人教版初中数学二次函数-教案-习题总汇-含答案
人教版九年级数学上册22.1.1二次函数(教案)
此外,我也注意到,在解答学生疑问时,需要更加耐心和细致。有些学生对于二次函数的理解可能还不够深入,这就需要我在课后给予他们更多的关注和指导,帮助他们真正掌握这部分内容。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如篮球投篮的轨迹)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数的奥秘。
5.二次函数的实际应用:求解最值问题。
二、核心素养目标
1.理解并掌握二次函数的定义、图像与性质,培养直观想象和逻辑推理能力;
2.学会运用二次函数顶点式及其图像变换,提高问题解决能力和数学建模素养;
3.通过二次函数的实际应用,培养数据分析、数学抽象及数学应用素养,增强解决实际问题的能力;
4.在探索二次函数图像与性质的过程中,培养数学运算和数学探究素养,提高合作交流与反思评价的能力。
人教版九年级数学上册22.1.1二次函数(教案)
一、教学内容
人教版九年级数学上册22.1.1二次函数:
1.二次函数的定义:形如y=ax^2+bx+c(a、b、c为常数,a≠0)的函数;
2.二次函数的图像与性质:开口方向、顶点、对称轴、最小(大)值;
3.二次函数的顶点式:y=a(x-h)^2+k;
4.二次函数的图像变换:平移、伸缩;
新人教版初中数学——二次函数-知识点归纳及典型题解析
新人教版初中数学——二次函数知识点归纳及典型题解析一、二次函数的概念一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).(2)顶点式:y=a(x–h)2+k(a,h,k为常数,a≠0),顶点坐标是(h,k).(3)交点式:y=a(x–x1)(x–x2),其中x1,x2是二次函数与x轴的交点的横坐标,a≠0.三、二次函数的图象及性质1.二次函数的图象与性质开口向上开口向下2.二次函数图象的特征与a,b,c的关系四、抛物线的平移1.将抛物线解析式化成顶点式y=a(x–h)2+k,顶点坐标为(h,k).2.保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.五、二次函数与一元二次方程的关系1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0).2.ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.3.(1)b2–4ac>0⇔方程有两个不相等的实数根,抛物线与x轴有两个交点;(2)b2–4ac=0⇔方程有两个相等的实数根,抛物线与x轴有且只有一个交点;(3)b2–4ac<0⇔方程没有实数根,抛物线与x轴没有交点.六、二次函数的综合1、函数存在性问题解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;然后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.2、函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.考向一二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.典例1如果y=(m–2)x2m m-是关于x的二次函数,则m=A.–1 B.2 C.–1或2 D.m不存在【答案】A【解析】依题意²220m mm-=⎧⎨-≠⎩,解得m=–1,故选A.【名师点睛】此题主要考察二次函数的定义,需要注意a0≠.典例2 下列函数是二次函数的是( ) A .y =2x +2 B .y =﹣2x C .y =x 2+2 D .y =x ﹣2【答案】C【解析】直接根据二次函数的定义判定即可. A 、y =2x +2,是一次函数,故此选项错误; B 、y =﹣2x ,是正比例函数,故此选项错误; C 、y =x 2+2是二次函数,故此选项正确; D 、y =x ﹣2,是一次函数,故此选项错误. 故选C .1.二次函数223y x =-+()的图像的顶点坐标是A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)2.将一元二次方程2316x x +=化为一般形式后,常数项为1,二次项系数和一次项系数分别为 A .3,–6 B .3,6C .3,1D .2 3x ,6x -考向二 二次函数的图象二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.典例3 函数y =ax 2+bx +a +b (a ≠0)的图象可能是A .B .C .D .【答案】C【解析】A,由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y轴交点为(0,a+b)在y轴正半轴,与a+b<0矛盾,故此选项错误;B,由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y轴交点为(0,1)在y轴正半轴,可知a+b=1与a+b<0矛盾,故此选项错误;C,由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,a+b=1可能成立,故此选项正确;D,由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于正半轴,则a+b>0,而图象与x轴的交点为(1,0),则a+b+a+b=0,显然a+b=0与a+b>0矛盾,故此选项错误.故选C.典例4如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列不等式成立的是A.a>0 B.b<0C.ac<0 D.bc<03.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是A.B.C.D.4.已知函数y=ax+b的大致图象如图所示,那么二次函数y=ax2+bx+1的图象可能是A.B.C.D.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是A.a<0 B.c>0C.a+b+c>0 D.b2–4ac<0考向三二次函数的性质二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.典例5由二次函数y=3(x﹣4)2﹣2可知A.其图象的开口向下B.其图象的对称轴为直线x=4C.其顶点坐标为(4,2)D.当x>3时,y随x的增大而增大【答案】B 【解析】23(4)2y x =--,∴a =3>0,抛物线开口向上,故A 不正确;对称轴为4x =,故B 正确; 顶点坐标为(4,–2),故C 不正确;当4x >时,y 随x 的增大而增大,故D 不正确; 故选B .【名师点睛】本题主要考查二次函数的性质,掌握抛物线的顶点式是解题的关键,即在2()y a x h k =-+中,顶点坐标为(,)h k ,对称轴x h =.a 决定了开口方向.典例6 在函数2(1)3y x =-+中,当y 随x 的增大而减小时,则x 的取值范围是A .1x ≥B .0x >C .3x <D .1x ≤【答案】D【解析】二次函数2(1)3y x =-+的对称轴为直线1x =, ∵0a >,∴1x ≤时,y 随x 的增大而减小.故选D.【名师点睛】本题考查了二次函数的单调性.二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0),当a >0时,在对称轴左侧y 随x 的增大而减小,在对称轴右侧y 随x 的增大而增大;当a <0时,在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小6.关于下列说法:(1)反比例函数13y mx =,在每个象限内y 随x 的增大而减小;(2)函数13y x =-,y 随x 的增大减小;(3)函数213y x =-,当0x >时,y 随x 的增大而减小,其中正确的有A .0个B .1个C .2个D .3个7.若二次函数2y a x bx c =++的图象经过A (m ,n )、B (0,y 1)、C (3–m ,n )、D ,y 2)、E (2,y 3),则y 1、y 2、y 3的大小关系是 A .231y y y << B .132y y y << C .321y y y <<D .123y y y <<考向四二次函数的平移1.抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关.2.涉及抛物线的平移时,首先将表达式转化为顶点式y=a(x–h)2+k的形式.3.抛物线的移动主要看顶点的移动,y=ax2的顶点是(0,0),y=a(x–h)2的顶点是(h,0),y=a (x–h)2+k的顶点是(h,k).4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.典例7如果将抛物线y=–x2–2向右平移3个单位长度,那么所得到的新抛物线的表达式是A.y=–x2–5 B.y=–x2+1C.y=–(x–3)2–2 D.y=–(x+3)2–2A.y=(x2B.y=(x+2)2+2C.y=(x–2D.y=(x–2)2+2【答案】D9.把抛物线y=12x2–1先向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式为A.y=12(x+1)2–3 B.y=12(x–1)2–3C.y=12(x+1)2+1 D.y=12(x–1)2+1考向五二次函数与一元二次方程、不等式的综合抛物线y=ax2+bx+c(a≠0)与x轴的交点个数及相应的一元二次方程根的情况都由Δ=b2–4ac决定. 1.当Δ>0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x轴有一个交点(即顶点)时,方程ax2+bx+c=0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x轴无交点时,方程ax2+bx+c=0无实数根,此时抛物线在x轴的上方(a>0时)或在x轴的下方(a<0时).典例9二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表,则方程ax2+bx+c=0的A.–0.03<x<–0.01 B.–0.01<x<0.02C.6.18<x<6.19 D.6.17<x<6.18【答案】C【解析】由表格中的数据看出–0.01和0.02更接近于0,故x应取对应的范围为:6.18<x<6.19,故选C.典例10如图是二次函数y=a(x+1)2+2图象的一部分,则关于x的不等式a(x+1)2+2>0的解集是A.x<2 B.x>–3C.–3<x<1 D.x<–3或x>1【答案】C【解析】二次函数y=a(x+1)2+2的对称轴为x=–1,∵二次函数y=a(x+1)2+2与x轴的一个交点是(–3,0),∴二次函数y=a(x+1)2+2与x轴的另一个交点是(1,0),∴由图象可知关于x的不等式a(x+1)2+2>0的解集是–3<x<1.故选C.10.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是A.–1<x<5 B.x>5C.x<–1 D.x<–1或x>511.抛物线y=2x2–4x+m的部分图象如图所示,则关于x的一元二次方程2x2–4x+m=0的解是__________.考向六二次函数的实际应用在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.典例11飞机着陆后滑行的距离y(单位:m)关于滑行时间以(单位:)的函数解析式是y=6t﹣3 2t2.在飞机着陆滑行中,滑行最后的150m所用的时间是s.A.10 B.20 C.30 D.10或30 【答案】A【解析】当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当y=600﹣150=450时,即60t﹣32t2=450,解得:t=10,t=30(不合题意舍去),∴滑行最后的150m所用的时间是20﹣10=10,故选A.【名师点睛】本题考查二次函数与一元二次方程综合运用,关键在于解一元二次方程.典例12如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此变换进行下去,若点P(17,m)在这种连续变换的图象上,则m的值为A.2 B.﹣2C.﹣3 D.3【答案】D【解析】∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4......,∴OA1=A1A2=A2A3=A3A4 (4)∵点P(17,m)在这种连续变换的图象上,17÷4=4……1,∴点P(17,m)在C5上,∴x=17和x=1时的函数值相等,∴m=﹣1×(1﹣4)=﹣1×(﹣3)=3,故选D.【名师点睛】本题考查二次函数的性质及旋转的性质,得出x=17和x=1时的函数值相等是解题关键.12.如图所示的是跳水运动员10m跳台跳水的运动轨迹,运动员从10m高A处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M离墙1m,离水面403m,则运动员落水点B离墙的距离OB是A .2mB .3mC .4mD .5m13.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.求:(1)铅球在行进中的最大高度; (2)该男生将铅球推出的距离是多少m ?考向七 存在性问题与动点问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数表达式,最后根据函数表达式判别图象的变化.典例13 综合与探究: 已知二次函数213222y x x =-++的图象与x 轴交于,A B 两点(点B 在点A 的左侧),与y 轴交于点C .(1)求点 A B C ,,的坐标; (2)求证:ABC 为直角三角形;(3)如图,动点 E F ,同时从点A 出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒姨5个单位长度的速度沿射线AC 方向运动.当点F 停止运动时,点E 随之停止运动.设运动时间为t 秒,连结EF ,将AEF 沿EF 翻折,使点A 落在点D 处,得到DEF .当点F 在AC 上时,是否存在某一时刻t ,使得DCO BCO ≌?(点D 不与点B 重合)若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4,01,00,2A B C (),(-),();(2)证明见解析;(3)存在;3t 4=【解析】(1)当0y =时,2132022x x -++= 解得:121,4x x ==∴点A 的坐标为()4,0,点B 的坐标为()1,0-当0x =时,2y =∴点C 的坐标为()0,224,01,00,2A B C ()(),(-),(),41 2.OA OB OC ∴===,,5AB AC BC ∴=====,=22225AC BC AB ∴+==ABC ∴为直角三角形()3由()2可知ABC 为直角三角形.且90ACB ∠=︒2AE t AF t ==,,AF AB AE AC ∴==又EAF CAB ∠=∠,AEF ACB ∴∽,90.AEF ACB ∴∠=∠=︒AEF ∴沿EF 翻折后,点A 落在x 轴上点D 处,由翻折知,DE AE =,24AD AE t ∴==, 当DCO BCO ≌时,BO OD =, 441OD t BO =-=,,441t ∴-=,解得:t =34,即:当t =34秒时,.DCO BCO ≌【名师点睛】本题考查二次函数解析式与坐标轴的交点,勾股定理的逆定理,相似三角形的判定和性质,全等三角形的判定及性质,综合性较强,掌握相关知识并灵活应用是本题的解题关键.14.抛物线y =ax 2+bx +c 与x 轴交于A ,B 两点(点A 在点B 的左侧),且A (﹣1,0),B (4,0),与y 轴交于点C ,C 点的坐标为(0,﹣2),连接BC ,以BC 为边,点O 为对称中心作菱形BDE C .点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线交抛物线于点Q ,交BD 于点M .(1)求抛物线的解析式.(2)x 轴上是否存在一点P ,使三角形PBC 为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.(3)当点P 在线段OB 上运动时,试探究m 为何值时,四边形CQMD 是平行四边形?请说明理由.1.抛物线2(2)(6)y x x =-+的对称轴是 A .3x =B .3x =-C .2x =D .2x =-2.将抛物线22y x =向右平移4个单位长度,再向下平移1个单位长度,所得抛物线为 A .22(4)1y x =+-B .22(4)1y x =++C .22(4)1y x =-+D .22(4)1y x =--3.若b <0,则二次函数y =x 2+2bx ﹣1的图象的顶点在 A .第一象限B .第二象限C .第三象限D .第四象限4.如图是二次函数2 23y x x =--+的图象,使0y ≥成立的x 的取值范围是A .31x ≤≤-B .1x ≥C .31x x <->或D .31x x ≤-≥或5.直线y =ax +b 和抛物线y =ax 2+bx +c 在同一坐标系中的图象可能是A .B .C .D .6.若函数y =mx 2+2x +1的图像与x 轴只有一个公共点,则常数m 的值为 A .m =1B .m =1或m =2C .m =0D .m =1或m =07.如图,边长为2的正ABC ∆的边BC 在直线l 上,两条距离为1的平行直线a 和b 垂直于直线l ,a 和b 同时向右移动(a 的起始位置在B 点),速度均为每秒1个单位,运动时间为t (秒),直到b 到达C 点停止,在a 和b 向右移动的过程中,记ABC ∆夹在a 和b 间的部分的面积为S ,则S 关于t 的函数图象大致为A .B .C .D .8.如图,已知抛物线y 1=﹣x 2+1,直线y 2=﹣x +1,当x 任取一值时,x 对应的函数值分别为y 1,y 2.若y 1≠y 2,取y 1,y 2中的较小值记为M ;若y 1=y 2,记M =y 1=y 2.例如:当x =2时,y 1=﹣3,y 2=﹣1,y 1<y 2,此时M =﹣3.下列判断中:①当x <0时,M =y 1;②当x >0时,M 随x 的增大而增大;③使得M 大于1的x 值不存在;④使得M =12的值是﹣2或12,其中正确的个数有A .1B .2C .3D .49.抛物线y =(x –2)(x +3)与y 轴的交点坐标是__________.10.若A (–3.5,y 1)、B (–1,y 2)、C (1,y 3)为二次函数y =–x 2–4x +5的图象上三点,则y 1,y 2,y 3的大小关系是__________.(用>连接)11.二次函数y =x (x –6)的图象的对称轴是__________.12.已知一个二次函数的图象经过A (1,6)、B (–3,6)、C (0,3)三点,求这个二次函数的解析式,并指出它的开口方向.13.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25 m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40 m的栅栏围住(如图).设绿化带的BC边长为x m,绿化带的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围.(2)当x为何值时,满足条件的绿化带的面积最大?14.已知二次函数y=–12x2–x+72.(1)用配方法把这个二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出这个二次函数图象的开口方向、顶点坐标和对称轴;(3)将二次函数y=–12x2的图象如何平移能得到二次函数y=–12x2–x+72的图象,请写出平移方法.15.如图,抛物线()20y ax bx c a =++≠的顶点坐标为()21,-,并且与y 轴交于点()03,C ,与x 轴交于A 、B 两点. (1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似.若存在,求出点E 的坐标;若不存在,请说明理由.16.如图,二次函数22y ax bx =++的图象与x 轴交于点A (10)-,、B (40),,与y 轴交于点C .(1)a =__________;b =__________;(2)点P 为该函数在第一象限内的图象上的一点,过点P 作PQ BC ⊥于点Q ,连接PC , ①求线段PQ 的最大值;②若以P 、C 、Q 为顶点的三角形与△ABC 相似,求点P 的坐标.1.抛物线2362y x x =-++的对称轴是 A .直线2x = B .直线2x =- C .直线1x =D .直线1x =-2.抛物线244y x x =-+-与坐标轴的交点个数为 A .0 B .1 C .2D .33.已知点()()()()1,,1,,2,0A m B m C m n n -->在同一个函数的图象上,这个函数可能是A .y x =B .2y x=-C .2y x =D .2y x =﹣4.已知反比例函数y =abx的图象如图所示,则二次函数y =ax 2-2x 和一次函数y =bx +a 在同一平面直角坐标系中的图象可能是A .B .C .D .5.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为 A .22(2)3y x =++ B .22(2)3y x =-+ C .22(2)3y x =--D .22(2)3y x =+-6.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =7.在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是 A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D .它的图象可以由2yx 的图象向右平移2个单位长度,再向上平移1个单位长度得到8.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是 A .c <-3 B .c <-2 C .c <14D .c <19.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是 A .2a < B .1a >- C .12a -<≤D .12a -≤<10.如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有A .1个B .2个C .3个D .4个11.如图是王阿姨晚饭后步行的路程s (单位:m )与时间t (单位:min )的函数图象,其中曲线段AB 是以B 为顶点的抛物线一部分,下列说法不正确的是A .25 min~50 min ,王阿姨步行的路程为800 mB .线段CD 的函数解析式为324002550s t t =+≤≤()C .5 min~20 min ,王阿姨步行速度由慢到快D .曲线段AB 的函数解析式为23(20)1200(520)s t t =--+≤≤12.小飞研究二次函数y =–(x –m )2–m +1(m 为常数)性质时如下结论:①这个函数图象的顶点始终在直线y =–x +1上;②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2m ,则y 1<y 2;④当–1<x <2时,y 随x 的增大而增大,则m 的取值范围为m ≥2其中错误结论的序号是 A .① B .② C .③D .④13.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为A .y =26675x 2B .y =-26675x 2C .y =131350x 2D .y =-131350x 214.二次函数y =-(x -6)2+8的最大值是__________.15.在平面直角坐标系中,垂直于x 轴的直线l 分别与函数y =x -a +1和y =x 2-2ax 的图象相交于P ,Q 两点.若平移直线l ,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是__________. 16.当03x ≤≤时,直线y a =与抛物线2(1)3y x =--有交点,则a 的取值范围是_________. 17.如图,抛物线2y ax c =+与直线y mx n =+交于A (-1,P ),B (3,q )两点,则不等式2ax mx c n ++>的解集是__________.18.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为__________米.19.已知二次函数2y x x a =++的图象与x 轴交于12(0)(0)A x B x ,、,两点,且2212111x x +=,求a 的值.20.已知抛物线224y x x c =-+与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线224y x x c =-+经过点()2,A m 和点()3,B n ,试比较m 与n 的大小,并说明理由.21.在画二次函数()20y ax bx c a =++≠的图象时,甲写错了一次项的系数,列表如下:乙写错了常数项,列表如下:通过上述信息,解决以下问题:(1)求原二次函数()20y ax bx c a =++≠的表达式;(2)对于二次函数()20y ax bx c a =++≠,当x __________时,y 的值随x 的值增大而增大;(3)若关于x 的方程()20ax bx c k a ++=≠有两个不相等的实数根,求k 的取值范围.22.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件. (1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少?23.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计)24.在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售,笔记本一律按原价销售,学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元?25.我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x元/件(x≥6,且x是按0.5元的倍数上涨),当天销售利润为y元.(1)求y与x的函数关系式(不要求写出自变量的取值范围);(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.26.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.27.随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=12x+12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?28.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600 注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是__________元/件;当售价是__________元/件时,周销售利润最大,最大利润是__________元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.1.【答案】A【解析】∵223y x =-+(),∴二次函数223y x =-+()的图象的顶点坐标是(2,3),故选A.【名师点睛】此题考查二次函数的性质,解题关键在于掌握其顶点式一般形式的特点. 2.【答案】A【解析】一元二次方程3x 2+1=6x 化为一般形式是3x 2–6x +1=0,各项的系数分别是:3,–6.故选A【名师点睛】本题考查了一元二次方程的解,解答本题要通过移项,转化为一般形式,注意移项时符号的变化. 相交,D 选项符合.故选D . 4.【答案】D【解析】根据一次函数的图象可得a >0,b <0.则二次函数开口向上,对称轴在y 轴的右侧. 故选D . 5.【答案】C【解析】∵由图象知,开口向上,∴a >0,故A 错误;由图象知,与y 轴的交点在负半轴,∴c <0,故B 错误;令x =1,则a +b +c >0,故C 正确;∵抛物线与x 轴有两个交点,∴Δ= b 2–4ac >0,故D 错误.故选C . 6.【答案】C【解析】(1)反比例函数113=3m y mx x=,当m >0时,图象在第一、三象限,在每个象限内y 随x 的增大而减小,当m <0时,图象在第二、四象限,在每个象限内y 随x 的增大而增大,故(1)的说法错误;(2)函数13y x =-中k =103-<,y 随x 的增大减小,故(2)的说法正确; (3)函数213y x =-中a =103-<,函数图象开口向下,对称轴为直线x =0,所以当0x >时,y随x 的增大而减小,故(3)的说法正确.故选C.【名师点睛】此题主要考查了反比例函数、正比例函数和二次函数的图象与性质,熟练掌握它们的性质是解决此题的关键. 7.【答案】A【解析】∵经过A (m ,n )、C (3–m ,n ),∴二次函数的对称轴x =32,∵B (0,y 1)、D ,y 2)、E (2,y 3)与对称轴的距离B 最远,D 最近, ∵|a |>0,∴y 1>y 3>y 2;故选A .【名师点睛】此题考查二次函数的图象及性质;熟练掌握函数图象上点的特征是解题的关键. 8.【答案】B【解析】∵抛物线C :y =x 2+2x –3=(x +1)2–4,∴抛物线对称轴为直线x =–1.∴抛物线与y 轴的交点为A (0,–3).则与A 点关于直线x =–1对称的点是B (–2,–3).若将抛物线C 平移到C ′,并且C ,C ′关于直线x =1对称,就是要将B 点平移后以对称轴x =1与A 点对称,则B 点平移后坐标应为(4,–3).因此将抛物线C 向右平移4个单位长度.故选B . 9.【答案】B【解析】∵把抛物线y =12x 2–1先向右平移1个单位,再向下平移2个单位,∴得到的抛物线的解析式为y =12(x –1)2–3,故选B . 10.【答案】A【解析】由图可知,对称轴为直线x =2,∵抛物线与x 轴的一个交点坐标为(5,0),∴抛物线与x 轴的另一个交点坐标为(–1,0),又∵抛物线开口向下,∴不等式ax 2+bx +c >0的解集是–1<x <5.故选A . 11.【答案】x 1=–1,x 2=3【解析】观察图象可知,抛物线y =2x 2–4x +m 与x 轴的一个交点为(–1,0),对称轴为x =1,∴抛物线与x 轴的另一交点坐标为(3,0),∴一元二次方程2x 2–4x +m =0的解为x 1=–1,x 2=3.故答案为:x 1=–1,x 2=3.。
人教版初中数学二次函数知识点总复习含答案
人教版初中数学二次函数知识点总复习含答案一、选择题1.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .aB .bC .cD .d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.2.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点; ②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a <-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误 0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.3.已知,二次函数y=ax 2+bx+a 2+b (a≠0)的图象为下列图象之一,则a 的值为( )A .-1B .1C .-3D .-4【答案】A【解析】【分析】 分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0,a 2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a 2=3,由抛物线与x 的交点坐标得到x 2=-a ,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1,0)代入解析式得到a-b+a 2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2,0)和(0,0)分别代入解析式可计算出a 的值.【详解】解:若二次函数的图形为第一个,对称轴为y 轴,则b=0,y=ax 2+a 2,其顶点坐标为(0,a 2),而a 2>0,所以二次函数的图形不能为第一个;若二次函数的图形为第二个,对称轴为y 轴,则b=0,y=ax 2+a 2,a 2=3,而当y=0时,x 2=−a ,所以−a=4,a=−4,所以二次函数的图形不能为第二个;若二次函数的图形为第三个,令x=−1,y=0,则a−b+a 2+b=0,所以a=−1;若二次函数的图形为第四个,令x=0,y=0,则a 2+b=0①;令x=−2,y=0,则4a−2b+a 2+b=0②,由①②得a=−2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.故选A.【点睛】本题考查了二次函数y=ax 2+bx+c(a≠0)的图象与系数的关系:a >0,开口向上;a <0,开口向下;抛物线的对称轴为直线x=-;顶点坐标为(-,);也考查了点在抛物线上则点的坐标满足抛物线的解析式.4.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位【答案】A【解析】【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A .【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.5.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解.【详解】∵函数的图象开口向上,与y 轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ), ∴244ac b a =m ,∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.6.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ),∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.7.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误;根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.8.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.9.若二次函数y =x 2﹣2x+2在自变量x 满足m≤x≤m+1时的最小值为6,则m 的值为( )A 5,5,15,12+B .5,51C .1D .5,15-- 【答案】B 【解析】【分析】 由抛物线解析式确定出其对称轴为x=1,分m >1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m 的方程,可求得m 的值.【详解】∵y =x 2﹣2x+2=(x ﹣1)2+1,∴抛物线开口向上,对称轴为x =1,当m >1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而增大,∴当x =m 时,y 有最小值,∴m 2﹣2m+2=6,解得m =1+5或m =1﹣5(舍去),当m+1<1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而减小,∴当x =m+1时,y 有最小值,∴(m+1)2﹣2(m+1)+2=6,解得m =5(舍去)或m =﹣5,综上可知m 的值为1+5或﹣5.故选B .【点睛】本题主要考查二次函数的性质,用m 表示出其最小值是解题的关键.10.如图,抛物线2y ax bx c =++ 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a +b <0;③﹣43≤a ≤﹣1;④a +b ≥am 2+bm (m 为任意实数);⑤一元二次方程2ax bx c n ++= 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个【答案】B【解析】 解:∵抛物线开口向下,∴a <0,∵顶点坐标(1,n ),∴对称轴为直线x =1,∴2b a - =1,∴b =﹣2a >0,∵与y 轴的交点在(0,3),(0,4)之间(包含端点),∴3≤c ≤4,∴abc <0,故①错误;3a +b =3a +(﹣2a )=a <0,故②正确;∵与x 轴交于点A (﹣1,0),∴a ﹣b +c =0,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴3≤﹣3a ≤4,∴﹣43≤a ≤﹣1,故③正确; ∵顶点坐标为(1,n ),∴当x =1时,函数有最大值n ,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确;一元二次方程2ax bx c n ++=有两个相等的实数根x 1=x 2=1,故⑤错误.综上所述,结论正确的是②③④共3个.故选B .点睛:本题考查了抛物线与x 轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a 、b 的关系.11.已知二次函数223(0)y ax ax a a =--≠,关于此函数的图象及性质,下列结论中不一定成立的是( )A .该图象的顶点坐标为()1,4a -B .该图象与x 轴的交点为()()1,0,3,0-C .若该图象经过点()2,5-,则一定经过点()4,5D .当1x >时,y 随x 的增大而增大【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:y=a (x 2-2x-3)=a (x-3)(x+1)令y=0,∴x=3或x=-1,∴抛物线与x 轴的交点坐标为(3,0)与(-1,0),故B 成立;∴抛物线的对称轴为:x=1,令x=1代入y=ax 2-2ax-3a ,∴y=a-2a-3a=-4a ,∴顶点坐标为(1,-4a ),故A 成立;由于点(-2,5)与(4,5)关于直线x=1对称,∴若该图象经过点(-2,5),则一定经过点(4,5),故C 成立;当x >1,a >0时,y 随着x 的增大而增大,当x >1,a <0时,y 随着x 的增大而减少,故D 不一定成立;故选:D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.12.如图,已知二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0;②4a+2b+c >0;③13<a <23;④b >c .其中含所有正确结论的选项是( )A .①②③B .①③④C .②③④D .①②④【答案】B【解析】【分析】 根据对称轴为直线x=1及图象开口向下可判断出a 、b 、c 的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a 、b 、c 之间的关系,从而对④作判断;从图象与y 轴的交点B 在(0,-2)和(0,-1)之间可以判断c 的大小得出③的正误.【详解】①∵函数开口方向向上,∴a >0;∵对称轴在y 轴右侧∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴,∴c <0,∴abc >0,故①正确;②∵图象与x 轴交于点A (-1,0),对称轴为直线x=1,∴图象与x 轴的另一个交点为(3,0),∴当x=2时,y <0,∴4a+2b+c <0,故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间,∴-2<c <-1∵-12b a ,∴b=-2a,∵函数图象经过(-1,0),∴a-b+c=0,∴c=-3a,∴-2<-3a<-1,∴13<a<23;故③正确④∵函数图象经过(-1,0),∴a-b+c=0,∴b-c=a,∵a>0,∴b-c>0,即b>c;故④正确;故选B.【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.13.二次函数y=ax2+bx+c(a≠0)中的x与y的部分对应值如下表:给出以下结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当﹣12<x<2时,y<0;(3)已知点A(x1,y1)、B(x2,y2)在函数的图象上,则当﹣1<x1<0,3<x2<4时,y1>y2.上述结论中正确的结论个数为()A.0 B.1 C.2 D.3【答案】B【解析】【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(2)从表格可以看出,当﹣12<x<2时,y<0,符合题意;(3)﹣1<x1<0,3<x2<4时,x2离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.14.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.15.下面所示各图是在同一直角坐标系内,二次函数y=2ax+(a+c)x+c与一次函数y=ax+c的大致图象.正确的()A.B.C.D.【答案】D【解析】【分析】根据题意和二次函数与一次函数的图象的特点,可以判断哪个选项符合要求,从而得到结论.【详解】令ax2+(a+c)x+c=ax+c,解得,x1=0,x2=-ca,∴二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的交点为(0,c),(−ca,0),选项A中二次函数y=ax2+(a+c)x+c中a>0,c<0,而一次函数y=ax+c中a<0,c>0,故选项A不符题意,选项B中二次函数y=ax2+(a+c)x+c中a>0,c<0,而一次函数y=ax+c中a>0,c<0,两个函数的交点不符合求得的交点的特点,故选项B不符题意,选项C中二次函数y=ax2+(a+c)x+c中a<0,c>0,而一次函数y=ax+c中a<0,c>0,交点符合求得的交点的情况,故选项D符合题意,选项D中二次函数y=ax2+(a+c)x+c中a<0,c>0,而一次函数y=ax+c中a>0,c<0,故选项C不符题意,故选:D.【点睛】考查一次函数的图象、二次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.16.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.23D.43【答案】C【解析】【分析】点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC=3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3a,故点P、Q的速度比为3:3,故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=3,则HQ=CH﹣CQ=333,PQ22PH HQ+39+3,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.17.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于(-1,0),(3,0)两点,则下列说法:①abc <0;②a -b +c =0;③2a +b =0;④2a +c >0;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,其中正确的结论是( )A .①⑤B .②④C .②③④D .②③⑤ 【答案】D 【解析】 【分析】①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2ba=1,故正确;④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确. 【详解】解:①abc <0,由图象知c <0,a 、b 异号,所以,①错误; ②a -b+c=0,当x=-1时,y=a-b+c=0,正确; ③2a+b=0,函数对称轴x=-2ba=1,故正确; ④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确; 故选D . 【点睛】考查图象与二次函数系数之间的关系,要会求对称轴、x=±1等特殊点y 的值.18.已知二次函数y =a (x ﹣h )2+k 的图象如图所示,直线y =ax +hk 的图象经第几象限( )A .一、二、三B .一、二、四C .一、三、四D .二、三、四【答案】D 【解析】 【分析】根据二次函数的图象和性质可得a <0,h <0,k >0,以此判断一次函数的图象所经过的象限即可. 【详解】解:由函数图象可知,y =a (x ﹣h )2+k 中的a <0,h <0,k >0, ∴直线y =ax +hk 中的a <0,hk <0, ∴直线y =ax +hk 经过第二、三、四象限, 故选:D . 【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.19.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( ) A .12B .1C .5D .52【答案】B 【解析】 【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项. 【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得: 解得:x=0或6, 平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得: 解得:y=12-,平移的最短距离为152=22⎛⎫--⎪⎝⎭, 即平移的最短距离是1, 故选B. 【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.20.已知二次函数y =ax 2+bx+c 的图象如图所示,下列结i 论:①abc >0;②b 2﹣4ac >0;③2a+b =0;④a ﹣b+c <0.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】首先根据开口方向确定a 的取值范围,根据对称轴的位置确定b 的取值范围,根据抛物线与y 轴的交点确定c 的取值范围,根据抛物线与x 轴是否有交点确定b 2﹣4ac 的取值范围,根据x =﹣1函数值可以判断. 【详解】解:Q 抛物线开口向下,0a ∴<,Q 对称轴12bx a=-=, 0b ∴>,Q 抛物线与y 轴的交点在x 轴的上方,0c ∴>,0abc ∴<,故①错误;Q 抛物线与x 轴有两个交点,240b ac ∴->,故②正确;Q 对称轴12bx a=-=, 2a b ∴=-,20a b ∴+=,故③正确;根据图象可知,当1x =-时,0y a b c =-+<,故④正确;故选:C.【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.。
九年级数学《二次函数》总复习教案
教材:初中数学九年级上册复习目标:1.理解二次函数的概念和特征。
2.掌握二次函数的基本性质和图像的特点。
3.熟练运用二次函数解决实际问题。
4.理解抛物线的性质及其与二次函数的关系。
一、概念复习1.二次函数:通过变量的平方项表达的函数。
2.顶点:二次函数图像的最高点或最低点,表示为(a,b)。
3.对称轴:二次函数图像的对称轴,表示为x=a。
4.开口方向:二次函数图像的开口方向,由二次项的系数决定。
二、性质复习1.零点:二次函数与x轴交点的横坐标。
2.判别式:用来判断二次函数的零点个数的式子。
当Δ=b^2-4ac>0时,二次函数有两个不相等的零点。
当Δ=b^2-4ac=0时,二次函数有两个相等的零点。
当Δ=b^2-4ac<0时,二次函数没有实数零点。
3.最大值与最小值:当二次函数开口向上时,最小值是顶点的纵坐标。
当二次函数开口向下时,最大值是顶点的纵坐标。
三、图像特点复习1.开口方向:当a>0时,二次函数开口向上。
当a<0时,二次函数开口向下。
2.对称轴:对称轴与顶点的横坐标相等。
3.零点:零点是二次函数与x轴交点的横坐标。
零点的个数由判别式Δ决定。
四、实际问题复习1.利用二次函数解决实际问题的步骤:(1)明确问题中有关条件。
(2)设出二次函数的表达式。
(3)求出二次函数的最值或零点。
(4)用解出的最值或零点回答问题。
2.举例:问题:商场的营业额可以用二次函数y=2x^2+3x+4来表示,其中x表示时间(以小时计),y表示营业额(以万元计)。
求该商场的最大营业额,并在什么时间实现。
解答:(1)根据题目,得到二次函数的表达式为y=2x^2+3x+4(2)通过求导数或将二次函数表示为顶点形式,得到该二次函数的顶点为(-3/4,23/8)。
(3)所以,该商场的最大营业额为23/8万元,实现时间为-3/4小时。
五、抛物线的性质复习1. 加入二次函数的f(x)=ax^2+bx+c。
若a>0,抛物线开口向上;若a<0,抛物线开口向下。
人教版初中数学二次函数-教案-习题总汇-含答案
一、教学目标1. 使学生会用描点法画出二次函数k h x a y +-=2)(的图像; 2. 使学生知道抛物线k h x a y +-=2)(的对称轴与顶点坐标;3.通过本节的学习,继续培养学生的观察、分析、归纳、总结的能力;4.通过本节的教学,继续向学生进行数形结合的数学思想方法的教育,同时向学生渗透事物间互相联系、以及运动、变化的辩证唯物主义思想;5.通过本节课的研究,充分理解并认识到二次函数图像可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求。
二、教学重点会画形如k h x a y +-=2)(的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。
三、教学难点:确定形如 k h x a y +-=2)(的二次函数的顶点坐标和对称轴。
4.解决办法:四、教具准备 三角板或投影片1.教师出示投影片,复习222)(,,h x a y k ax y ax y -=+==。
2.请学生动手画1)1(212-+-=x y 的图像,正好复习图像的画法,完成表格。
3.小结k h x a y +-=2)(的性质⎪⎪⎩⎪⎪⎨⎧平移顶点坐标对称轴开口方向4.练习五、教学过程提问:1.前几节课,我们都学习了形如什么样的二次函数的图像? 答:形如222)(,h x a y k ax y ax y -=+==和。
(板书)2.这节课我们将来学习一种更复杂的二次函数的图像及其相关问题,你能先猜测一下我们将学习形如什么样的二次函数的问题吗?由学生参考上面给出的三个类型,较容易得到:讨论形如k h x a y +-=2)(的二次函数的有关问题.(板书)一、复习引入首先,我们先来复习一下前面学习的一些有关知识.(出示幻灯) 请你在同一直角坐标系内,画出函数222)1(21,121,21+-=--=-=x y x y x y 的图像,并指出它们的开口方向,对称轴及顶点坐标. 这里之所以加上画函数2)1(21+-=x y 的图像,是为了使最后通过图像的观察能更全面一些,也更直观一些,可以同时给出图像先沿y 轴,再沿x 轴移动的方式,也可以给出图像 先沿x 轴再沿y 轴移动的方式,使这部分知识能更全面,知识与知识之间的联系能更清晰、更具体.画这三个函数图像,可由学生在同一表中列值,但是要根据各自的不同特点取自变量x 的值,以便于学生进行观察.教师可事先准备好表格和画有直角坐标系的小黑板,由一名同 学上黑板完成,其他同学在练习本上完成,待同学们基本做完之后加以总结,然后再找三名 同学,分别指出这三个图像的开口方向、对称轴及顶点坐标,填入事先准备好的表格中. 然后提问:你能否在这个直角坐标系中,再画出函数1)1(212-+-=x y 的图像?由于前面几节课我们已经画了不少二次函数的图像,学生对画图已经有了一定的经验, 同时可在画这个图时,把这些经验形成规律,便于学生以后应用.(l )关于列表:主要是合理选值与简化运算的把握,是教学要点.在选值时,首先要考虑的是函数图像的对称性,因此首先要确定中心值,然后再左,右取相同间隔的值;其次,选值时尽量选取整数,便于计算和描点.在选取x 的值之后,计算y 的值时,考虑到对称性,只需计算中心值一侧的值,另一侧由对称性可直接填入,但一定要保证运算正确.(2)关于描点:一般可先定顶点(即中心值对应的点,然后利用对称性描出各点,以逐步提高速度.)(3)关于连线:特别要注意顶点附近的大致走向。
人教初中数学九上 《二次函数》教案 (公开课获奖)
22 二次函数【教学环节安排】教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.A BICABI作一条直线L ,在L 上取点A ,在L 外取点B ,作出点B 关于直线L 的对称点C ,连接AB 、BC 、CA ,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点. [师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线. [生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质. [生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕. [师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕. 〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为D CA B,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角. [师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)D CABDC A B答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题.〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC . ∴∠P=∠ACD . 又∵DE ∥AP ,EDCABPD C A B∴∠4=∠P.∴∠4=∠ACD.∴DE=EC.同理可证:AE=DE.∴AE=C E.板书设计一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,那么它的对称轴一定是〔〕A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是〔〕A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,那么其腰长为〔x+2〕cm,根据题意,得2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。
二次函数 —— 初中数学第六册教案-初中数学二次函数教案
二次函数——初中数学第六册教案|初中数学二次函数教案〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向〖大纲要求〗1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数y=ax (a≠0)的图象得到二次函数y=a(ax+m) +k 的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容(1)二次函数及其图象如果y=ax +bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向抛物线y=ax +bx+c(a≠0)的顶点是,对称轴是,当a>0时,抛物线开口向上,当a y y y y1 10 x o-1 x 0 x 0 -1 xA B C D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为x=,求这条抛物线的解析式。
4.考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线y=ax +bx+c(a≠0)与x轴的两个交轴交点的个数为()(A)0(B)1(C)2(D)314、下列各图中能表示函数和在同一坐标系中的图象大致是()(A) (B) (C) (D)15.平面三角坐标系内与点(3,-5)关于y轴对称点的坐标为()(A)(-3,5)(B)(3,5)(C)(-3,-5)(D)(3,-5)16.下列抛物线,对称轴是直线x=的是()(A)y=x(B)y=x+2x(C)y=x+x+2(D)y=x-x-217.函数y=中,x的取值范围是()(A)x≠0(B)x>(C)x≠(D)x<18.已知A(0,0),B(3,2)两点,则经过A、B两点的直线是()(A)y=x(B)y=x(C)y=3x(D)y=x+119.不论m为何实数,直线y=x+2m与y=-x+4 的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限 20.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是()(A)2米(B)3米(C)4米(D)5米三.解答下列各题(21题6分,22----25每题4分,26-----28每题6分,共40分)21.已知:直线y=x+k过点A(4,-3)。
人教版初中九年级数学上册第二十二章《二次函数》习题(含答案解析)
一、选择题1.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③B解析:B【分析】 先由抛物线与x 轴的交点个数判断出结论①,再根据二次函数图像的开口方向,及与y 轴的交点位置,对称轴的位置分别判断出,,a b c 的符号可判断结论②,最后用2x =-时,抛物线再x 轴上方判断结论③.【详解】由图象知,抛物线与x 轴有两个交点,方程ax 2+bx+c=0有两个不相等的实数根,∴b 2-4ac>0,故①正确,由图象知抛物线的开口向下0a <,抛物线与y 轴交于正半轴0c >,对称轴直线为1x =-, ∴102b a-=-<,可推出0b <, ∴0abc >,故②错误,由图象知,当x=-2与x=0对应的y 值相同,0y >,∴420a b c -+>,故③正确.故选:B .【点睛】本题主要考查了二次函数图形与系数的关系,抛物线的开口方向,与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解题的关键2.将抛物线2y x 先向上平移2个单位长度,再向左平移1个单位长度,则得到新抛物线的解析式为( ) A .()212y x =-+B .()212y x =-- C .()212y x =++ D .()=+-2y x 12C解析:C【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】解:将抛物线2y x 先向上平移2个单位长度,再向左平移1个单位长度,就得到抛物线:2(1)2y x =++.故答案为:C .【点睛】本题考查二次函数的图象与性质,图象平移规律“左加右减,上加下减”是解题关键. 3.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D .D 解析:D【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项.【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D 选项,抛物线开口向下,0a <,一次函数过二、三、四象限,0a <,0b <,满足ab>0,正确故选:D .【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个B解析:B【分析】 由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断.【详解】解:①∵由二次函数的图象可知:抛物线的开口向上,∴a >0;又∵二次函数的图象与y 轴的交点在负半轴,∴c <0;∴ac <0,即①正确;②由图象知,对称轴x =2b a-=1,则b =﹣2a <0.故②正确; ③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确;④由图象可知当x >1时,y 随x 的增大而增大;故④错误.综上所述,正确的结论是:①②③.故选:B .【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.5.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t <<C解析:C【分析】根据对称轴求出b 的值,从而得到23x -<<时的函数值的取值范围,再根据一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答.【详解】解:对称轴为直线x=-21b ⨯=1, 解得b=-2,所以二次函数解析式为y=x 2-2x ,y=(x-1)2-1,x=1时,y=-1,x=-2时,y=4-2×(-2)=8,∵x 2+bx-t=0的解相当于y=x 2+bx 与直线y=t 的交点的横坐标,∴当-1≤t <8时,在-1<x <4的范围内有解.故选:C .【点睛】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键.6.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( ) A . B . C . D .D 解析:D【分析】先假设0c <,根据二次函数2y ax bx c =++图象与y 轴交点的位置可判断A ,C 是否成立;再假设0c >,0b <,判断一次函数y cx b =-的图象位置及增减性,再根据二次函数2y ax bx c =++的开口方向及对称轴位置确定B ,D 是否成立.【详解】解:若0c <,则一次函数y cx b =-图象y 随x 的增大而减小,此时二次函数2y ax bx c =++的图象与y 轴的交点在y 轴负半轴,故A ,C 错;若0c >,0b <,则一次函数y cx b =-图象y 随x 的增大而增大,且图象与y 的交点在y 轴正半轴上,此时二次函数2y ax bx c =++的图象与y 轴的交点也在y 轴正半轴,若0a >,则对称轴b x 02a =->,故B 错;若0a <,则对称轴02b x a=-<,则D 可能成立.故选:D .【点睛】本题考查一次函数图象与二次函数图象的综合判断问题,解答时可假设一次函数图象成立,分析二次函数的图象是否符合即可.7.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D .D 解析:D【分析】先根据运动速度和AB 、BC 的长可得t 的取值范围,再根据运动速度可得,2AP tcm BQ tcm ==,然后利用直角三角形的面积公式可得S 与t 之间的函数关系式,最后根据二次函数的图象特点即可得.【详解】设运动时间为ts ,点P 到达点B 所需时间为31AB s =,点Q 到达点C 所需时间为32BC s =, ∴点P 、Q 同时停止运动,且t 的取值范围为03t ≤≤, 由题意,,2AP tcm BQ tcm ==,3AB cm =,()3BP AB AP t cm ∴=-=-,()21132322S BP BQ t t t t ∴=⋅=-⋅=-+, 则S 与t 之间的函数图象是抛物线在03t ≤≤的部分,且开口向下,观察四个选项可知,只有选项D 符合,故选:D .【点睛】本题考查了二次函数的图象,正确求出S 与t 之间的函数关系式是解题关键.8.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++A 解析:A【分析】 根据题意结合函数的图象,得出图中A 、B 、C 的坐标,再利用待定系数法求出函数关系式即可.【详解】 解:50.26 2.24 2.52+==(米) 根据题意和所建立的坐标系可知,A (-5,12),B (0,52),C (52,0), 设排球运动路线的函数关系式为y=ax 2+bx+c ,将A 、B 、C 的坐标代入得:125252255042a b c c a b c ⎧-+=⎪⎪⎪=⎨⎪⎪++=⎪⎩, 解得,1485,,75152a b c =-=-=, ∴排球运动路线的函数关系式为2148575152y x x =--+, 故选:A .【点睛】 本题考查待定系数法求二次函数的关系式,根据题意得出图象所过点的坐标是正确解答的关键.9.要在抛物线()4y x x =-上找点(),P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下( )甲:若5b =,则点P 的个数为0乙:若4b =,则点P 的个数为1丙:若3b =,则点P 的个数为1A .甲乙错,丙对B .甲丙对,乙错C .甲乙对,丙错D .乙丙对,甲错C 解析:C【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.【详解】解:y=x (4-x )=-x 2+4x=-(x-2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P 的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C .【点睛】本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.10.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3-D 解析:D【分析】解方程2334x x -+=0得A 1(4,0),再利用旋转的性质得A 2(4×2,0),A 3(4×3,0),依此规律得到A 505(4×505,0),A 506(4×506,0),且抛物线C 506的开口向上,利用交点式,设抛物线C 506的解析式为y =34(x−2020)(x−2024),然后确定此抛物线顶点坐标即可.【详解】当y =0时,2334x x -+=0,解得x 1=0,x 2=4, ∴A 1(4,0), ∵将C 1绕A 1旋转180°得到C 2,交x 轴于A 2,将C 2绕A 2旋转180得到C 3,∴A 2(4×2,0),A 3(4×3,0),∴A 505(4×505,0),A 506(4×506,0),即A 505(2020,0),A 506(2024,0), ∵抛物线C 506的开口向上,∴抛物线C 506的解析式为y =34(x−2020)(x−2024), ∵抛物线的对称轴为直线x =2022, 当x =2022时,y =34(2022−2020)(2022−2024)=−3, ∴抛物线C 506的顶点坐标是(2022,−3).故选:D .【点睛】 本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的几何变换和二次函数的性质.二、填空题11.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.【分析】根据点ABC 的坐标可得二次函数的对称轴和增减性由此即可得【详解】点在二次函数的图象上此二次函数的对称轴为点BC 的横坐标大小关系为纵坐标大小关系为当时y 随x 的增大而增大;当时y 随x 的增大而减小解析:123y y y <<【分析】根据点A 、B 、C 的坐标可得二次函数的对称轴和增减性,由此即可得.【详解】点(1,2)A ,(3,2)B ,(5,7)C 在二次函数2y ax bx c =++的图象上, ∴此二次函数的对称轴为1322+=, 点B 、C 的横坐标大小关系为532>>,纵坐标大小关系为72,∴当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小,由二次函数的对称性得:1x =-时的函数值与5x =时的函数值相等,即为27y =, 又点1(2,)M y ,3(8,)K y 在二次函数2y ax bx c =++的图象上,且258, 137y y ,即123y y y <<,故答案为:123y y y <<.【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.12.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣13x 2,桥下的水面宽AB 为6m ,当水位上涨2m 时,水面宽CD 为_____m (结果保留根号). 2【分析】首先求出B 点纵坐标进而得出D 点纵坐标即可求出D 点横坐标进而得出CD 的长【详解】解:由题意可得:当AB =6m 则B 点横坐标为3故此时y =﹣×32=﹣3当水位上涨2m 时此时D 点纵坐标为:﹣3+2解析:3【分析】首先求出B 点纵坐标,进而得出D 点纵坐标,即可求出D 点横坐标,进而得出CD 的长.【详解】解:由题意可得:当AB =6m ,则B 点横坐标为3,故此时y =﹣13×32=﹣3, 当水位上涨2m 时,此时D 点纵坐标为:﹣3+2=﹣1, 则﹣1=﹣13x 2, 解得:x =3故当水位上涨2m 时,水面宽CD 为3. 故答案为:3【点睛】此题主要考查了二次函数的应用,求出D 点横坐标是解题关键.13.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.不能【分析】根据题意将x=2代入求出相应的y 值然后与车高比较大小即可解答本题【详解】解:将x=2代入y=-x2+325得y=-×22+325=275∵275<3∴该车不能通过隧道故答案为:不能【点睛解析:不能.【分析】根据题意,将x=2代入求出相应的y 值,然后与车高比较大小即可解答本题.【详解】解:将x=2代入y=-18x 2+3.25,得 y=-18×22+3.25=2.75, ∵2.75<3,∴该车不能通过隧道,故答案为:不能.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件. 14.已知二次函数2(0)y ax bx c a =++≠,其函数y 与自变量x 之间的部分对应值如下表所示,则42a b c ++=___________.函数值可得从而可得由此即可得【详解】和的函数值相同此二次函数的对称轴为即当时则故答案为:【点睛】本题考查了二次函数的性质正确求出二 解析:152【分析】先根据0x =和1x =的函数值相同可得二次函数的对称轴为12x =,从而可得=-b a ,再根据1x =-时的函数值可得152a b c,从而可得1522a c ,由此即可得. 【详解】 0x =和1x =的函数值相同,∴此二次函数的对称轴为12x =, 122b a ∴-=,即=-b a , 当1x =-时,152y a b c , 1522a c , 则4242abc a a c , 2a c , 152=, 故答案为:152. 【点睛】本题考查了二次函数的性质,正确求出二次函数的对称轴是解题关键.15.已知二次函数246y x x =--,若16x -≤≤,则y 的取值范围为____.【分析】先利用配方法求得抛物线的顶点坐标从而可得到y 的最小值然后再求得最大值即可【详解】解:y=x2-4x-6=x2-4x+4-10=(x-2)2-10∴当x=2时y 有最小值最小值为-10∵∴当x=解析:106y -≤≤【分析】先利用配方法求得抛物线的顶点坐标,从而可得到y 的最小值,然后再求得最大值即可.【详解】解:y=x 2-4x-6=x 2-4x+4-10=(x-2)2-10.∴当x=2时,y 有最小值,最小值为-10.∵16x -≤≤,∴当x=6时,y 有最大值,最大值为y=(6-2)2-10=6.∴y 的取值范围为106y -≤≤.故答案为:106y -≤≤.【点睛】本题主要考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键. 16.如图,将抛物线y=−12x 2平移得到抛物线m .抛物线m 经过点A (6,0)和原点O ,它的顶点为P ,它的对称轴与抛物线y=−12x 2交于点Q ,则图中阴影部分的面积为______.324【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴然后求出点P 的坐标过点P 作PM ⊥y 轴于点M 过点P 作PN ⊥x 轴于点N 根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积然后求解即可解析:324.【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积,然后求解即可.【详解】解:过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,∵抛物线平移后经过原点O 和点A (6,0),∴平移后的抛物线对称轴为x=3,∴平移后的二次函数解析式为: ()2123y x h =--+, 将(6,0)代入得出:()201263h =-⨯-+,解得:108h =,∴点P 的坐标是(3,108).根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S= 3108⨯=324故答案为:324【点睛】本题主要考查二次函数的有关知识,涉及到二次函数的性质及二次函数图象平移的规律,解题的关键是熟练所学知识并学会做辅助线.17.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.【分析】先将二次函数的解析式化成顶点式再根据二次函数的增减性即可得【详解】二次函数化成顶点式为由二次函数的性质可知当时y 随x 的增大而减小点在此二次函数的图象上且故答案为:【点睛】本题考查二次函数的顶解析:123y y y >>【分析】先将二次函数的解析式化成顶点式,再根据二次函数的增减性即可得.【详解】二次函数245y x x =-+化成顶点式为22()1y x =-+,由二次函数的性质可知,当2x ≤时,y 随x 的增大而减小,点123(4,),(1,),(1,)A y B y C y --在此二次函数的图象上,且4112-<-<<, 123y y y ∴>>,故答案为:123y y y >>.【点睛】本题考查二次函数的顶点式和增减性,熟练掌握二次函数的性质是解题关键.18.定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:()3,0B 、()1,3C -都是“整点”.抛物线()2220y ax ax a a =++->与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是_______.1<a≤2【分析】画出图象找到该抛物线在MN 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界利用与y 交点位置可得a 的取值范围【详解】解:抛物线y =ax2+2ax +a−2(a >0)化为顶点解析:1<a≤2【分析】画出图象,找到该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界,利用与y 交点位置可得a 的取值范围.【详解】解:抛物线y =ax 2+2ax +a−2(a >0)化为顶点式为y =a (x +1)2−2,∴函数的对称轴:x =−1,顶点坐标为(−1,−2),∴M 和N 两点关于x =−1对称,根据题意,抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(−1,0),(−1,−1),(−1,−2),(−2,0), 如图所示:∵当x =0时,y =a−2,∴−1<a−2≤0,当x =1时,y =4a−2>0,即:120420a a --≤-⎧⎨⎩<>, 解得1<a≤2,故答案为:1<a≤2.【点睛】本题考查抛物线与x 轴的交点、配方法确定顶点坐标、待定系数法等知识,利用函数图象确定与y 轴交点位置是本题的关键.19.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案【详解】解:∵二次函数的解析式为∴抛物线的对称轴是直线∴当时随的增大而减小;当时随的增大而增大∵是抛物线上的三个点∴∴∴故答案是:【点睛】解析:132y y y >>【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案.【详解】解:∵二次函数的解析式为()21y x m =+-∴抛物线的对称轴是直线1x =- ,10a =>∴当1x <-时,y 随x 的增大而减小;当1x >-时,y 随x 的增大而增大∵()13,A y -、()22,B y -、31,2C y ⎛⎫ ⎪⎝⎭是抛物线()21y x m =+-上的三个点 ∴()132---=,()121---=,()13122--= ∴3212>>∴132y y y >>.故答案是:132y y y >>【点睛】本题考查了二次函数图像与系数的关系、二次函数图像上点的坐标特征,解答本题的关键是明确题意,能利用图像的增减性进行解答.20.在平面直角坐标系xOy 中,函数y=x 2的图象经过点M (x 1,y 1),N (x 2,y 2)两点,若﹣4<x 1<﹣2,0<x 2<2,则y 1 ______y 2 .(用“<”,“=”或“>”号连接)>【分析】根据二次函数的性质即可求解【详解】解:由y=x2可知∵a=1>0∴抛物线的开口向上∵抛物线的对称轴为y 轴∴当x >0时y 随x 的增大而增大∵-4<x1<-20<x2<2∴2<-x1<4∴y1>解析:>【分析】根据二次函数的性质即可求解.【详解】解:由y=x 2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y 轴,∴当x >0时,y 随x 的增大而增大,∵-4<x 1<-2,0<x 2<2,∴2<-x 1<4,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上的点的坐标特征及二次函数的性质.当a >0时,开口向上,在对称轴的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0,开口向下,在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小;三、解答题21.已知二次函数y =ax 2+bx+c 中自变量x 和函数值y 的部分对应值如表:(1)求该二次函数的函数关系式;(2)在所给的直角坐标系中画出此函数的图象;(3)作该二次函数y =ax 2+bx+c 的图象关于x 轴对称的新图象,则新图象的函数关系式为 .解析:(1)y =x 2﹣4x+5.(2)见解析;(3)y =﹣x 2+4x ﹣5.【分析】(1)当x=1或3时,y 均等于2,那么此二次函数的对称轴是2,则顶点坐标为(2,1),设出顶点式,把表格中除顶点外的一点的坐标代入可得a 的值,也就求得了二次函数的值;(2)描点、连线画出函数图象即可;(3)根据关于x 轴对称的点的坐标特征即可求得.【详解】解:(1)由图表可知抛物线y =ax 2+bx+c 过点(1,2),(3,2),∴对称轴为x =132=2; ∴顶点坐标为:(2,1),∴设y =a (x ﹣2)2+1,将(0,5)代入可得:4a+1=5,解得:a =1,∴二次函数的解析式为:y =(x ﹣2)2+1,即y =x 2﹣4x+5,所求二次函数的关系式为y =x 2﹣4x+5.(2)描点、连线画出函数图象如图:;(3)∵新图象与二次函数y=ax2+bx+c的图象关于x轴对称,∴﹣y=x2﹣4x+5,∴新图象的函数关系式为y=﹣x2+4x﹣5,故答案为y=﹣x2+4x﹣5.【点睛】本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式,二次函数的图象与性质,熟练掌握待定系数法是解题的关键.22.某工厂大门是抛物线形水泥建筑,大门地面宽AB为4m,顶部C距离地面的高度为4.4m,现有一辆货车,其装货宽度为2.4m,高度2.8米,请通过计算说明该货车能否通过此大门?解析:能,理由见解析【分析】首先建立适当的平面直角坐标系,并利用图象中的数据确定二次函数的解析式,进而得到装货后的最大高度,即可求解.【详解】解:以C为坐标原点,抛物线的对称轴为y轴,建立如下图所示的平面直角坐标系,根据题意知,A (﹣2,﹣4.4),B (2,﹣4.4),设这个函数解析式为y =kx 2.将A 的坐标代入,得y =﹣1.1x 2,∵货车装货的宽度为2.4m ,∴E 、F 两点的横坐标就应该是﹣1.2和1.2,∴当x =1.2时 y =﹣1.584,∴GH =CH ﹣CG =4.4﹣1.584=2.816(m ),因此这辆汽车装货后的最大高度为2.816m ,∵2.8<2.816,所以该货车能够通过此大门.【点睛】本题考查点的坐标的求法及二次函数的实际应用关键是建立数学模型,借助二次函数解决实际问题,注意根据线段长度得出各点的坐标,难度一般.23.如图,抛物线2123y x x =-++与直线24y x =交于A 、B 两点.(1)求A 、B 两点的坐标;(2)直接写出当x 取何值时,12y y >;(3)利用图象法直接写出不等式2230x x -++≥的解集.解析:(1)A (1,4),B (-3,-12);(2)-3<x <1;(3)-1≤x≤3.【分析】(1)根据函数的图象与性质可得2234x x x -++=,则可求出交点的横坐标,再由24y x =可得纵坐标,即可得出结论;(2)观察图象可得结果;(3)求出抛物线与x 轴的交点坐标,即可得解.【详解】解:(1)根据题意得:2234x x x -++=,解得:11x =,23x =-当11x =时,24y =.当23x =-时,212y =-.∴A (1,4),B (-3,-12).(2)观察图象得:当-3<x <1时,12y y >.(3)由2230x x -++=得:11x =-,23x =.∴抛物线与x 轴的交点坐标为(-1,0),(3,0).由图象可得,2230x x -++≥的解集为:-1≤x≤3.【点睛】本题主要考查了二次函数的图象与性质,掌握二次函数的图象与性质并能运用数形结合的思想是解题的关键.24.某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.解析:(1)S =﹣x 2+6x ,其中0<x <6;(2)矩形一边长为3m 时,面积最大为9m 2,9000元.【分析】(1)根据矩形的面积公式和已知条件列出S 与x 之间的函数关系式并确定自变量x 的取值范围即可;(2)根据(1)得出的关系式,利用配方法求出函数的最大值即可.【详解】解:(1)∵矩形的一边长为x 米,∴另一边长为1222x -米,即(6﹣x )米, ∴S =x (6﹣x )=﹣x 2+6x ,即S =﹣x 2+6x ,其中0<x <6; (2)根据(1)得:S =x (6﹣x )=﹣(x ﹣3)2+9,则矩形一边长为3m 时,面积最大为9m 2.则此时最大费用为9×1000=9000(元).【点睛】本题考查了二次函数在几何图形中的应用,根据题意确定S 与x 之间的函数关系式成为解答本题的关键.25.温州某大超市计划销售一种水果,已知水果的进价为每盒9元,并且水果的销售量由售价决定.经市场调查表明,当售价在10到15元之间(含10元,15元)波动时,每盒水果的销售价格每减少1元则日销售量增加80盒,当水果售价为每盒15元时,日销售量为160盒,现设每盒水果的销售价为x 元.(每盒毛利润=每盒售价-每盒进价) (1)当每盒销售价为13元时,超市的当日销售量为______盒.(2)如果规定该种水果的日均销售量不低于400盒时,设销售这种水果所获得的日毛利润为y (元),求y 关于x 的函数解析式,并求出日毛利润y 的最大值.(3)为了提高水果的知名度,超市给当天售出的每盒苹果进行精包装,包装费每盒1元,另外从该种水果的日毛利润中提取50元作为销售员当天的额外奖励,且保证提取后日毛利润不低于750元,同时又要使顾客得到实惠,则当日水果的销售量至少是______盒.(直接写出答案)解析:(1)320;(2)280208012240y x x =-+-;当12x =,max 1200y =;(3)480【分析】(1)根据题意列式求解可得;(2)根据“毛利润=每盒毛利润×销售量”列出函数解析式,将其配方成顶点式后利用二次函数的性质求解可得;(3)根据题意列出方程:()28020801224050136080750x x x -+----=,解方程可得结论.【详解】(1)当每盒销售价为13元时,超市的当日销售量为:()151380160320-⨯+=(盒),故答案为:320;(2)由题意得:()()80151609y x x ⎡⎤=-+-⎣⎦228020*********(13)1280x x x =-+-=--+,∵规定该种水果日均的销售量不低于400盒,∴801360400x -+≥,解得:12x ≤,∵1015x ≤≤,∴1012x ≤≤,∵800-<,∴当1012x ≤≤时,y 随x 的增大而增大,∴当x=12时,y 取得最大值,最大值为1200,答:应将售价定为每盒12元时,所得日均毛利润最大,最大日均毛利润为1200元; (3)由题意得:()280208012240508015160x x x ⎡⎤-+----+=⎣⎦750, 整理得:2271800x x -+=,解得:121215x x ==,,∵要使顾客得到实惠,∴215x =应该舍去,当12x =时,当日水果的销售量为:()8015160480x -+=(盒),答:当日水果的销售量至少是480盒.故答案为:480.【点睛】本题主要考查了二次函数的应用以及一元二次方程的应用,解题的关键是熟练掌握根据总利润的相等关系列出函数解析式、利用二次函数的性质求最值问题.26.某车间生产以甲、乙两种水果为原料的某种罐头,在一次进货中得知,花费1.8万元购进的甲种水果与2.4万元购进的乙种水果质量相同,乙种水果每千克比甲种水果多2元.(1)求甲、乙两种水果的单价;(2)车间将水果制成罐头投入市场进行售卖,已知一听罐头需要甲乙水果各0.5千克,而每听罐头的成本除了水果成本之外,其他所有成本是水果成本的57还要多3元.调查发现,以28元的定价进行销售,每天只能卖出3000听,超市对它进行促销,每降低1元,平均每天可多卖出1000听,当售价为多少元时,利润最大?最大利润为多少?(3)若想使得该种罐头的销售利润每天达到6万元,并且保证降价的幅度不超过定价的15%,每听罐头的价钱应为多少钱?解析:(1)甲、乙两种水果的单价分别为6元/千克、8元/千克;(2)售价为23元时,利润最大,最大利润为64000元;(3)每听罐头的价钱应为25元【分析】(1)设甲种水果的单价为x 元/千克,乙种水果的单价为()2x +元/千克,列出分式方程进行求解;(2)先根据(1)中的结果算出水果成本,然后设降价m 元,表示出销量和单个利润,列出总利润的表达式,最后求出最值;(3)令(2)中的利润为6万元,列式求出m 的值,取范围内的值求出罐头价钱.【详解】解:(1)设甲种水果的单价为x 元/千克,乙种水果的单价为()2x +元/千克,根据题意得,180********x x =+, 解得:6x =,经检验,6x =是方程的根,28x ∴+=,答:甲、乙两种水果的单价分别为6元/千克、8元/千克;(2)由(1)知每听罐头的水果成本为:60.580.57⨯+⨯=元, 每听罐头的总成本为:5773157+⨯+=元,。
人教版初中九年级数学上册《第22章二次函数》教案
第22章二次函数第一课时二次函数教学目标:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。
2、理解二次函数的概念,掌握二次函数的形式。
3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。
4、会用待定系数法求二次函数的解析式。
教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
教学设计:一、创设情境,导入新课问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题) 二、 合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系:(1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一) 教师组织合作学习活动:1、 先个体探求,尝试写出y 与x 之间的函数解析式。
2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。
(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000x(3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。
人教版初中九年级数学上册第二十二章《二次函数》经典习题(含答案解析)
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( ) ①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<;④当2x ≥时,y 随x 的增大而增大,则102a <≤A .①②B .②③C .①④D .③④ 2.将二次函数221y xx =+-化为2()y x h k =-+的形式时,结果正确的是( ) A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++3.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .4.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D . 5.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .23C .6D .42 7.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ). A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 8.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤< 9.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .4 10.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D . 11.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .12.关于抛物线223y x x =-+-,下列说法正确的是( )A .开口方向向上B .顶点坐标为()1,2-C .与x 轴有两个交点D .对称轴是直线1x =-13.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a b x a+=-其中正确的有( )A .1个B .2个C .3个D .4个14.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( )A .25(1)3y x =-++B .25(1)3y x =--+C .25(1)3y x =-+-D .25(1)3y x =---15.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( )A .22(1)5y x =-++B .22(1)5y x =--+C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 17.抛物线y =ax 2+bx +c 经过点A (﹣3,0)、B (4,0)两点,则关于x 的一元二次方程()2220a x bx b c -+-+=的解是________________.18.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.19.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.20.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.21.已知点()12,A y -,()23,B y -在二次函数22y x x c =--+的图象上,则1y 与2y 的大小关系为1y ______2y .(填“>”“<”或“=”)22.已知关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,则代数式a 2﹣ab +b 2的最小值为_____.23.二次函数2y x bx c =++的图象如图所示,则一元二次方程28x bx c ++=-的根是____________.24.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.25.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0ac <;②20b a -=;③0a b c -+=;④当1x >时,y 随x 的增大而减小.其中正确的结论是______.(填序号)26.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题27.温州某大超市计划销售一种水果,已知水果的进价为每盒9元,并且水果的销售量由售价决定.经市场调查表明,当售价在10到15元之间(含10元,15元)波动时,每盒水果的销售价格每减少1元则日销售量增加80盒,当水果售价为每盒15元时,日销售量为160盒,现设每盒水果的销售价为x 元.(每盒毛利润=每盒售价-每盒进价) (1)当每盒销售价为13元时,超市的当日销售量为______盒.(2)如果规定该种水果的日均销售量不低于400盒时,设销售这种水果所获得的日毛利润为y (元),求y 关于x 的函数解析式,并求出日毛利润y 的最大值.(3)为了提高水果的知名度,超市给当天售出的每盒苹果进行精包装,包装费每盒1元,另外从该种水果的日毛利润中提取50元作为销售员当天的额外奖励,且保证提取后日毛利润不低于750元,同时又要使顾客得到实惠,则当日水果的销售量至少是______盒.(直接写出答案)28.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?29.已知抛物线2221y x x m =--+,直线2y x =-与x 轴交于点M ,与y 轴交于点N . (1)求证:抛物线与x 轴必有公共点;(2)若抛物线与x 轴交于A 、B 两点,且抛物线的顶点C 落在此直线上,求ABC 的面积;(3)若线段MN 与抛物线有且只有一个公共点,求m 的取值范围.30.已知二次函数的图象经过点(0,3),(3,0),(1,0)-,求此二次函数的解析式,并判断点(2,3)P -是否在这个二次函数图象上.。
(名师整理)最新人教版数学中考《二次函数的综合应用》专题复习精品教案(含配套练习及答案)
中考数学人教版专题复习:二次函数的综合应用一、考点突破1. 了解二次函数的概念和表示方法。
2. 会画二次函数的图象,从图象上直观地认识二次函数的性质,会根据公式确定图象的顶点、开口方向和对称轴、最大(小)值。
3. 能够用函数的观点看一元二次方程,了解求一元二次方程近似解的基本思想方法。
4. 掌握建立二次函数模型的方法,培养解决实际问题的能力。
二、重难点提示重点:二次函数的图象和性质。
难点:二次函数的综合运用。
考点精讲函数 y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象xy Ox =-b2axyOx =-b 2a开口 向上 向下对称轴 x =-2b a顶点(-2ba,244ac b a -)增减性 当x <-2ba时,y 随x 的增大而减小, 当x >-2b a时,y 随x 的增大而增大。
当x <-2ba时,y 随x 的增大而增大,当x >-2b a时,y 随x 的增大而减小。
最值当x =-2b a时,y最小=244ac b a-。
当x =-2b a 时,y最大=244ac b a-。
2+k的图象。
平移规律是:(1)把抛物线y =ax 2向右(h >0)或向左(h <0)平移︱h ︱个单位,得到y =a (x -h )2的图象;(2)再把抛物线y =a (x -h )2向上(k >0)或向下(k <0)平移︱k ︱个单位,便得到y =a (x -h )2+k 的图象。
【难点剖析】二次函数与一元二次方程的关系【重要提示】(1)由抛物线的对称性易求对称轴为直线x =122x x ,且对称轴与x 轴交点恰为两交点间线段的中点。
(2)求两个函数的交点坐标,就是求出两个函数解析式组成的方程组的解。
二、二次函数的应用在利用二次函数的图象和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:(1)画出函数的图象,观察图象的最高(或最低)点,就可以得到函数的最大(或最小)值。
【人教版】九年级数学下册《二次函数》全章教学案
第26章 二次函数26.1二次函数及其图像 一、.二次函数定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 例:如果函数1)3(232++-=+-mx xm y m m 是二次函数,那么m 的值为 。
解题思路:由二次函数定义232230m m m ⎧-+=⎨-≠⎩则m=0【同步练习】1、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系 2、已知函数 y =(m +2) 22-mx 是二次函数,则 m 等于( )A 、±2B 、2C 、-2D 、±2 答案:1.D 2.B二、二次函数2y ax =(0)a ≠的图像(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点; ②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 例:二次函数2(0)y ax a =≠与一次函数(0)y kx b k =-≠的图象相交于点(—1,—1)。
(1)求二次函数解析式为,(2)求若一次函数的图像还过点(2、-3),求一次函数解析式 (3)求二次函数和一次函数的图像另一个交点为【同步练习】1、将抛物线 y =2x 2向下平移 2 个单位,所得的抛物线的解析式为________。
2、把抛物线2x y =向右平移2个单位得到的抛物线是( )A 、2x y 2+= B 、2x y 2-= C 、2)2x (y += D 、2)2x (y -=三、二次函数2()y a x k k =-+(0)a ≠的图像2ax y =的图象————————→2)(m x a y +=的图象k m x a y ++=2)(的图象 例:已知二次函数24y x x =+,(1) 用配方法把该函数化为2()y a x h k =++ (其中a 、h 、k 都是常数且a ≠0)形式,并画出这个函数的图像,根据图象指出函数的对称轴和顶点坐标. (2) 求函数的图象与x 轴的交点坐标.【同步练习】1、将 y =x 2-2x +3 化成 y =a (x -m)2+k 的形式,则 y = 。
2022-2023学年人教版九年级数学上册二次函数专题含解析
2022-2023学年人教版九年级数学上册《第22章二次函数》解答综合练习题(附答案)1.二次函数y =ax 2+bx +c (a ≠0)图象上部分点的横坐标x ,纵坐标y 的对应值如表:x… ﹣4 ﹣3 ﹣2 1 2 …y … ﹣ 0 0 ﹣ …(1)求这个二次函数的表达式;(2)在图中画出此二次函数的图象;(3)结合图象,直接写出当﹣4≤x <0时,y 的取值范围 .2.已知抛物线y =ax 2﹣2ax +c 经过点(5,),(0,﹣1).(1)求抛物线的表达式及顶点坐标.(2)点M (x 1,y 1),N (x 2,y 2)在抛物线上,且x 2=x 1+3,若y 1,y 2始终小于0,求x 1的取值范围.3.如图,已知抛物线过A 、B 、C 三点,点A 的坐标为(﹣1,0),点B 的坐标为(3,0),且3AB =4OC .(1)求点C 的坐标;(2)求抛物线的关系式,并求出这个二次函数的最大值.4.平面直角坐标系xOy 中,二次函数y =a 2+bx +c 的顶点为(,﹣),它的图象与x 轴交于点A ,B ,AB =5,交y 轴于点C .(1)求二次函数的解析式;(2)当﹣1≤x<5时,写出该二次函数y的取值范围;(3)将抛物线向上平移m个单位长度,当抛物线与坐标轴有且只有2个公共点,求m 的值;(4)对于这个二次函数,若自变量x的值增加4时,对应的函数值y增大,求满足题意的自变量x的取值范围.5.已知:二次函数y=x2﹣(a+3)x+a+2(a为常数).(1)若该函数图象与坐标轴只有两个交点(非原点),求a的值;(2)若该函数图象与x轴相交于A(x1,0),B(x2,0)两点,x1<x2,与y轴相交于点C(0,c),c>0,且满足x12+x22﹣x1x2=7.①求抛物线的解析式;②在抛物线的对称轴上是否存在点P,使△P AC是以AC为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由.6.已知二次函数y=x2﹣2mx+m2﹣4的图象与x轴交于A、B两点(点A在点B的左边),且与y轴交于D点.(1)当点B、D都在坐标系的正半轴,且△BOD为等腰三角形,求二次函数解析式;(2)当m=﹣2时,将函数y=x2﹣2mx+m2﹣4的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象Ω.当直线y=2x+n与图象Ω仅有两个公共点时,求实数n的取值范围.7.在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象经过怎样的一次平移,可使平移后所得图象与坐标轴只有两个交点?8.已知二次函数y=x2+mx+n(m,n为常数).(1)若m=﹣2,n=﹣4,求二次函数的最小值;(2)若n=3,该二次函数的图象与直线y=1只有一个公共点,求m的值;(3)若n=m2,且3m+4<0,当x满足m≤x≤m+2时,y有最小值13,求此二次函数的解析式.9.直线y=﹣x﹣1与抛物线y=ax2+4ax+b交于x轴上A点和另一点D,抛物线交y轴于C 点,且CD∥x轴,求抛物线解析式.10.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx﹣6与x轴分别交于A、B两点(A在B的左侧),与y轴交于点C,直线y=x﹣m交x轴于点B,交y轴于点C,且OA=OB.(1)求抛物线的解析式;(2)点P为第三象限抛物线上一点,连接BP、PC,设点P的横坐标为t,△PBC的面积为S,求S与t的函数解析式;(3)在(2)的条件下,过点C作CD∥x轴交BP的延长线于点D,连接AD,若∠ADB+∠DCB=180°,求t的值.11.已知二次函数的图象与x轴交于A(﹣2,0),B(3,0)两点,且函数有最大值为2,求二次函数的解析式.12.已知:二次函数的图象经过点A(﹣1,0),B(0,﹣3)和C(3,12).(1)求二次函数的解析式并求出图象的顶点D的坐标;(2)设点M(x1,y1),N(1,y2)在该抛物线上,若y1≤y2,直接写出x1的取值范围.13.抛物线y=ax2+bx+c与坐标轴交于A,B,C三点,已知OA=2OB=2OC=4.(1)求抛物线解析式:(2)若腰长为4的等腰直角三角形BDE的一直角边在x轴上,请问抛物线平移后能否同时经过D,E两点?若能,请说明平移方式;若不能,请说明理由.14.抛物线y=ax2﹣2ax+m经过点A(﹣1,0),与x轴另一交点为B,交y轴负半轴于C 点,且S△CAB=6(1)求抛物线的解析式;(2)若在y轴右侧的抛物线上有一点M,使△AMC的面积为9,请求出M点的坐标.15.如图,已知抛物线y=﹣x2+4x+m与x轴交于A,B两点,AB=2,与y轴交于C.(1)求抛物线解析式;(2)求P为对称轴上一点,要使P A+PC最小,求点P的坐标.16.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2﹣6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.他的解答过程如下:∵二次函数y=x2﹣6x+7的对称轴为直线x=3,∴由对称性可知,x=1和x=5时的函数值相等.∴若1≤m<5,则x=1时,y的最大值为2;若m≥5,则x=m时,y的最大值为m2﹣6m+7.请你参考小明的思路,解答下列问题:(1)当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为;(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为.17.已知y关于x的二次函数y=x2﹣bx+b2+b﹣5的图象与x轴有两个公共点.(1)求b的取值范围;(2)若b取满足条件的最大整数值,当m≤x≤时,函数y的取值范围是n≤y≤6﹣2m,求m,n的值;(3)若在自变量x的值满足b≤x≤b+3的情况下,对应函数y的最小值为,求此时二次函数的解析式.18.在平面直角坐标系xOy中,已知二次函数y=x2+bx+c.(1)当b=﹣2时,①若c=4,求该函数最小值;②若2≤x≤3,则此时x对应的函数值的最小值是5,求c的值;(2)当c=2b时,若对于任意的x满足b≤x≤b+2且此时x所对应的函数值的最小值是12,直接写出b的值.19.已知抛物线F:y=x2+bx+c(b、c为常数).(1)当b=﹣2,c=2,且m≤x≤m+1时,求函数y的最小值和最大值(用含m的代数式表示);(2)若抛物线过(﹣3,0),当﹣3≤x≤0时,函数的最小值为﹣4,求函数解析式;(3)当c=b2,且b≤x≤b+3时,最小值为21,求函数解析式;(4)若抛物线过点A(0,﹣2)、B(3,1),设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A、B之间的部分为图象G(包含A、B两点).若直线CD与图象G有公共点,结合函数图象,直接写出点D纵坐标t的取值范围;(5)把函数F沿着直线y=c翻折,得到的函数x<0的部分记作F1,原函数F的x≥0的部分记作F2,F1和F2合起来组成函数W,若b=﹣4,且c﹣1≤x≤c时函数W的最大值为1,则c的值为.20.已知二次函数y=x2+2bx+c(b、c为常数).(Ⅰ)当b=1,c=﹣3时,求二次函数在﹣2≤x≤2上的最小值;(Ⅱ)当c=3时,求二次函数在0≤x≤4上的最小值;(Ⅲ)当c=4b2时,若在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.21.已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)试说明该函数的图象与x轴始终有交点;(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.22.已知二次函数y=x2+2(m﹣1)x﹣4m﹣1(m为常数).(1)若函数y=x2+2(m﹣1)x﹣4m﹣1与x轴交点的横坐标为﹣1,,则关于x的方程4x2+4(m﹣1)x﹣4m﹣1=0的根是;(2)若不论m取何值,该函数图象的顶点都在一个新的二次函数图象上,求此新函数的解析式;(3)若该函数的顶点纵坐标的取值范围是﹣5≤y<﹣2时,求m的取值范围.23.已知抛物线C1:y1=a(x﹣h)2+2,直线l:y2=kx﹣kh+2(k≠0).(1)求证:直线l恒过抛物线C的顶点;(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t 的取值范围.(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.24.已知抛物线y=ax2+bx+c(a≠0)经过A(4,0)、B(﹣1,0)、C(0,4)三点.(1)求抛物线的函数解析式;(2)如图1,点D是在直线AC上方的抛物线的一点,DN⊥AC于点N,DM∥y轴交AC 于点M,求△DMN周长的最大值及此时点D的坐标;(3)如图2,点P为第一象限内的抛物线上的一个动点,连接OP,OP与AC相交于点Q,求的最大值.25.已知抛物线y=ax2+bx﹣1(a>0)经过点(2,﹣1),当1﹣2m≤x≤1+3m时,y的最小值为﹣2.(1)求抛物线的解析式;(2)当n<x<n+1时,y的取值范围是2n+1<y<2n+4,求n的值.参考答案1.解:(1)由题意,设二次函数的表达式为y=a(x+3)(x﹣1),∵二次函数经过点(﹣2,),∴﹣3a=,∴a=﹣,∴二次函数的表达式为y=﹣(x+3)(x﹣1)=﹣x2﹣x+;(2)y=﹣x2﹣x+=﹣(x+1)2+2,顶点为(﹣1,2),描点、连线,画出图形如图所示:(3)观察函数图象可知:当﹣4≤x<0时,y的取值范围是﹣≤y≤2,故答案为:﹣≤y≤2.2.解:(1)把点(5,),(0,﹣1)代入y=ax2﹣2ax+c得:,解得:,∴y=x2﹣x﹣1=(x﹣1)2﹣,∴抛物线的顶点坐标为(1,﹣);(2)y=x2﹣x﹣1=(x2﹣2x﹣8)=(x﹣4)(x+2),∵点M(x1,y1),N(x2,y2)在抛物线上,且x2=x1+3,∴y1=(x1﹣4)(x1+2),y2=(x2﹣4)(x2+2)=(x1﹣1)(x1+5),∵y1,y2始终小于0,∴(x1﹣4)(x1+2)<0,(x1﹣1)(x1+5)<0,∴﹣2<x1<4,﹣5<x1<1,∴﹣2<x1<1.3.解:(1)∵点A的坐标为(﹣1,0),点B的坐标为(3,0),∴OA=1,OB=3,∴AB=4,∵3AB=4OC,∴OC=3,∴C点坐标为(0,3);(2)设二次函数的解析式为y=a(x+1)(x﹣3),把C(0,3)代入得a×1×(﹣3)=3,解得a=﹣1,∴二次函数的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3,∵a=﹣1<0,∴当x=﹣=1时,y最大值==4.4.解:(1)由题意得=,即x A+x B=3,x A﹣x B=5,联立方程,解得,∴点A坐标为(4,0),点B坐标为(﹣1,0),设抛物线解析式为y=a(x﹣)2﹣,把(4,0)代入得0=a﹣,解得a=1,∴抛物线解析式为y=(x﹣)2﹣,即y=x2﹣3x﹣4.(2)∵抛物线开口向上,对称轴为直线x=,∴当x=时,y取最小值为﹣,∵5﹣>﹣(﹣1),∴当x=5时,用取最大值,把x=5代入y=x2﹣3x﹣4得y=6.故答案为:﹣≤y<6.(3)∵抛物线y=x2﹣3x﹣4与x轴有2个交点,与y轴有一个交点,∴抛物线向上移动至顶点落在x轴上满足题意,∴﹣+m=0,解得m=,抛物线向上移动至经过原点时满足题意,即﹣4+m=0,解得m=4,综上所述,m=或m=4.(4)∵抛物线开口向上,对称轴为直线x=,∴当x与x+4所对应y值相等时,=,∴x=﹣,∴x>﹣满足题意.5.解:(1)∵抛物线与y一定有一个交点,而抛物线与坐标轴只有两个交点,∴抛物线与x轴只有一个公共点,∴△=(a+3)2﹣4(a+2)=0,整理得a2+2a+1=0,解得a1=a2=﹣1,即a的值为﹣1;(2)①根据根与系数的关系得x1+x2=a+3,x1•x2=a+2,而x12+x22﹣x1x2=7,∴(x1+x2)2﹣3x1•x2=7,∴(a+3)2﹣3(a+2)=7,整理得a2+3a﹣4=0,解得a1=﹣4,a2=1,而c>0,即a+2>0,∴a=1,∴抛物线解析式为y=x2﹣4x+3;②存在.当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,则A(1,0),B(3,0),当x=0时,y=x2﹣4x+3=3,则C(0,3),∴抛物线的对称轴为直线x=2,抛物线的顶点坐标为(2,﹣1),如图,AC==,当AP=AC时,P1(2,3);当CP=CA时,CP2=,而CP1=2,则P2P1==,则P2(2,3+),同样方法得到P1P3=,所以P3(2,3﹣),∴满足条件的P点坐标为(2,3)或(2,3+)或(2,3﹣).6.解:(1)令y=0得x2﹣2mx+m2﹣4=0,解得x1=m﹣2,x2=m+2,∴A(m﹣2,0),B(m+2,0),D(0,m2﹣4),∵点D在y轴正半轴,∴m2﹣4>0,设存在实数m,使得△BOD为等腰三角形,则BO=OD,即|m+2|=m2﹣4,①当m+2>0时,m2﹣4=m+2,解得m=3或m=﹣2(舍去);②当m+2<0时,m2﹣4+m+2=0,解得m=1或m=﹣2(都舍去);③当m+2=0时,点O、B、D重合,不合题意,舍去;综上所述,m=3.故二次函数解析式为:y=x2﹣6x+5.(2)当m=﹣2时,y=x2+4x,则A(﹣4,0),B(0,0)顶点为(﹣2,﹣4),因为直线y=2x+n与图象Ω有两个公共点,则当直线y=2x+n过A点时n=8,当直线y=2x+n过B(0,0)时,n=0,当直线y=2x+n与y=﹣x2﹣4x只有一个公共点时,n=9,根据图象,可得0<n<8或n>9.7.解:(1)设抛物线的解析式为y=a(x﹣1)2﹣4,由题意,得∴0=a(3﹣1)2﹣4,∴a=1,∴抛物线的解析式为:y=(x﹣1)2﹣4.(2)∵抛物线的解析式为:y=(x﹣1)2﹣4.∴抛物线的开口向上,对称轴为x=1,当y=0时,x1=3,x2=﹣1,∴抛物线与x轴的交点是(﹣1,0)或(3,0)∴由抛物线的图象特征可以得出将抛物线向左平移3个单位时,抛物线对称轴的右侧经过原点;所得图象与坐标轴只有两个交点.抛物线向右平移1个单位时,抛物线的对称轴左侧经过原点,所得图象与坐标轴只有两个交点.抛物线向上平移3个单位时,抛物线经过原点,所得图象与坐标轴只有两个交点.抛物线向上平移4个单位时,抛物线的顶点在x轴上,所得图象与坐标轴只有两个交点.8.解:(1)当m=﹣2,n=﹣4时,y=x2﹣2x﹣4=(x﹣1)2﹣5∴当x=1时,y最小值=﹣5;(2)当n=3时,y=x2+mx+3,令y=1,则x2+mx+3=1,由题意知,x2+mx+3=1有两个相等的实数根,则△=m2﹣8=0,∴m=;(3)由3m+4<0,可知m,∴m≤x≤m+2,抛物线y=x2+mx+m2的对称轴为x=,∵m,∴,∴对称轴为x=,∴在m≤x≤m+2时,y随x的增大而减小,∴当x=m+2,y有最小值为13,∴(m+2)2+m(m+2)+m2=13,即m2+2m﹣3=0,解得m=1或m=﹣3,而m,∴m=﹣3,此时,y=x2﹣3x+9.9.解:如图,∵直线y=﹣x﹣1交于x轴上A点,∴A(﹣1,0),∵抛物线y=ax2+4ax+b交于x轴上A点,∴a﹣4a+b=0,∴b=3a,由抛物线y=ax2+4ax+b可知C(0,b),∵CD∥x轴,∴C、D是对称点,且D的纵坐标为b,∵抛物线的对称轴是:x=﹣2,∴D(﹣4,b),∵点D在直线y=﹣x﹣1上,∴b=4﹣1=3,∴a=1,∴抛物线解析式为y=x2+4x+3.10.解:(1)∵抛物线y=ax2+bx﹣6与y轴交于点C,∴点C(0,﹣6),∵直线y=x﹣m交y轴于点C,∴﹣m=﹣6∴m=6,∴直线y=x﹣6,∴当y=0时,x=6,∴点B(6,0),∴OB=6∵OA=OB,∴OA=7,∴点A(﹣7,0),∴∴∴抛物线解析式为:y=x2+x﹣6;(2)如图1,过点P作PH∥AB交BC于点H,∵点P的横坐标为t,∴点P(t,t2+t﹣6)∴t2+t﹣6=x﹣6,∴x=t2+t∴S=×6×(t2+t﹣t)=t2﹣t;(3)如图2,作抛物线的对称轴交x轴于E,BF平分∠ABC,交对称轴于点F,连接AF,DF,∵点C(0,﹣6),点A(﹣7,0),点B(6,0),∵OB=6,OC=6,AB=13,∴∠OBC=60°,∵DC∥AB,∴∠DCB+∠ABC=180°,∴∠DCB=120°,∵∠ADB+∠DCB=180°,∴∠ADB=60°,∵抛物线y=x2+x﹣6的对称轴为x=﹣;∴点E坐标为(﹣,0),AF=BF,BE==AE,∵BF平分∠ABC,∴∠ABF=30°,且AF=BF,∴∠F AB=30°,EF⊥AB,∴∠AFB=180°﹣∠F AB﹣∠FBA=120°,EF=,BF=,∴∠AFB=2∠ADB∴点D在以点F为圆心,BF为半径的圆上,设点D(x,﹣6)∴DF=BF∴(﹣﹣x)2+(6﹣)2=()2,∴x=﹣4,∴点D(﹣4,﹣6),且点B(6,0)∴BD解析式为:y=x﹣,∴解得(舍去),∴t=﹣11.解:∵二次函数的图象与x轴交于A(﹣2,0),B(3,0)两点,∴抛物线的对称轴为直线x=,∵函数有最大值为2,∴抛物线的顶点坐标为(,2),设抛物线的解析式为y=a(x+2)(x﹣3),把(,2)代入得a×(+2)(﹣3)=2,解得a=﹣,所以抛物线的解析式为y=﹣(x+2)•(x﹣3)=﹣x2+x+.12.解:(1)设抛物线解析式为y=ax2+bx+c,把A(﹣1,0),B(0,﹣3)和C(3,12)代入,得,解得:,∴抛物线解析式为y=2x2﹣x﹣3,∵y=2x2﹣x﹣3=,∴顶点D的坐标为(,﹣);(2)∵抛物线y=2x2﹣x﹣3的对称轴为直线x=,∴N(1,y2)关于直线x=的对称点为(,﹣2),∵M(x1,y1),N(1,y2)在该抛物线上,且y1≤y2,∴﹣≤x1≤1.13.解:(1)∵OA=2OB=2OC=4,∴OB=OC=2,∴A(﹣4,0)、B(2,0)、C(0,2),将A(﹣4,0)、B(2,0)、C(0,2)代入抛物线y=ax2+bx+c得:,解之得a=﹣,b=﹣,c=2,∴y=﹣,(2)抛物线平移后能同时经过点D、E两点,理由如下:∵BD=BE=4,∴E(2,4),D(6,0),设抛物线平移后的解析式为;y=,将E、D坐标代入得,解之得m=2,k=4,∴平移后抛物线顶点为(2,4),∵原抛物线顶点为(﹣1,),∴将原来抛物线向右平移3个单位,再向上平移个单位后能同时经过D、E两点.14.解:(1)设B的坐标为(x,0),∵抛物线y=ax2﹣2ax+m,A(﹣1,0),当y=0时,ax2﹣2ax+m=0,∴﹣1+x=2,∴x=3,∴B(3,0),∴AB=1+3=4,∵S△CAB=×4•×OC=6,∴OC=3,∴C(0,﹣3),把A(﹣1,0)和C(0,﹣3)代入抛物线y=ax2﹣2ax+m得:,解得:a=1,m=﹣3,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设M的坐标为(x,x2﹣2x﹣3),分别过点A、M作y轴的平行线,过C作x轴的平行线,交前面平行线于D、E,连接AM,如图所示:则△AMC的面积=梯形ADEM 的面积﹣△ACD的面积﹣△CEM的面积=(3+x2﹣2x﹣3+3)(1+x)﹣×3×3﹣x (x2﹣2x﹣3+3)=9,解得:x=(负值舍去),∴x2﹣2x﹣3=,∴M点的坐标为(,).15.解:(1)抛物线的对称轴为直线x=﹣=2,∵点A与点B是抛物线的对称点,而AB=2,∴A点坐标为(1,0),B点坐标为(3,0),∴抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)连接BC,交直线x=2于点P,则P A=PB,∴P A+PC=PB+PC=BC,∴此时P A+PC最小,设直线BC的解析式为y=kx+b,把C(0,﹣3),B(3,0)代入得,解得,∴直线BC的解析式为y=x﹣3,当x=2时,y=x﹣3=2﹣3=﹣1,∴P点坐标为(2,﹣1).16.解:(1)∵抛物线的对称轴为直线x=﹣1,∴当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为:2×42+4×4+1=49;(2)∵二次函数y=2x2+4x+1的对称轴为直线x=﹣1,∴由对称性可知,当x=﹣4和x=2时函数值相等,∴若p≤﹣4,则当x=p时,y的最大值为2p2+4p+1,若﹣4<p≤2,则当x=2时,y的最大值为17;(3)t<﹣2时,最大值为:2t2+4t+1=31,整理得,t2+2t﹣15=0,解得t1=3(舍去),t2=﹣5,t≥﹣2时,最大值为:2(t+2)2+4(t+2)+1=31,整理得,(t+2)2+2(t+2)﹣15=0,解得t1=1,t2=﹣7(舍去),所以,t的值为1或﹣5.17.解:(1)由题意知,Δ>0,即,∴﹣4b+20>0,解得:b<5;(2)由题意,b=4,代入得:y=x2﹣4x+3,∴对称轴为直线,又∵a=1>0,函数图象开口向上,∴当m≤x≤时,y随x的增大而减小,∴当x=时,y=n=;当x=m时,y=6﹣2m=m2﹣4m+3,m2﹣2m﹣3=0,解得:m1=﹣1,m2=3(不合题意,舍去);∴m=﹣1,n=;(3)∵,∴对称轴为x=0.5b,开口向上,∴①当b≤0.5b≤b+3,即﹣6≤b≤0时,函数y在顶点处取得最小值,有b﹣5=,∴b=(不合题意,舍去);②当b+3<0.5b,即b<﹣6时,取值范围在对称轴左侧,y随x的增大而减小,∴当x=b+3时,y最小值=,代入得:,b2+16b+15=0,解得:b1=﹣15,b2=﹣1(不合题意,舍去),∴此时二次函数的解析式为:;③当0.5b<b,即b>0时,取值范围在对称轴右侧,y随x的增大而增大,∴当x=b时,y最小值=,代入得:,b2+4b﹣21=0,解得:b1=﹣7(不合题意,舍去),b2=3,∴此时二次函数的解析式为:.综上所述,符合题意的二次函数的解析式为:或.18.解:(1)①由题意,二次函数的解析式为y=x2﹣2x+4=(x﹣1)2+3,∴顶点坐标为(1,3),∴函数的最小值为3.②∵y=x2﹣2x+c,∴对称轴是直线x=1,∵2≤x≤3,则此时x对应的函数值的最小值是5,∴x=2时,y=5,∴5=4﹣4+c,∴c=5.(2)当c=2b时,y=x2+bx+2b,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+2的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+2b=2b2+2b最小值,∴2b2+2b=12,解得,b1=﹣3(舍去),b2=2;②当b≤﹣≤b+2时,即﹣≤b≤0,∴x=﹣,y的值最小,∴b2﹣+2b=12,方程无解.③当﹣>b+2,即b<﹣,在自变量x的值满足b≤x≤b+2的情况下,y随x的增大而减小,故当x=b+2时,y=(b+2)2+b(b+2)+2b=2b2+8b+4为最小值,∴2b2+8b+4=12.解得,b1=﹣2+2(舍去),b2=﹣2﹣2;综上所述,满足条件的b的值为2或﹣2﹣2.19.解:(1)∵b=﹣2,c=2,∴y=x2﹣2x+2=(x﹣1)2+1,开口向上,对称轴为x=1,①当m+1<1时即m<0,在对称轴的左边,y随x的增大而减小,∴y max=f(m)=m2﹣2m+2,y min=f(m+1)=m2+1,②当0≤m<时,1≤m+1<,对称轴x=1取得最小值,∴y max=f(m)=m2﹣2m+2,y min=f(1)=1,③当<m≤1时,<m+1≤2,对称轴x=1取得最小值,∴y max=f(m+1)=m2+1,y min=f(1)=1,④当m>1时,在对称轴的右边,y随x的增大而增大,∴y max=f(m+1)=m2+1,y min=f(m)=m2+2m+2,(2)∵抛物线过(﹣3,0),∴9﹣3b+c=0,∵当﹣3≤x≤0时函数最小值为﹣4,抛物线对称轴为,∴(﹣3,0)点在对称轴的左侧,不能在对称轴的右侧,①当﹣3<<0时,即0<b<6时,y min=f()=+c=﹣4,∴b=2,c=﹣3,y=x2+2x﹣3,②当>0时,即b<0,y min=f(0)=c=﹣4,∴b=(不符合舍去),故函数解析式为y=x2+2x﹣3,(3)∵c=b2,∴y=x2+bx+b2,抛物线对称轴为,①当b+3≤时,即b≤﹣2,∴y min=f(b+3)=3b2+9b+9=21,∴b=﹣4,c=16,y=x2﹣4x+16,②当b<<b+3时,即﹣2<b<0时,∴f(b)=3b2,f(b+3)=3b2+9b+9,f(b+3)>f(b),f(b)=21,b=(舍去),f(b+3)<f(b),f(b+3)=21,b=﹣4或者b=1(舍去),∴y=x2﹣4x+16,③当b>时,即b>0时,∴y min=f(b)=3b2=21,∴b=或(舍去),∴c=7,y=x2+x+7,∴综上所述解析式y=x2﹣4x+16或y=x2+x+7,故函数解析式为y=x2﹣4x+16或y=x2+x+7,(4)∵抛物线过A、B点,∴b=﹣2,c=﹣2,y=x2﹣2x﹣2,∵点B和点C关于原点对称,B(3,1),∴C(﹣3,﹣1),∴设D(1,t),CD所在的直线为L CD,①L CD过点B(与G刚好有交点),设L CD:y=kx+b,将C(﹣3,﹣1),B(3,1)代入y=kx+b,得y=x,∴t=,②L CD与G相切,即与图象只有一个交点,设L CD:y=kx+b,将C(﹣3,﹣1),D(1,t)代入y=kx+b,得y=x+,联立直线和抛物线解析式得,得x2﹣=0,∴Δ=﹣4×=0∴t=﹣33﹣16,∴(﹣33﹣16)≤t≤,故答案为:(﹣33﹣16)≤t≤,(5)∵b=﹣4,∴y=x2﹣4x+c,抛物线对称轴x=2,则函数W仍为原函数,①当c<2时,y max=f(c﹣1)=1,∴c=1,②当2<c<3时,f(c﹣1)=c2﹣5c+5,f(c)=c2﹣3c,f(c﹣1)>f(c),c<,f(c﹣1)=1,c=1或c=4(舍去),f(c﹣1)<f(c),c≤,f(c)1,c=(舍去),③c≥3,y max=f(c)=1,∴c=或c=(舍去),∴综上所述c=1 或者c=,故答案为:1或者.20.解:(Ⅰ)当b=1,c=﹣3时,二次函数解析式为y=x2+2x﹣3=(x+1)2﹣4,∴x=﹣1在﹣2≤x≤2的范围内,此时函数取得最小值为﹣4,(Ⅱ)y=x2+2bx+3,的对称轴为x=﹣b,①若﹣b<0,即b>0时,当x=0时,y有最小值为3,②若0≤b≤4,即:﹣4≤b≤0时,当x=﹣b时,y有最小值﹣b2+3;③若﹣b>4,即b<﹣4时,当x=4时,y有最小值为8b+19,(Ⅲ)当c=4b2时,二次函数的解析式为y=x2+2bx+4b2,它的开口向上,对称轴为x=﹣b的抛物线,①若﹣b<2b,即b>0时,在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y随x增大而增大,∴当x=2b时,y=(2b)2+2b×2b+(2b)2=12b2为最小值,∴12b2=21,∴b=或b=﹣(舍)∴二次函数的解析式为y=x2+x+7,②若2b≤﹣b≤2b+3,即﹣1≤b≤0,当x=﹣b时,代入y=x2+2bx+4b2,得y最小值为3b2,∴3b2=21∴b=﹣(舍)或b=(舍),③若﹣b>2b+3,即b<﹣1,在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y随x增大而减小,∴当x=2b+3时,代入二次函数的解析式为y=x2+2bx+4b2中,得y最小值为12b2+18b+9,∴12b2+18b+9=21,∴b=﹣2或b=(舍),∴二次函数的解析式为y=x2﹣4x+16.综上所述,b=或b=﹣2,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16 21.解:(1)∵函数y=﹣x2+(m﹣1)x+m(m为常数),∴△=(m﹣1)2+4m=(m+1)2≥0,∴该函数的图象与x轴始终有交点;(2)y=﹣x2+(m﹣1)x+m=﹣(x﹣)2+,把x=代入y=(x+1)2得:y=(+1)2=,则不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;(3)设函数z=,当m=﹣1时,z有最小值为0;当m<﹣1时,z随m的增大而减小;当m>﹣1时,z随m的增大而增大,当m=﹣2时,z=;当m=3时,z=4,则当﹣2≤m≤3时,该函数图象的顶点坐标的取值范围是0≤≤4.22.解:(1)∵抛物线y=x2+2(m﹣1)x﹣4m﹣1与x轴交点的横坐标为﹣1,,∴x2+2(m﹣1)x﹣4m﹣1=0的解为x=﹣1或x=,由4x2+4(m﹣1)x﹣4m﹣1=0得(2x)2+2(m﹣1)•2x﹣4m﹣1=0,∴2x=﹣1或2x=,∴x1=﹣,x2=.故答案为:x1=﹣,x2=.(2)∵y=x2+2(m﹣1)x﹣4m﹣1=x2+2(m﹣1)x+(m﹣1)2﹣(m﹣1)2﹣4m﹣1=(x+m﹣1)2﹣m2﹣2m﹣2,∴抛物线顶点坐标为(﹣m+1,﹣m2﹣2m﹣2),令﹣m+1=x,﹣m2﹣2m﹣2=y,则y=﹣x2+4x﹣5,∴抛物线顶点所在抛物线解析式为y=﹣x2+4x﹣5.(3)由题意得﹣5≤﹣m2﹣2m﹣2<﹣2,∵令y=﹣m2﹣2m﹣2=﹣(m+1)2﹣1,∴抛物线开口向下,对称轴为值m=﹣1,顶点坐标为(﹣1,﹣1),把y=﹣5代入y=﹣(m+1)2﹣1得﹣5=﹣(m+1)2﹣1,解得m=1或m=﹣3,把y=﹣2代入y=﹣(m+1)2﹣1得﹣2=﹣(m+1)2﹣1,解得m=0或m=﹣2,∴﹣5≤y<﹣2时,﹣3≤m<﹣2或0<m≤1.23.(1)证明:∵抛物线C1的解析式为y1=a(x﹣h)2+2,∴抛物线的顶点为(h,2).当x=h时,y2=kx﹣kh+2=2,∴直线l恒过抛物线C1的顶点.(2)解:∵a>0,h=1,∴当x=1时,y1=a(x﹣h)2+2取得最小值2.又∵当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,∴,∴﹣2≤t≤1.(3)解:令y1=y2,则a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+.∵线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,∴>1或<﹣1.∵k>0,∴0<a<k或﹣k<a<0.又∵1≤k≤3,∴﹣1<a<0或0<a<1.24.解:(1)法一:依题意,得,解之,得,∴抛物线解析式为y=﹣x2+3x+4.法二:依题意,得y=a(x﹣4)(x+1)(a≠0),将C(0,4)坐标代入得,﹣3a=3,解得a=﹣1,∴抛物线解析式为y=﹣x2+3x+4.法三:依题意,得,解之,得,∴抛物线解析式为y=﹣x2+3x+4.(2)如图1,延长DM交x轴于点H,∵OA=OC=4,OA⊥OC,DM∥y轴交AC于点M,∴∠OAC=45°,∠AHM=90°,∵DN⊥AC于点N,∴∠AMH=∠DMN=45°,∴△DMN是等腰直角三角形,∴.设直线AC的解析式为y=kx+b'(k≠0),将A(4,0)、C(0,4)两点坐标代入得,解得,所以直线AC的解析式为y=﹣x+4,设D(m,﹣m2+3m+4),∴M(m,﹣m+4),∴DM=﹣m2+3m+4﹣(﹣m+4)=﹣m2+4m=﹣(m﹣2)2+4,∴当m=2时,DM最大值为4,此时D(2,6),∵△DMN是等腰直角三角形,∴△DMN周长=,∴△DMN周长的最大值为,此时D(2,6).(3)如图2,设Q(m,﹣m+4),P(n,﹣n2+3n+4),∴.设直线OP的解析式为y=kx(k≠0),将Q(m,﹣m+4)点代入得,∴直线OP的解析式,将P(n,﹣n2+3n+4)坐标代入得,,所以,化简得,∴,∵∴当n=2时,的最大值为1.25.解:(1)∵抛物线y=ax2+bx﹣1(a>0)经过点(2,﹣1),∴4a+2b﹣1=﹣1,∴b=﹣2a.∴y=ax2﹣2ax﹣1,∴该抛物线的对称轴为直线x=1.∵当1﹣2m≤x≤1+3m时,y的最小值为﹣2.∴当x=1时,a﹣2a﹣1=﹣2,解得:a=1.∴y=x2﹣2x﹣1;(2)由(1)知,抛物线为y=(x﹣1)2﹣2.∵当n<x<n+1时,y的取值范围是2n+1<y<2n+4,∴y不能取最小值﹣2,即n,n+1在对称轴x=1的同侧.分两种情况讨论:①n+1<1,即n<0时,在对称轴左侧y随x的增大而减小,当x=n时,(n﹣1)2﹣2=2n+4,解得:n=﹣1或n=5,当x=n+1时,(n+1﹣1)2﹣2=2n+1,解得:n=﹣1或n=3,∵n<0,∴n=﹣1.②n>1时,在对称轴左侧y随x的增大而增大,当x=n时,(n﹣1)2﹣2=2n+1,整理得:n2﹣4n﹣2=0.当x=n+1时,(n+1﹣1)2﹣2=2n+4,整理得:n2﹣2n﹣6=0.∵n2﹣4n﹣2=0与n2﹣2n﹣6=0不一致,∴不合题意,舍去.综上所述,当n<x<n+1时,y的取值范围是2n+1<y<2n+4时,n=﹣1.。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质第1课时教案
22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
人教版初中数学九年级二次函数(经典例题含答案)
二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。
人教版初三数学二次函数知识点总结及经典习题含答案_
人教版初三数学二次函数知识点总结及经典习题含答案三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k=-+与2y axbx c=++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小; 当2b x a >-时,y 随x 的增大而增大; 当2b x a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240bac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根..② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y axbx c=++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y xx =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x=-+ D.221y x =--3.函数2y kx k=-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y axbx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y axbx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程2axbx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C.第三象限 D.第四象限7.方程22-=的正根的个数为()2x xxA.0个B.1个C.2个.3 个8.已知抛物线过点A(2,0),B(-1,0),与y轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x=-- B.22=-++y x xC. 22y x x=---或=-++ D. 22=--或22y x xy x x22=++y x x二、填空题9.二次函数23=++的对称轴是2y x bxx=,则b=_______。
人教版九年级上册数学 第22章 二次函数 全章复习 教案
第22章二次函数全章复习教案【学习目标】 1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标(轴)(0,0)(轴)(0,)(,0)(,)当时开口向上当时开口向下()2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.)20()y ax bx c a =++≠,,a b c (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a≠0).(由此得根与系数的关系:).要点诠释:求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题2yax bx c =++利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系; (2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式; (4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式例题1. 已知抛物线的顶点是(3,-2),且在x 轴上截得的线段长为6,求抛物线的解析式.【思路点拨】已知抛物线的顶点是(3,-2),可设抛物线解析式为顶点式,即,也就是,再由在x 轴上截得的线段长为6建立方程求出a .也可根据抛物线的对称轴是直线x =3,在x 轴上截得的线段长为6,则与x 轴的交点为(0,0)和(6,0),因此可设y =a(x-0)·(x-6).【答案与解析】解法一:∵ 抛物线的顶点是(3,-2),且与x 轴有交点,∴ 设解析式为y =a(x-3)2-2(a >0),即,设抛物线与x 轴两交点分别为(x 1,0),(x 2,0).则,解得.∴ 抛物线的解析式为,即. 解法二:∵ 抛物线的顶点为(3,-2), ∴ 设抛物线解析式为.∵ 对称轴为直线x =3,在x 轴上截得的线段长为6,∴ 抛物线与x 轴的交点为(0,0),(6,0). 把(0,0)代入关系式,得0=a(0-3)2-2,解得,∴ 抛物线的解析式为, 即.解法三:求出抛物线与x 轴的两个交点的坐标(0,0),(6,0)设抛物线解析式为y =a(x-0)(x-6),2(3)2y a x =--2692y ax ax a =-+-2692y ax ax a =-+-12||6x x -==29a =22(3)29y x =--22493y x x =-2(3)2y a x =--29a =22(3)29y x =--22493y x x =-把(3,-2)代入得,解得.∴ 抛物线的解析式为,即.举一反三【变式】已知抛物线(m 是常数). (1)求抛物线的顶点坐标; (2)若,且抛物线与轴交于整数点,求此抛物线的解析式.【答案】(1)依题意,得,∴,∴抛物线的顶点坐标为.(2)∵抛物线与轴交于整数点,∴的根是整数.∴.∵,∴是完全平方数.∵, ∴,∴取1,4,9,.当时,;当时,;当时,. ∴的值为2或或.∴抛物线的解析式为或或.类型二、根据二次函数图象及性质判断代数式的符号例题2. 如图,二次函数y=ax 2+bx +c=0(a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c=0(a ≠0)有一个根为﹣其中正确的结论个数有( )3(36)2a ⨯⨯-=-29a =2(6)9y x x =-22493y x x =-2442y mx mx m =-+-155m <<x 0≠m 2242=--=-=mm a b x m m m m a b ac y 442444422)()(---=-=241681622-=--=m m m m )2,2(-x 02442=-+-m mx mx 2x ==±0m >2x =2m155m <<22105m <<2m2x ==±21m =2=m 24m =21=m 29m =29m =m 21296822+-=x x y x x y 2212-=22810999y x x =--A .1个B .2个C .3个D .4个【思路点拨】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x=3时,y <0,可判断②;由OA=OC ,且OA <1,可判断③;把﹣代入方程整理可得ac 2﹣bc +c=0,结合③可判断④;从而可得出答案.【答案】C ;【解析】解:由图象开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x=2,所以﹣>0,所以b >0,∴abc >0,故①正确;由图象可知当x=3时,y >0,∴9a +3b +c >,故②错误;由图象可知OA <1,∵OA=OC ,∴OC <1,即﹣c <1,∴c >﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac ﹣b +1=0,两边同时乘c 可得ac 2﹣bc +c=0,即方程有一个根为x=﹣c ,由②可知﹣c=OA ,而当x=OA 是方程的根,∴x=﹣c 是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C .类型三、数形结合例题3. 已知平面直角坐标系xOy(如图所示),一次函数的图象与y 轴交于点A ,点M 在正比例函数的图象上,且MO =MA ,二次函数的图象经过点A 、M.334y x =+32y x =2y x bx c =++(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数的图象上,且四边形ABCD 是菱形,求点C 的坐标.【答案与解析】(1)一次函数,当x =0时,y =3,所以点A 的坐标为(0,3),又∵ MO =MA ,∴ M 在OA 的中垂线上,即M的纵坐标为,又M 在上,当时,x =1,∴ 点M 的坐标为.如图所示,.(2)将点A(0,3),代入中,得 ∴即这个二次函数的解析式为:.(3)如图所示,设B(0,m)(m <3),,.334y x =+334y x =+3232y x =32y =31,2⎛⎫⎪⎝⎭AM ==31,2M ⎛⎫ ⎪⎝⎭2y x bx c =++3,31.2c b c =⎧⎪⎨++=⎪⎩5,23.b c ⎧=-⎪⎨⎪=⎩2532y x x =-+25(,3)2C n n n -+3,34D n n ⎛⎫+ ⎪⎝⎭则|AB|=3-m ,,.因为四边形ABCD 是菱形,所以.所以 解得(舍去)将n =2代入,得,所以点C 的坐标为(2,2).类型四、函数与方程例题4.某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x ≧60)元,销售量为y 套.(1)求出y 与x 的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少? 【答案与解析】解:(1)销售单价为x 元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x ≥60);(2)根据题意可得,x (﹣4x+480)=14000,解得x 1=70,x 2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元; (3)设一个月内获得的利润为w 元,根据题意得:w=(x ﹣40)(﹣4x+480)=﹣4x2+640x ﹣19200 =﹣4(x ﹣80)2+6400.当x=80时,w 的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.举一反三:【变式1】抛物线与直线只有一个公共点,则b=________.213||4D C DC y y n n =-=-5||4AD n =||||||AB DC AD ==2133,453.4m n n m n ⎧-=-⎪⎪⎨⎪-=⎪⎩113,0;m n =⎧⎨=⎩221,22.m n ⎧=⎪⎨⎪=⎩2532y x x =-+2C y =【答案】由题意得 把②代入①得. ∵抛物线与直线只有一个公共点, ∴方程必有两个相等的实数根, ∴,∴.【变式2】二次函数的图象如图所示,根据图象解答下列问题: (1)写出方程的两个根; (2)写出不等式的解集; (3)写出y随x的增大而减小的自变量x的取值范围; (4)若方程有两个不相等的实数根,求k的取值范围.【答案】(1) (2). (3). (4)方法1:方程的解, 即为方程组中x的解也就是抛物线与直线的交点的横坐标,由图象可看出, 当时,直线与抛物线有两个交点,∴. 方法2:∵二次函数的图象过(1,0),(3,0),(2,2)三点, ∴ ∴ ∴ ,即, ∴. ∵ 方程有两个不相等的实数根,∴,∴.类型五、分类讨论例题5.若函数,则当函数值y =8时,自变量x 的值是( ).A .B .4C .或4D .4或【思路点拨】此题函数是以分段函数的形式给出的,当y =8时,求x 的值时,注意分类讨论.【答案】D ;【解析】由题意知,当时,,∴ .(舍去).当2x =8时,x =4.综合上知,选D .类型六、与二次函数有关的动点问题例题6.在平面直角坐标系xOy 中,二次函数y=mx 2-(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若∠ABO=45°,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (p ,q )为二次函数图象上的一个动点,当-3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.22(2)2(2)x x y x x ⎧+≤=⎨>⎩228x +=x =2>x =x =【思路点拨】(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B,A点坐标,进而求出直线AB的解析式,再利用平移规律得出答案;(3)根据当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,即可得出m的取值范围.【答案与解析】(3)由(2)得二次函数的解析式为:y=mx2-(m+1)x+1∵M(p,q)为二次函数图象上的一个动点,∴q=mp2-(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,-q).∴M′点在二次函数y=-m2+(m+1)x-1上.∵当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,≤m<0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
更具体.
画这三个函数图像, 可由学生在同一表中列值, 但是要根据各自的不同特点取自变量 x
的值, 以便于学生进行观察. 教师可事先准备好表格和画有直角坐标系的小黑板,
由一名同
学上黑板完成, 其他同学在练习本上完成, 待同学们基本做完之后加以总结, 然后再找三名
同学,分别指出这三个图像的开口方向、对称轴及顶点坐标,填入事先准备好的表格中.
在D处测得 A 的仰角为β,则塔高是多少米?
A
C
D
B
21 已知抛物线 y=x2+( n-3) x+n+1 经过坐标原点 O。 ⑴ 求这条抛物线的顶点 P 的坐标 ⑵设这条抛物线与 x 轴的另外一个交点为 A,求以直线 PA 为图象的一次函数解析式
22 已知:在△ ABC 中, BC=20 ,高 AD=16 ,内接矩形 EFGH 的顶点 E、F 在 BC 上, G、H
论:①抛物线 y
1 x2 1 是由抛物线 y 2
1 x 2 怎样移动得到的? 2
②抛物线 y
1 ( x 1) 2 是由抛物线 y 2
1 x 2 怎样移动得到的? 2
③抛物线 y
1 ( x 1) 2 1是由抛物线 y 2
1 x2 1怎样移动得到的? 2
④抛物线 y
1 ( x 1) 2 1是由抛物线 y 2
y
y
x
x
x
x
A 9、如图所示,二次函数
的面积为( )
B
C
D
y=x 2-4x+3 的图象交 x 轴于 A 、 B 两点,交 y 轴于 C 点,则△ ABC
y
A6 B 4
C3
D1
C
AB
0
x
10、如图所示,在矩形 ABCD 中, DE⊥ AC 于 E,设∠ ADE= α,
且 cosα = 3 , AB=4, 则 AD 的长为(
D 圆的周长与半径之间的关系
3、在
Rt △ ABC
。
中 ,∠C=90
,
AB=5,AC=3.
则
sinB 的值是
(
)
3
4
3
4
A
B
C
D
5
5
4
3
4、将一抛物线向下向右各平移 2 个单位得到的抛物线是 y=-x 2,则抛物线的解析式是(
)
A y=—( x-2 )2+2
B y= —( x+2) 2+2
C y=— ( x+2) 2+2
分别在 AC 、 AB 上,求内接矩形 EFGH 的最大面积。
A
H
G
B
E
D
F
C
一、选择题 ( 每题 3 分,共 30 分) 1.下列关系式中,属于二次函数的是 (x 为自变量 )( )
A.
B.
C.
D.
2. 函数 y=x2-2x+3 的图象的顶点坐标是 ( )
A. (1 ,-4)
B.(-1 ,2)
C. (1,2)
1 (x
1) 2 怎样移动得到的?
2
⑤抛物线 y
1 ( x 1) 2 1是由抛物线 y 2
1 x 2 怎样移动得到的? 2
这个问题分两种方式回答:先沿 y 轴,再沿 x 轴移动;或先沿 x 轴,再沿 y 轴移动。
通过这 5 个问题可使学生由浅入深地得到这四者之间的关系,如图所示:
注意:基本形式中的符号,特别是 h。 练习: P120 练习口答,及时纠正错误。 (四)总结、扩展
会画形如 y a ( x h ) 2 k 的二次函数的图像, 并能指出图像的开口方向、 对称轴及顶
点坐标。 三、教学难点:确定形如
y a (x h)2 k 的二次函数的顶点坐标和对称轴。
4.解决办法:
四、教具准备 三角板或投影片
1.教师出示投影片,复习
y ax2 , y ax 2 k, y a( x h) 2 。
柱的总长度 ( 精确到 0.1 米 )为 (
)米
A 1.5 B 1.9
C 2.3
D 2.5
12、如图所示,已知△ ABC 中, BC=8, BC 上的高 h=4,D为BC上一点.EF∥BC,
交AB与点E,交AC于点F(EF不过A、B) ,设E到BC的距离为 x,则△D EF
的面积 y 关于 x 的函数的图象大致为(
一般的二次函数,都可以变形成 y a (x h)2 k 的形式,其中:
1. a 能决定什么?怎样决定的? 答: a 的符号决定抛物线的开口方向;
a 的绝对值大小抛物线的开口大小。
2.它的对称轴是什么?顶点坐标是什么? 六、布置作业
教材 P124 中 1( 3); P124 中 3(1)、( 2); P125 中 B1
A1
18、如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落
C
B
在点A 1 处,已知OA= 3 ,AB=1,则点A 1的坐标是 ———————
、 解答题:
0
Ax
19 计算: 2cos60 ° + 3 sin60° -3tan45°
20、 如图, 河对岸有古塔AB, 小敏在C处测得塔顶A的仰角α, 向塔前进 s 米到达D点,
2.请学生动手画 y
1 ( x 1)2 1 的图像,正好复习图像的画法,完成表格。 2
开口方向
3.小结 y a(x h)2 k 的性质 对称轴 顶点坐标
平移
4.练习 五、教学过程 提问: 1.前几节课,我们都学习了形如什么样的二次函数的图像?
答:形如 y ax 2 , y ax2 k和 y a(x h) 2 。(板书)
选值时尽量选取整数,便于计算和描点.
在选取 x 的值之后,计算 y 的值时,考虑到对称性,只需计算中心值一侧的值,另一侧
由对称性可直接填入,但一定要保证运算正确.
( 2)关于描点:一般可先定顶点(即中心值对应的点,然后利用对称性描出各点,以 逐步提高速度. )
( 3)关于连线:特别要注意顶点附近的大致走向。最后画的抛物线应平滑,对称,并 符合抛物线的特点.
④ 2 c〈3 b
A1 B 2
C3
D4
7、函数 y=ax2-bx+c ( a≠ 0)的图象过点( -1, 0),则
a
b
c
=
=
的值是( )
bc ac ab
A -1
B1
1
C
2
1
D-
2
—1 0
1
x
y
-1 0
x
8、已知一次函数 是图中的( y
y= ax+c 与二次函数 ) y
y=ax 2+bx+c( a≠ 0),它们在同一坐标系内的大致图象
)
A -1 B 2 C -1 或 2 D m 不存在
2、下列函数关系中,可以看作二次函数
y=ax 2+bx+c(a ≠ 0)模型的是(
)
A 在一定距离内,汽车行驶的速度与行驶的时间的关系
B 我国人中自然增长率为 1%,这样我国总人口数随年份变化的关系
C 矩形周长一定时,矩形面积和矩形边长之间的关系
D.(0,3)
3. 抛物线 y=2(x-3) 2 的顶点在 ( )
A. 第一象限
B. 第二象限
C. x 轴上
D. y 轴上
4. 抛物线 A. x=-2
B.x=2
的对称轴是 ( C. x=-4
)
A
y
y
y
y
E
F
o 2 4 xo 2 4
x o 24 x o 24 x
A
B
C
D
B
D
C
二填空题: 13、无论 m 为任何实数,总在抛物线
y=x 2+2 mx+ m 上的点的坐标是 ———————————————。
14、函数 y=
1
1
中的自变量的取值范围是 ———————————————。
2x
15、已知α为等边三角形的一个内角,则
开口方向 对称轴
顶点坐标
y
1 x2
2
y
1 x2 1
2
y
1 ( x 1)2
2
向下
x0
( 0,0)
向下
x 0 ( 0,- 1)
向下
x 1 (- 1, 0)
y ax 2 k(a 0)
向下
x 1 (- 1,- 1)
( 2)我们已知抛物线的开口方向是由二次函数
y a( x h) 2 k 中的 a 的值决定的,
y
1 x2
1 (x
0)2
0;
2
2
y
1 x2 1
1 (x
0)2
1
2
2
y
1 ( x 1)2
1 (x
2
( 1)
0
2
2
y
1 (x
1) 2
2
结论;(板书)
1
2
( x ( 1) ( 1) 。然后从这四个式子中加以观察,分析,得出
2
一般地,抛物线 y a( x h)2 k 有如下特点:
① a 0 时,开口向上; a 0 时,开口向下; ②对称轴是直线 x h ;
1 x2, y 2
并指出它们的开口方向,对称轴及顶点坐标.
(出示幻灯)
1 x2 1, y 2
1 (x
1)2 的图像,
2
这里之所以加上画函数 y
1 ( x 1)2 的图像,是为了使最后通过图像的观察能更全面 2
一些,也更直观一些,可以同时给出图像先沿
y 轴,再沿 x 轴移动的方式,也可以给出图像