第三章 病毒的复制
03第三章 病毒的复制
Hela细胞的吸附速率。
加入螯合剂(如EDTA)则吸附会受到抑制
27
二、侵入
依赖于能量 的感染步骤
整个病毒颗粒或其基因组及相关蛋白通过质膜 屏障向胞质转运的过程称为侵入(entry)。
内吞小体(endosome) 是否需要低pH 环境来区别 28
释放出病毒核酸的过程。脱壳是病毒基因组进行功
能表达所必需的感染事件。
病毒的毒粒消失,失去原有的感染性,进入潜伏期。
35
HIV-1 Rev protein
有些病毒被运 输到核内才完 成脱壳
36
囊膜病毒脱壳包括脱囊膜和脱衣壳两个步骤,无囊 膜病毒只需脱衣壳,脱壳方式随不同病毒而异。
37
四、病毒生物大分子的合成
细胞内正处于复制噬菌 体核酸和合成其蛋白质
衣壳的阶段。
②胞内累积期:又称潜伏期后期, 在隐晦期后,如人为地裂解细胞,
噬菌体开始装配的时期,
在电镜下可观察到已初步 装配好的噬菌体粒子。
10
其裂解液出现侵染性的一段时间。
(2)裂解期(risephase) 紧接在潜伏期后的一段时期:宿主细胞迅速裂 解、溶液中噬菌体粒子急剧增多。
72
核衣壳的装配-二十面体对称
73
核衣壳的装配-螺旋对称
74
病毒粒子包膜的获得
75
通过细胞外吐作用释放病毒粒子
被膜蛋白
疱疹病毒装配、成熟及释放过程
76
77
T4噬菌体的装配是一个 极为复杂的自我装配的过程 包括4个完全独立的亚装 配途径:头部的装配;无 尾丝的尾部装配;尾部与
头部自发结合;单独装配
7
一步生长曲线
第三章 病毒习题及答案
第三章病毒习题及答案一、名词解释1.包涵体:当病毒颗粒大量聚集并使宿主细胞发生病变时,形成了具有一定形态、构造并能用光镜观察的特殊群体,称为包涵体。
2.噬菌斑:将噬菌体与敏感宿主菌在固体培养基上培养一段时间后宿主细菌菌苔上出现的一个个透明圈或负菌落,称为噬菌斑。
3.烈性噬菌体:短时间内能在宿主细胞内增殖,产生大量子代噬菌体,并通过裂解寄主细胞而释放出来的噬菌体,被称为烈性噬菌体。
4.温和噬菌体:某些噬菌体侵染细菌后,将自身核基因组整合到宿主细胞核染色体上,随宿主细胞核基因组的复制而进行同步复制,并不引起寄主细菌裂解,称作温和噬菌体。
5.一步生长曲线:定量描述烈性噬菌体生长规律的实验曲线。
6.溶源性:温和噬菌体的侵入并不引起宿主细胞裂解,与宿主菌共存的特性称为溶源性或溶源现象。
7.溶源菌:是指在核基因组上整合有前噬菌体,能正常生长繁殖而不被裂解的细菌。
8.病毒多角体:多数昆虫病毒可在宿主细胞内形成光镜下呈多角形的包涵体,称为多角体。
9.类病毒:是由单链共价闭合环状RNA分子组成,专性寄生在活细胞内的分子病原体。
10.拟病毒:是一类包裹于真病毒粒中的有缺陷的类病毒。
11.朊病毒:朊病毒是一类不含核酸的传染性蛋白质分子。
二、包涵体和噬菌斑各有何实践意义?答:1、包涵体是病毒颗粒的群体形态,有助于对病毒的分离、纯化、鉴别和计数等许多实际工作。
由于不同病毒包涵体的大小、形状、组分以及存在于宿主细胞中的部位均不同,所以包涵体可用于病毒的快速鉴别和某些病毒疾病的辅助诊断指标。
2、噬菌斑有一定的形态,可用作该噬菌体的鉴定指标,也用于纯种分离纯化和计数。
三、简述测定噬菌体效价的双层平板法。
答:预先分别配制含2%和1%琼脂的底层培养基和上层培养基。
先用底层培养基在培养皿上浇一层平板,待凝固后,再把预先融化并冷却到45℃以下,加有较浓的敏感宿主和一定体积待测噬菌体样品的上层培养基,在试管中摇匀后,立即倒在底层培养基上铺平待凝,然后在37℃下保温。
医学微生物学教案
医学微生物学教案第一章:微生物学基本概念1.1 微生物学的定义和发展史1.2 微生物的分类和特点1.3 微生物的观察和培养技术第二章:细菌2.1 细菌的形态与结构2.2 细菌的生理代谢2.3 细菌的遗传与变异2.4 细菌的分类与命名第三章:病毒3.1 病毒的形态与结构3.2 病毒的复制与感染机制3.3 病毒的分类与命名3.4 病毒与疾病的关系第四章:真菌4.1 真菌的形态与结构4.2 真菌的生理代谢4.3 真菌的分类与命名4.4 真菌与疾病的关系第五章:微生物与人类的关系5.1 微生物在自然界中的作用5.2 微生物在食品发酵中的应用5.3 微生物在药物研发中的应用5.4 微生物与人类健康的关联第六章:微生物实验室技术6.1 微生物实验室的安全与操作规范6.2 微生物的分离与纯化技术6.3 微生物的鉴定与计数方法6.4 常见微生物实验室检测案例分析第七章:抗生素与抗菌治疗7.1 抗生素的发现与发展史7.2 抗生素的分类与作用机制7.3 抗菌治疗的原则与策略7.4 抗生素的耐药性与防治措施第八章:感染性疾病8.1 感染性疾病的概述与分类8.2 传染病的传播途径与预防措施8.3 常见感染性疾病的临床表现与诊断8.4 感染性疾病的治疗与控制策略第九章:疫苗与免疫预防9.1 疫苗的原理与类型9.2 疫苗的研发与接种程序9.3 免疫记忆与疫苗的长期效果9.4 疫苗的不良反应与应对措施第十章:微生物学的前沿与发展10.1 微生物学的最新研究进展10.2 微生物组与人类健康的关系10.3 微生物病原体的进化与适应机制10.4 未来微生物学的发展方向与挑战重点和难点解析一、微生物学基本概念补充说明:微生物的分类包括原核生物、真核生物和病毒,特点包括微小、多样性、广泛分布等。
观察技术主要包括光学显微镜和电子显微镜,培养技术包括液体培养和固体培养等。
二、细菌补充说明:细菌的形态包括球形、杆形、螺旋形等,结构包括细胞壁、细胞膜、细胞质等。
园艺植物病理学 第三章(4) 其它病原生物
体内,2龄幼虫在体内进入休眠状态。其孵化与根系分泌物有
关。 一个生长季可发生3-4代。
26
大豆胞囊线虫病根部胞囊放大27Leabharlann 菜用大豆胞囊线虫28
小麦禾谷胞囊线虫病
29
(三)根结线虫属(Meloidogyne) 与胞囊线虫相似,区别是植物受害的根部肿大,形成瘤状 根结;雌雄异型。雄虫细长、尾短、无交合伞;成熟雌虫梨形。 雌虫的卵全部排入卵囊中;成熟雌虫的虫体不变厚,不变为深 褐色。 重要种:南方根结线虫、花生根结线虫(M. arenaria)、 北方根结线虫(M. hapla)和爪哇根结线虫(M. javanica)。 孵化出的2龄幼虫遇合适的寄主即侵入,雌虫的幼虫和成虫 内寄生,唾液可刺激细胞增大;雄虫的幼虫内寄生,雄虫成
生殖系统:卵巢、子宫、阴门、受精囊;精巢、输精管、泄 殖腔、交合刺、交合伞
17
唇 口 口针 食道 中食道球 排泄孔 唾液腺 神经环 肠
唇区 口针 角皮 口针基部球
卵巢
精巢
真皮索 体壁肌 角质环纹
卵 受精囊 子宫 阴门 肛门
侧尾腺
18
精子 交合刺 交合伞
植物病原线虫的生活史和生态 生活史:卵、幼虫、成虫、交配产卵的过程。 线虫一般有4个龄期;蜕皮一次,增长一龄。垫刃目线虫的 第一龄幼虫是在卵内发育的。
时,果实吸水膨胀开裂将种子弹射出去 (主动方式)。
桑寄生科种子表面有槲寄生碱保护,经过鸟类消化道时亦 不受损坏。列当、独脚金的种子极小,成熟时蒴果开裂,种子 随风飞散传播,一般可达数十米远。菟丝子等种子或蒴果常随 寄主种子的收获与调运而传播扩散。寄生藻靠游动孢子或接合
子萌发产生的游动孢子传播。
38
寄生性植物的主要类群:
环境工程微生物学-3病毒新
第二节 毒粒的性质 一、毒粒的形态结构
1、病毒的大小和形状
个体小,必需在电镜下观察;
不同病毒的毒粒大小差别很大; 毒粒的形状:动物病毒有球状、卵圆状、砖形
植物病毒有杆状、丝状、球状 噬菌体有蝌蚪状和丝状
采用各种电镜技术观察毒粒的形态结构
Orf virus:口疮病毒(接触性脓疱皮炎病毒) (负染技术)
结构蛋白
构成一个形态成熟的有感染性的病毒颗粒所必需的蛋白质
壳体蛋白; 包膜蛋白; 存在于毒粒中的酶;
2、病毒的蛋白质
二、毒粒的化学组成
病毒结构蛋白的主要生理功能:
1)构成蛋白质外壳,保护病毒核酸免受核酸酶及其它理化 因子的破坏;
2)决定病毒感染的特异性,与易感细胞表面存在的受体具 特异性亲和力,促使病毒粒子的吸附和入侵;
第三节 病毒的复制
一、病毒的复制周期
1、一步生长曲线(one step growth curve)
1939年,Max Delbruck & Emory Ellis: 该实验标志着分子病毒学、分子生物学和分子遗传学的建立 Max Delbruck因此荣获1969年NobelEP.rcizoeli / bacteriopage 1、用噬菌体的稀释液感染高浓度的宿主细胞; 2、数分钟后,加入抗噬菌体的抗血清(中和未吸附的噬菌体); 3、将上述混合物大量稀释,终止抗血清的作用和防止新释放 的噬菌体感染其它细胞; 4、保温培养并定期检测培养物中的噬菌体效价(对噬菌体含量 进行计数); 5、以感染时间为横坐标,病毒的感染效价为纵坐标,绘制出 病毒特征性的繁殖曲线;
噬菌体 X174只有12个衣壳粒,最大的廿面体 是由1,472个衣壳粒组成的昆虫病毒粒子。
(3)复合对称的代表-T偶数噬菌体
第三章 DNA的复制
(1)端粒和端粒酶的发现
1978 年 , Blackburn 发现四膜虫大核中 rDNA 小分 子 末 端 的 端 粒 结 构 为 370520bp 的 (GGGGTT)n 重复片段。
加尾实验 1984
加尾实验 1985
四膜虫抽提液
酵母 末端重复序列
端 粒 酶 的 鉴 定
1985
端粒酶的分离纯化
TA
母代DNA 子代DNA
半保留复制的意义
按半保留复制方式,亲代DNA所含的信 息以极高的准确度传递给子代DNA分子,子 代保留了亲代的全部遗传信息 ,体现了遗 传的保守性。
遗传的保守性,是物种稳定性的分子基 础,但不是绝对的。
3.1.2 复制叉和复制体
复制叉:发生复制的 位点,或者称为生 长点。
后随链:背向复制叉,一段亲本DNA链先暴露 出来才能以相反方向合成DNA小片段,然后 这些小片段DNA连接形成完整的后随链。
冈崎的实验—脉冲标记实验
lig-突变体
冈崎的实验—脉冲追踪实验
3.1.5复制的起点、方向
复制起点(origin of replication,ori)
原核生物复制起始位点区特点
Dolly 1996-2003
端粒酶和永生
3.3 DNA复制的终止
ColE I
3.4 DNA复制的调控
质 粒 的 复 制 调 控
真核生物的DNA复制的调控
GLN1 GLN2 GLN3
cyclin
p34
MPF
cdc6,cdc8, cdc9,cdc21
3.2.2 多复制子复制的非一致性
每个复制子发动复制的先后时序有很大区别: 同一染色体上不同复制子之间 不同类型细胞之间
复制子的多少与DNA复制的速度有关 基因组的复制完成与细胞、组织及发育状态有 关。
第三章-3.4RNA复制(延伸讲解)
逆转录病毒的生活史
1.附着与融合 2.核心颗粒释放和逆转录 3.原病毒DNA进入细胞核 4.整合 5.转录及后加工 6.转录物输出到细胞质 7.翻译及翻译后加工 8.新病毒装配和出芽释放
(viroplasm),再组装成非成熟病毒颗粒 ➢ 在颗粒内以 mRNA 为模板,合成负链 RNA, 形成 dsRNA
二、 单链 RNA 病毒的 RNA 复制
★ 正链 RNA 和负链 RNA 基因组的复制
1、 正链 RNA 病毒的 RNA 复制
➢ 基因组 RNA 具有 mRNA 的功能,可直接附着于 胞质的核糖体,转译出病毒的非结构蛋白与结构 蛋白。
➢ 流感病毒属于此类型
3.4.2 以DNA为中间物的RNA复制
一、逆转录病毒的RNA复制
上世纪60年代,Howard Temin观察到某些RNA病毒的复制 和增殖受到DNA复制和转录的抑制剂—放线菌素D的抑制, 于是他大胆地推测这些病毒的生活史中有DNA中间物的存 在或者有从RNA到DNA的逆转录过程。
3.4.1 依赖于RNA的RNA合成
➢ 以RNA 为模板合成 RNA,发生在 RNA 病毒生活史中 ➢ 由依赖于 RNA 的 RNA pol 催化,RdRP,RNA-
dependent RNA polymerase ➢ RdRP 一般为病毒基因组编码,需宿主细胞的辅助蛋白 ➢ RdRP 序列保守,只有 聚合酶 活性,没有 外切酶 活性
艾滋病毒完整的生活史
逆转录酶的结构与功能
具有三个酶活性: 依赖于RNA的5'→3'DNA聚合酶活性,该活性用来催
安徽农业大学病毒学思考题
安徽农业大学《病毒学》PPT思考题第一章绪论1.与其他生物相比,病毒具有什么特点?病毒是一类既具有生物大分子属性和生物体基本特征,又具有细胞外感染性颗粒形式和细胞内繁殖性基因形式的十分独特的生物类群。
病毒:是介于生命和非生命之间的一种物质形式,是一类比较原始的、有生命特征的、能够自我复制和严格细胞内寄生的非细胞生物。
病毒的特点:(1)没有细胞结构;(2)仅有一种类型的核酸;(3)特殊的繁殖方式;(4)缺乏完整的酶系统和能量合成系统,也没有核糖体;(5)绝对的细胞内寄生。
2.简述病毒学研究内容及发展趋势。
病毒学研究的任务在于阐明病毒的性质及其与宿主的关系,研究的目的在于:(1)通过研究病毒,了解生命的一些基本问题;(2)预防和控制各种病毒性疾病的发生和流行;(3)利用病毒为人类造福。
现代病毒学研究出现以下发展趋势:(1)病毒功能基因组学和功能蛋白质组学的研究;(2)病毒分子病理学研究;(3)朊病毒分子生物学与疾病控制;(4)DNA疫苗的研究。
第二章病毒的形态、结构与分类1.病毒有哪些形态?如何测量病毒大小?(1)形态:电子显微镜下的病毒大小、形态多种多样,但多为对称结构,大致可分为球状、杆状和蝌蚪状3种基本形态。
随着电子显微镜技术的发展,不断发现新的病毒形态,如子弹状、丝状、卵圆形、砖状、多形性等。
(2)病毒体积极其微小,是亚显微的。
病毒大小可以用电子显微镜直接、准确地测量。
此外,也可通过分级过滤、超速离心、电泳等方法间接的测定。
【单位:nm(10-9m)或Å。
】【使用显微测微尺】2.病毒粒子对称体制有哪几种?(1)螺旋对称(烟草花叶病毒TMV)。
(2)二十面体对称(动物的腺病毒)。
(3)复合对称(大肠杆菌的T偶数噬菌体如T4噬菌体)。
(4)复杂对称(痘病毒)。
3.病毒的主要化学组成及其功能是什么?从化学组成上看,病毒粒子含有核酸、蛋白质,某些复杂的病毒,特别是动物病毒,除核酸和蛋白质外,还含有脂类、碳水化合物和少量的其他成分。
03.第三章病毒的复制
每 个 细 胞 的 感 染 复 数
产量 细胞外病毒
感染病毒后 小时
吸附和侵入
隐蔽
成熟
释放
第二节 病毒的复制过程
一、吸附
二、侵入 三、脱壳
四、病毒生物大分子的合成
五、病毒与细胞表面的相互作用,是病毒复制的第一步。 多数病毒的吸附过程一般分两个阶段: 病毒粒子吸附到细胞表面,吸附是由于不同带电粒子间因 静电引力而结合。 病毒与受体的相互作用启动病毒进入细胞的动力学过程。
病毒脱壳后病毒的颗粒形式从受染细胞内消失,存在
于细胞内的是病毒的基因组。
囊膜病毒脱壳包括脱囊膜和脱衣壳两个步骤,无囊膜
病毒只需脱衣壳,脱壳方式随不同病毒而异。
四、病毒生物大分子的合成
病毒感染细胞后,利用宿主细胞合成核酸和蛋 白质的原料、场所、机制和能量,完成自身大 分子的生物合成。病毒的大分子生物合成包括 mRNA的转录、基因组的复制和病毒蛋白质合成 等。
五、装配和释放
病毒大分子合成产生的结构组分以一定方式结 合,组装成完整的子代病毒颗粒,这一复制阶 段称为装配。病毒的装配是一个复杂的过程, 是病毒复制、成熟和增殖的一个必要步骤。
第三节 病毒的非增殖性感染
一、非增殖性感染的类型
二、缺损病毒
一、非增殖性感染的类型
病毒的非增殖性感染主要有三种类型:流产感染、限制性感染 和潜伏感染。
二、侵入
整个病毒颗粒或其基因组及相关蛋白通过质膜屏障向 胞质转运的过程称为侵入。侵入的方式因病毒不同而
异,同一病毒也可以不止一种方式侵入。
从病毒侵入细胞的方式看,目前发现有3种类型:①病
毒囊膜和质膜融合;②细胞胞吞病毒;③病毒直接进
第三章 病毒的复制
第三章病毒的复制第一节研究病毒复制的一般性方法1.1建立病毒复制的实验研究系统研究病毒的常用培养系统①噬菌体——细胞培养系统用该系统研究噬菌体复制的优点:敏感的宿主细菌易于在琼脂平板上培养,其数目易于控制;噬菌体在细菌内增殖导致细菌培养物变清亮,在合适的接种密度下很容易在琼脂平板上形成噬斑,其结果容易观察;噬菌体和细菌的增殖速度快、增殖周期短,在一定时间内可多次反复实验。
噬菌体同步感染敏感的细菌培养物—建立了测定一步生长曲线的实验方法,弄清了噬菌体的复制循环。
②动物病毒—动物细胞培养系统目前已建立了很多细胞株,包括脊椎动物细胞(哺乳动物细胞株)和无脊椎动物细胞(昆虫细胞株),为研究病毒复制打下了良好的基础。
在离体条件下,避免了机体内的控制机制及其他因素的影响,因此只能近似反映动物机体内病毒的复制过程。
③植物病毒—原生质体培养系统高活性的原生质体的分离和培养方法的建立,把病毒与植物机体或组织之间的复杂关系,转变为病毒与植物单细胞的简单关系,提高了感染效率。
植物体的单细胞体外培养目前无法实现。
在植物体外,有由纤维素组成的细胞壁,植物病毒感染植物体的感染效率要低很多。
前二者都是一个病毒感染一个细胞,但是要104~106个植物病毒才能感染一个植物体。
采用原生质体(去掉细胞壁),则病毒的感染效率大大提高。
但是总的效率还是比噬菌体和动物病毒差。
无论是哪种培养系统,都要考虑:①宿主细胞的敏感性与生理状态②注意感染复数病毒感染宿主细胞后,会导致宿主细胞出现裂缝,胞内的物质渗漏,使宿主细胞死亡。
要尽可能做到感染复数为1,即一个对一个。
感染复数(multiplicity of infection, m.o.i) :用以起始病毒感染的每个细胞所需的病毒颗粒数目。
单位(PFU/cell)1.2一步生长实验(定量描述烈性噬菌体的生长规律)以适量的病毒接种于标准培养的高浓度的敏感细胞,待病毒吸附后,再高度稀释病毒-细胞培养物(避免二次吸附),或以抗病毒抗血清处理病毒-细胞培养物(去除过量的噬菌体,也是为了避免二次吸附)以建立同步感染,然后继续培养,定时取样测定培养物中的病毒效价,并以感染时间为横坐标,病毒的感染效价为纵坐标,绘制出病毒特征性的繁殖曲线,即一步生长曲线。
病原微生物学与免疫教案全册
病原微生物学与免疫教案(第一至第五章)第一章:病原微生物学概述1.1 病原微生物的定义和分类1.2 病原微生物的生物学特性1.3 病原微生物的传播途径1.4 病原微生物的诊断与控制第二章:细菌2.1 细菌的形态与结构2.2 细菌的生理生化特性2.3 细菌的分类与命名2.4 细菌的感染与免疫第三章:病毒3.1 病毒的形态与结构3.2 病毒的复制与生命周期3.3 病毒的分类与命名3.4 病毒感染与免疫第四章:真菌4.1 真菌的形态与结构4.2 真菌的生理生化特性4.3 真菌的分类与命名4.4 真菌感染与免疫第五章:寄生虫5.1 寄生虫的定义与分类5.2 寄生虫的生物学特性5.3 寄生虫的感染与免疫5.4 常见寄生虫感染疾病及防治第六章:免疫学基础6.1 免疫系统的组成6.2 抗原与抗体6.3 免疫应答的类型与机制6.4 免疫调节与免疫耐受第七章:感染与免疫7.1 感染过程的基本概念7.2 病原体与宿主的相互作用7.3 免疫记忆与免疫接种7.4 免疫缺陷与免疫增强第八章:实验室诊断与防控8.1 病原微生物的实验室检测方法8.2 血清学诊断技术8.3 分子生物学诊断技术8.4 病原微生物的防控策略第九章:常见病原微生物感染与疾病9.1 细菌性感染与疾病9.2 病毒性感染与疾病9.3 真菌性感染与疾病9.4 寄生虫性感染与疾病第十章:疫苗与生物制品10.1 疫苗的种类与作用机制10.2 疫苗的研发与生产10.3 疫苗的使用与安全性10.4 生物制品的应用与影响重点和难点解析重点环节一:病原微生物的定义和分类解析:病原微生物是引起传染病的微生物,包括细菌、病毒、真菌和寄生虫等。
对其定义和分类的了解是学习病原微生物学的基础,需要掌握各种微生物的特征和区别。
重点环节二:病原微生物的生物学特性解析:病原微生物的生物学特性包括形态、结构、生长条件、繁殖方式等,这些特性与其致病性和免疫原性密切相关。
学生需要理解不同微生物的生物学特性及其与疾病的关系。
第二单元第三章第一节《病毒》优秀教学案例
3.提醒学生关注自身健康,了解预防病毒感染的方法,养成良好的生活习惯。
在教学过程中,我将关注每一个学生的成长,关注他们的情感需求,以人性化的语言和关怀,激发学生的学习兴趣,帮助他们建立自信,培养他们积极向上的情感态度。同时,我将根据学生的实际情况,灵活运用教学策略,调控教学进度,确保每一个学生都能在课堂上得到有效的学习。
(四)总结归纳
1.教师引导学生对自己在课堂上的学习进行总结,回顾所学知识,巩固记忆。
2.教师对学生的研究成果进行点评,肯定学生的努力和成果,提出改进意见。
3.总结本节课的主要内容,强调病毒的结构、分类、繁殖过程以及与人类生活的关系等关键知识点。
(五)作业小结
1.布置作业,让学生课后进一步巩固病毒相关知识,如绘制病毒结构示意图、撰写病毒研究报告等。
(三)学生小组讨论
1.将学生分成小组,每组选择一种病毒进行研究,引导学生通过查阅资料、讨论等方式,共同完成对病毒的了解。
2.设计实验环节,如观察病毒粒子、分析病毒繁殖过程等,让学生在实践中合作学习,提高学生的实践能力。
3.组织小组讨论,让学生分享研究成果,培养学生的沟通表达能力,提高学生的团队合作意识。
在制定本节课的教学案例时,我结合了课程标准和学生的实际情况,以提高学生的科学素养和生命观念为主旨,力求在教学中激发学生的兴趣,培养学生的观察能力、思考能力和实践能力。在教学过程中,我注重引导学生通过观察、实验、讨论等方式,深入了解病毒的结构和生活方式,从而提高学生对生物知识的掌握和应用能力。同时,我也注重培养学生的团队合作意识和沟通表达能力,使他们在学习中相互促进,共同进步。
五、案例亮点
1.创新性的教学设计:在情景创设环节,教师通过多媒体展示了病毒感染细胞的动画,这种生动形象的教学方式极大地激发了学生的学习兴趣,使学生在轻松愉快的氛围中开始了对新知识的学习。这种创新性的教学设计,既符合学生的认知特点,又能有效地提高学生的学习积极性。
3.DNA复制
引物(primer):提供3´-OH末端的寡核苷酸;
聚合酶(polymerase)
其他的酶和蛋白质因子
引物
DNA聚合酶只能利用已提供的核苷酸的3’-OH末 端聚合dNMP,合成DNA链。即DNA复制的起始 必须先期合成一段引物分子。 这段引物分子是由引物酶(RNA聚合酶)合成的 一段10个核苷酸左右的RNA分子。
三、DNA复制的终止 四、 DNA复制的模式
3-4节
DNA双螺旋模型(1953)
半保留复制
DNA复制(p91)
DNA复制时亲代双链DNA分子在DNA聚合酶等相 关酶的作用下,分别以每条单链DNA分子为模板 ,聚合与模板链碱基可以互补配对的游离的三磷 酸脱氧核糖核酸dNTP,合成出两条与亲代DNA 分子完全相同的子代双链DNA分子的过程。
E. coli 低剂量的3T-dTTP的培养基 数分钟 高剂量的3T-dTTP的培养基 数分钟 提取E.coli DNA E.coli DNA 放射自显影
实际观测结果 E.coli DNA 的复制是双向的 对不同复制模式的预期结果
DNA复制的方向性
复制叉移动的方向性 DNA链延伸的方向性 5’ 3’ ? 3’ 5’ ?
Dna C:辅助解螺旋酶使其在起始点上
结 合并打开双链。
解螺旋酶 (Dna B ) :
在双链DNA解旋解链 的过程中,DnaA找到 复制起点;
Dna B在Dna C的帮助下 结合于解链区。Dna B借助水解ATP产生 的能量,沿DNA链5‘->3’方向移动,解开 DNA的双链。
3. 单链DNA结合蛋白 (SSB) :
第三章病毒的增殖
噬菌体的一步生长曲线
(噬 菌 斑 数)
吸附期
潜伏期
裂解期
噬菌体复制(繁殖) 的三个阶段: 1、吸附期
游离的噬菌体吸附到宿主细胞
2、潜伏期
从噬菌体吸附到细胞到释放 出新噬菌体的最短时期
3、裂解期
随着菌体不断破裂,新噬菌体 数目增加,直到最高值
(一)、一步生长曲线(one step growth curve)
隐蔽期病毒在细胞内存在的动力学曲线呈线性函数,而非指数关系, 从而证明子代病毒颗粒是由新合成的病毒基因组与蛋白质经装配成 熟,而不是通过双分裂方式产生的。
(一)、一步生长曲线(one step growth curve)
是研究病毒复制的一个经典试验,最初是为研究噬菌体的复 制而建立,以后推广到动物病毒和植物病毒复制研究中。
吸附
侵入
脱壳
早期:病毒特异性酶的合成 病毒核酸复制 病毒结构蛋白质合成 病毒大分子合成
装配
成熟 释放
(二)、一步生长曲线(one step growth curve)
1939年,Max Delbruck & Emory Ellis:
该实验标志着分子病毒学、分子生物学和分子遗传学 的建立,Max Delbruck因此荣获1969年Nobel Prize 1、用噬菌体的稀释液感染高浓度的宿主细胞 2、数分钟后,加入抗噬菌体的抗血清 3、将上述混合物大量稀释 4、保温培养并定期检测培养物中的噬菌体效价 5、以感染时间为横坐标,病毒的感染效价为纵坐标, 绘制出病毒特征性的繁殖曲线
隐蔽期(eclipse period)
不同病毒的隐蔽期长短不同 例如,DNA动物病毒的隐蔽期为5~20min, RNA动物病毒为2~10 h。
第三章 病毒和亚病毒知识点总结
第三章病毒和亚病毒病毒学(virulogy)研究病毒(virus)的本质及其与宿主的相互作用的科学,是微生物学的重要分支学科。
第一节病毒一、病毒的发现和研究历史第一个记载的植物病毒病当属郁金香碎色花病,至今荷兰阿姆斯特丹的博物馆还保存着一张1619年荷兰画家的一幅得病的郁金香静物画。
当时人们对郁金香病花的狂热了,一枚得病的郁金香球茎竟能换成吨的谷物或上千磅的奶酪。
1886年,A. Mayer 发现烟草花叶病具有传染性1898年,M W Beijerinck对烟草花叶病病原体的研究结果:能通过细菌滤器;可被乙醇沉淀而不失去其感染性,能在琼脂凝胶中扩散;用培养细菌的方法不能被培养出来,推测只能在植物活细胞中生活;结论:病原是一种比细菌还小的“有传染性的活的流质”。
真正发现病毒存在的是贝叶林克,给病毒起拉丁名叫“Virus”也是他。
一百多年以来,烟草花叶病毒在病毒学发展史乃至遗传学、生物化学以及当代基因工程中起到了里程碑的作用。
1917年迪海莱(F. D'Herelle)⏹痢疾杆菌培养液(浑浊)+ 污水⏹培养液变清澈⏹细菌过滤器⏹清液+痢疾杆菌培养液(浑浊)⏹培养液变清澈⏹引起细胞破裂的因子叫噬菌体二、病毒的特点和定义1. 特点1)不具有细胞结构,具有化学大分子的特征。
Eg. 一些简单的病毒仅由核酸和蛋白质外壳(coat)构成,故可把它们视为核蛋白分子。
朊病毒甚至仅由蛋白质构成3)大部分病毒不能进行独立的代谢作用。
4)严格的活细胞内寄生,必须依赖宿主细胞进行自身的核酸复制,形成子代。
5)个体微小,在电子显微镜下才能看见6)对大多数抗生素不敏感,对干扰素敏感。
7)在离体条件下,能以无生命的生物大分子状态存在,并可长期保持其侵染活力。
8)有些病毒的核酸还能整合到宿主的基因组中,并诱发潜伏性感染。
2. 定义★什么是病毒?病毒(virus)是一类由核酸和蛋白质等少数几种成分组成的超显微“非细胞生物”,其本质是一种只含DNA或RNA的遗传因子。
分子生物学-03复制
Biotechnology Institute Hu Dongwei hudw@
第三章 DNA的复制
一、半保留复制
Semi-conservation replication
以每条链为模板,按碱基互补配对原则由DNA 聚合酶催化合成新的互补链。
DNA polymerases in human and SV40
6 DNA连接酶 (DNA lygase) A.原核生物
催化DNA链的5'-PO4与另一 DNA链的3'-OH生成磷酸二酯键。 (1) 大肠杆菌的DNA连接酶
75kD,对胰蛋白酶敏感,每个 细胞中约有300个分子。在DNA复 制、修复和重组中起着重要的作用。
2 单链DNA结合蛋白(SSBP)
E. coli的SSBP为四聚体, 可结合32 bp。 SSBP使单链DNA呈伸展 状态,有利于单链DNA作 为模板。 SSBP防止单链DNA重新 配对或被降解。
3 DNA拓扑异构酶 (Topisomerase)
催化DNA不同超螺旋状 态之间的转变。 A. 拓扑异构酶I :双链解旋 切断形成“酶-DNA“共 价中间物 DNA连接。不 需辅助因子。 B. DNA旋转酶(DNA gyrase): 拓扑异构酶II,引入DNA分 子负超螺旋 。需要ATP。
在DNA合成延伸过程中主要是DNA聚合酶III的作用。当 冈崎片段形成后,DNA聚合酶I通过其5'→3'外切酶活性切 除冈崎片段上的RNA引物,同时,利用后一个冈崎片段作 为引物由5'→3'合成DNA。最后两个冈崎片段由DNA连接 酶将其接起来,形成完整的DNA后续链。
DNA复制的终止
DNA上也存在着复制终止位点,DNA复制将在复制终 止位点处终止,并不一定等全部DNA合成完毕。当RNA 引物被切除后,中间所遗留的间隙由DNA聚合I所填充。 但目前对复制终止位点的结构和功能了解甚少。线性DNA
第三章:病毒的增殖
一,吸
附
病毒与细胞表面特异性受体发生碰 撞 , 病毒附着于细胞受体而引起的 病毒感染的第一阶段. 病毒感染的第一阶段.
病毒吸附分两步进行: 病毒吸附分两步进行: 可逆吸附 : 病毒与细胞以静电引力相结合 , 可逆吸附: 病毒与细胞以静电引力相结合, 是一种非特异性的吸附. 是一种非特异性的吸附. 与细胞和病毒的浓度成正比 ; 也与溶液中的 与细胞和病毒的浓度成正比; Ca2+,Mg2+, 和 Na+ 等离子有关 ( 促进或抑 等离子有关( 制作用) 制作用 ) ; 单纯的稀释或冲洗以及应用抗病 毒血清或高浓度的盐类和一定的pH环境都可 毒血清或高浓度的盐类和一定的 环境都可 使病毒重新解脱.解脱的病毒具备感染性. 使病毒重新解脱.解脱的病毒具备感染性.
五,装配和释放
1.装配:新合成的病毒核酸和病毒蛋白在感染 .
细胞内组装成完整的病毒颗粒的过程. 细胞内组装成完整的病毒颗粒的过程. 无囊膜病毒壳体与核酸结合形成的核衣壳 即为成熟的病毒; 即为成熟的病毒;囊膜病毒需要在核衣壳外加上 包膜. 包膜. 病毒的装配效率很低, 往往只有不到50% 病毒的装配效率很低 , 往往只有不到 的子代病毒成份能组装成完整的病毒粒子. 的子代病毒成份能组装成完整的病毒粒子.
4,痘病毒:较为特殊 ,痘病毒:
外层囊膜在胞膜或吞饮泡膜上被融合 外层囊膜在胞膜或吞饮泡膜上被融合, 在胞膜或吞饮泡膜上被融合 病毒核心进入胞浆内, 病毒核心进入胞浆内 , 核心借助自身衣壳 上的依赖DNA的RNA聚合酶合成 的 聚合酶合成mRNA, 上的依赖 聚合酶合成 , 进一步译制出一些早期蛋白质, 进一步译制出一些早期蛋白质 , 这些蛋白 脱壳酶, 质中有脱壳酶 质中有 脱壳酶 , 该酶反过来帮助病毒核心 进一步脱壳. 进一步脱壳.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章病毒得复制第一节研究病毒复制得一般性方法1、1建立病毒复制得实验研究系统研究病毒得常用培养系统①噬菌体——细胞培养系统用该系统研究噬菌体复制得优点:敏感得宿主细菌易于在琼脂平板上培养,其数目易于控制;噬菌体在细菌内增殖导致细菌培养物变清亮,在合适得接种密度下很容易在琼脂平板上形成噬斑,其结果容易观察;噬菌体与细菌得增殖速度快、增殖周期短,在一定时间内可多次反复实验。
噬菌体同步感染敏感得细菌培养物—建立了测定一步生长曲线得实验方法,弄清了噬菌体得复制循环。
②动物病毒—动物细胞培养系统目前已建立了很多细胞株,包括脊椎动物细胞(哺乳动物细胞株)与无脊椎动物细胞(昆虫细胞株),为研究病毒复制打下了良好得基础。
在离体条件下,避免了机体内得控制机制及其她因素得影响,因此只能近似反映动物机体内病毒得复制过程。
③植物病毒—原生质体培养系统高活性得原生质体得分离与培养方法得建立,把病毒与植物机体或组织之间得复杂关系,转变为病毒与植物单细胞得简单关系,提高了感染效率。
植物体得单细胞体外培养目前无法实现。
在植物体外,有由纤维素组成得细胞壁,植物病毒感染植物体得感染效率要低很多。
前二者都就是一个病毒感染一个细胞,但就是要104~106个植物病毒才能感染一个植物体。
采用原生质体(去掉细胞壁),则病毒得感染效率大大提高。
但就是总得效率还就是比噬菌体与动物病毒差。
无论就是哪种培养系统,都要考虑:①宿主细胞得敏感性与生理状态②注意感染复数病毒感染宿主细胞后,会导致宿主细胞出现裂缝,胞内得物质渗漏,使宿主细胞死亡。
要尽可能做到感染复数为1,即一个对一个。
感染复数(multiplicity of infection, m、o、i) :用以起始病毒感染得每个细胞所需得病毒颗粒数目。
单位(PFU/cell)1、2一步生长实验(定量描述烈性噬菌体得生长规律)以适量得病毒接种于标准培养得高浓度得敏感细胞,待病毒吸附后,再高度稀释病毒-细胞培养物(避免二次吸附),或以抗病毒抗血清处理病毒-细胞培养物(去除过量得噬菌体,也就是为了避免二次吸附)以建立同步感染,然后继续培养,定时取样测定培养物中得病毒效价,并以感染时间为横坐标,病毒得感染效价为纵坐标,绘制出病毒特征性得繁殖曲线,即一步生长曲线。
体现3个时期: ①潜伏期②突破期③平稳期潜伏期中包含有隐蔽期(有感染性得病毒粒子从消失到出现这段时期)潜伏期:噬菌体吸附到细胞到释放出新噬菌体得时间隐蔽期:病毒在受染细胞内消失到细胞内出现新得感染性病毒得时间(1)潜伏期,这一时期几乎没有形成噬菌斑,进入裂解期后就形成了噬菌斑,也就就是有新得病毒粒子释放出来了,因此潜伏期就是指病毒吸附于细胞到受染细胞释放出子代病毒所需得最短时间。
不同病毒潜伏期长短不一,噬菌体一般有几分钟,动物病毒与植物病毒以小时或天计。
(2)裂解期:在潜伏期后,病毒效价急剧增加,这就是新合成得病毒核酸与蛋白质装配成大量病毒粒子,并释放得结果。
潜伏期后宿主细胞裂解释放出大量子代病毒得时期称为裂解期或成熟期。
这一点跟细菌得生长曲线不同,细菌得生长曲线中得延滞期就是为分裂做准备,对数期就是大量繁殖得时期,而病毒一步生长曲线中得裂解期则就是病毒大量释放得时期,而不就是繁殖(即复制)得时期(复制过程实际上就是在潜伏期完成得)。
(3)稳定期:裂解期末,受染细胞将子代病毒粒子全部释放出来,病毒效价稳定在最高处得时期,称为稳定期,即病毒粒子已经全部释放,没有新得病毒粒子释放了,所以形成得噬菌斑数量保持不变,不会下降,因此不会像细菌得生长曲线那样有衰亡期。
一步生长曲线得意义:(1)可获知潜伏期与裂解期。
(2)可获知裂解量:每一受感染细胞所产生得子代病毒粒子得平均数。
稳定期得病毒粒子数目裂解量= ————————————潜伏期受感染细胞得数目第二节病毒得复制周期病毒增殖(multiplication) 只在活细胞内进行,以病毒基因为模板,在酶作用下,分别合成其基因及蛋白质,再组装成完整得病毒颗粒,这种方式称复制。
从病毒进入宿主细胞开始,经过基因复制,到最后释放出子代病毒,称为一个复制周期。
病毒得复制周期依次包括吸附,穿入,脱壳,生物合成及组装,成熟与释放。
2、1吸附(adsorption)病毒附着于敏感细胞得表面,细胞表面能吸附病毒得物质结构称为病毒受体。
敏感得宿主细胞就是病毒复制得第一阶段。
该过程包含静电吸附及特异性受体吸附两阶段。
细胞及病毒颗粒表面都带负电荷,Ca2+、Mg2+等阳离子能降低负电荷,促进静电吸附。
静电吸附就是可逆得,非特异得。
可逆性吸附:又称为静电吸附,指病毒体与细胞接触,进行静电结合。
非特异性、可逆得,就是由随机碰撞、布朗运动、静电引力引起,其她得粒子也可以发生这种吸附,如灰尘得吸附等。
不可逆吸附:又称为真正得吸附,指病毒体表面位点(蛋白质结构)与宿主细胞膜上相应得受体结合。
就是决定病毒感染得真正开始。
如噬菌体通过尾丝与细菌表面得受体结合,再如流感病毒通过HA(血凝素蛋白)与宿主细胞表面得唾液酸受体结合。
吸附类型得转变:一般情况下病毒与宿主细胞通过不可逆吸附后即发生侵入过程,但有时也会由不可逆吸附变为可逆性吸附,这个过程主要取决于三方面得条件,即病毒吸附蛋白、病毒得细胞受体与环境因素。
病毒吸附蛋白:能够识别细胞表面特异性受体得病毒体表面结构蛋白称为病毒吸附蛋白(VAP)(virus attachment protein,BAP)。
它决定了病毒与敏感得细胞表面受体得特异性结合。
吸附后病毒粒子或病毒核酸能进入宿主细胞中。
实例:如:T-偶数噬菌体得吸附蛋白→噬菌体尾丝蛋白。
有包膜得动物病毒得吸附蛋白就是包膜上得糖蛋白突起(流感病毒→血凝素糖蛋白);无包膜得动物病毒腺病毒得吸附蛋白就是二十面体壳体上得五邻纤维。
病毒得细胞受体:能被病毒吸附蛋白识别,就是启动感染发生得特殊细胞位点。
它在很大程度上决定了病毒得宿主范围、组织亲与性,并影响病毒得致病性(不同得宿主上有不同得受体,不同得细胞上也有不同得受体)。
病毒受体可分为细胞受体单位与细胞受体位点细胞受体单位(cellular receptor unit):就是指能够识别一个病毒吸附蛋白得细胞分子。
通常由几个亚基单位构成,其活性依赖于分子得空间结构。
细胞受体位点(cellular receptor site):就是指由一个或几个受体单位组成,并能有效地结合一个病毒粒子得细胞表面结构。
具有种系特异性。
一些不同种系动物得细胞存在不同得病毒受体。
如多瘤病毒受体只存在于小鼠细胞上。
具有组织特异性。
动物不同组织细胞上存在不同得病毒受体,从而决定了病毒得组织嗜亲性。
如HIV可感染具有CD4抗原得T辅助性淋巴细胞,单核巨噬细胞。
而不能感染其她细胞。
实例:①细菌病毒:大多数噬菌体得细胞受体在细菌得细胞壁上,如LPS、脂蛋白、蛋白质等。
噬菌体得细胞受体特异性很强,因此噬菌体得专一性很强。
②动物病毒:多数动物病毒得细胞受体单位就是镶嵌在细胞质脂双层之间得糖蛋白,即细胞膜上得糖蛋白。
植物病毒没有吸附这一步,因此没有细胞受体,其感染就是通过昆虫得刺入或者胞间连丝完成得。
③病毒吸附蛋白与细胞受体结合得机制毒吸附蛋白与细胞受体结合得机制:氢键、离子间静电引力、范德华力等可逆性吸附:只就是静电引力引起,无化学键结合,易受pH影响不可逆性吸附:病毒吸附蛋白与细胞表面受体形成牢固得化学键植物病毒迄今尚未发现有特异性细胞受体,其病毒进入植物得机制就是通过伤口或媒介昆虫传播得。
④病毒外壳蛋白与寄主细胞受体之间得关系植物病毒不表现出外壳蛋白与寄主细胞表面受体之间得特异性1把不能侵染番茄得TMV株系得RNA包上一个能侵染番茄得TMV株系得外壳,所得杂种仍不能侵染番茄。
单独用不能侵染番茄得TMV毒株得RNA来接种也不能侵染番茄。
反过来,能侵染番茄得RNA与不能侵染番茄得外壳装配成得病毒仍然可以侵染番茄。
2用体外装配得方法把脊髓灰质炎病毒得RNA包上另一种同属肠道病毒组能侵染小鼠细胞得柯萨奇病毒得蛋白质衣壳,这种体外装配得杂种病毒就能侵染原来脊髓灰质炎病毒不能侵染得小鼠细胞。
⑤环境因素(1)温度:在一定范围内,病毒得吸附速率与温度成正比,例如:脊髓灰质炎病毒在1℃得吸附率仅就是37℃得十分之一。
(2)离子环境:在一定浓度得阳离子存在得条件下,能够促进病毒对细胞得吸附(二价阳离子能促进噬菌体得吸附)。
螯合剂可抑制吸附。
(3)pH:不同得病毒--细胞系统吸附反应得最适pH有很大得不同。
例如:腺病毒T型与红细胞结合得最适pH就是5、5~8、7;而柯萨奇病毒B4吸附HeLa细胞得最适pH就是3、0~3、5。
2、2侵入(penetration)病毒核酸或感染性核衣壳穿过细胞进入胞浆,开始病毒感染得细胞内期。
侵入就是病毒感染得第二阶段。
主要得方式有:①注射式侵入:就是有尾噬菌体得侵入方式。
T偶数噬菌体得尾丝与细胞表面受体结合→尾鞘蛋白收缩使基板上升→尾管在尾部溶菌酶得作用下插入细菌细胞壁→噬菌体头部得dsDNA分子通过尾管注入细胞大肠杆菌雄性菌株得丝杆状噬菌体也采取注射侵入细胞②细胞内吞——就是病毒穿入细胞得常见方式细胞内吞:就是种常见得动物病毒得侵入方式,如:流感病毒、痘病毒、多瘤病毒等。
细胞膜将病毒粒子包裹→膜内陷形成吞噬泡使病毒粒子进入细胞质→与细胞器(如溶酶体)等得内膜融合→释放病毒粒子③膜融合——常见包膜病毒膜融合:病毒包膜与细胞膜得融合过程,主要就是有包膜得病毒得侵入方式。
④直接侵入——常见无包膜病毒病毒直接侵入得方式分为三种类型。
部分病毒粒子直接侵入细胞,如脊髓灰质炎病毒、腺病毒许多无包膜病毒通过吸附蛋白与细胞受体结合后,宿主细胞膜得流动性可引起病毒衣壳蛋白得重排与构型变化,导致病毒粒子释放核酸进入细胞质内,病毒衣壳仍留在细胞膜外。
其她特殊方式:植物病毒未发现有特异性细胞受体,通过存在于植物细胞壁上得小伤口或天然存在得外壁孔侵入细胞,也可通过植物细胞之间得胞间连丝而侵入细胞,或者通过昆虫得口器侵入细胞。
2、3脱壳(virus uncoating)脱壳就是病毒感染得第三阶段。
指病毒感染性核酸从衣壳内释放出来得过程。
有包膜病毒与无包膜病毒脱壳方式随不同病毒而异。
病毒脱壳后并不完全裸露,而就是与一些特异得病毒蛋白或细胞蛋白连接以抵抗核酸酶得降解作用。
无包膜病毒脱壳:小RNA病毒、有尾噬菌体直接在细胞膜或细胞壁表面进行脱壳,其侵入与脱壳一次完成; 呼肠孤病毒粒子有双层衣壳,经细胞内吞作用进入细胞后被溶酶体中得酶水解脱掉外衣壳,再进一步脱壳;腺病毒粒子以内吞方式进入内吞泡,其结构会发生改变由二十面体变为球形颗粒,然后进入细胞质,进一步脱去六邻体蛋白。
有包膜病毒脱壳:由于以膜融合方式侵入细胞,其包膜在与细胞膜融合时已脱去,只剩核衣壳。