==乙.①()()()2222136075857885968577s ⎡⎤=⨯-+-++-=⎣⎦甲,()()()2222130075858085958577s ⎡⎤=⨯-+-++-=⎣⎦乙. ①x x =乙甲,22s s >乙甲.即两班平均成绩相同,但乙班成绩较甲班成绩稳定,故应该选择乙班参赛. 17.(1)395;(2)分布列见详解;()25E X =.【分析】(1)利用组合数以及古典概型的概率计算公式即可求解.(2)由题意可得0,1,2x =,再利用二项分布的概率计算公式列出分布列,从而求出数学期望. 【详解】(1)记恰好2名学生都是优秀的事件为A ,则()242206319095C P A C ===. (2)抽到一名优秀学生的概率为41205p ==, X 的取值为0,1,2,()2002411605525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,()111241815525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()022241125525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, 故X 的分布列为:()168120122525255E X =⨯+⨯+⨯= 18.(1)ˆ22144yt =- (2)3574亿元,2024年【分析】(1)根据所给数据先求出ˆ22b≈,再利用ˆˆa y bt =-求得ˆ144a ≈-,即可得回归方程;第 11 页 共 11 页 (2) 2023年对应的13169x t =⇒=,代入回归方程计算即可;再令221444000t ->,解得188.4t >,即2188.4x >,即可求得所对应的年份.【详解】(1)解:易得()()()105110421 2.32710ˆ221.05110i i i i i t ty y b tt ==--⨯=≈≈⨯-∑∑, ˆˆ703.452238.5144ay bt =-≈-⨯≈-, 故y 关于t 的回归直线方程为ˆ22144yt =-. (2)解:2023年对应的t 的值为169,故该年的营业收入为ˆ221691443574y =⨯-=(亿元),所以估计2023年的营业收入为3574亿元.依题意,有221444000t ->.解得188.4t >,即2188.4x >.因为1314<,所以估计营业收入首次超过4000亿元的年份序号为14.即2024年.。

高中数学概率与统计真题(解析版)

高中数学概率与统计真题(解析版)

高中数学专题23 概率与统计真题汇编1.在1,2,3…,10中随机选出一个数a,在-1,-2,-3.…,-10中随机选出一个数b,则a2+b被3整除的概率为.【答案】【解析】若a∈{1,2,4,5,7,8,10},.若.若a∈{3,6,9},.若.∴a2+b为3的倍数的概率为.2.将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为.【答案】【解析】先考虑abc+def为奇数的情况,此时abc,def一奇一偶,若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样有3!×3!=36种情况,由对称性可知,使abc+def为奇数的情况数为36×2=72种.从而abc+def为偶数的概率为.3.袋子A中装有两张10元纸币和三张1元纸币,袋子B中装有四张5元纸币和三张1元纸币.现随机从两个袋子中各取出两张纸币.则A中剩下的纸币面值之和大于B中剩下的纸币面值之和的概率为________.【答案】【解析】一种取法符合要求,等价于从A中取走的两张纸币的总面值a小于从B中取走的两张纸币的总面值b,从而,.故只能从A中取走两张1元纸币,相应的取法数为.又此时,即从B中取走的两张纸币不能均为1元纸币,相应有种取法.因此,所求的概率为.4.在正方体中随机取三条棱,它们两两异面的概率为______.【答案】【解析】设正方体为,共12条棱,从中任意取出三条棱的方法有种.下面考虑使三条棱两两异面的取法数.由于正方体棱共确定三个互不平行的方向(即的方向),具有相同方向的四条棱两两共面,因此,取出的三条棱必属于三个不同的方向.可先取定方向的棱,这有四种取法.不妨设取的棱为.则方向只能取棱,共两种可能.当方向取棱时,方向取棱分别只能为.综上,三条棱两两异面的取法数为8.故所求概率为.5.设A、B、C、D为空间四个不共面的点,以的概率在每对点之间连一条边,任意两对点之间是否连边是相互独立的,则点A与B可用(一条边或者若干条边组成的)空间折线连接的概率为_______.【答案】【解析】每对点之间是否连边有2种可能,共有种情形.考虑其中点A、B可用折线连接的情形数.(1)有边AB:共种情形.(2)无边AB,但有边CD:此时,点A、B可用折线连接当且仅当点A与C、D中至少一点相连,且点B与C、D中至少一点相连,这样的情形数为.(3)无边AB,也无边CD:此时,AC与CB相连有种情形,AD与DB相连也有情形,但其中AC、CB、AD、DB均相连的情形被重复计了一次,故点A与B可用折线连接的情形数为.综上,情形数的总和为.故点A与B可用折线连接的概率为.6.从1,2,…,20中任取五个不同的数,其中至少有两个是相邻数的概率是______.【答案】【解析】设取自1,2, (20)若互不相邻,则.由此知从1,2,…,20中取五个互不相邻的数的选法与从1,2,…,16中取五个不同的数的选法相同,即种.于是,所求的概率为.7.某情报站有四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第一周使用种密码.那么,第七周也使用种密码的概率是______(用最简分数表示).【答案】.【解析】用表示第周用种密码本的概率.则第周末用种密码的概率为.故.8.两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则,由另一人投掷.则先投掷人的获胜概率是________.【答案】【解析】同时投掷两颗骰子点数和大于6的概率为,从而,先投掷人的获胜概率为.9.某车站每天早上8:00~9:00、9:00~10:00都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律见表1.一旅客8:20到站.则他候车时间的数学期望为______(精确到分).表1到站时刻8:10~9:10 8:30~9:30 8:50~9:50概率【答案】27【解析】旅客候车时间的分布如下表.候车时间(分)10 30 50 70 90 概率候车时间的数学期望为.1.从1,2,…,20这20个数中,任取三个不同的数.则这三个数构成等差数列的概率为(). A.B.C.D.【答案】D【解析】从这20个数中任取三个数,可构成的数列共有个.若取出的三个数a、b、c成等差数列,则a+c=2b.故a与c的奇偶性相同,且a、c确定后,b随之而定.从而,所求概率为.选D.2.掷两次色子,用X记两次掷得点数的最大值.则下列各数中,与期望最接近的数为( ) A.4B.C.5D.【答案】B【解析】易知,,,,,,,故,与最接近.3.将1,2,3,4,5,6,7,8,9这9个数随机填入的方格表中,每个小方格恰填写一个数,且所填数各不相同,则使每行、每列所填数之和都是奇数的概率是________.【答案】.【解析】要使每行、每列所填数之和都是奇数,必须使每行或每列中要么只有一个奇数,要么三个全为奇数,故满足条件的填法共有种.因此所求的概率为.故答案为:4.从正九边形中任取三个顶点构成三角形,则正九边形的中心在三角形内的概率________.【答案】【解析】如图,正9边形中包含中心的三角形有以下三种形状:对于(1),有3种情况;对于(2),有9种情况:对于(3);有18种情况;故所求概率为,故答案为:5.从1,2,…,10中随机抽取三个各不相同的数字,其样本方差的概率=_________.【答案】【解析】的样本方差,当且仅当是连续的正整数.故.故答案为:6.已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由某电视台举办的知识类答题闯关活动,活动共有四关,设男生闯过一至四关的概率依次是,女生闯过一至四关的概率依次是.(1)求男生闯过四关的概率;(2)设表示四人冲关小组闯过四关的人数,求随机变量的分布列和期望.【答案】(1);(2)见解析【解析】分析:(1)利用相互独立事件的概率计算公式即可得出;(2)记女生四关都闯过为事件,则的取值可能为0,1,2,3,4,利用相互独立事件的概率公式即可得出.详解:(1)记男生四关都闯过为事件,则;(2)记女生四关都闯过为事件,则,因为,,,,所以的分布如下:.点睛:本题考查了相互独立与互斥事件的概率计算公式,随机变量的分布列与数学期望计算公式,考查了推理能力与计算能力.7.设n为给定的大于2的整数。

数学高中统计概率练习题及讲解

数学高中统计概率练习题及讲解

数学高中统计概率练习题及讲解### 数学高中统计概率练习题及讲解#### 练习题一:独立事件的概率题目:在一个班级中,有50名学生,其中30名学生是男生,20名学生是女生。

如果随机选择两名学生,求以下事件的概率:1. 两名学生都是男生。

2. 至少有一名女生。

解答:1. 两名学生都是男生的概率可以通过组合概率来计算。

首先选择第一名男生的概率是30/50,然后从剩下的29名男生中选择第二名男生的概率是29/49。

因此,两名学生都是男生的概率是:\[ P(\text{两名男生}) = \frac{30}{50} \times \frac{29}{49} = \frac{30 \times 29}{50 \times 49} \]2. 至少有一名女生的概率可以通过计算其对立事件(两名学生都是男生)的概率来求解,然后用1减去这个概率。

根据上面的计算,两名学生都是男生的概率是:\[ P(\text{两名男生}) = \frac{30 \times 29}{50 \times 49} \]至少有一名女生的概率是:\[ P(\text{至少一名女生}) = 1 - P(\text{两名男生}) \]#### 练习题二:条件概率题目:在一个盒子里有5个红球和3个蓝球。

如果随机抽取一个球,然后不将其放回,再次抽取一个球。

求以下事件的概率:1. 第一次抽取的球是红球,第二次抽取的也是红球。

2. 第二次抽取的球是红球,给定第一次抽取的球是红球。

解答:1. 第一次抽取红球的概率是5/8,因为总共有8个球,5个是红的。

不将第一个红球放回,第二次抽取红球的概率变为4/7。

因此,两次都抽到红球的概率是:\[ P(\text{两次红球}) = \frac{5}{8} \times \frac{4}{7} \]2. 根据条件概率的定义,已知第一次抽取的是红球,第二次抽取红球的概率是:\[ P(\text{第二次红球 | 第一次红球}) = \frac{P(\text{两次红球})}{P(\text{第一次红球})} = \frac{\frac{5}{8} \times\frac{4}{7}}{\frac{5}{8}} \]#### 练习题三:二项分布题目:一个工厂的机器在每次运行时有0.05的概率出现故障。

高中数学-概率与统计测试题

高中数学-概率与统计测试题

高中数学概率与统计测试题一、选择题:(本题共10小题,每小题给出的四个选项中,只有一项是符合题目要求的) 1.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 ②“当x 为某一实数时可使02x ”是不可能事件 ③“明天广州要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件, 其中正确命题的个数是 ( ) A .0 B. 1 C. 2 D. 32.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a>b>cB .b>c>aC .c>a>bD .c>b>a 3. 下列说法一定正确的是 ( )A .一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况B .一枚硬币掷一次得到正面的概率是21,那么掷两次一定会出现一次正面的情况 C .如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元 D .随机事件发生的概率与试验次数无关 4.下列说法中,正确的是( ). A .数据5,4,4,3,5,2的众数是4 B .一组数据的标准差是这组数据的方差的平方C .数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D .频率分布直方图中各小长方形的面积等于相应各组的频数6.从一副扑克牌(54张)中抽取一张牌,抽到牌“K ”的概率是( ). A .154B .127C .118D .2275.同时掷两枚骰子,所得点数之和为5的概率为( ).A .14 B .19 C .16 D .112 6.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是( ).A .56 B .45 C .23 D .127.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为A .60%B .30%C .10%D .50% 8.下列说法正确的是A .某厂一批产品的次品率为110,则任意抽取其中10件产品一定会发现一件次品 B .气象部门预报明天下雨的概率是90﹪,说明明天该地区90﹪的地方要下雨,其余10﹪的地方不会下雨C .某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈D .掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5.9.如果一组数中每个数减去同一个非零常数,则这一组数的( ).A .平均数不变,方差不变B .平均数改变,方差不变C .平均数不变,方差改变D .平均数改变,方差改变10.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数 为10,方差为2,则|x -y |的值为( ).(A )1 (B )2 (C )3 (D )4二、填空题:(本题共4小题,每小题3分,共12分,请把答案填写在答题纸上)11. 对于①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由小到大排列为(填序号) 。

2023-2024学年山东省高中数学人教B版 必修二统计与概率同步测试-6-含解析

2023-2024学年山东省高中数学人教B版 必修二统计与概率同步测试-6-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年山东省高中数学人教B 版 必修二统计与概率同步测试(6)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1.重庆的8月份是一段让人难忘的时光,我们遭遇了高温与山火,断电和疫情.疫情的肆虐,让我们再次居家隔离.为了保障民生,政府极力保障各类粮食和生活用品的供应,在政府的主导与支持下,各大电商平台也纷纷上线,开辟了一种无接触式送货服务,用户在平台上选择自己生活所需要的货物并下单,平台进行配备打包,再由快递小哥送货上门.已知沙坪坝某小区在隔离期间主要使用的电商平台有:某东到家,海马生鲜,咚咚买菜.由于交通、配送等多方面原因,各电商平台并不能准时送达,根据统计三家平台的准点率分别为, , , 各平台送货相互独立,互不影响,某小哥分别在三家电商各点了一份配送货,则至少有两家准点送到的概率为( )A.B.C.D.101520252. 某次数学竞赛中有甲、乙、丙三个方阵,其人数之比为2∶3∶5.现用比例分配的分层随机抽样方法抽取一个容量为50的样本,其中方阵乙被抽取的人数为( )A. B. C.D. 12343. 已知一个样本中的数据为1,2,3,4,5,则该样本的方差为( )A.B. C.D.4. 一件产品要经过2道独立的加工工序,第一道工序的次品率为a,第二道工序的次品率为b,则产品的正品率为( )A.B.C.D.,,,,5.已知样本 , , ,…, 的平均数为 ,标准差为 ,那么样本 , , ,…, 的平均数和标准差分别是( )A.B.C.D.6. 某学校计划从2名男生和3名女生中任选3人参加抗疫英雄事迹演讲比赛,记事件为“至少有2名女生参加演讲”,则下列事恰有2名女生参加演讲至多有2名男生参加演讲恰有1名女生参加演讲至多有2名女生参加演讲件中与事件对立的是( )A. B. C. D. 73.3,75,7273.3,80,7370,70,7670,75,757. 某校从参加高一年级期末考试的学生中抽取60名学生的成绩(均为整数),其成绩的频率分布直方图如图所示,由此估计此次考试成绩的中位数,众数和平均数分别是( )A. B. C. D. (1)(2)(2)(3)(3)(4)(1)(4)8. 下列事件是随机事件的是( )(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在1℃时结冰 (4)任意掷一枚骰子朝上的点数是偶数.A. B. C. D. ③④②③①②④①②③9. 人的正常体温在至之间,下图是一位病人在治疗期间的体温变化图.现有下述四个结论:①此病人已明显好转;②治疗期间的体温极差小于 ;③从每8小时的变化来看,25日0时~8时体温最稳定;④从3月22日8时开始,每8小时量一次体温,若体温不低于 就服用退烧药,根据图中信息可知该病人服用了3次退烧药.其中所有正确结论的编号是( )A. B. C. D. 44532510. 如图是某样本数据的茎叶图,则该样本的众数是( )A. B. C. D. 11. 总体由编号为的个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第行的第列和第列数字开始由左到右依次选取两个数字(作为个体编号).则选出来的第个个体的编号为( )A.B.C.D.56101212. 某电视台为了解新推出的一档综艺节目的观众认可度,从某小区的120人中,用分层抽样的方法抽取30人进行访问,已知这120人中有年轻人60人,中年人40人,老年人20人,则需要抽取的老年人的数量为( )A. B. C. D. 13. 据气象部门的统计,浙江沿海某市下雨的概率为0.4,且雨天时湿度大于70%的概率为0.6,则该市既下雨同时湿度在70%以上的概率为 .14. 用简单随机抽样方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到”的概率分别是 .15. 对某实验项目进行测试,测试方法:①共进行3轮测试;②每轮测试2次,若至少合格1次,则本轮通过,否则不通过.已知测试1次合格的概率为, 如果各次测试合格与否互不影响,则在一轮测试中,通过的概率为 ;在3轮测试中,通过的次数X 的期望是 .16. 五一假期中,甲、乙、丙去北京旅游的概率分别是 , , ,假定三人的选择相互之间没有影响,那么这个假期中至少有1人去北京旅游的概率为 .17. 随着国内电商的不断发展,快递业也进入了高速发展时期,按照国务院的发展战略布局,以及国家邮政管理总局对快递业的宏观调控,SF 快递收取快递费的标准是:重量不超过1kg 的包裹收费10元;重量超过1kg 的包裹,在收费10元的基础上,每超过1kg (不足1kg ,按1kg 计算)需再收5元.某县SF 分代办点将最近承揽的100件包裹的重量统计如下:重量(单位:kg )(0,1](1,2](2,3](3,4](4,5]件数43301584对近60天,每天揽件数量统计如下表:件数范围0~100101~200201~300301~400401~500件数50150250350450天数663016以上数据已做近似处理,将频率视为概率.(1) 计算该代办点未来5天内不少于2天揽件数在101~300之间的概率;(2) ①估计该代办点对每件包裹收取的快递费的平均值;②根据以往的经验,该代办点将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前该代办点前台有工作人员3人,每人每天揽件不超过150件,日工资110元.代办点正在考虑是否将前台工作人员裁减1人,试计算裁员前后代办点每日利润的数学期望,若你是决策者,是否裁减工作人员1人?18. 第56届世界乒乓球团体锦标赛于2022年在中国成都举办,国球运动又一次掀起热潮.现有甲乙两人进行乒乓球比赛,比赛采用7局4胜制,每局11分制,每赢一球得1分,选手只要得到至少11分,并且领先对方至少2分(包括2分),即赢得该局比赛.在一局比赛中,每人只发2个球就要交换发球权,如果双方比分为10:10后,每人发一个球就要交换发球权.(1) 已知在本场比赛中,前三局甲赢两局,乙赢一局,在后续比赛中,每局比赛甲获胜的概率为 , 乙获胜的概率为 , 且每局比赛的结果相互独立,求甲乙两人只需要再进行两局比赛就能结束本场比赛的概率;(2) 已知某局比赛中双方比分为8:8,且接下来两球由甲发球,若甲发球时甲得分的概率为,乙发球时乙得分的概率为,各球的结果相互独立,求该局比赛甲得11分获胜的概率.19. 5G网络是第五代移动通信网络的简称,是新一轮科技革命最具代表性的技术之一.2020年初以来,我国5G网络正在大面积铺开.A市某调查机构为了解市民对该市5G网络服务质量的满意程度,从使用了5G手机的市民中随机选取了200人进行问卷调查,并将这200人根据其满意度得分分成以下6组:、、、…,,统计结果如图所示:(1) 由直方图可认为A市市民对5G网络满意度得分Z(单位:分)近似地服从正态分布,其中近似为样本平均数,近似为样本的标准差s,并已求得.若A市恰有2万名5G手机用户,试估计这些5G手机用户中满意度得分位于区间的人数(每组数据以区间的中点值为代表);(2) 该调查机构为参与本次调查的5G手机用户举行了抽奖活动,每人最多有3轮抽奖活动,每一轮抽奖相互独立,中奖率均为.每一轮抽奖,奖金为100元话费且继续参加下一轮抽奖;若未中奖,则抽奖活动结束.现小王参与了此次抽奖活动,求小王所获话费总额X的数学期望.参考数据:若随机变量Z服从正态分布,即,则,.20. 某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为,样本数据分组为,,,, .(1) 求直方图中a的值;(2) 如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿;(3) 求该校学生上学路上所需的平均时间.21. 2018年6月19日凌晨某公司公布的年中促销全天交易数据显示,天猫年中促销当天全天下单金额为1592亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了6月18日100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.网购金额(元)频数频率50.05150.15250.25300.3合计1001(Ⅰ)先求出的值,再将图中所示的频率分布直方图绘制完整;(Ⅱ)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2 000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?网龄3年以上网龄不足3年总计购物金额在2000元以上35购物金额在2000元以下20总计100参考数据:0.150.100.050.0250.0100.0050.0012.072 2.0763.841 5.024 6.6357.87910.828参考公式:其中 .(Ⅲ)从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在和两组所抽中的8人中再随机抽取2人各奖励1000元现金,求组获得现金奖的数学期望.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)(3)21.。

2023-2024学年海南省高中数学人教B版 必修二统计与概率同步测试-4-含解析

2023-2024学年海南省高中数学人教B版 必修二统计与概率同步测试-4-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年海南省高中数学人教B 版必修二统计与概率同步测试(4)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)各月的平均最高气温都在 以上六月的平均温差比九月的平均温差大七月和八月的平均最低气温基本相同平均最低气温高于 的月份有5个1. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中 点表示十月的平均最高气温约为 , 点表示四月的平均最低气温约为.下面叙述不正确的是()A. B.C. D. 该校学生每月在食品小卖部消费过的天数不低于20的学生比率估计为20%该校学生每月在食品小卖部消费过的天数低于10的学生比率估计为32%2. 《关于落实主体责任强化校园食品安全管理的指导意见》指出:非寄宿制中小学、幼儿园原则上不得在校内设置食品小卖部、超市,已经设置的要逐步退出.为了了解学生对校内开设食品小卖部的意见,某校对100名在校生天内在该校食品小卖部消费过的天数进行统计,将所得数据按照、、、、、分成6组,制成如图所示的频率分布直方图.根据此频率分布直方图,下列结论不正确的是( )A. B.估计该校学生每月在食品小卖部消费过的天数的平均值不低于15估计该校学生每月在食品小卖部消费过的天数的中位数介于10至15之间C. D. 3. 中国书法历史悠久、源远流长.书法作为一种艺术,以文字为载体,不断地反映和丰富着华夏民族的自然观、宇宙观和人生观.谈到书法艺术,就离不开汉字.汉字是书法艺术的精髓.汉字本身具有丰富的意象和可塑的规律性,使汉字书写成为一门独特的艺术.我国书法大体可分为篆、隶、楷、行、草五种书体,如图:以“国”字为例,现有甲乙两名书法爱好者分别从五种书体中任意选两种进行研习,且甲乙选书体互相独立,则甲不选隶书体,乙不选草书体的概率为().A. B. C. D.乙运动员得分的中位数是17,甲运动员得分的极差是19甲运动员发挥的稳定性比乙运动员发挥的稳定性差甲运动员得分有的叶集中在茎1上甲运动员得分的平均值一定比乙运动员得分的平均值低 4. 某赛季甲、乙两名篮球运动员每场比赛得分用茎叶图表示,茎叶图中甲得分的部分数据被墨迹污损不清(如图1),但甲得分的折线图完好(如图2),则下列结论错误的是( )A. B. C. D. 5. 某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A. B. C. D.5和1.685和1.685和0.45和0.46.如图是某体育比赛现场上七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A. B. C. D. 7. 某城市为了了解市民搭乘公共交通工具的出行情况,收集并整理了2017年全年每月公交和地铁载客量的数据,绘制了下面的折线图:全年各月公交载客量的极差为41全年各月地铁载客量的中位数为22.57月份公交与地铁的载客量相差最多全年地铁载客量要小于公交载客量根据该折线图,下列结论错误的是( )A. B. C. D. 138. 已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的 的比值 ( ).A. B. C. D.9. 从1,2,3,4,5中随机抽取三个数,则这三个数能成为一个三角形三边长的概率为()A. B. C. D.1264310. 某学校共有教师120人,老教师、中年教师、青年教师的比例为,其中青年男教师24人. 现用分层抽样的方式从该校教师中选出一个30人的样本,则被选出的青年女教师的人数为( )A. B. C. D. 平均数可能不变,中位数可能不变,方差可能不变平均数大大增大,中位数可能不变,方差也不变平均数大大增大,中位数一定变大,方差可能不变平均数大大增大,中位数可能不变,方差变大11. 已知数据x 1 , x 2 , x 3 , …,x 100是杭州市100个普通职工的2016年10月份的收入(均不超过2万元),设这100个数据的中位数为x ,平均数为y ,方差为z ,如果再加上马云2016年10月份的收入x 101(约100亿元),则相对于x 、y 、z ,这101个月收入数据( )A. B. C. D. 12. 甲乙两人独立地破译某个密码,甲译出密码的概率为 ,乙译出密码的概率为 ,则密码被译出的概率是( )A. B. C. D.13. 已知一组数据8.6,8.9,9.1,9.6,9.7,9.8,9.9,10.2,10.6,10.8,11.2,11.7,则该组数据的第80百分位数为 .14. 设一组样本数据的平均数是3,则数据,, …,的平均数为 .15. 已知2,4,2x,4y四个数的平均数是5而5,7,4x,6y四个数的平均数是9,则xy的值是16. 思考辨析,判断正误:若事件,,两两互斥,则. .17. 随着春季学期开学,某市市场监管局加强了对学校食堂食品安全管理,助力推广校园文明餐桌行动,培养广大师生文明餐桌新理念,以“小餐桌”带动“大文明”,同时践行绿色发展理念.该市某中学有A,B两个餐厅为老师与学生们提供午餐与晚餐服务,王同学、张老师两人每天午餐和晚餐都在学校就餐,近一个月(30天)选择餐厅就餐情况统计如下:选择餐厅情况(午餐,晚餐)王同学9天6天12天3天张老师6天6天6天12天假设王同学、张老师选择餐厅相互独立,用频率估计概率.(1) 估计一天中王同学午餐和晚餐选择不同餐厅就餐的概率;(2) 记X为王同学、张老师在一天中就餐餐厅的个数,求X的分布列和数学期望;(3) 假设M表示事件“A餐厅推出优惠套餐”,N表示事件“某学生去A餐厅就餐”,,已知推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明:.18. 高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答如下问题:(1) 求高一(1)班参加校生物竞赛人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(2) 若要从分数在[80,100]之间的学生中任选两人进行某项研究,求至少有一人分数在[90,100]之间的概率.19. 2020年国庆节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握国庆节期间车辆出行的高峰情况,在某高速公路收费站点记录了3日上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费站点,它们通过该收费站点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作、9:40~10:00记作,10:00~10:20记作,10:20~10:40记作,例如:10点04分,记作时刻64.(Ⅰ)估计这600辆车在9:20~10:40时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(Ⅱ)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X的分布列;(Ⅲ)根据大数据分析,车辆在每天通过该收费站点的时刻T服从正态分布,其中可用3日数据中的600辆车在9:20~10:40之间通过该收费站点的时刻的平均值近似代替,用样本的方差近似代替(同一组中的数据用该组区间的中点值代表).假如4日全天共有1000辆车通过该收费站点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).附:若随机变量T服从正态分布,则,,.20. 某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在160cm到184cm之间,将测量结果按如下方式分成六组:第1组,第2组,...,第6组,如图是按上述分组得到的频率分布直方图,以频率近似概率.(1) 若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;(2) 现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.21. 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的100件产品作为样本称出它们的质量(单位:克),质量的分组区间为,,…,.由此得到样本的频率分布直方图如下图.(1) 估计这条生产流水线上,质量超过515克的产品的比例;(2) 求这条生产流水线上产品质量的平均数和方差的估计值(同一组中的数据用该组区间的中点值作代表).答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)(3)18.(1)(2)19.(1)(2)21.(1)(2)。

2023-2024学年江苏省高中数学人教B版 必修二统计与概率同步测试-6-含解析

2023-2024学年江苏省高中数学人教B版 必修二统计与概率同步测试-6-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年江苏省高中数学人教B 版 必修二统计与概率同步测试(6)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)2℃1℃0℃℃1. 如图是根据某市1月1日至1月10日的最低气温(单位:℃)的情况绘制的折线统计图,由图可知这10天的最低气温的第50百分位数是( )A. B. C. D. 旋转的次数的多少不会影响估计的结果旋转的次数越多,估计的结果越精确旋转时可以按规律旋转转盘的半径越大,估计的结果越精确2. 下列关于用转盘进行随机模拟的说法中正确的是( )A. B. C. D. 图中m 的数值为26估计该校观看比赛不低于3场的学生约为1380人估计该校学生观看比赛场数的中位数小于平均数样本数据的第90百分位数为53. 在“冬奥会”闭幕后,某中学社团对本校3000名学生收看比赛情况用随机抽样方式进行调查,样本容量为50,将所有数据分组整理后,绘图如下,以下结论中正确的是( )A. B. C. D. 4. 某校学生的男女人数之比为 ,按照男女比例通过分层随机抽样的方法抽到一个样本,样本中男生每天运动时间的平均值为100分钟、女生为80分钟.结合此数据,估计该校全体学生每天运动时间的平均值为( )98分钟90分钟88分钟85分钟A. B. C. D. 平均数众数标准差中位数5. 已知样本M 的数据如下:80,82,82,84,84,84,86,86,86,86,若将样本M 的数据分别加上4后得到样本N 的数据,那么两样本M ,N 的数字特征对应相同的是( )A. B. C. D. 不全相等均不相等都相等且为都相等且为6. 某校要从高一、高二、高三共2010名学生中选取50名组成2010年上海世博会的志愿团,若采用下面的方法选取;先用简单随机抽样的方法从2010人中剔除10人,剩下的2000人再按分层抽样的方法进行,则每人入选的概率 ( )A. B. C. D. 随机抽样分成抽样先用抽签法,再用分层抽样先用分层抽样,再用随机数表法7. 某校为了了解高一学生的身体发育情况,打算在高一年级16个班中某两个班男女生比例抽取样本,正确的是( )A. B. C. D. 8. 羽毛球混合双打比赛每队由一男一女两名运动员组成. 某班级从3名男生 ,,和3名女生,,中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则 和两人组成一队参加比赛的概率为( )A.B.C.D.9. 同时抛三枚普通的硬币,出现“两个正面一个反面”的概率是( )A.B.C.D.10. 已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分,现从该箱中任取(无放回,且每球取得的机会相等)3个球,则取出的3个球所得分数之和刚好为4的概率是( )A.B.C.D.0.80.750.60.4811. 大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是( )A. B. C. D. ,,,,12. 已知 个数 , ,…,的平均数为 ,方差为 ,则数 ,,…,的平均数和方差分别为( )A.B.C.D.13. 某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取 18 所学校,中学中抽取 所学校.14. 如图所示,在正方形 内,随机投入一个质点,则所投质点恰好落在 与 轴及抛物线 所围成的区域内的概率是.15. 从5名同学中任选3人担任上海进博会志愿者,则“甲被选中,乙没有被选中”的概率是.16. 从0,1,2,…,9这10个整数中任意取3个不同的数作为二次函数f(x)=ax2+bx+c的系数,则使得∈Z的概率为.17. 乒乓球比赛规则规定,一局比赛,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1) 求开球第3次发球时,甲比分领先的概率;(2) 求开球第4次发球时,甲、乙的比分为1比2的概率;18. 某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株.现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长单位:的抽查结果如下表:树干周长单位:株数4186(1) 求的值;(2) 若已知树干周长在至之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.19. 某市教育局为调查该市高一年级学生的综合素养,在该市高一年级的学生中随机抽取了100名学生作为样本,进行了“综合素养测评”,根据测评结果绘制了测评分数的频率分布直方图,如下图.(1) 求直方图中a的值;(2) 由直方图分别估计该市高一年级学生综合素养成绩的众数、平均数和方差.(同一组中的数据用该组区间的中点值为代表)20. 某电子商务公司对10000名网络购物者2023年第一季度的消费情况进行统计,发现消费金额(单位:万元)都在区间内,其频率分布直方图如图所示.(1) 求频率直方图中a的值,并估计这些网络购物者第一季度消费金额的平均数;(2) 该电子商务公司决定对消费金额高的前18%的消费者进行奖励,若小明的消费金额是0.65万元,请你估算他会得到奖励吗21. 甲、乙两人在相同条件下各打靶10次,每次打靶所得的环数如图所示.填写下表,请从下列角度对这次结果进行分析.命中9环及以上的次数平均数中位数方差甲乙(1) 命中9环及以上的次数(分析谁的成绩好些);(2) 平均数和中位数(分析谁的成绩好些);(3) 方差(分析谁的成绩更稳定);(4) 折线图上两人射击命中环数的走势(分析谁更有潜力).答案及解析部分1.2.3.4.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)21.(1)(2)(3)(4)第 11 页 共 11 页。

高一数学统计与概率试题

高一数学统计与概率试题

高一数学统计与概率试题1.在棱长为2的正方体中,点为底面的中心,在正方体内随机取一点,则点到点的距离大于1的概率为()A.B.C.D.【答案】B【解析】正方体体积为,点到点的距离不大于1时构成的图形的体积为,所以所求概率为【考点】几何概型概率2.(本题满分14分)某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表商店名称A B C D E(1)画出散点图.观察散点图,说明两个变量有怎样的相关性。

(2)用最小二乘法计算利润额y对销售额x的回归直线方程.(3)当销售额为4(千万元)时,估计利润额的大小.【答案】(1)两个变量符合正相关;(2);(3)2.4【解析】(1)随着x的增加,y在增加,因此两变量之间是正相关,(2)利用表格中的数据首先计算出,代入公式得到,即可得到回归方程,(3)利用回归方程可由销售额估计利润大小试题解析:(1)(五个点中,有错的,不能得2分,有两个或两个以上对的,至少得1分)两个变量符合正相关 4分(2)设回归直线的方程是:,6分∴8分9分∴y对销售额x的回归直线方程为: 11分(3)当销售额为4(千万元)时,利润额为:=2.4(千万元) 14分【考点】回归分析3.在区间上随机取一个数,使的值介于到1之间的概率为A.B.C.D.【答案】B【解析】当时,区间长度为2,而区间长度为3,所以概率【考点】1.三角不等式;2.几何概型概率4.某校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为()A.45,75,15B.45,45,45C.30,90,15D.45,60,30【答案】D【解析】层比是,所以各个年级所抽取的人数就是:,,.【考点】分层抽样5.如图是某学校抽取的个学生体重的频率分布直方图,已知图中从左到右的前个小组的频率之比为,第小组的频数为,则的值是.【答案】48【解析】因为各小组频率之和为1,而后两组频率之和为:,所以前三组频率之和为1-0.25=0.75,又因为从左到右的前3个小组的频率之比为1:2:3,故第三组频率为,因为第3小组的频数为18,则抽取的学生人数是.【考点】频率分布直方图6.某企业有职工人,其中高级职称人,中级职称人,一般职员人,现抽取人进行分层抽样,则各职称人数分别为A.B.C.D.【答案】B【解析】,故选B.【考点】分层抽样,等概率抽样.7.某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比,如图是将某年级60篇学生调查报告的成绩进行整理,分成5组画出的频率分布直方图.已知从左往右4个小组的频率分别是0.05,0.15,0.35,0.30,那么在这次评比中被评为优秀的调查报告有(分数大于等于80分为优秀,且分数为整数)()A.18篇B.24篇C.25篇D.27篇【答案】D【解析】根据频率分布直方图,得:分数大于80分的频率为,所以被评为优秀的调查报告有,故选D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学统计与概率测试题一选择题1 •某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A. 1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100 2 •某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图,则以下说法不正确的是()A.获得参与奖的人数最多B.各个奖项中三等奖的总费用最高C.购买奖品的费用平均数为9.25元D.购买奖品的费用中位数为2元3.滴滴公司为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查,为此将他们随机编号1,2 ,? , 2000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间[1,820]的人做问卷A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为(,A. 23B. 24C. 25D. 264.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,1 / 9则n=( )A. 13B. 12C. 10D. 9 5 A,B,C,D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或D妈妈的车概率是115 2A. B. C. D.3 2 9 36. 如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图旧巽殖阱根据频率分布直方图,下列说法正确的是①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍A.①②③B.②③④C.①③④D.①④7. 甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为()A. 5B. 4C. 3D. 2&一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为()A. 1丄63B.4C. 61D.49 •现有甲、乙两台机床同时生产直径为40mm的零件,各抽测10件进行测量,其结果如下图,则不通过计算从图中数据的变化不能反映的数字特征是()A.极差B.方差C.平均数D.中位数10 .某公司某件产品的定价x与销量y之间的数据统计表如下,根据数据,用最小二乘法得出y与x的线性回归直线方程为:y 6.5x 17.5,则表格中n的值应为(A. 45B. 50C. 55D. 6011. A 地的天气预报显示,A 地在今后的三天中, 每一天有强浓雾的概率为 30%,现用随机模 拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生 0-9之间整数值的随机数,并用0, 1, 2, 3, 4, 5,表示没有强浓雾,用 7, 8,9表示有强浓雾,再以每 3个随 机数作为一组,代表三天的天气情况,产生了如下 20组随机数:231357394027506588730则这三天中至少有两天有强浓雾的概率近似为( )球,则两次摸出的球恰好颜色不同的概率为2 7 12 16 A.-B.C.D .5122525二填空题13.在区间[ 5,5]内随机地取出一个数 2 2a ,使得1 {x|2x ax a 0}的概率为14. 甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲 袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽 取1个球,则取出的两球颜色不同的概率为 ______________ .(用分数作答)15. 已知下列命题: ,线性回归方程为 y 8x 56,意味着x 每增加一个单位,y 平均增加8个单位,投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件,互斥事件不一定是对立事件,但对立事件一定是互斥事件,在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型其中正确的命题有 ___________________ .402978 191 925 273 842 812 479 569 683 113537779A .B. C .10D .12. 一个口袋中装有大小相同的 2个白球和3个黑球, 从中摸出一个球, 放回后再摸出一个16 •我国古代数学算经十书之一的《九章算术》有一衰分问题:“今有北乡八千一百人,西乡久千人,南乡五千四百人,凡三乡,发役五百人•”意思是用分层抽样从这三个乡中抽出了500人服役,则南乡应该抽出___________ 人.三解答题17 .南方智运汽车公司在我市推出了共享汽车“ Warmcar筍,款车型为众泰云”新能源共享汽车,其中一种租用方式分时计费"规则为:0.15元/分钟+0.8元/公里.已知小李家离上班地点为10公里,每天租用该款汽车上、下班各一次,由于堵车、及红绿灯等原因每次路上开车花费的时间t (分钟)是一个随机变量,现统计了100次路上开车花费时间,在各时间段内是频数分布情况如下表所示:,1写出小李上班一次租车费用(元)与用车时间(分钟)的函数关系;,2)根据上面表格估计小李平均每次租车费用;,3,“泰云”新能源汽车还有一种租用方式为按月计费”,规则为每个月收取租金2350元, 若小李每个月上班时间平均按21天计算,在不计电费和情况下,请你为小李选择一种省钱的租车方式,18. 某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程R的行业标准,予以地方财政补贴,其补贴标准如下表,2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程??得到频率分布直方图如上图所示,用样本估计总体,频率估计概率,解决如下问题:,1,求该市每辆纯电动汽车2017年地方财政补贴的均值;(同一组数据用该区间的中点值作代表)2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来,该企业拟将转移补贴资金用于添置新型充电设备,现有直流、交流两种充电桩可供购置,直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台;交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台,该企业现有两种购置方案:方案一,购买100台直流充电桩和900台交流充电桩;方案二,购买200台直流充电桩和400台交流充电桩,假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润•,日利润=日收入-日维护费用),19. 某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2 ,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。

经济学家调查发现,当地人均可支配年收入较上一年每增加n%,—般困难的学生中有3n%会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有2n%转为一般困难,特别困难的学生中有n%转为很困难。

现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份x取13时代表2013年,X与y (万元)近似满足关系式y G.2C2X,其中C1,C2为常数。

(2013年至2019年该市中学生人数大致保持不变)1其中k log 2 y i , k k i5 i 1(I)估计该市2018年人均可支配年收入;(I)求该市2018年的“专项教育基金”的财政预算大约为多少?附:对于一组具有线性相关关系的数据(u1, V|),( u2, v2)...(u n, v n),其回归直线方程v u的斜率和截距的最小二乘估计分别为n(U i u)(V i v)i 1n(U i U)220.某大学为了更好提升学校文化品位, 发挥校园文化的教育功能特举办了校园文化建设方案征集大赛,经评委会初评,有两个优秀方案入选 .为了更好充分体现师生的主人翁意识,组委会邀请了 100名师生代表对这两个方案进行登记评价 (登记从高到低依次为 A,B,C,D,E ),评价结果对应的人数统计如下表:,,,若按分层抽样从对 1号方案进行评价的100名师生中抽取样本进行调查,其中 C 等级层抽取3人,D 等级层抽取1人,求a,b,c 的值;(H )在(I )的条件下,若从对2个方案的评价为????勺评价表中各抽取10% 进行数据分析,再从中选取 2份进行详细研究,求选出的2份评价表中至少有1份评价为D 的概率.21 •中国海军,正在以不可阻挡的气魄向深蓝进军。

在中国海军加快建设的大背景下,国产 水面舰艇吨位不断增大、技术日益现代化,特别是国产航空母舰下水,航母需要大量高素质航母舰载机飞行员。

为此中国海军在全国 9省9所优质普通高中进行海航班建设试点培育航 母舰载机飞行员。

2017年4月我省首届海军航空实验班开始面向全省遴选学员,有名初中毕业生踊跃报名投身国防,经过文化考试、体格测试、政治考核、心理选拔等过程筛=V10000选,最终招收50名学员。

培养学校在关注学员的文化素养同时注重学员的身体素质,要求每月至少参加一次野营拉练活动(下面简称“活动”)并记录成绩. 10月某次活动中海航班学员成绩统计如图所示:,,)根据图表,试估算学员在活动中取得成绩的中位数(精确到0.1 ,,,,)根据成绩从[50,60), [90,100)两组学员中任意选出两人为一组,若选出成绩分差大于10,则称该组为“帮扶组”,试求选出两人为“帮扶组”的概率.。

相关文档
最新文档