气垫导轨类实验

气垫导轨类实验
气垫导轨类实验

气垫导轨类实验

气垫导轨是一种阻力极小的力学实验装置。它利用气源将压缩空气打入导轨型腔,再由导轨表面上的小孔喷出气流,在导轨与滑行器之间形成很薄的气膜,将滑行器浮起,并使滑行器能在导轨上作近似无阻力的直线运动。

仪器介绍

气垫导轨实验装置由导轨、滑块和光电测量系统组成。

1.导轨(图3.2-1)

导轨的主体是一根长约1.5米的截面为三角形的金属空腔管,在空腔管的侧面钻有两排等间距并错开排列的喷气小孔。空腔管一端密封,另一端装有进气嘴与气泵相连。气泵将压缩空气送入空腔管后,再由小孔高速喷出。在导轨上安放滑块,在导轨下装有调节水平用的底脚螺丝和用于测量光电门位置的标尺。整个导轨通过一系列直立的螺杆安装在口字形铸铝梁上。

进气嘴弹簧片挡光板滑块

底脚螺丝导轨

图 3.2-1

2.滑块

滑块是由长约0.100—0.300米的角铝做成的。其角度经过校准,内表面经过细磨,与导轨的两个上表面很好吻合。当导轨的喷气小孔喷气时,在滑块和导轨这两个相对运动的物体之间,形成一层厚约0.05-0.20mm流动的空气薄膜—气垫。由于空气的粘滞阻力几乎可以忽略不计,这层薄膜就成为极好的润滑剂,这时虽然还存在气垫对滑块的粘滞阻力和周围空气对滑块的阻力,但这些阻力和通常接触摩擦力相比,是微不足道的,它消除了导轨对运动物体(滑块)的直接摩擦,因此滑块可以在导轨上作近似无摩擦的直线运动。滑块中部的上方水平安装着挡光片,与光电门和计时器相配合,测量滑块经过光电门的时间或速度。滑块上还可以安装配重块(即金属片,用以改变滑块的质量)、接合器及弹簧片等附件,用于完成不同的实验。滑块必须保持其纵向及横向的对称性,使其质心位于导轨的中心线且越低越好,至少不宜高于碰撞点。

3.光电测量系统

光电测量系统由光电门和光电计时器组成,其结构和测量原理如图3.2-2所示。当滑块

从光电门旁经过时,安装在其上方的挡光片穿过光电门,从光电门发射器发出的红外光被挡光片遮住而无法照到接收器上,此时接受器产生一个脉冲信号。在滑块经过光电门的整个过程中,挡光片两次遮光,则接受器共产生两个脉冲信号,计时器测出这两个脉冲

信号之间的时间间隔t ?。它的作用与停表相似:第一

次挡光相当于开启停表(开始计时),第二次挡光相当

于关闭停表(停止计时)。但这种计时方式比手动停表所产生的系统误差要小得多,光电计时器显示的精度也比停表高得多。如果预先确定了挡光片的宽度,即挡光片两翼的间距S ?,则可求得滑块经过光电门的速度/v S t =??。本实验中 1.00S cm ?=。

光电计时器是以单片机为核心,配有相应的控制程序,具有计时1、计时2、碰撞、加速度、计数等多种功能。“功能键”兼具“功能选择”和“复位”两种功能:当光电门没遮过光,按此键选择新的功能;当光电门遮过光,按此键则清除当前的数据(复位)。转换键则可以在计时1和计时2之间交替翻查24个时间记录。

仪器调节

一.导轨的调平。

横向调平是借助于水平仪调节横向两个底角螺丝来完成;纵向调平有静态调节和动态调节两种方法。

1.静态调节法

打开气泵给导轨通气,将滑块放在导轨上,观察滑块向哪一端移动,就说明那一端低。调节导轨底脚螺丝直至滑块保持不动或者稍有滑动但无一定的方向性为止。原则上,应把滑块放在导轨上几个不同的地方进行调节。如果发现把滑块放在导轨上某点的两侧时,滑块都向该点滑动,则表明导轨本身不直,并在该点处下凹(这属于导轨的固有缺欠,本实验条件无法继续调整)。这种方法只作为导轨的初步调平。

2.动态调节法

轻拨滑块使其在导轨上滑行,测出滑块通过两光电门的时间1t δ和2t δ,1t δ和2t δ相差较大则说明导轨不水平。由于空气阻力的存在,即使导轨完全水平,滑块也是在做减速运动,即12t t δδ<,所以不必使二者相等。

二.检查并调节光电计时器。

分别将光电门1、2的导线插入计时器的P 1、P 2插口,打开电源开关,按功能键,使S 指示灯亮。让滑块经过光电门1,仪器应显示滑块经过距离S ?所需要的时间t ?,滑块再次经过光电门1时显示值变化,说明仪器显示工作正常。同样检查光电门2是否工作正常。然后按功能键,清除已存数据,再次按功能键开始功能转换,选相应的功能挡,准备正式测量。

气垫导轨使用注意事项

1.气孔不喷气时,不得将滑块放在导轨上,更不得将滑块在导轨上来回滑动。

挡光

片S

?挡光片

图 3.2-2

2.每次实验前,都要把气轨调到水平状态,包括纵向和横向水平。

3.气轨表面不允许有尘土污垢,使用前需用干净棉花蘸酒精将气轨表面和滑块内表面擦净。

4.接通气源后,须待导轨空腔内气压稳定、喷气流量均匀之后,再开始做实验。

5.导轨与滑块配合很严密,气轨表面和滑块内表面有良好的直线度、平面度和光洁度。所以,气轨表面和滑块内表面要防止磕碰、划伤和压弯。

6.在气垫导轨上做实验时,配合使用的附件很多,要注意将附件放在专用盒里,不要弄乱。轻质滑轮、挡光片以及一些塑料零件,要防止压弯、变形、折断。

7.不做实验时,导轨上不准放滑块和其它东西。

验证牛顿第二定律

Newton ’s Second Law

牛顿(Isaac Newton ,1643—1727,英国物理学家、数学家和天文学家)是17世纪最伟大的科学巨匠。在物理学上,牛顿基于伽利略、开普勒等人的工作,建立了三条运动基本定律和万有引力定律,并建立了经典力学的理论体系。在光学方面,牛顿发现白色日光由不同颜色的光构成,并制成“牛顿色盘”;关于光的本性,牛顿创立了光的“微粒说”。 牛顿运动定律是在观察和实验的基础上归纳总结出来的,已被公认为宏观自然规律。 本实验通过观察、测量及计算,得到物体的加速度与其质量及所受外力的关系,进而验证牛顿第二定律。实验中采用气垫导轨和光电计时系统,使牛顿第二定律的定量研究获得较理想的结果。

实验目的

1.学习气垫导轨和光电计时器的调整方法。

2.验证牛顿第二定律。

3.学习在低摩擦情况下研究力学问题的方法。

仪器用具

气垫导轨、滑块、光电计时器、砝码。

实验原理

实验系统如图3.2.1-1所示,水平放置的质量为m 2的滑块和质量为m 1的砝码用一轻质细线通过半径为R 定滑轮与相连,忽略滑块与气轨之间、滑轮与轴承之间的摩擦力以及细线的质量,且细线与滑轮之间无滑动。

m 1

m

1a T m 1

图3.2.1-1

设滑轮C 与滑块m 2之间绳的张力为T 2,滑轮C 与砝码之间绳的张力为T 1,滑块m 2的加速度为a (图3.2.1-1)。为滑轮的转动惯量为I ,角加速度为β

综上有:

12()T T R I β-= (3.2.1-1)

1122

I m g m m a R =++

?() (3.2.1-2) 若不考虑滑轮的转动惯量I ,则有 112()m g m m a =+ (3.2.1-3)

即此系统受到的合外力m 1g 等于系统总质量12()m m +与加速度a 的乘积。

实验中滑块质量用天平称量,加速度a 按下述方法测量:

在导轨上相距为S 的两处安放两光电门K 1和K 2,测出运动系统在砝码的重力m 1g 作用下,滑块上挡光片经过两个光电门的时间间隔1t ?和2t ?,则系统加速度为:

22221

11()2S a S t t ?=-?? (3.2.1-4) 1.00S cm ?=,S 由标尺读出。

实验内容

1.利用静态调平法调平导轨。

2.验证系统总质量m 1+m 2不变时,所受合外力F 合和物体的加速度a 成正比。

砝码盘上放置砝码若干,将滑块由静止释放,记录1t ?和2t ?,测量多次。然后依次减少一个砝码转移到滑块上,并记录1t ?和2t ?。直至减少到零个砝码为止。

3.验证当合外力F 合一定时,系统的加速度a 与总质量(m 1+m 2)成反比。

在砝码盘中放置砝码若干,并在滑块两侧对称地添加两个配重块。按上述方法测出1t ?和2t ?。再对称地添加四个配重块,再次测出1t ?和2t ?。每种条件测量多次。

数据处理

1.根据式(3.2.1-10)计算各次测量的加速度值。

2.作F-a 图和m-a 图。

3.根据图形说明比例关系,验证牛顿第二定律。

思考题

1.在验证牛顿第二定律时,为何将减去的砝码放在滑块上?

2.利用气轨设计一种测量重力加速度的方法,写出实验的步骤及计算公式。(提示:将气轨的一端垫高h )。

3.若考虑到各种因素,当滑块在气垫导轨上经过两光电门的时间完全相等时,是否可

以认为导轨已真正处于水平状态?为什么?

验证动量守恒定律

Law of Conservation of Momentum

动量守恒定律是自然界的一个普遍规律。它揭示了通过物体间的相互作用,机械运动发生转移的规律。本实验在近似无摩擦的气垫导轨上研究两个运动的滑行器的一维对心碰撞,分析不同种类的碰撞前后动量和动能的变化情况,从而验证动量守恒定律。 实验目的

1.学习气垫导轨和光电计时器的调整方法。

2.验证动量守恒定律。

3.了解完全弹性碰撞和完全非弹性碰撞的特点。

仪器用具

气垫导轨、滑块、尼龙胶带、挡光片、光电计时器、砝码等。

实验原理

实验装置如图3.2.2-1所示,在水平的气垫导轨上,若忽略滑块与导轨之间的磨擦力以及空气阻力,则滑块1与滑块2之间除在碰撞时受到相互作用的内力之外,水平方向上的合外力为零,则碰撞前后的总动量(x 方向上)保持不变,即

1102201122m v m v m v m v +=+ (3.2.2-1)

式中,m 1、m 2分别为两个滑块的质量,10v 、20v 和1v 、2v 分别为两个滑块碰撞前和碰撞后的

速度。式中各速度的正负号取决于速度的方向与所选的坐标x 的方向是否一致,相同取正,相反则取负。

图3.2.2-1

1.完全弹性碰撞。

对于完全弹性碰撞,它没有机械能损耗,根据机械能守恒定律有

2222110220112211112222

m v m v m v m v +=+ (3.2.2-2) 由式(3.2.2-1)和式(3.2.2-2)可得

1210220112()2m m v m v v m m -+=

+ (3.2.2-3) 2120110212

()2m m v m v v m m -+=+ (3.2.2-4) 2.完全非弹性碰撞。

滑块作完全非弹性碰撞时有12v v v ==,由动量守恒定律可得

11022012()m v m v m m v +=+ (3.2.2-9)

若200v =,则有

11012

m v v m m =+ (3.2.2-10) 实验内容

1.利用静态调平法调平导轨。

2.弹性碰撞验证动量守恒定律。

(1)取质量相等的两个滑块(带有缓冲弹簧),滑块2停放在光电门K 1和K 2之间(靠近K 2处)的导轨上静止不动,即200v =;滑块1置于光电门K 1外侧导轨上。弹射滑块1使之与滑块2相碰,分别由光电门K 1和K 2测出碰撞前滑块1及碰撞后滑块2的速度,重复测量多次。

(2)将滑块1停放在K 1和K 2之间,使其初速度为零,将滑块2从K 2的外侧以一定速度弹出与滑块1相碰,同样由光电计时器测出碰撞前滑块2及碰撞后滑块1的速度,重复测量多次。

(3)根据以上各次测量结果计算碰撞前后的动量,并作比较,验证动量守恒定律。

(4)用质量不同的滑块,重复上述实验,验证动量守恒定律。

3.完全非弹性碰撞验证动量守恒定律。

在质量相等的两滑块相碰的一端装上尼龙胶带。重复步骤⑴和⑵。根据所测数据,计算各次碰撞前后的动量,并作比较,验证动量守恒定律。用质量不同的滑块,重复上述实验。

思考题

1.在实验中,为何先让滑块1去碰撞初速度为零的滑块2后,又让滑块2去碰撞初速度为零的滑块1进行测量?

2.如果碰撞后测得的动量总是小于碰撞前测得的动量,说明什么问题?能否出现碰撞后测量的动量大于碰撞前测得的动量呢?

气垫导轨实验数据

篇一:气垫导轨实验报告气轨导轨上的实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目的 1、学习气垫导轨和电脑计数器的使用方法。 2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。 3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。 二、实验仪器 气垫导轨(qg-5-1.5m)、气源(dc-2b型)、滑块、垫片、电脑计数器(muj-6b 型)、电子天平(yp1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3v= dxdt dxdt 4过s1、s离?sa=速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。 5、牛顿第二定律得研究 若不计阻力,则滑块所受的合外力就是下滑分力,f=mgsinq=mg定牛顿第二定律成立,有mg hl =ma理论,a理论=g hl hl 。假 ,将实验测得的a和a理论进 行比较,计算相对误差。如果误差实在可允许的范围内(<5%),即可认为(本地g取979.5cm/s)a=a理论,则验证了牛顿第二定律。 6、定性研究滑块所受的粘滞阻力与滑块速度的关系 实验时,滑块实际上要受到气垫和空气的粘滞阻力。考虑阻力,滑块的动力学方程为mg hl -f=ma,f=mg hl -ma=m(a理论-a),比较不同倾斜状态下的 2 平均阻力f与滑块的平均速度,可以定性得出f与v的关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s左右的速度(挡光宽度1cm,挡光时间20ms左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。两光电门之间的距离一般应在50cm~70cm之间。 2、测滑块的速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返的测量;

气垫导轨上的实验

实验一 气垫导轨上的实验(二) 【实验简介】 气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦。虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms (十万分之一秒),这样, 就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律等等。 【实验目的】 1、学习气垫导轨和电脑计数器的使用方法。 2、用气垫导轨装置验证机械能守恒定律 3、验证动量守恒定律。 【实验仪器】 气垫导轨(QG —1.5mm )、滑块、垫片、光电门、电脑计数器(MUJ —6B )、游标卡尺(0.02mm )、卷尺(2m )。配重块、一台电子天平及尼龙搭扣。 【实验原理】 1、研究动量守恒定律 动量守恒定律和能量守恒定律一样,是自然界的一条普遍适用的规律。它不仅适用于宏观世界,同样也适用于微观世界。它虽然是一条力学定律,但却比牛顿运动定律适用范围更广,反映的问题更深刻。 动量守恒定律告诉我们,如果一个系统所受的合外力为零,那么系统内部的物体在作相互碰撞,传递动量的时候,虽然各个物体的动量是变化的,但系统的总动量守恒。如果系统在某个方向上所受的合外力为零,则系统在该方向上的动量守恒。 在水平的气垫导轨上,滑块运动时受到的粘滞阻力很小,若不计这一阻力,则滑块系统受到的合外力为零,两滑块作对心碰撞时前后的总动量守恒。 112211 22m v m v m v m v ''+=+ 1m 、2m 分别为两个滑块的质量,1v 、2v 分别为碰撞前两个滑块的速度,1v '、2 v '分别为碰撞后两个滑块的速度。应该注意的是,计算时必须选择一个方向为正,反方向为负。 牛顿在研究碰撞现象时曾提出恢复系数的概念,定义恢复系数2 112 v v e v v ''-= -。当1e =时为完全

气垫导轨类实验

气垫导轨类实验 气垫导轨是一种阻力极小的力学实验装置。它利用气源将压缩空气打入导轨型腔,再由导轨表面上的小孔喷出气流,在导轨与滑行器之间形成很薄的气膜,将滑行器浮起,并使滑行器能在导轨上作近似无阻力的直线运动。 仪器介绍 气垫导轨实验装置由导轨、滑块和光电测量系统组成。 1.导轨(图3.2-1) 导轨的主体是一根长约1.5米的截面为三角形的金属空腔管,在空腔管的侧面钻有两排等间距并错开排列的喷气小孔。空腔管一端密封,另一端装有进气嘴与气泵相连。气泵将压缩空气送入空腔管后,再由小孔高速喷出。在导轨上安放滑块,在导轨下装有调节水平用的底脚螺丝和用于测量光电门位置的标尺。整个导轨通过一系列直立的螺杆安装在口字形铸铝梁上。 进气嘴弹簧片挡光板滑块 底脚螺丝导轨 图 3.2-1 2.滑块 滑块是由长约0.100—0.300米的角铝做成的。其角度经过校准,内表面经过细磨,与导轨的两个上表面很好吻合。当导轨的喷气小孔喷气时,在滑块和导轨这两个相对运动的物体之间,形成一层厚约0.05-0.20mm流动的空气薄膜—气垫。由于空气的粘滞阻力几乎可以忽略不计,这层薄膜就成为极好的润滑剂,这时虽然还存在气垫对滑块的粘滞阻力和周围空气对滑块的阻力,但这些阻力和通常接触摩擦力相比,是微不足道的,它消除了导轨对运动物体(滑块)的直接摩擦,因此滑块可以在导轨上作近似无摩擦的直线运动。滑块中部的上方水平安装着挡光片,与光电门和计时器相配合,测量滑块经过光电门的时间或速度。滑块上还可以安装配重块(即金属片,用以改变滑块的质量)、接合器及弹簧片等附件,用于完成不同的实验。滑块必须保持其纵向及横向的对称性,使其质心位于导轨的中心线且越低越好,至少不宜高于碰撞点。 3.光电测量系统 光电测量系统由光电门和光电计时器组成,其结构和测量原理如图3.2-2所示。当滑块

利用气垫导轨验证牛顿第二定律实验报告中国石油大学华东

利用气垫导轨验证牛顿第二定律实验报告中国石油大学华东 利用气垫导轨验证牛顿第二定律 】 【摘要】:气垫导轨是为研究无摩擦现象而设计的力学实验设备,在导轨表面分布着许多小孔,压缩空气从这些小孔中喷出,在导轨和滑块之间形成了月0.1mm厚的空气层,即气垫,由于气垫的形成,滑块被托起,使滑块在气垫上作近似无摩擦的运动。利用气垫导轨,再配以光电计时系统和其他辅助部件,可以对做直线运动的物体(即滑块)进行许多研究,如测定速度、加速度、验证牛顿第二定律,研究物体间的碰撞,研究简谐运动的规律等。 【关键词】 气垫导轨、通用计数器、测速的试验方法、牛顿第二定律、控制变量法、导轨调平实验回顾【实验目的】 1.熟悉气垫导轨和MUJ-613电脑式数字毫秒计的使用方法。 2.学会测量滑块速度和加速度的方法。 3.研究力、质量和加速度之间的关系,通过测滑块加速度验证牛顿第二定律。 【实验原理】 (一) 仪器使用原理1.气垫导轨如图4-1所示,气垫导轨是一种摩擦力很小的实验装置,它利用从导轨表面小孔喷出的压缩空气,在滑块与导轨之间形成很薄的空气膜,将滑块从导轨面上托起,使滑块与导轨不直接接触,滑块在滑动时只受空气层间的内摩擦力和周围空气的微弱影响,这样就极大地减少了力学实验中难于克服的摩擦力的影响,滑块的运动可以近似看成无摩擦运动,使实验结果的精确度大为提高。 图4-1 气垫导轨装置图 2.MUJ-613电脑式数字毫秒计在用气垫导轨验证牛顿第二定律实验中,我们采用MUJ-613电脑式数字毫秒计测量时间。利用它的测加速度程序,可以同时测量出滑块通过两个光电门的时间及滑块通过两个光电门之间的时间间隔。 使用计数器时,首先将电源开关打开(后板面),连续按功能键。使得加速度功能旁的灯亮,气垫导轨通入压缩空气后,使装有两个挡光杆的滑块依次通过气垫导轨上的两个光电门计数器按下列顺序显示测量的时间: 显示字符 含 单位1 通过第一个光电门的速度 cm/s(亮)××·×× 2 通过第二个光电门的速度 cm/s(亮)××·×× 1—2 在第一和第二个光电门之间运动的加速度

实验二 气垫导轨上的实验上课讲义

实验二气垫导轨上 的实验

实验二 气垫导轨上的实验 气垫导轨是为消除摩擦而设计的力学实验的装置,来自气源的气在开有密集小孔的导轨表面产生一层气垫。物体运动在气垫上,避免物体与导轨的直接接触,很大程度上减少了物体与导轨表面的摩擦。利用气垫导轨可以进行许多力学实验,如测定速度、加速度,验证牛顿第二定律,动量守恒定律,研究简谐振动等。 【实验目的】 1、利用碰撞特例验证动量守恒定律。 2、学习使用气垫导轨和数字毫秒计。 【实验仪器】 实验装置如图1所示,主要由气源、气垫导轨、滑块(上面装有档光 片)、光电计时系统(光电门、数字毫秒计)组成。 图1 气垫导轨实验示意图 实验室用“吹尘器”作气源。 气垫导轨简称气轨,是一条横截面为三角形的空芯轨道,轨道表面分布着许多小气孔。气轨一头封闭,另一头装有进气嘴,气流从进气嘴流入,通过小气孔喷出,当滑块置于气垫之上时,滑块与轨道之间形成气垫,将滑块浮起,滑块的运动可视为是无摩擦的(气垫的两端装有缓冲弹簧,以免滑块冲出)。整个导轨安置在矩形梁上,梁下有三个用来调节水平的底脚螺丝。 (3)滑块1m 、2m (1m ~22m )是实验中相互碰撞的两物体,1m 、2m 滑块的内表面可与气轨密切配合;上部装有“凹”字形的档光片,1m 一端装有缓冲弹簧,另一端粘有尼龙搭扣,2m 一端粘有尼龙搭扣,另一端为光滑端。 (4)光电计时测速系统由光电门、数字毫秒计(包括滑块上的档光片)组成。 光电门是计时系统的信号接收装置,主要由安装在支架上的小聚光灯和光敏管组成,也有使用红外发光二极管和红外光敏三极管组成的光电门。聚光灯

和光敏管对置于轨道两侧,工作时聚光灯发光,光敏管接收光电信号。利用光敏管所接收的光照变化来控制毫秒计的“计”和“停”,实现计时。 光电计时器在本实验的工作特点是:光敏管第一次被遮光,开始计时,第二次被遮光,计时停止,故计时器记录的是两次遮光的时间间隔。 固连于滑块上的挡光片的有效部分为“凹”字形铝片,当挡光片随同滑块通过光电门时,就使光敏管受到两次遮光,从而使计时器记下一段时间t 与此段 图2 档光片运动示意图 于是滑块通过光电门的平均速度为 t x =υ (1) x 不大,可将v 近似地视为瞬时速度。本实验中,1m 、2m 上的挡光片的有效宽度分别为00.31=x cm 、00.12=x cm. 毫秒计的用法此处不再详述。 【实验原理】 二、速度与加速度 物体作直线运动时,如果在t ?时间间隔内,通过的位移为x ?,则物体在t ?的时间间隔内的平均速度V 为: t x V ??= (8) 当t ?趋近于零时,平均速度的极限值就是该时刻(或是该位置)的瞬时速度。当滑块在气垫导轨上运动时,通过测量滑块上的档光片经过光电门的档光时间t ?与档光片的宽度x ?(见图2),即可求出滑块在t ?时间内的平均速度v 。由于档光片宽度比较窄,可以把平均速度近似地看成滑块通过光电门的瞬时速度。档光片愈窄,相应的t ?就愈小,平均速度就更为准确地反映滑块在经过光电门位置时的瞬时速度。本实验中,滑块上的U 型挡光片的宽度为 00.31=x cm ,条形挡光片的宽度为00.12=x cm 在水平气轨上的滑块,如果受到水平方向的恒力作用(这个恒力由加上质量为m 的重物来提供),则滑块在气轨上作匀加速度运动。分别测量滑块通过两个光电门时的初速度V 1和末速度V 2,并测出两个光电门的间距S ,则滑块的加速度a 为:

气垫导轨实验报告

基础物理实验实验报告 计算机科学与技术 【实验名称】 气轨上弹簧振子的简谐振动 【实验简介】 气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦阻力。虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms(十万分之一秒),这样就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律;研究简谐振动、阻尼振动等。本实验采用气垫导轨研究弹簧振子的振动。 【实验目的】 1. 观察简谐振动现象,测定简谐振动的周期。 2. 求弹簧的倔强系数和有效质量。 3. 观察简谐振动的运动学特征。 4. 验证机械能守恒定律。 1

【实验仪器与用具】 气垫导轨、滑块、附加砝码、弹簧、U 型挡光片、平板挡光片、数字毫秒计、天平等。 【实验内容】 1. 学会利用光电计数器测速度、加速度和周期的使用方法。 2. 调节气垫导轨至水平状态,通过测量任意两点的速度变化,验证气垫导轨是否处于水平状态。 3. 测量弹簧振子的振动周期并考察振动周期和振幅的关系。滑块的振幅 A 分别取 10.0, 20.0, 30.0, 40.0cm 时,测量其相应振动周期。分析和讨论实验结果可得出什么结论?(若滑块做简 谐振动,应该有怎么样的实验结果?) 4. 研究振动周期和振子质量之间的关系。在滑块上加骑码(铁片)。对一个确定的振幅(如取A=40.0cm)每增加一个骑码测量一组 T。(骑码不能加太多,以阻尼不明显为限。) 作 T2-m 的 图,如果 T 与 m 的关系式为T2= 42m1+m0,则 T2-m 的图应为一条直线,其斜率为,截距为。 k 用最小二乘法做直线拟合,求出 k 和 m0。 5. 研究速度和位移的关系。在滑块上装上 U 型挡光片,可测量速度。作 v2-x2 的图,看改图是否为一条直线,并进行直线拟合,看斜率是否为,截距是否为,其中,T 可测出。 6. 研究振动系统的机械能是否守恒。固定振幅(如取 A=40.0cm),测出不同 x 处的滑块速度,由此算出振动过程中经过每一个 x 处的动能和势能,并对各 x 处的机械能进行比较,得出结论。 7. 改变弹簧振子的振幅 A,测相应的V max,由V max2A2关系求 k,与实验内容 4 的结果进行 比较。 8. 固定振幅(如取 A=40.0cm),测0、A4、A2、34A处的加速度。 【数据处理】 1. 实验仪器的调试 多次测量滑块从左到右和从又到左做运动经过两个光电门的速度差并多次调平,最终将经过两 个光电门的速度差控制在了 0.5% 以内。 2

大学物理实验气垫导轨实验报告.doc

气轨导轨上的实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目的 1、学习气垫导轨和电脑计数器的使用方法。 2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。 3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。 二、实验仪器 气垫导轨(QG-5-1.5m)、气源(DC-2B 型)、滑块、垫片、电脑计数器(MUJ-6B 型)、电子天平(YP1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3x v t ?= ?x t ??4过1s 、s 离s ?a =

速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。 5、牛顿第二定律得研究 若不计阻力,则滑块所受的合外力就是下滑分力,sin h F mg mg L θ==。假定牛顿第二定律成立,有h mg ma L =理论,h a g L =理论,将实验测得的a 和a 理论进行比较,计算相对误差。如果误差实在可允许的范围内(<5%),即可认为a a =理论,则验证了牛顿第二定律。 (本地g 取979.5cm/s 2) 6、定性研究滑块所受的粘滞阻力与滑块速度的关系 实验时,滑块实际上要受到气垫和空气的粘滞阻力。考虑阻力,滑块的动力 学方程为h mg f ma L -=,()h f m g ma m a a L =-=理论-,比较不同倾斜状态下的 平均阻力f 与滑块的平均速度,可以定性得出f 与v 的关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s 左右的速度(挡光宽度1cm ,挡光时间20ms 左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。两光电门之间的距离一般应在50cm~70cm 之间。 2、测滑块的速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返的测量; ②从电脑计数器上记录滑块从右向左或从左向右运动时通过两个光电门的时间1t ?、2t ?,然后按转换健,记录滑块通过两个光电门速度1v 、2v ,如此重复3次,将测得的实验数据计入表1,计算速度差值。 3、测量加速度,并验证牛顿第二定律 在导轨的单脚螺丝下垫2块垫片,让滑块从最高处由静止开始下滑,测出速度1v 、2v 和加速度 a ,重复4次,取a 。再添2块(或1块)垫片,重复测量4 次。然后取下垫片,用游标卡尺测量两次所用垫片的高度h ,用钢卷尺测量单脚螺丝到双脚螺丝连线的距离L 。计算a 理论,进比较a 与a 理论,计算相对误差,写出实验结论。 4、用电子天平称量滑块的质量m ,计算两种不同倾斜状态下滑块受到的平

气垫导轨测重力加速度____大学物理实验

气垫导轨测重力加速度 【试验目的】: 1.研究测重力加速度的方法; 2.测量本地区的重力加速度。 【实验原理】: 当气轨水平放置时,自由漂浮的滑块所受的合外力为零,因此,滑块在气轨 上可以静止,或以一定的速度作匀速直线运动。在滑块上装一与滑块运动方向严 格平行、宽度为的挡光板,当滑块经过设在某位置上的光电门时,挡光板将遮 住照在光敏管上的光束,因为挡光板宽度一定,遮光时间的长短与滑块通过光电 门的速度成反比,测出挡光板的宽度L和遮光时间t,则滑块通过光电门的平 均速度为: V=L/t (1-1) 若挡板很小,则在挡光范围内滑块的速度变化也很小,故可以把平均速度看 成是滑块经过光电门的瞬时速度。挡板越小,则平均速度越准确地反映该位置上 滑块的瞬时速度,显然,如果滑块作匀速直线运动,则滑块通过设在气轨任何位 置的光电门时瞬时速度都相等,毫秒计上显示的时间相同,在此情形下,滑块速 度的测量值与挡板的大小无关。 若滑块在水平方向受一恒力作用,滑块将作匀加速直线运动,分别测出滑块 通过相距S的2个光电门的始末速度和V1和V2则滑块的加速度: 2as=v12–v22 (1-2) 将式(1-1)代入(1-2)中得: 2as=L2(1/t22-1/t12) 其原理如图1. 气垫导轨与水平面的夹角为α则a=g*ginα. 【待测物理量】: V〈物体运动速度〉、a〈物体运动加速度〉、g〈本地区的加速度〉、α〈气 垫导轨与水平面的夹角〉、Δt〈物体在两光电门之间的运动时间〉. 【实验仪器及其使用介绍】: 气垫导轨、数字毫秒计、滑块、游标卡尺、垫块。

一、气垫导轨 气垫导轨是一种现代化的力学实验仪器。实物如下图所示: 它利用小型气源将压缩空气送入导轨内腔。空气再由导轨表面上的小孔中喷出,在导轨表面与滑行器内表面之间形成很薄的气垫层。滑行器就浮在气垫层上,与轨面脱离接触,因而能在轨面上做近似无阻力的直线运动,极大地减小了以往在力学实验中由于摩擦力引起的误差。使实验结果接近理论值。配用数字计时器或高压电火花计时器记录滑行器在气轨上运动的时间,可以对多种力学物理量进行测定,对力学定律进行验证。 1、导轨 导轨是用三角形铝合金材料制成。可以调整其平直度,常把它用螺丝固定在工字钢上,导轨长1.50~2.20 m,两侧面非常平整,并且均匀分布着许多很小的气孔。导轨一端封闭,上面装有定滑轮,另一端有进气嘴,通过皮管与气源相连。当压缩空气进入导轨后,从小气孔喷出,在导轨和滑块之间形成空气层,导轨和滑块两端都装有缓冲弹簧,使滑块可以往返运动。工字钢底部装有3个底脚螺丝,用来调节导轨水平,或将垫块放在导轨底脚螺丝下,以得到不同的斜度。 2、滑块 图2.12-5 滑块装置

实验二气垫导轨上的实验

实验二 气垫导轨上的实验 气垫导轨是为消除摩擦而设计的力学实验的装置,来自气源的气在开有密集小孔的导轨表面产生一层气垫。物体运动在气垫上,避免物体与导轨的直接接触,很大程度上减少了物体与导轨表面的摩擦。利用气垫导轨可以进行许多力学实验,如测定速度、加速度,验证牛顿第二定律,动量守恒定律,研究简谐振动等。 【实验目的】 1、利用碰撞特例验证动量守恒定律。 2、学习使用气垫导轨和数字毫秒计。 【实验仪器】 实验装置如图1所示,主要由气源、气垫导轨、滑块(上面装有档光片)、光电计时系统(光电门、数字毫秒计)组成。 图1 气垫导轨实验示意图 实验室用“吹尘器”作气源。 气垫导轨简称气轨,是一条横截面为三角形的空芯轨道,轨道表面分布着许多小气孔。气轨一头封闭,另一头装有进气嘴,气流从进气嘴流入,通过小气孔喷出,当滑块置于气垫之上时,滑块与轨道之间形成气垫,将滑块浮起,滑块的运动可视为是无摩擦的(气垫的两端装有缓冲弹簧,以免滑块冲出)。整个导轨安置在矩形梁上,梁下有三个用来调节水平的底脚螺丝。 (3)滑块1m 、2m (1m ~22m )是实验中相互碰撞的两物体,1m 、2m 滑块的内表面可与气轨密切配合;上部装有“凹”字形的档光片,1m 一端装有缓冲弹簧,另一端粘有尼龙搭扣,2m 一端粘有尼龙搭扣,另一端为光滑端。 (4)光电计时测速系统由光电门、数字毫秒计(包括滑块上的档光片)组成。 光电门是计时系统的信号接收装置,主要由安装在支架上的小聚光灯和光敏管组成,也有使用红外发光二极管和红外光敏三极管组成的光电门。聚光灯和光敏管对置于轨道两侧,工作时聚光灯发光,光敏管接收光电信号。利用光敏管所接收的光照变化来控制毫秒计的“计”和“停”,实现计时。 光电计时器在本实验的工作特点是:光敏管第一次被遮光,开始计时,第二次被遮光,

大一下物理实验【实验报告】 用气垫导轨研究物体的运动

东南大学 物理实验报告 姓名学号指导老师 日期座位号报告成绩 实验名称用气垫导轨研究物体的运动 目录 预习报告...................................................2~5 实验目的 (2) 实验仪器 (2) 实验中的主要工作 (2) 预习中遇到的问题及思考 (3) 实验原始数据记录 (4) 实验报告…………………………………………6~12 实验原理………………………………………………………实验步骤………………………………………………………实验数据处理及分析…………………………………………讨论……………………………………………………………

实验目的: 1、了解气垫导轨的工作原理 2、掌握利用气垫导轨测量运动物体的加速度和重力加速度 3、验证牛顿第二运动定律 实验仪器(包括仪器型号): 试验中的主要工作: 实验一:1、练习通用计数器的基本使用 2、调平气垫导轨: ①粗调:在导轨中部相隔50cm放置两个光电门,接通气源确定导轨通气良好,然后调节导轨的调平螺钉,使滑块在导轨上保持不动或稍微左右摆动。 ②细调: 设置计数器在S2功能,给滑块一个适当的初速 ,t2,仔细调节调平螺钉, 度,观察滑块经过前后光电门的时间t 使t 1 略小于t2即可。 实验二:1、打开MUJ-6B电脑通用计数器,选择加速度功能,设

置挡光片宽度值 2、安置光电门A和B,取S=|X B-X A|=50.0cm,在滑块上安装挡光片和小钩套,打开气源,调整导轨水平 3、利用小滑块,配重块4块,砝码1只,砝码盘等附件验证a1/M的关系 4、利用小滑块,配重块4块,砝码5只,砝码盘等附件验证F a的关系 预习中遇到的问题及思考: 1、在实验中如何调节导轨水平? 答:先进行粗调,在导轨中部相隔50cm放置两个光电门,接通气源确定导轨通气良好,然后调节导轨的调平螺钉,使滑块在导轨上保持不动或稍微左右摆动。 在进行细调,设置计数器在S2功能,给滑块一个适当的初速 ,t2,仔细调节调平螺钉, 度,观察滑块经过前后光电门的时间t 使t 1 略小于t2即可。 2、在验证牛顿第二定律的实验中如何保持系统总质量M不变, 而合外力F改变? 答:可以在砝码盘中放入一些砝码,然后通过向滑块上转移砝码来改变合外力F,而此时系统总质量M不变。

气垫导轨实验报告2(完整版)

报告编号:YT-FS-9116-50 气垫导轨实验报告2(完 整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

气垫导轨实验报告2(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、实验目的 1、掌握气垫导轨阻尼常数的测量方法,测量气垫导轨的阻尼常数; 2、学习消除系统误差的试验方法; 3、通过实验过程及结果分析影响阻尼常数的因数,掌握阻尼常数的物理意义。 二、实验仪器 气垫导轨、滑块2个、挡光片、光电门一对、数字毫秒计数器、垫块、物理天平、游标卡尺. 三、实验原理 1、含倾角误差 如图3,质量为m的滑块在倾角为?的气垫导轨上滑动。由气体的摩擦理论可知,滑块会受到空气对它

的阻力,当速度不太大时,该力正比于速度v,即f?bv。滑块的受力示意图如图所示,据牛顿第二定律有ma?mgsinbv (1) 设滑块经过k1和k2时的速度分别为v1和v2,经历的时间为t1,k1、k2之间的距离为s. 由以上关系易得v2?v1?gt1sin 即: b? bs m m(v1?v2?gt1sin?) s (2) (sin?= hl ) (3) 图1 2、不含倾角误差 为了消除b中的倾角?,可再增加一个同样的方程,即让滑块在从k2返回到k1,对应的速度分别为v3和v4,经过时间t2返回过程受力图如图2 图2

气垫导轨实验报告范本

Screen and evaluate the results within a certain period, analyze the deficiencies, learn from them and form Countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ 气垫导轨实验报告

编号:FS-DY-60875 气垫导轨实验报告 【实验题目】 气垫导轨研究简谐运动的规律 【实验目的】 1.通过实验方法验证滑块运动是简谐运动. 2.通过实验方法求两弹簧的等效弹性系数和等效质量. 实验装置如图所示. 说明:什么是两弹簧的等效弹性系数? 说明:什么是两弹簧的等效质量? 3.测定弹簧振动的振动周期. 4.验证简谐振动的振幅与周期无关. 5.验证简谐振动的周期与振子的质量的平方根成正比. 【实验仪器】 气垫导轨,滑块,配重,光电计时器,挡光板,天平,两根长弹簧,固定弹簧的支架.

【实验要求】 1.设计方案(1)写出实验原理(推导周期公式及如何计算k 和m0 ). 由滑块所受合力表达式证明滑块运动是谐振动. 给出不计弹簧质量时的T. 给出考虑弹簧质量对运动周期的影响,引入等效质量时的T. 实验中,改变滑块质量5次,测相应周期.由此,如何计算k 和m0 ? (2)列出实验步骤. (3)画出数据表格. 2.测量 3.进行数据处理并以小论文形式写出实验报告 (1)在报告中,要求有完整的实验原理,实验步骤,实验数据,数据处理和计算过程. (2)明确给出实验结论. 两弹簧质量之和M= 10-3㎏= N/m = 10-3㎏ i m

气垫导轨实验中的误差分析与计算

气垫导轨实验中摩擦阻力的修正 胡晓琳 050715 1 引言 普通物理力学实验中气垫导轨上滑块运动的各种实验,对理工科的教学来说,是最基本的实践环节。传统的实验方法是手工测量物体运动的距离、时间等,然后再通过必要的计算得到速度、加速度等物理量。这种手工操作会带来测量误差,而且学生也不能及时、直观地观察实验结果。如果能通过检测环节自动完成测量,并将实验数据用计算机进行处理,以图表的形式实时地显示出来,则会大大提高实验效果。气垫导轨(简称气轨)是近代在我国出现并逐渐普及的一种新兴低摩擦实验装置,它利用从导轨表面的小孔中喷出的压缩空气,使导轨表面和滑块之间形成一层很薄的气膜——气垫,将滑块浮在导轨上,由于气垫的漂浮作用,使在力学实验中难以处理的滑动摩擦力转化为气层间的粘滞性内摩擦力,使该因素引起的误差减小到近可忽略的地位;提高了实验精度。其次在计时方法上又采用了光电计时手段,使 ,,34时间的测量精度达到的量级。基于以上两方面的优点,近年来利用气垫导轨开设10~10 了许多实验,收到了良好的教学效果(但也存在一些不足,即由于所采用的实验测量方法不恰当或对实验过程中应予考虑的系统误差未作修正,使实验结果的误差比预期大得多,影响了这一新型教学仪器的作用发挥。因而,如何采用合理的实验方法,深入分析气垫导轨实验的误差来源和修正就成了实验中急待解决的问题(本文就这一问题作分析讨论。 气垫导轨实验中误差的来源是多方面的,有系统误差也有偶然误差(本文着重于对气垫导轨实验中的系统误差进行分析,至于偶然误差的原因和其它力学实验中的偶然误差并无特殊的区别,这里不作讨论。如何调整气轨的水平状态,是减小系

气垫导轨实验报告

气垫导轨实验报告 气垫导轨实验报告1 【实验题目】 气垫导轨研究简谐运动的规律 【实验目的】 1.通过实验方法验证滑块运动是简谐运动. 2.通过实验方法求两弹簧的等效弹性系数和等效质量. 实验装置如图所示. 说明:什么是两弹簧的等效弹性系数? 说明:什么是两弹簧的等效质量? 3.测定弹簧振动的振动周期. 4.验证简谐振动的振幅与周期无关. 5.验证简谐振动的周期与振子的质量的平方根成正比. 【实验仪器】 气垫导轨,滑块,配重,光电计时器,挡光板,天平,两根长弹簧,固定弹簧的支架. 【实验要求】 1.设计方案(1)写出实验原理(推导周期公式及如何计算k和m0 ). 由滑块所受合力表达式证明滑块运动是谐振动. 给出不计弹簧质量时的T. 给出考虑弹簧质量对运动周期的影响,引入等效质量时的T. 实验中,改变滑块质量5次,测相应周期.由此,如何计算

k和m0 ? (2)列出实验步骤. (3)画出数据表格. 2.测量 3.进行数据处理并以小论文形式写出实验报告 (1)在报告中,要求有完整的实验原理,实验步骤,实验数据,数据处理和计算过程. (2)明确给出实验结论. 两弹簧质量之和M= 10-3㎏ = N/m = 10-3㎏ i m 10-3㎏ 30T s T2 s2 m0 10-3㎏ i m 10-3㎏ 20T s T2 s2 m0 10-3㎏ K N/m 1 4 2 5 3 6 4.数据处理时,可利用计算法或作图法计算k和m0的数值,并将m0与其理论值 M0=(1/3)M( M为两弹簧质量之和)

比较, 计算其相对误差 . 究竟选取哪种数据处理方法自定.书中提示了用计算法求k和 m0的方法.若采用,应理解并具体化. 【注意事项】 计算中注意使用国际单位制. 严禁随意拉长弹簧,以免损坏! 在气轨没有通气时,严禁将滑块拿上或拿下,更不能在轨道上滑动! 气垫导轨实验报告2 一、实验目的 1、掌握气垫导轨阻尼常数的测量方法,测量气垫导轨的阻尼常数; 2、学习消除系统误差的试验方法; 3、通过实验过程及结果分析影响阻尼常数的因数,掌握阻尼常数的物理意义。 二、实验仪器 气垫导轨、滑块2个、挡光片、光电门一对、数字毫秒计数器、垫块、物理天平、游标卡尺. 三、实验原理 1、含倾角误差 如图3,质量为m的滑块在倾角为?的气垫导轨上滑动。由气体的摩擦理论可知,滑块会受到空气对它的阻力,当速度不太大时,该力正比于速度v,即f?bv。滑块的受力示意图如图所示,据牛顿第二定律有ma?mgsinbv (1) 设滑块经过k1和k2时的速度分别为v1和v2,经历的时间为t1,k1、k2之间的距离为s. 由以上关系易得v2?v1?gt1sin

大学物理实验《用气垫导轨验证动量守恒定律》

大学物理实验《用气垫 导轨验证动量守恒定 律》 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

实验八 用气垫导轨验证动量守恒定律 [实验目的] 1.观察弹性碰撞和完全非弹性碰撞现象。 2.验证碰撞过程中动量守恒和机械能守恒定律。 [实验仪器] 气垫导轨全套,MUJ-5C/5B 计时计数测速仪,物理天平。 [实验原理] 设两滑块的质量分别为m 1和m 2,碰撞前的速度为10v 和20v ,相碰后的速度为 1v 和2v 。根据动量守恒定律,有 2211202101v m v m v m v m +=+ (1) 测出两滑块的质量和碰撞前后的速度,就可验证碰撞过程中动量是否守恒。其中10v 和20v 是在两个光电门处的瞬时速度,即?x /?t ,?t 越小此瞬时速度越准确。在实验里我们以挡光片的宽度为?x ,挡光片通过光电门的时间为?t ,即有 220110/,/t x v t x v ??=??=。 实验分两种情况进行: 1. 弹性碰撞 两滑块的相碰端装有缓冲弹簧,它们的碰撞可以看成是弹性碰撞。在碰撞过程中除了动量守恒外,它们的动能完全没有损失,也遵守机械能守恒定律,有 2 2 2211220221012 1212121 v m v m v m v m +=+ (2) (1)若两个滑块质量相等,m 1=m 2=m ,且令m 2碰撞前静止,即20v =0。则由(1)、 (2)得到 1v =0, 2v =10v 即两个滑块将彼此交换速度。 (2)若两个滑块质量不相等,21m m ≠,仍令20v =0,则有 2211101v m v m v m += 及

气垫导轨实验报告分析题

竭诚为您提供优质文档/双击可除气垫导轨实验报告分析题 篇一:大学物理实验气垫导轨实验报告 气轨导轨上的实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目的 1、学习气垫导轨和电脑计数器的使用方法。 2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。 3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。 二、实验仪器 气垫导轨(Qg-5-1.5m)、气源(Dc-2b型)、滑块、垫片、电脑计数器(muJ-6b 型)、电子天平(Yp1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。

2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3v? ?x ?t ?x?t4过s1、s离?sa? 速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。 5、牛顿第二定律得研究 若不计阻力,则滑块所受的合外力就是下滑分力, F?mgsin??mg定牛顿第二定律成立,有mg h 。假L hh ?ma理论,a理论?g,将实验测得的 a和a理论进LL 行比较,计算相对误差。如果误差实在可允许的范围内(<5%),即可认为(本地g取979.5cm/s2)a?a理论,则验证了牛顿第二定律。 6、定性研究滑块所受的粘滞阻力与滑块速度的关系 实验时,滑块实际上要受到气垫和空气的粘滞阻力。考虑阻力,滑块的动力

hh 学方程为mg?f?ma,f?mg?ma?m(a理论-a),比较不同倾斜状态下的 LL平均阻力f与滑块的平均速度,可以定性得出f与v 的关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s左右的速度(挡光宽度1cm,挡光时间20ms左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。两光电门之间的距离一般应在 50cm~70cm之间。 2、测滑块的速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返的测量; ②从电脑计数器上记录滑块从右向左或从左向右运动时通过两个光电门的时间?t1、?t2,然后按转换健,记录滑块通过两个光电门速度v1、v2,如此重复3次,将测得的实验数据计入表1,计算速度差值。

大学物理实验气垫导轨实验报告

——测量速度、加速度及验证牛顿第二运动定律 一、实验目的 1、学习气垫导轨和电脑计数器的使用方法。 2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。 3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。 二、实验仪器 气垫导轨(QG-5-1.5m)、气源(DC-2B 型)、滑块、垫片、电脑计数器(MUJ-6B 型)、电子天平(YP1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3x v t ?= ?x t ??4过1s 、s 离s ?a =

5、牛顿第二定律得研究 若不计阻力,则滑块所受的合外力就是下滑分力,sin h F mg mg L θ==。假定牛顿第二定律成立,有h mg ma L =理论,h a g L =理论,将实验测得的a 和a 理论进行比较,计算相对误差。如果误差实在可允许的范围内(<5%),即可认为a a =理论,则验证了牛顿第二定律。 (本地g 取979.5cm/s 2 ) 6、定性研究滑块所受的粘滞阻力与滑块速度的关系 实验时,滑块实际上要受到气垫和空气的粘滞阻力。考虑阻力,滑块的动力 学方程为h mg f ma L -=,()h f m g ma m a a L =-=理论-,比较不同倾斜状态下的 平均阻力f 与滑块的平均速度,可以定性得出f 与v 的关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s 左右的速度(挡光宽度1cm ,挡光时间20ms 左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。两光电门之间的距离一般应在50cm~70cm 之间。 2、测滑块的速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返的测量; ②从电脑计数器上记录滑块从右向左或从左向右运动时通过两个光电门的时间1t ?、2t ?,然后按转换健,记录滑块通过两个光电门速度1v 、2v ,如此重复3次,将测得的实验数据计入表1,计算速度差值。 3、测量加速度,并验证牛顿第二定律 在导轨的单脚螺丝下垫2块垫片,让滑块从最高处由静止开始下滑,测出速度1v 、2v 和加速度 a ,重复4次,取a 。再添2块(或1块)垫片,重复测量4 次。然后取下垫片,用游标卡尺测量两次所用垫片的高度h ,用钢卷尺测量单脚螺丝到双脚螺丝连线的距离L 。计算a 理论,进比较a 与a 理论,计算相对误差,写出实验结论。 4、用电子天平称量滑块的质量m ,计算两种不同倾斜状态下滑块受到的平均阻力f ,并考察两种倾斜状态下滑块运动的平均速度(不必计算),通过分析比较得出f 与v 的定性关系,写出实验结论。

气垫导轨实验

气垫导轨上的实验(综合) 气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦。虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms (十万分之一秒),这样, 就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律等等。 一、测量物体的速度,研究牛顿第一运动定律 二、测量物体的加速度,研究牛顿第二运动定律 三、测量重力加速度 实验目的: 1、学习气垫导轨和电脑计数器的使用方法。 2、用气垫导轨装置测量本地的重力加速度。 实验仪器: 气垫导轨(QG —1.5mm )、气源(DC —2D )、滑块、垫片、光电门、电脑计数器(MUJ —6B )、游标卡尺(0.02mm )、卷尺(2m )。 实验原理: 先将导轨调节成水平状态,然后再用垫片将导轨垫成倾斜状态。设垫片高度为H ,导轨单脚螺丝到双脚螺丝连成的距离为L,滑块在导轨上所受的粘滞阻力忽略不计,则导轨所受的合外力就是重力的下滑分力,为:sin H F mg mg L θ==。又根据牛顿第二定律,有F ma =,即H mg ma L =,所以 L g a H =。 实验时,在H不变的条件下多测几组a ,取平均值a ,则L g a H =。 实验内容与步骤: 1、将气垫导轨调成水平状态 先粗调(静态调平),后细调(动态调平)。 2、依次在单脚螺丝下垫1块垫片、2块垫片、3块垫片、4块垫片,逐渐改变倾斜高

气垫导轨实验报告范本(完整版)

报告编号:YT-FS-7886-91 气垫导轨实验报告范本 (完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

气垫导轨实验报告范本(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 【实验题目】 气垫导轨研究简谐运动的规律 【实验目的】 1.通过实验方法验证滑块运动是简谐运动. 2.通过实验方法求两弹簧的等效弹性系数和等效 质量. 实验装置如图所示. 说明:什么是两弹簧的等效弹性系数? 说明:什么是两弹簧的等效质量? 3.测定弹簧振动的振动周期. 4.验证简谐振动的振幅与周期无关. 5.验证简谐振动的周期与振子的质量的平方根成 正比.

【实验仪器】 气垫导轨,滑块,配重,光电计时器,挡光板,天平,两根长弹簧,固定弹簧的支架. 【实验要求】 1.设计方案(1)写出实验原理(推导周期公式及如何计算k和m0 ). 由滑块所受合力表达式证明滑块运动是谐振动. 给出不计弹簧质量时的T. 给出考虑弹簧质量对运动周期的影响,引入等效质量时的T. 实验中,改变滑块质量5次,测相应周期.由此,如何计算k和m0 ? (2)列出实验步骤. (3)画出数据表格. 2.测量 3.进行数据处理并以小论文形式写出实验报告 (1)在报告中,要求有完整的实验原理,实验步骤,实验数据,数据处理和计算过程.

相关文档
最新文档