人教版最新高中数学三角函数复习专题
新人教A版高中数学必修四三角函数复习资料(含答案)

高一三角函数复习资料一、范例分析例1、 已知函数y=21cos 2x+23sinx·cosx+1 (x ∈R ),(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?说明:这类题一般的解法是:先化成关于sinωx,cosωx 的齐次式,降幂后最终化成y=22b a +sin (ωx+ϕ)+k 的形式。
解:(1)y=21cos 2x+23sinx·cosx+1=41 (2cos 2x -1)+ 41+43(2sinx·cosx )+1=41cos2x+43sin2x+45=21(cos2x·sin 6π+sin2x·cos 6π)+45=21sin(2x+6π)+45所以y 取最大值时,只需2x+6π=2π+2kπ,(k ∈Z ),即 x=6π+kπ,(k ∈Z )。
所以当函数y 取最大值时,自变量x 的集合为{x|x=6π+kπ,k ∈Z}(2)将函数y=sinx 依次进行如下变换:(i )把函数y=sinx 的图像向左平移6π,得到函数y=sin(x+6π)的图像; (ii )把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y=sin(2x+6π)的图像;(iii )把得到的图像上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数y=21sin(2x+6π)的图像;(iv )把得到的图像向上平移45个单位长度,得到函数y=21sin(2x+6π)+45的图像。
综上得到y=21cos 2x+23sinxcosx+1的图像。
例2()已知向量,,,,,,其中a x xb x xc =⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪=-cos sin cos sin 32322231x R ∈.(I )当a ⊥b 时,求x 值的集合;()求的最大值。
II a c -解:()由⊥·I a b a b →→→→⇔=0即··coscos sin sin 3223220x x x x -=则cos20x =()得22x k k Z =+∈ππ()∴x k k Z =+∈ππ24∴当⊥时值的集合为,a b x x x k k Z →→=+∈⎧⎨⎩⎫⎬⎭|ππ24解法一:()II a c a c a a c c a a c c ||()||||→→→→→→→→→→→→-=-=-+=-+22222222又||c o s s i n a x x →=⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪=22232321()||c →=+-=222314a b x x x x x →→=-=-⎛⎝ ⎫⎭⎪=+⎛⎝ ⎫⎭⎪·332322323212322326cos sin cos sin cos π∴||c o s c o s a c xx→→-=-+⎛⎝ ⎫⎭⎪+=-+⎛⎝ ⎫⎭⎪214326454326ππ∴||m a xa c →→-=29∴||m i n a c →→-=3即的最大值为||a c →→-3解法二:||cos sin a c x x →→-=-+⎛⎝ ⎫⎭⎪22323321, =-⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪cos sin 32332122x x =-++++cos cos sin sin 223223323322321x x x x=-⎛⎝ ⎫⎭⎪+2323325sin cos x x =-⎛⎝ ⎫⎭⎪+43235sin x π∴||maxa c →→-=29∴||max a c →→-=3说明:三角函数与向量之间的联系很紧密,所以此类题目往往是命题人所青睐。
人教版高中数学三角函数复习专题及参考答案

高中数学三角函数复习专题(附参考答案)一、知识点整理:1、角的概念的推广:正负,范围,象限角,坐标轴上的角; 2、角的集合的表示:①终边为一射线的角的集合:⇔{}Z k k x x ∈+=,2απ={}|360,k k Z ββα=+⋅∈②终边为一直线的角的集合:⇔{}Z k k x x ∈+=,απ;③两射线介定的区域上的角的集合:⇔{}Z k k x k x ∈+≤<+,22απβπ④两直线介定的区域上的角的集合:⇔{}Z k k x k x ∈+≤<+,απβπ;3、任意角的三角函数:(1) 弧长公式:R a l = R 为圆弧的半径,a 为圆心角弧度数,l 为弧长。
(2) 扇形的面积公式:lR S 21= R 为圆弧的半径,l 为弧长。
(3) 三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则:,cos ,sin r x r y ==αα xy =αtan r=22b a + 反过来,角α的终边上到原点的距离为r 的点P 的坐标可写为:()cos ,sin P r r αα比如:公式βαβαβαsin sin cos cos )cos(+=- 的证明(6)如图,角α 垂足为M 过点A(1,0)作x (7 ①倒数关系: 1cot tan =a a ②商数关系:aa cos tan =③平方关系:1cos sin 22=+a a(8)诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限:比如sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭4.两角和与差的三角函数: (1)两角和与差公式:βββαsin sin cos cos )cos(a a =± βββsin cos cos sin )sin(a a a ±=±βββtan tan 1tan tan )(tan a a a a ±=± 注:公式的逆用或者变形......... (2)二倍角公式:a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a aa aa 2tan 1tan 22tan -=(3)几个派生公式: ①辅助角公式:)cos()sin(cos sin 2222ϕϕ-+=++=+x b a x b a x b x a例如:sin α±cos α=2sin ⎪⎭⎫ ⎝⎛±4πα=2cos ⎪⎭⎫ ⎝⎛±4πα.sin α±3cos α=2sin ⎪⎭⎫ ⎝⎛±3πα=2cos ⎪⎭⎫ ⎝⎛±3πα等.②降次公式:ααα2sin 1)cos (sin 2±=±221cos 21cos 2cos ,sin 22αααα+-==③)tan tan 1)(tan(tan tan βαβαβα⋅-+=+56、.函数)sin(ϕω+=x A y 的图像与性质:(本节知识考察一般能化成形如)sin(ϕω+=x A y 图像及性质) (1) 函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T(2) 函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ωπ=T (3) 五点法作)sin(ϕω+=x A y 的简图,设ϕω+=x t ,取0、2π、π、23π、π2来求相应x 的值以及对应的y 值再描点作图。
5.4 三角函数的图象与性质(精讲)(解析版)--人教版高中数学精讲精练必修一

5.4三角函数的图象与性质(精讲)一.三角函数的图像及性质π1.周期函数概念①对于函数f(x),存在一个非零常数T(T>0)条件②当x取定义域内的每一个值时,都有f(x+T)=f(x)结论函数f(x)叫做周期函数,非零常数T叫做这个函数的周期2.最小正周期条件如果周期函数f(x)的所有周期中存在一个最小的正数结论这个最小正数叫做f(x)的最小正周期一.用三角函数图象解三角不等式(1)作出相应正弦函数或余弦函数在[0,2π]上的图象;(2)写出适合不等式在区间[0,2π]上的解集;(3)根据公式一写出不等式的解集.二.求三角函数周期(1)定义法,即利用周期函数的定义求解.. (2)公式法,对形如y=A sin(ωx+φ)或y=A cos(ωx+φ)(A,ω,φ是常数,A≠0,ω≠0)的函数,T=2π|ω|(3)观察法,即通过观察函数图象求其周期.三.判断函数奇偶性(1)看函数的定义域是否关于原点对称;(2)看f(-x)与f(x)的关系.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.四.单调区间的求法求形如y=A sin(ωx+φ)或y=A cos(ωx+φ)的函数的单调区间,要先把ω化为正数.(1)当A>0时,把ωx+φ整体代入y=sin x或y=cos x的单调递增区间内,求得的x的范围即为函数的单调递增区间.(2)当A<0时,把ωx+φ整体代入y=sin x或y=cos x的单调递增区间内,求得的x的范围即为函数的单调递减区间;代入y=sin x或y=cos x的单调递减区间内,可求得函数的单调递增区间.五.比较三角函数值大小(1)异名函数化为同名函数.(2)利用诱导公式把已知角转化到同一单调区间上.(3)利用函数的单调性比较大小.六.求三角函数值域或最值(1)形如y=sin(ωx+φ)的三角函数,令t=ωx+φ,根据题中x的取值范围,求出t的取值范围,再利用三角函数的单调性、有界性求出y=sin t的最值(值域).(2)形如y=a sin2x+b sin x+c(a≠0)的三角函数,可先设t=sin x,将函数y=a sin2x+b sin x+c(a≠0)化为关于t 的二次函数y=at2+bt+c(a≠0),根据二次函数的单调性求值域(最值).(3)对于形如y=a sin x(或y=a cos x)的函数的最值还要注意对a的讨论.考点一“五点法”作图的应用【例1-1】(2022·全国·高一专题练习)作出下列函数在一个周期图象的简图:(1)3sin3x y =;(2)2sin 4y x π⎛⎫=+ ⎪⎝⎭;(3)2sin 214y x π⎛⎫=++ ⎪⎝⎭;(4)2cos 23x y π⎛⎫=+ ⎪⎝⎭.【答案】函数图象见解析【解析】(1)解:因为3sin 3xy =,取值列表:x 032π3π92π6π3x02ππ32π2πy33-0描点连线,可得函数图象如图示:(2)解:因为2sin 4y x π⎛⎫=+ ⎪⎝⎭,取值列表:x4π-4π34π54π74π4x π+02ππ32π2πy22-0描点连线,可得函数图象如图示:(3)解:因为2sin 214y x π⎛⎫=++ ⎪⎝⎭,取值列表:x 8π-8π38π58π78π24x π+02ππ32π2πy1311-1描点连线,可得函数图象如图示:(4)解:因为2cos 23x y π⎛⎫=+ ⎪⎝⎭,取值列表:x 23π-3π43π73π103π23x π+02ππ32π2πy22-02描点连线,可得函数图象如图示:【例1-2】(2023秋·高一课时练习)当[]2,2x ππ∈-时,作出下列函数的图象,把这些图象与sin y x =的图象进行比较,你能发现图象变换的什么规律?(1)sin y x =-;(2)sin y x =;(3)sin y x =.【答案】答案见解析【解析】(1)该图象与sin y x =的图象关于x 轴对称,故将sin y x =的图象作关于x 轴对称的图象即可得到sin y x =-的图象.(2)sin ,2,0,sin sin ,0,2,x x x y x x x x ππππππ-≤≤-≤≤⎧==⎨--≤≤≤≤⎩将sin y x =的图象在x 轴上方部分保持不变,下半部分作关于x 轴对称的图形,即可得到sin y x =的图象.(3)sin ,0,sin sin ,0,x x y x x x ≥⎧==⎨-<⎩将sin y x =的图象在y 轴右边部分保持不变,并将其作关于y 轴对称的图形,即可得到sin y x =的图象.【一隅三反】1.(2023秋·高一课时练习)用“五点法”作出下列函数的简图.(1)2sin y x =,[]0,2πx ∈;(2)πsin 3y x ⎛⎫=+ ⎪⎝⎭,π5π,33x ⎡⎤∈-⎢⎥⎣⎦.(3)1π3sin 23y x ⎛⎫=- ⎪⎝⎭在一个周期(4πT =)内的图像.(4)2sin y x =-,[]0,2πx ∈;(5)πcos 6y x ⎛⎫=+ ⎪⎝⎭,π11,π66x ⎡⎤∈-⎢⎥⎣⎦.(6)πcos 3y x ⎛⎫=+ ⎪⎝⎭,π5π,33x ⎡⎤∈-⎢⎥⎣⎦【答案】图象见解析图象见解析【解析】(1)列表:x 0π2π3π22π2sin x22-0描点、连线、绘图,如图所示.(2)列表:π3x +π2π3π22πx π3-π62π37π65π3πsin 3x ⎛⎫+ ⎪⎝⎭010-1描点连线如图.(3)列表:x 2π35π38π311π314π31π23x -0π2π3π22πy10-10图像如图所示:(4)解:由题知2sin y x =-,[]0,2x π∈,列表如下:xπ2π3π22πy21232根据表格画出图象如下:(5)解:由题知πcos 6y x ⎛⎫=+ ⎪⎝⎭,π11,π66x ⎡⎤∈-⎢⎥⎣⎦,列表如下:x π6-π35π64π311π6π6x +π2π3π22πy10-101根据表格画出图象如下:(6)[]π5ππ,0,2π333x x ⎡⎤∈-∴+∈⎢⎥⎣⎦根据五点法作图列表得:π3x +π2π3π22πxπ3-π62π37π65π3y11-01画图像得:考点二正弦、余弦函数的周期【例2-1】(2023湖南)下列函数中,最小正周期为π的函数是()A .y =sin xB .y =cos xC .y =sin 1π23x ⎛⎫+ ⎪⎝⎭D .y =cos π23x ⎛⎫- ⎪⎝⎭【答案】D【解析】A.y =sin x 的最小正周期为2πT =,故错误;B.y =cos x 的最小正周期为2πT =,故错误;C.y =sin 1π23x ⎛⎫+ ⎪⎝⎭的最小正周期为2π4π12T ==,故错误;D.y =cos ππ2cos 233x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭2ππ2T ==,故正确;故选:D【例2-2】(2023秋·高一课时练习)下列函数,最小正周期为2π的是()A .sin 2x y =B .sin2y x =C .sin 2x y =D .sin2y x=【答案】C【解析】函数sin 2x y =的最小正周期为2π4π12T ==,故A 不符合;函数sin2y x =,其最小正周期为2ππ2T ==,故B 不符合;因为函数sin2xy =的最小正周期为4πT =,所以函数sin 2x y =的最小正周期为2π,故C 符合;因为函数sin2y x =的最小正周期为2ππ2T ==,所以函数sin2y x =的最小正周期为π2,故D 不符合.故选:C.【一隅三反】1.(2023·全国·高一专题练习)函数()cos 26f x x π⎛⎫=-- ⎪⎝⎭的最小正周期是()A .2πB .πC .2πD .4π【答案】B【解析】由函数()cos 26f x x π⎛⎫=-- ⎪⎝⎭,则其最小正周期22T ππ==-.故选:B.2.(2023北京)下列函数中,最小正周期为π的函数是()A .sin y x =B .cos y x =C .cos y x =D .sin y x=【答案】B【解析】对于A ,函数sin y x =的最小正周期为2π,故A 不符合题意;对于B ,作出函数cos y x =的图象,由图可知,函数cos y x =的最小正周期为π,故B 符合题意;对于C ,函数cos y x =的最小正周期为2π,故C 不符合题意;对于D ,函数sin ,0sin sin ,0x x y x x x ≥⎧==⎨-<⎩,其图象如图,由图可知,函数sin y x =不是周期函数,故D 不符合题意.故选:B.3.(2023·全国·高一假期作业)(多选)下列函数中,是周期函数的是()A .cos y x =B .cos y x =C .sin y x =D .sin y x=【答案】ABC【解析】对于A ,()cos πcos cos x x x +=-= ,cos y x ∴=的最小正周期为π;对于B ,()cos cos cos x x x =-= ,cos y x ∴=的最小正周期为2π;对于C ,()sin πsin sin x x x +=-= ,sin y x ∴=的最小正周期为π;对于D ,∵sin ,0sin sin ,0x x y x x x ≥⎧==⎨-<⎩,∴函数图象关于y 轴对称,不具有奇偶性,故错误.故选:ABC4.(2023春·江西上饶·高一校联考期中)(多选)下列函数,最小正周期为π的有()A .sin y x =B .sin y x =C .πsin 23y x ⎛⎫=- ⎪⎝⎭D .2cos 1y x =-【答案】BC【解析】对于A ,sin ||y x =为偶函数,图象关于y 轴对称,其图象如下,不是周期函数,故A 错误;对于B ,作出函数|sin |y x =的图象如下,观察可得其最小正周期为π,故B 正确;对于C ,由周期公式可得2π||T ω=,可得πsin 23y x ⎛⎫=- ⎪⎝⎭的最小正周期为π,故C 正确;对于D ,由周期公式可得2π||T ω=,可得2cos 1y x =-的最小正周期为2π,故D 错误.故选:BC考点三正弦、余弦函数的奇偶性【例3-1】7.(2023春·四川眉山·高一校考期中)下列函数中是奇函数,且最小正周期是π的函数是()A .cos 2y x =B .sin y x=C .πsin(2)2y x =+D .3πcos(2)2y x =-【答案】D【解析】对于A ,∵cos 2()cos 2x x -=,∴函数cos 2y x =是偶函数,故A 错误;对于B ,∵sin()sin sin x x x -=-=,∴函数sin y x =是偶函数,故B 错误;对于C ,函数πsin(2)cos 22y x x =+=是偶函数,故C 错误;对于D ,函数3πcos(2)sin 22y x x =-=-是奇函数,最小正周期2ππ2T ==,故D 正确.故选:D.【例3-2】(2021春·陕西榆林·高一校考阶段练习)若函数()cos 203f x x πφφ⎛⎫=+-> ⎪⎝⎭()是奇函数,则φ的最小值为()A .56πB .43πC .3πD .512π【答案】A【解析】因为函数()cos 203f x x πφφ⎛⎫=+-> ⎝⎭()是奇函数,所以,32k k Z ππφπ-=+∈,解得5,6k k Z πφπ=+∈,所以φ的最小值为56π,故选:A【例3-3】(2023秋·高一课时练习)判断下列函数的奇偶性.(1)1π()sin 22f x x ⎛⎫=-+ ⎪⎝⎭;(2)2π()cos 2f x x x ⎛⎫=+ ⎪⎝⎭;(3)21sin cos ()1sin x x f x x+-=+.【答案】(1)偶函数(2)奇函数(3)非奇非偶函数.【解析】(1)()f x 的定义域为R ,1π11()sin cos cos 2222f x x x x ⎛⎫⎛⎫=-+=-= ⎪ ⎪⎝⎭⎝⎭,因为11()cos cos ()22f x x x f x ⎛⎫-=-== ⎪⎝⎭,所以()f x 为偶函数,(2)()f x 的定义域为R ,22π()cos sin 2f x x x x x ⎛⎫=+=- ⎪⎝⎭,因为22()()sin()sin ()f x x x x x f x -=---==-,所以()f x 为奇函数,(3)由1sin 0x +≠,得sin 1x ≠-,解得π2π,Z 2x k k ≠-+∈,所以函数的定义域为πR 2π,Z 2x x k k ⎧⎫∈≠-+∈⎨⎬⎩⎭,因为定义域不关于原点对称,所以该函数是非奇非偶函数.【一隅三反】1.(2023秋·高一课时练习)函数()sin R f x x x x +∈=,()A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数【答案】A【解析】由()sin s ()(in )f x x x x x f x -=-+-=-=-可知()f x 是奇函数.故选:A2.(2023春·云南文山·高一校考阶段练习)下列函数中,最小正周期为π的偶函数是()A .cos y x =B .2sin y x =C .sin 2y x =D .cos y x=【答案】A【解析】对于A ,()cos y f x x ==定义域为R ,因为()cos()cos ()f x x x f x -=-==,所以函数cos y x =为偶函数,因为cos y x =的图象是由cos y x =的图象在x 轴下方的关于x 轴对称后与x 轴上方的图象共同组成(如下图所示),又cos y x =的最小正周期为2π,所以cos y x =的最小正周期为π,故A 正确;对于B :2sin y x =为最小正周期为2π的奇函数,故B 错误;对于C :()sin 2y g x x ==定义域为R ,()()()sin 2sin 2g x x x g x -=-==,即sin 2y x =为偶函数,又()()ππsin 2sin 2πsin 2sin 222g x x x x x gx ⎛⎫⎛⎫+=+=+=-== ⎪ ⎪⎝⎭⎝⎭,所以π2为sin 2y x =的周期,故C 错误;对于D :cos y x =为最小正周期为2π的偶函数,故D 错误;故选:A3.(2023秋·高一课时练习)(多选)已知函数()πsin()4f x x ϕ=++是奇函数,则ϕ的值可以是()A .0B .π4-C .π2D .3π4【答案】BD【解析】由函数()πsin()4f x x ϕ=++为奇函数,可得ππ,Z 4k k ϕ+=∈,解得ππ,Z 4k k ϕ=-+∈,当0k =时,π4ϕ=-,所以B 满足题意;当1k =时,43πϕ=,所以D 满足题意;故选:BD.4.(2023秋·宁夏吴忠·高一青铜峡市高级中学校考期末)(多选)以下函数是偶函数的是()A .2sin y x =B .cos2y x =C .3sin y x x =D .|sin |cos y x x=【答案】BCD【解析】四个选项中函数的定义域均为全体实数,满足关于原点对称,对于A :()2sin f x x =,()()()2sin 2sin f x x x f x -=-=-=-,所以2sin y x =为奇函数,故A 错误对于B :()cos2g x x =,()()()cos 2cos2g x x x g x -=-==所以()cos2g x x =为偶函数,故B 正确;对于C :()3sin h x x x =,()()()()()333sin sin sin h x x x x x x x h x -=--=--==,所以()3sin h x x x =为偶函数,故C 正确;对于D :()|sin |cos t x x x =,()()()()|sin |cos |sin |cos |sin |cos t x x x x x x x t x -=--=-==,所以()|sin |cos t x x x =为偶函数,故D 正确;故选:BCD考点四正弦、余弦函数的对称性【例4-1】(2023春·北京·高一北京市第一六一中学校考期中)函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图象()A .关于直线π3x =对称B .关于直线π3x =-对称C .关于点π,06⎛⎫⎪⎝⎭对称D .关于点π,03⎛⎫⎪⎝⎭对称【答案】B【解析】A.πππ5πsin 2sin13366f ⎛⎫⎛⎫=⨯+=≠± ⎪ ⎪⎝⎭⎝⎭,所以函数不关于直线π3x =对称,故A 错误;B.ππππsin 2sin 13362f ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以函数关于直线π3x =对称,故B 正确;C.ππππsin 2sin 106662f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,所以函数不关于点π,06⎛⎫⎪⎝⎭对称,故C 错误;D.πππ5πsin 2sin03366f ⎛⎫⎛⎫=⨯+=≠ ⎪ ⎝⎭⎝⎭,所以函数不关于点π,06⎛⎫⎪⎝⎭对称,故D 错误;故选:B【例4-2】(2023春·上海杨浦·高一上海市控江中学校考期末)已知常数R ϕ∈,如果函数()cos 2y x ϕ=+的图像关于点4π,03⎛⎫⎪⎝⎭中心对称,那么ϕ的最小值为()A .π3B .π4C .π6D .π2【答案】C【解析】因为函数()cos 2y x ϕ=+的图像关于点4π,03⎛⎫⎪⎝⎭中心对称,所以π24ππ32k ϕ⨯++=,Z k ∈,所以13ππ6k ϕ=-+,Z k ∈,所以当2k =时π6ϕ=-,当3k =时5π6ϕ=,1k =时7π6ϕ=-,所以ϕ的最小值为π6.故选:C 【一隅三反】1.(2023云南)函数π()2sin 213f x x ⎛⎫=++ ⎪⎝⎭图象的一个对称中心可以是()A .π,03⎛⎫⎪⎝⎭B .π,112⎛⎫ ⎪⎝⎭C .5π,012⎛⎫ ⎪⎝⎭D .,16π⎛⎫- ⎪⎝⎭【答案】D【解析】对于A ,由π3x =,得π2π3x +=,1y =,则π,03⎛⎫⎪⎝⎭不是函数π()2sin 213f x x ⎛⎫=++ ⎪⎝⎭图象的一个对称中心,故A 错误;对于B ,由π12x =,得ππ232x +=,则π,112⎛⎫ ⎪⎝⎭不是函数π()2sin 213f x x ⎛⎫=++ ⎪⎝⎭图象的一个对称中心,故B 错误;对于C ,由5π12x =,得π7π236x +=,则5π,012⎛⎫⎪⎝⎭不是函数π()2sin 213f x x ⎛⎫=++ ⎪⎝⎭图象的一个对称中心,故C 错误;对于D ,π6x =-,得π203x +=,1y =,则,16π⎛⎫- ⎪⎝⎭是函数π()2sin 213f x x ⎛⎫=++ ⎪⎝⎭图象的一个对称中心,故D 正确.故选:D.2.(2023春·四川成都·高一校考期中)下列直线中,可以作为曲线πcos 22y x ⎛⎫=- ⎪⎝⎭的对称轴的是()A .π4x =B .π3x =C .π2x =D .2π3x =【答案】A【解析】πcos(2)sin 22y x x =-=,对于A ,当π4x =时,πsin 12y ==,则π4x =是曲线πcos 22y x ⎛⎫=- ⎪⎝⎭的对称轴,A 是;对于B ,当π3x =时,2πsin 132y ==≠±,则π3x =不是曲线πcos 22y x ⎛⎫=- ⎪⎝⎭的对称轴,B 不是;对于C ,当π2x =时,sin π01y ==≠±,则π2x =不是曲线πcos 22y x ⎛⎫=- ⎪⎝⎭的对称轴,C 不是;对于D ,当2π3x =时,14π3sin 2y ==-≠±,则2π3x =不是曲线πcos 22y x ⎛⎫=- ⎪⎝⎭的对称轴,D 不是.故选:A3.(2023春·河南驻马店·高一统考阶段练习)(多选)已知函数()πcos π4f x x ⎛⎫=- ⎪⎝⎭,则()A .()f x 的图象关于直线12x =对称B .()f x 的图象关于点1,04⎛⎫- ⎪⎝⎭对称C .()f x 的图象关于点1,02⎛⎫- ⎪⎝⎭对称D .()f x 的图象关于直线14x =对称【答案】BD【解析】因为()πcos π4f x x ⎛⎫=- ⎪⎝⎭,令πππ,Z 4x k k -=∈,则1,Z 4x k k =+∈,所以()f x 的对称轴方程为:1,Z 4x k k =+∈,令10,4k x ==,则D 正确,A 错误;令ππππ,Z 42x k k -=+∈,则3,Z 4x k k =+∈,所以()f x 的对称轴中心为:3,0,Z 4k k ⎛⎫+∈ ⎪⎝⎭,令1k =-,则()f x 的一个对称中心为1,04⎛⎫- ⎪⎝⎭,则B 正确,C 错误.故选:BD.考点五正弦、余弦函数的单调性【例5-1】(2023春·重庆江津·高一校考期中)(多选)函数πsin(2y x =-(R )x ∈在()A .区间ππ[,22-上是增函数B .区间π[,π]2上是增函数C .区间[π,0]-上是减函数D .区间[,]-ππ上是减函数【答案】BC【解析】ππsin()sin cos 22y x x x ⎛⎫=-=--=- ⎪⎝⎭.A 选项,因cos y x =在π[,0]2-上单调递增,在π[0,]2上单调递减,则πsin()2y x =-在ππ[,]22-上无单调性,故A 错误;B 选项,因cos y x =在π[,π]2上单调递减,则πsin()cos 2y x x =-=-在π[,π]2上单调递增,故B 正确;C 选项,因cos y x =在[π,0]-上单调递增,则πsin()cos 2y x x =-=-在[π,0]-上单调递减,故C 正确;D 选项,因cos y x =在[π,0]-上单调递增,在[0,π]上单调递减,则πsin()2y x =-在[,]-ππ上无单调性,故D错误.故选:BC【例5-2】(2022春·上海浦东新·高一校考期末)函数π12cos 23y x ⎛⎫=+- ⎪⎝⎭的单调递增区间是.【答案】πππ,π,36k k k ⎡⎤-+∈⎢⎥⎣⎦Z 【解析】由π2ππ22π3k x k -≤-≤,解得ππππ36k x k -≤≤+,所以函数π12cos 23y x ⎛⎫=+- ⎪⎝⎭的单调递增区间是πππ,π,36k k k ⎡⎤-+∈⎢⎥⎣⎦Z .故答案为:πππ,π,36k k k ⎡⎤-+∈⎢⎥⎣⎦Z 【例5-3】(2023春·广西钦州·高一校考期中)(多选)下列函数在区间ππ,42⎡⎤⎢⎥⎣⎦上单调递增的是()A .()sin f x x =B .()cos f x x =C .()sin 2f x x =D .()cos 2f x x=【答案】AD【解析】A 选项,ππ,42x ⎡⎤∈⎢⎥⎣⎦时,()sin sin f x x x ==,()f x 单调递增,故A 符合.B 选项,ππ,42x ⎡⎤∈⎢⎥⎣⎦时,()cos cos f x x x ==,()f x 单调递减,故B 不符合.C 选项,ππ,42x ⎡⎤∈⎢⎥⎣⎦时,π2,π2x ⎡⎤∈⎢⎥⎣⎦,()sin2sin 2f x x x ==,()f x 单调递减,故C 不符合.D 选项,ππ,42x ⎡⎤∈⎢⎥⎣⎦时,π2,π2x ⎡⎤∈⎢⎥⎣⎦,()cos2cos 2f x x x ==-,()f x 单调递增,故D 符合.故选:AD.【例5-4】(2023春·安徽马鞍山·高一安徽省当涂第一中学校考期中)已知函数π()cos (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在区间π3,π44⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为.【答案】80,9⎛⎤⎥⎝⎦【解析】由题意有3ππππ4422T ω-=≤=,可得02ω<≤,又由πππ5π3436ω<+≤,cos y x =在[]0,π上为减函数,故必有3πππ43ω+≤,可得809ω<≤.故实数ω的取值范围为80,9⎛⎤ ⎝⎦.故答案为:80,9⎛⎤⎥⎝⎦【一隅三反】1.(2023春·宁夏吴忠·高一青铜峡市高级中学校考期中)函数cos y x =的一个单调减区间是()A .ππ,44⎡⎤-⎢⎥⎣⎦B .π3π,44⎡⎤-⎢⎥⎣⎦C .3ππ,2⎡⎤⎢⎥⎣⎦D .3π,2π2⎡⎤⎢⎥⎣⎦【答案】C【解析】作出函数cos y x =的图象如图所示,由图象可知,A 、B 都不是单调区间,D 是单调增区间,C 是单调减区间.故选:C2.(2023·全国·高一专题练习)函数()πcos 26f x x ⎛⎫=- ⎪⎝⎭的一个单调递减区间为()A .5ππ,1212⎡⎤-⎢⎥⎣⎦B .11π5π,1212⎡⎤--⎢⎥⎣⎦C .ππ,63⎡⎤-⎢⎥⎣⎦D .π5π,36⎡⎤⎢⎥⎣⎦【答案】B【解析】令()π2π2π2πZ 6k x k k ≤-≤+∈,解得()π7ππ+πZ 1212k x k k ≤≤+∈,即函数()f x 的单调递减区间为π7ππ+,π,Z 1212k k k ⎡⎤+∈⎢⎥⎣⎦,取1k =-可得,11π5π,1212⎡⎤--⎢⎥⎣⎦为函数()f x 的单调递减区间,B 正确;取0k =可得,π7π,1212⎡⎤⎢⎥⎣⎦为函数()f x 的单调递减区间,令()π2ππ22πZ 6k x k k -≤-≤∈,解得()5ππππZ 1212k x k k -≤≤+∈,即函数()f x 的单调递增区间为5πππ,π,Z 1212k k k ⎡⎤-+∈⎢⎥⎣⎦,取0k =可得,,12125ππ⎡⎤-⎢⎥⎣⎦为函数()f x 的单调递增区间,A 错误;因为()f x 在π12π,6⎡⎤-⎢⎥⎣⎦上单调递增,C 错误;取1k =可得,7π13π,1212⎡⎤⎢⎥⎣⎦为函数()f x 的单调递增区间,所以()f x 在7π5π,126⎡⎤⎢⎥⎣⎦上单调递增,D 错误故选:B.3.(2023秋·高一课时练习)函数π3sin 23y x ⎛⎫=- ⎪⎝⎭的单调递减区间为.【答案】5(Z)121,2k k k ππ⎡⎤-+ππ⎢⎥⎦∈+⎣【解析】因为3sin 23sin(2)33y x x ππ⎛⎫=-=-- ⎪⎝⎭,所以3sin 23y x π⎛⎫=- ⎪⎝⎭的单调递增区间就是3sin 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间.令222(Z)232k x k k πππ-+π≤≤π∈-+,解得51212k x k ππππ-+≤≤+()k ∈Z .所以函数3sin 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦()k ∈Z .故答案为:5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦()k ∈Z .4.(2023·全国·高一课堂例题)函数2πlog cos 3y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的单调递增区间为.【答案】5ππ2π,2π63k k ⎛⎤-+-+ ⎥⎝⎦,Zk ∈【解析】由题意,得πcos 03x ⎛⎫+> ⎪⎝⎭,所以πππ2π2π232k x k -+<+<+,Z k ∈,解得5ππ2π2π66k x k -+<<+,Z k ∈.令ππ2π2π3k x k -+≤+≤,Z k ∈,则4ππ2π2π33k x k -+≤≤-+,Z k ∈.所以πcos 3y x ⎛⎫=+ ⎪⎝⎭的单调递增区间为4ππ2π,2π33k k ⎡⎤-+-+⎢⎥⎣⎦,Z k ∈,所以函数2πlog cos 3y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的单调递增区间为5ππ2π,2π63k k ⎛⎤-+-+ ⎥⎝⎦,Z k ∈.故答案为:5ππ2π,2π63k k ⎛⎤-+-+ ⎥⎝⎦,Z k ∈5.(2023秋·江苏宿迁·高一江苏省泗阳中学校考期末)已知函数其中0ω>.若()π,4f x x ω⎛⎫=+ ⎪⎝⎭()f x 在区间π3π,24⎛⎫⎪⎝⎭上单调递增,则ω的取值范围是()A .(]0,4B .0,13⎛⎤ ⎥⎝⎦C .52,3⎡⎤⎢⎥⎣⎦D .15,0332,⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦【答案】D 【解析】由πππ2π2π,242k x k k ω-+≤+≤+∈Z 解得3π2ππ2π,44k k x k ωωωω-+≤≤+∈Z ,所以函数()f x 的单调递增区间为3π2ππ2π,,44k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦Z ,因为()f x 在区间π3π,24⎛⎫⎪⎝⎭上单调递增,所以3πππ2422T ⎛⎫≥-= ⎪⎝⎭,所以04ω<≤.当0k =时,由()f x 在区间π3π,24⎛⎫⎪⎝⎭上单调递增可知3ππ42π3π44ωω⎧-≤⎪⎪⎨⎪≥⎪⎩,得103ω<≤;当1k =时,由5ππ429π3π44ωω⎧≤⎪⎪⎨⎪≥⎪⎩解得332ω≤≤;当2k =时,13ππ4217π3π44ωω⎧≤⎪⎪⎨⎪≥⎪⎩无实数解.易知,当1k ≤-或2k ≥时不满足题意.综上,ω的取值范围为15,0332,⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.故选:D6.(2023·全国·高一课堂例题)已知函数()πsin (0)4f x x ωω⎛⎫=-> ⎪⎝⎭在区间(1,2)上不单调,则ω的取值范围为()A .3π,8∞⎛⎫+ ⎪⎝⎭B .3π3π7π,,848∞⎛⎫⎛⎫⋃+ ⎪ ⎪⎝⎭⎝⎭C .3π7π7π,,888∞⎛⎫⎛⎫⋃+ ⎪ ⎪⎝⎭⎝⎭D .3π,4∞⎛⎫+ ⎪⎝⎭【答案】B【解析】()πsin (0)4f x x ⎛⎫=-> ⎪⎝⎭ωω的图象的对称轴为直线3ππ4k x ω+=,k ∈Z ,因为()f x 在区间(1,2)上不单调,所以对称轴3ππ4k x ω+=,k ∈Z 在直线1x =与直线2x =之间,即3ππ412k ω+<<,k ∈Z ,化简得3ππ3ππ824k k ω+<<+,k ∈Z ,因为0ω>,所以令0k =,得3π3π84ω<<,又当1k ≥时,7π8ω>,综上3π3π7π,,848ω∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭.故选:B .考点六正弦、余弦函数的单调性的应用【例6-1】(2023春·福建泉州·高一校联考期中)下列结论正确的是()A .()sin 10sin50-︒>︒B .tan70sin70︒<︒C .()cos 40cos310-︒<︒D .cos130cos200︒>︒【答案】D【解析】对于A ,因为()sin 10sin100-︒=-︒<,sin500︒>,所以()sin 10sin50-︒<︒,故A 错误;对于B ,因为0cos701<︒<,所以sin 70tan70sin70cos70︒︒=>︒︒,故B 错误;对于C ,因为()cos 40cos 40-︒=︒,()cos310cos 36050cos 50︒=︒-︒=︒,又cos 40cos50︒>︒,所以()cos 40cos310-︒>︒,故C 错误;对于D ,因为()cos130cos 9040sin 40︒=︒+︒=-︒,()cos 200cos 27070sin 70︒=-︒=-︒,又sin 40sin 70︒<︒,所以sin 40sin 70-︒>-︒,即cos130cos 200︒>︒,故D 正确.故选:D.【例6-2】(2023春·江苏苏州·高一统考期末)已知45a =,2sin 3b =,1cos 3c =,则a ,b ,c 的大小关系为()A .c b a <<B .a b c<<C .b a c<<D .b<c<a【答案】C【解析】因为2π4πsinsin sin 34253<=<<=b a <,14cos cos 32π65c a =>==,所以c a >,所以b a c <<.故选:C.【一隅三反】1.(2023春·广西钦州·高一校考期中)sin1︒,sin1,sin π︒的大小顺序是()A .sin1sin1sin π︒<<︒B .sin1sin πsin1︒<︒<C .sin1sin1sin π︒=<︒D .sin1sin1sin π<︒<︒【答案】B【解析】由正弦函数的单调性可知:sin y x =在π0,2⎛⎫⎪⎝⎭上单调递增,又易知π0<1<π°<1<2︒,所以sin1sin sin1π︒<︒<.故选:B2.(2023·全国·高一假期作业)下列选项中错误的是()A .ππsin sin 1810⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭B .sin2sin1>C .23π17πcos cos 54⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D .sin508sin144︒︒>【答案】D 【解析】因为ππππ210182-<-<-<,sin y x =在ππ[,]22x ∈-上单调递增,所以ππsin sin 1810⎛⎫⎛⎫->- ⎪ ⎝⎭⎝⎭,故A 正确;因为21π1.522+=<,所以2比1距离正弦函数的对称轴π2x =近,所以sin2sin1>,故B 正确;因为23π23π3π17π17ππcos cos 4πcos ,cos cos4πcos 555444⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,而3ππ05π4-<<-<-,函数cos y x =在(π,0)-上单调递增,所以23π17πcos cos 54⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,故C 正确;因为sin508sin148sin144︒︒=︒>,而90144148180︒<︒<︒<︒,由正弦函数的单调性可知sin508sin148sin144︒︒=︒<,故D 错误.故选:D3.(2023春·四川绵阳·高一四川省绵阳南山中学校考期中)设3sin20,cos80,4a b c =︒=︒=,则,,a b c 大小关系()A .b a c <<B .a b c <<C .c b a <<D .a c b<<【答案】B【解析】因为2030︒<︒,且sin y x =在π0,2⎛⎫⎪⎝⎭上单调递增,则1sin 20sin 302︒<︒=,即12a <;又因为π80ππ41803<<,且cos y x =在π0,2⎛⎫⎪⎝⎭上单调递减,则1ππcos cos80cos 2342=<︒<=,即122b <<,且34c =>a b c <<.故选:B.考点七正弦、余弦函数的最值(值域)问题【例7-1】(2023春·四川眉山·高一校考期中)已知函数()ππ2sin 2,0,62f x x x ⎛⎫⎡⎤=-∈ ⎪⎢⎥⎝⎭⎣⎦,则()f x 的值域是()A .[]22-,B .[]1,1-C .[]1,2-D .2⎡⎤⎣⎦【答案】C【解析】因为π0,2x ⎡⎤∈⎢⎣⎦,所以ππ5π2,666x ⎡⎤-∈-⎢⎥⎣⎦,所以π1sin 2,162x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以[]π2sin 21,26x ⎛⎫-∈- ⎪⎝⎭,所以()f x 的值域是[]1,2-.故选:C.【例7-2】(2023·全国·高一专题练习)函数22sin cos y x x =--的最小值是.【答案】34/0.75【解析】函数2213cos cos 1cos 24y x x x ⎛⎫=-+=-+ ⎪⎝⎭,1cos 1x -≤≤,当1cos 2x =时,函数取得最小值34.故答案为:34【例7-3】(2023春·河南周口·高一周口恒大中学校考阶段练习)函数sin cos ()1sin cos =++x xf x x x的值域为.【答案】11,122⎡⎫⎛⎤--⎪ ⎢⎪ ⎣⎭⎝⎦【解析】令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,[1)(t ∈-- ,则212sin cos t x x =+,即21sin cos 2t x x -=,所以2112()12t t f t t --==+,又因为[1)(t ∈-- ,所以()11,11,22f t ⎡⎫⎛⎤-∈--⎪ ⎢⎥⎪ ⎣⎭⎝⎦,即函数sin cos ()1sin cos =++x xf x x x的值域为11,11,22⎡⎫⎛⎤---⎪ ⎢⎥⎪ ⎣⎭⎝⎦.故答案为:11,122⎡⎫⎛⎤--⎪ ⎢⎥⎪ ⎣⎭⎝⎦.【例7-4】(2023春·四川眉山·高一校联考期中)已知函数()πsin (0,[0,π])3f x x x ωω⎛⎫=->∈ ⎪⎝⎭的值域为[,则ω的取值范围是()A .15[,]33B .5[,1]6C .55[,63D .513⎡⎤⎢⎥⎣⎦,【答案】C【解析】因为[0,π]x ∈,可得πππ[,π333x ωω-∈--,因为函数()πsin()3f x x ω=-的值域为[,所以ππ4π,323ωπ⎡⎤-∈⎢⎥⎣⎦,解得55[,]63ω∈.故选:C.【一隅三反】1(2022秋·江苏常州·高一常州高级中学校考期末)函数ππcos ,,032y x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎝⎭⎣⎦的值域是()A .1,12⎡⎤⎢⎥⎣⎦B .⎤⎥⎣⎦C .12⎡⎢⎣⎦D .,12⎡⎤⎢⎥⎣⎦【答案】A【解析】因为,02πx ⎡⎤∈-⎢⎥⎣⎦,所以πππ,363x ⎡⎤+∈-⎢⎥⎣⎦,因为函数cos t x =在π,06⎡⎤-⎢⎥⎣⎦上递增,π0,3⎡⎤⎢⎥⎣⎦上递减,又πcos 6⎛⎫-= ⎪⎝⎭cos 01=,π1cos 32=,所以π1cos ,132x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦即1,12y ⎡⎤∈⎢⎥⎣⎦.故选:A .2.(2023秋·陕西安康·高一校联考期末)函数2π2πsin 2cos 33y x x x ⎛⎫=+≤≤ ⎪⎝⎭的最小值是.【答案】14-/-0.25【解析】由()222sin 2cos 1cos 2cos cos 12y x x x x x =+=-+=--+,又π2π33x ≤≤,则11cos 22x -≤≤,所以()217cos 1244x -≤--+≤,所以函数2π2πsin 2cos 33y x x x ⎛⎫=+≤≤ ⎪⎝⎭的最小值是14-.故答案为:14-.3.(2023春·江西宜春·高一江西省丰城中学校考阶段练习)已知函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,若()f x 在[]0a ,上的值域是112⎡⎤-⎢⎥⎣⎦,,则实数a 的取值范围为()A .403π⎛⎤ ⎥⎝⎦,B .2433ππ⎡⎤⎢⎥⎣⎦,C .23π∞⎡⎫+⎪⎢⎣⎭,D .2533ππ⎡⎤⎢⎥⎣⎦,【答案】B【解析】由题意可得()cos 3f x x π⎛⎫=+ ⎪⎝⎭,令3t x π=+则cos y t =,如图所示,∵()f x 的值域是112⎡⎤-⎢⎥⎣⎦,,0x a ,∴333x a πππ++,即:33ta ππ+∴由图可知533aπππ+,解得2433a ππ,所以实数a 的取值范围为2433ππ⎡⎤⎢⎥⎣⎦,.故选:B.4.(2023春·四川南充·高一四川省南充市白塔中学校考期中)函数2cos ()2cos xf x x-=+的值域为.【答案】1,33⎡⎤⎢⎥⎣⎦【解析】2cos 4()12cos 2cos x f x x x-==++,[]cos 1,1x ∈-,则[]cos 21,3x +∈,44,42cos 3x ⎡⎤∈⎢⎥+⎣⎦,故()1,33f x ∈⎡⎤⎢⎥⎣⎦.故答案为:1,33⎡⎤⎢⎥⎣⎦考点八正切函数图像及性质【例8】(2024秋·广东)(多选)已知函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭,则下列说法正确的是()A .()f x 的最小正周期为π2B .()f x 在ππ,63⎛⎫⎪⎝⎭上单调递减C .π3π510f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭D .()f x 的定义域为ππ,Z 3x x k k ⎧⎫≠+∈⎨⎬⎩⎭【答案】AC【解析】因为()πtan 26f x x ⎛⎫=- ⎪⎝⎭,对于A :()f x 的最小正周期为π2T =,故A 正确;对于B :当ππ,63x ⎛⎫∈ ⎪⎝⎭时,πππ2,662x ⎛⎫-∈ ⎪⎝⎭,因为tan y z =在π0,2z ⎛⎫∈ ⎪⎝⎭上单调递增,故()f x 在ππ,63⎛⎫⎪⎝⎭上单调递增,故B 错误;对于C :因为()f x 的最小正周期为π2T =,所以πππ3π55210f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 正确;对于D :令ππ2π62x k -≠+,Z k ∈,解得ππ32k x ≠+,Z k ∈,所以()f x 的定义域为ππ,Z 32k x x k ⎧⎫≠+∈⎨⎬⎩⎭,故D 错误.故选:AC .【一隅三反】1.(2023春·辽宁大连·高一大连八中校考阶段练习)(多选)已知函数()tan 2f x x =,则下列说法正确的是()A .函数()f x 是奇函数B .函数()f x 的最小正周期是πC .函数()f x 在ππ(,44-上单调递增D .函数()f x 图象的对称中心是π(,0)(Z)4k k ∈【答案】ACD【解析】对于A ,()tan 2f x x =的定义域为ππππ,(Z)4242k k k ⎛⎫-++∈ ⎪⎝⎭,定义域关于原点对称,因为()()tan(2)tan 2f x x x f x -=-=-=-,所以()f x 是奇函数,所以A 正确,对于B ,()f x 的最小正周期为π2T =,所以B 错误,对于C ,由ππ,44x ⎛⎫∈- ⎪⎝⎭,得ππ2,22x ⎛⎫∈- ⎪⎝⎭,因为tan y x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以()f x 在ππ(,)44-上单调递增,所以C 正确,对于D ,由π2,Z 2k x k =∈,得π,Z 4k x k =∈,所以()f x 图象的对称中心是π(,0)(Z)4k k ∈,所以D 正确,故选:ACD2.(2023春·广西钦州·高一校考阶段练习)(多选)已知函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭,则下列说法错误的是()A .()f x 的最小正周期为π2B .()f x 的定义域为ππ,3x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z C .ππ44f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭D .()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减【答案】BD【解析】因为()πtan 26f x x ⎛⎫=- ⎪⎝⎭,对于A :所以()f x 的最小正周期为π2T =,故A 正确;对于B :令ππ2π,Z 62x k k -≠+∈,解得ππ,Z 32kx k ≠+∈,所以()f x 的定义域为ππ,32k x x k ⎧⎫≠+∈⎨⎬⎩⎭Z ,故B错误;对于C :πππtan tan 4263πf ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭tan tan tan πππ242633π2ππf ⎛⎫⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故C 正确;对于D :当ππ,32x ⎛⎫∈ ⎪⎝⎭时,ππ5π2,626x ⎛⎫-∈ ⎪⎝⎭,因为tan y z =在π5π,26z ⎛⎫∈ ⎪⎝⎭上单调递增,故()f x 在ππ,32⎛⎫⎪⎝⎭上单调递增,故D 错误.故选:BD3.(2023春·广东河源·高一校考阶段练习)(多选)已知函数()π7tan 23f x x ⎛⎫=+ ⎪⎝⎭,则()A .π6f ⎛⎫=- ⎪⎝⎭B .π6f x ⎛⎫- ⎪⎝⎭为奇函数C .()f x 图象的对称中心为()ππ,0Z 68k k ⎛⎫-+∈ ⎪⎝⎭D .()f x 的定义域为ππ,Z 122k xx k ⎧⎫≠+∈⎨⎬⎩⎭∣【答案】ABD【解析】因为函数()π7tan 23f x x ⎛⎫=+ ⎪⎝⎭,所以πππ2π7tan 27tan76633f ⎛⎫⎛⎫=⨯+==- ⎪ ⎪⎝⎭⎝⎭A 正确;由()π7tan 23f x x ⎛⎫=+ ⎪⎝⎭得,π7tan 26f x x ⎛⎫-= ⎪⎝⎭,对于函数7tan 2y x =,令π2π,Z 2x k k ≠+∈,得ππ,Z 24k x k ≠+∈,可知定义域为ππ,Z 24k x x k ⎧⎫≠+∈⎨⎬⎩⎭关于原点对称,又()7tan 27tan 2x x -=-,所以函数7tan 2y x =为奇函数,即π6f x ⎛⎫- ⎪⎝⎭为奇函数,故B 正确;由ππ2(Z)32k x k +=∈,得到()ππZ 46k x k =-∈,所以()π7tan 23f x x ⎛⎫=+ ⎪⎝⎭的对称中心为()ππ,0Z 46k k ⎛⎫-∈ ⎪⎝⎭,故C 错误;令ππ2π,Z 32x k k +≠+∈,得ππ,Z 212k x k ≠+∈,所以()f x 的定义域为ππ,Z 122k xx k ⎧⎫≠+∈⎨⎬⎩⎭∣,故D 正确;故选:ABD。
2023年人教版高中数学第五章三角函数知识点梳理

(名师选题)2023年人教版高中数学第五章三角函数知识点梳理单选题1、筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.如图,将筒车抽象为一个几何图形(圆),筒车半径为4m,筒车转轮的中心O到水面的距离为2m,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系xOy.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:s),且此时点P距离水面的高度为h(单位:m),则点P第一次到达最高点需要的时间为()s.A.2B.3C.5D.10答案:C分析:设点P离水面的高度为ℎ(t)=Asin(ωt+φ)+2,根据题意求出A,ω,φ,再令ℎ(t)=6可求出结果.设点P离水面的高度为ℎ(t)=Asin(ωt+φ)+2,依题意可得A=4,ω=8π60=2π15,φ=−π6,所以ℎ(t)=4sin(2π15t−π6)+2,令ℎ(t)=4sin(2π15t−π6)=6,得sin(2π15t−π6)=1,得2π15t−π6=2kπ+π2,k∈Z,得t=15k+5,k∈Z,因为点P 第一次到达最高点,所以0<t <2π2π15=15,所以k =0,t =5s . 故选:C2、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .3答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B3、函数f (x )=2sin (ωx +φ)(ω>0)图像上一点P (s,t )(−2<t <2)向右平移2π个单位,得到的点Q 也在f (x )图像上,线段PQ 与函数f (x )的图像有5个交点,且满足f (π4−x)=f (x ),f (−π2)>f (0),若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为( ) A .(−2,−√2]B .[−2,−√2]C .[√2,2)D .[√2,2] 答案:A分析:首先根据已知条件分析出|PQ |=2π=2T ,可得ω=2,再由f (π4−x)=f (x )可得y =f (x )对称轴为x =π8,利用f (−π2)>f (0)可以求出符合题意的一个φ的值,进而得出f (x )的解析式,再由数形结合的方法求a 的取值范围即可.如图假设P(0,0),线段PQ与函数f(x)的图像有5个交点,则|PQ|=2π,所以由分析可得|PQ|=2π=2T,所以T=π,可得ω=2πT =2ππ=2,因为f(π4−x)=f(x)所以f[π4−(π8+x)]=f(π8+x),即f(π8−x)=f(π8+x),所以x=π8是f(x)的对称轴,所以2×π8+φ=π2+kπ(k∈Z),即φ=π4+kπ(k∈Z),f(−π2)=2sin(−π+φ)=−2sinφ>f(0)=2sinφ,所以sinφ<0,可令k=−1得φ=−3π4,所以f(x)=2sin(2x−3π4),当x∈[0,π2]时,令2x−3π4=t∈[−3π4,π4],则f(t)=2sint,t∈[−3π4,π4]作f(t)图象如图所示:当t=−3π4即x=0时y=−√2,当t=−π2即x=π8时,y=−2,由图知若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为(−2,−√2], 故选:A小提示:关键点点睛:本题解题的关键是取特殊点P (0,0)便于分体问题,利用已知条件结合三角函数图象的特点,以及三角函数的性质求出f (x )的解析式,再利用数形结合的思想求解a 的取值范围. 4、若角α的终边上一点的坐标为(1,−1),则cosα=( ) A .−1B .−√22C .√22D .1 答案:C分析:根据任意角三角函数的定义即可求解.∵角α的终边上一点的坐标为(1,−1),它与原点的距离r =√12+(−1)2=√2, ∴cosα=xr =√2=√22, 故选:C.5、已知sin (π+α)=35,则sin(−α)cos(π−α)sin(π2−α)=( )A .−45B .45C .−35D .35 答案:C解析:由条件利用诱导公式进行化简所给的式子,可得结果. ∵sin(π+α)=35=−sinα,∴sinα=−35, 则sin(−α)cos(π−α)sin(π2−α)=−sinα⋅(−cosα)cosα=sinα=−35,故选:C6、在0∘~360∘范围内,与−70∘终边相同的角是( ) A .70∘B .110∘C .150∘D .290∘ 答案:D解析:根据终边相同的角的定义即可求解.与−70∘终边相同的角的为−70∘+360∘⋅k (k ∈Z ), 因为在0∘~360∘范围内,所以k =1可得−70∘+360∘=290∘, 故选:D.7、已知函数f(x)=a 2x−6+3(a >0且a ≠1)的图像经过定点A ,且点A 在角θ的终边上,则sinθ−cosθsinθ+cosθ=( ) A .−17B .0C .7D .17 答案:D分析:由题知A(3,4),进而根据三角函数定义结合齐次式求解即可. 解:令2x −6=0得x =3,故定点A 为A(3,4), 所以由三角函数定义得tanθ=43, 所以sinθ−cosθsinθ+cosθ=tanθ−1tanθ+1=43−143+1=17故选:D8、f(x)=−sinx−xcosx+x 2在[−π,π]的图象大致为( )A .B .C .D .答案:C分析:先由函数为奇函数可排除A ,再通过特殊值排除B 、D 即可.由f(−x)=−sin(−x)+xcosx+x2=−−sinx−xcosx+x2=−f(x),所以f(x)为奇函数,故排除选项A.又f(π)=−sinπ−πcosπ+π2=−ππ2−1<0,则排除选项B,D故选:C9、某公园有一摩天轮,其直径为110米,逆时针匀速旋转一周所需时间约为28分钟,最高处距离地面120米,能够看到方圆40公里以内的景致.某乘客观光3分钟时看到一个与其视线水平的建筑物,试估计建筑物多高?()(参考数据:√2≈1.414,√3≈1.732)A.50B.38C.27D.15答案:C分析:作出简图,求出3分钟走过的角度,从而求出三分钟后距摩天轮最低点的高度,进而求出建筑物的高度. 设走了3分钟到达B(如图所示),走过的圆心角为θ=2π×328=3π14,OE=Rcos3π14=55cos3π14,因为π6<3π14<π4,所以√22<cos3π14<√32,所以38.885<55cos3π14<47.63所以AE=55−55cos3π14∈(7.73,21.145),所以建筑物的高度:55(1−cos 3π14)+10∈(17.73,31.145)故选:C10、已知f (x )=tanωx (0<ω<1)在区间[0,π3]上的最大值为√33,则ω=( )A .12B .13C .23D .34答案:A分析:先求出0≤ωx ≤ωπ3,再根据f (x )max =tanωπ3=tan π6=√33解方程即可. 因为x ∈[0,π3],即0≤x ≤π3,又0<ω<1,所以0≤ωx ≤ωπ3<π3,所以f (x )max =tanωπ3=tan π6=√33, 所以ωπ3=π6,ω=12.故选:A .11、若函数f (x )=sin (ωx +π3) (ω>0)在区间(π,2π)内没有最值,则ω的取值范围是( )A .(0,112]∪[16,712]B .(0,16]∪[13,23] C .(0,712]D .[13,23] 答案:A分析:根据题意可得函数f (x )在区间(π,2π)内单调,故可先求出函数的单调区间,再根据区间(π,2π)为单调区间的子集得到关于ω的不等式组,解不等式组可得所求. 解:函数y =sin x 的单调区间为[kπ+π2,kπ+3π2],k ∈Z ,由kπ+π2⩽ωx +π3⩽kπ+3π2,k ∈Z ,得kπ+π6ω⩽x ⩽kπ+7π6ω,k ∈Z .∵函数f (x )=sin (ωx +π3)(ω>0) 在区间(π,2π)内没有最值,∴函数f(x)在区间(π,2π)内单调,∴(π,2π)⊆[kπ+π6ω,kπ+7π6ω],k∈Z,∴ {kπ+π6ω⩽πkπ+7π6ω⩾2π,k∈Z,解得k+16⩽ω⩽k2+712,k∈Z.由k+16<k2+712,得k<56.当k=0时,得16⩽ω⩽712,当k=−1时,得−56⩽ω⩽112,又ω>0,故0<ω⩽112,综上得ω的取值范围是(0,112]∪[16,712],故选A12、已知2tanθ–tan(θ+π4)=7,则tanθ=()A.–2B.–1C.1D.2答案:D分析:利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.∵2tanθ−tan(θ+π4)=7,∴2tanθ−tanθ+11−tanθ=7,令t=tanθ,t≠1,则2t−1+t1−t=7,整理得t2−4t+4=0,解得t=2,即tanθ=2. 故选:D.小提示:本题主要考查了利用两角和的正切公式化简求值,属于中档题.双空题13、已知函数y=2cos(2x−π3)−1,x∈[π3,π],则当x=_______时,函数取得最小值为_________.答案:2π3##23π−3分析:根据x∈[π3,π]求出2x−π3的范围,根据余弦函数的图像性质即可求其最小值.∵x∈[π3,π],∴2x−π3∈[π3,5π3],∴当2x−π3=π,即x=2π3时,cos(2x−π3)取得最小值为−1,∴当x=2π3时,y=2cos(2x−π3)−1,x∈[π3,π]最小值为2×(−1)−1=−3.所以答案是:2π3;-3.14、如图,在海岸线TO一侧有一休闲游乐场,游乐场的其中一部分边界为曲线段TDBS,该曲线段是函数y= Asin(ωx+φ)(A>0,ω>0,0<φ<π),x∈[−4,0]的图象,图象的最高点为B(−1,2),则曲线段TDBS对应的函数解析式为___________.若曲线段TDBS上的入口D到海岸线TO的距离为√3千米,现准备从入口D修一条笔直的景观路到O,则景观路DO的长为___________千米.答案:y=2sin(π6x+2π3)且x∈[−4,0]√7分析:根据函数图象得到T4=3,再由正弦函数最小正周期公式求得ω=π6,五点法求参数φ,即可写出解析式,注意定义域;设D(x D,√3)代入解析式,结合x D范围确定坐标,再应用两点式求距离.由题中图象知:A=2,T4=−1−(−4)=3⇒T=2πω=12⇒ω=π6.当x= -1时,y=2sin(−π6+φ)=2,所以−π6+φ=π2+2kπ,k∈Z,解得φ=2π3+2kπ,k∈Z,又0<φ<π,所以φ=2π3,则曲线段TDBS对应的函数解析式为y=2sin(π6x+2π3),x∈[−4,0].因为D到海岸线TO的距离为√3千米,设D(x D,√3),显然−4<x D<−1,所以2sin(π6x D+2π3)=√3,即sin(π6x D+2π3)=√32,所以π6x D+2π3=π3+2kπ,k∈Z或π6x D+2π3=2π3+2kπ,k∈Z,解得x D=−2+12k,k∈Z或x D=12k,k∈Z,又−4<x D<−1,所以x D=−2,即D(−2,√3),而另一点D与S重合,排除,所以DO=√(−2)2+(√3)2=√7.所以答案是:y=2sin(π6x+2π3)且x∈[−4,0],√715、已知函数f(x)=sinxcosx−√3sin2x,设α∈(π2,π),f(α2)=14−√32,则sinα=___________,cosα=___________.答案:1+3√58√3−√158分析:先利用三角函数恒等变换公式对函数化简变形得f(x)=sin(2x+π3)−√32,则由已知条件可得sin(α+π3)=14,再利用同角三角函数的关系求出cos(α+π3),则sinα=sin[(α+π3)−π3],cosα=cos[(α+π3)−π3]展开化简计算即可.f(x)=sinxcosx−√3sin2x=12sin2x−√3×1−cos2x2=12sin2x+√32cos2x−√32=sin(2x+π3)−√32,所以f(α2)=sin(α+π3)−√32=14−√32,所以sin(α+π3)=14.因为α∈(π2,π),所以5π6<α+π3<4π3,所以cos(α+π3)=−√154,所以sinα=sin[(α+π3)−π3]=sin(α+π3)cosπ3−cos(α+π3)sinπ3=14×12−(−√154)×√32=1+3√58,cosα=cos [(α+π3)−π3] =cos (α+π3)cos π3+sin (α+π3)sin π3=−√154×12+14×√32=√3−√158. 所以答案是:1+3√58,√3−√15816、函数f(x)=3sinx−1sinx+2的最大值是____,最小值是_________.答案: 23 −4 分析:将函数f(x)的解析式化为f(x)=3−7sinx+2,由sinx ∈[−1,1]结合不等式的性质,即可得出f(x)的最大值和最小值. f(x)=3(sinx +2)−7sinx +2=3−7sinx +2∵sinx ∈[−1,1]∴sinx +2∈[1,3]∴1sinx +2∈[13,1] ∴−7sinx +2∈[−7,−73] ∴3−7sinx +2∈[−4,23] 即f(x)max =23,f(x)min =−4所以答案是:23;−4 小提示:本题主要考查了求含正弦函数的最值,属于中档题.17、设α、β∈(0,π),cosβ=−1213,cos α2=2√55,则cosα=____, tan (α+β)=___.答案: 35 3356分析:利用二倍角的余弦公式可求得cosα的值,求出tanα、tanβ的值,利用两角和的正切公式可求得tan (α+β)的值.由二倍角的余弦公式可得cosα=2cos 2α2−1=2×(2√55)2−1=35, ∵α、β∈(0,π),∴sinα=√1−cos 2α=45,sinβ=√1−cos 2β=513, ∴tanα=sinαcosα=43,tanβ=sinβcosβ=−512, 因此,tan (α+β)=tanα+tanβ1−tanαtanβ=43−5121−43×(−512)=3356.所以答案是:35;3356.小提示:本题考查利用二倍角的余弦公式以及两角和的正切公式求值,同时也考查了同角三角函数基本关系的应用,考查计算能力,属于中等题.解答题18、在平面直角坐标系中,角α的终边在直线3x +4y =0上,求sin α-3cos α+tan α的值.答案:-154或94.分析:当角α的终边在射线y =-34x (x >0)上时,取终边上一点P (4,-3),求出sin α,cos α,tan α即得解;当角α的终边在射线y =-34x (x <0)上时,取终边上一点P ′(-4,3),求出sin α,cos α,tan α即得解.综合即得解. 当角α的终边在射线y =-34x (x >0)上时,取终边上一点P (4,-3), 所以点P 到坐标原点的距离r =|OP |=5,所以sin α=y r =−35=-35,cos α=x r =45,tan α=y x =-34.所以sin α-3cos α+tan α=-35-125-34=-154.当角α的终边在射线y =-34x (x <0)上时,取终边上一点P ′(-4,3),所以点P ′到坐标原点的距离r =|OP ′|=5,所以sin α=y r =35,cos α=x r =-45,tan α=y x =-34. 所以sin α-3cos α+tan α=35-3×(−45)-34=35+125-34=94. 综上,sin α-3cos α+tan α的值为-154或94.小提示:本题主要考查三角函数的坐标定义,意在考查学生对这些知识的理解掌握水平.19、已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式,并求出该函数的单调递增区间;(2)若α∈(0,π2),且f (α2+π6)=65,求f (α2−π6)的值.答案:(1)答案见解析;(2)−4√3+35.分析:(1)根据函数图象可得A ,周期T ,即可求出ω,再由图象过点(512π,2)即可求出φ,得到函数解析式,求出单调区间;(2)由f (α2+π6)=65求出sinα,cosα,再由两角差的正弦公式直接计算f(α2−π6)即可.(1)由图象可知,A =2, 且T =2(1112π−512π)=π=2πω,解得 ω=2所以f(x)=2sin(2x +φ),因为f(512π)=2sin(56π+φ)=2,所以56π+φ=2k 1π+π2(k 1∈Z) 则φ=2k 1π−π3(k 1∈Z),则仅当k 1=0时,φ=−π3符合题意, 所以f(x)=2sin(2x −π3), 令2kπ−π2≤2x −π3≤2kπ+π2(k ∈Z),解得 kπ−π12≤x ≤kπ+5π12(k ∈Z)综上,f(x)的解析式为f(x)=2sin(2x −π3),单调增区间为[kπ−π12,kπ+5π12](k ∈Z);(2)因为f(x)=2sin(2x −π3), 所以f(α2+π6)=2sinα=65,所以sinα=35,又α∈(0,π2), 所以cosα=√1−sin 2α=45, 所以f(α2−π6)=2sin(α−2π3)=2sinαcos 2π3−2cosαsin 2π3=−4√3+35. 20、(1)已知sinα+cosα=√2,求sinα⋅cosα及sin 4α+cos 4α的值;(2)已知sinα+cosα=15(0<α<π),求tanα的值. 答案:(1)sinα⋅cosα=12,sin 4α+cos 4α=12;(2)−43.分析:(1)把已知等式平方,结合平方关系可得sinαcosα,再把1=sin 2α+cos 2α平方可求得sin 4α+cos 2α;(2)已知等式平方求得sinαcosα确定出sinα,cosα的正负,求出sinα−cosα,与已知式联立求得sinα,cosα后可得tanα.解:(1)∵sinα+cosα=√2;1+2sinαcosα=2∴sinα⋅cosα=12 sin 4α+cos 4α=(sin 2α+cos 2α)2−2sin 2αcos 2α=1−2⋅(12)2=12(2)∵sinα+cosα=15,①∴(sinα+cosα)2+2sinαcosα=125∴2sinαcosα=−2425.∵0<α<π,∴π2<α<π,∴sinα>0,cosα<0,∴sinα−cosα>0,∴sinα−cosα=√(sinα−cosα)2=75.②由①,②得sinα=45,cosα=−35,∴tanα=−43。
人教版最新高中数学三角函数复习专题Word版.docx

高中数学三角函数复习专题( 附参考答案 )一、知识点整理 :1、角的概念的推广:正负,范围,象限角,坐标轴上的角;2、角的集合的表示:①终边为一射线的角的集合:x x2k, k Z =|k360 , k Z②终边为一直线的角的集合:x x k, k Z ;③两射线介定的区域上的角的集合:x 2k x2k, k Z④两直线介定的区域上的角的集合:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径, a 为圆心角弧度数,l为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径,l为弧长。
2(3)三角函数定义:角中边上任意一点 P 为( x, y),设| OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为: P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特殊角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存0不存03在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tan a cot a 1sin a ②商数关系: tan acos a③平方关系: sin 2 a cos2 a1( 8)诱导公试sin cos tan三角函数值等于的同名三角函数值,前面-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前面2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 :sin x cos x cos x比如444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin s i na( ) s i na c o s c o as s i ntan a(atan a tan注:公式的逆用或者变形)1 tan a tan.........(2)二倍角公式:sin 2a 2 sin acosa c o 2sa2222c o sa s i n a 1 2s i n a 2 c o sa 1tan 2a2 tan a 1 tan 2 a(3)几个派生公式:①辅助角公式: a sin x bcosx a2b2 sin(x)a2b2 cos(x)例如: sinα±cosα=2 sin= 2 cos.44sinα±3 cosα= 2sin=2cos等.33②降次公式: (sin cos) 2 1 sin 2cos2 1 cos 2,sin 2 1 cos 222③ tan tan tan()(1tan tan)5、三角函数的图像和性质:(其中 k z )三角函数y sin x定义域( - ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2 k,2 k]22单调性单调递增[ 2 k,2 k 3 ]22单调递减x k对称性2(k ,0)零值点x ky cos x(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k]单调递增[( 2k ,( 2k 1) ]单调递减x k(k,0)2x ky tan xx k2( - ∞, +∞)T奇(k,k)22单调递增k(,0)x k2。
2024_2025学年高三数学新高考一轮复习专题三角函数的图像和性质2含解析

三角函数的图像和性质学校:___________姓名:___________班级:___________考号:___________1.函数y=lgcos x的定义域为( )A. (2k π,+2kπ)(k∈Z)B. (-+2k π,+2kπ)(k∈Z)C. (k π,+kπ)(k∈Z)D. (-+k π,+kπ)(k∈Z)2.将函数的图象向左平移个单位长度,再将得到的图象上的全部点的横坐标变为原来的2倍(纵坐标不变),最终得到函数的图象,则()A. B. C. D.3.将函数的图象上各点向右平行移动个单位长度,再把横坐标缩短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图象的函数解析式是()A. B.C. D.4.函数y=cos-2x的单调递增区间是()A. (k∈Z)B. (k∈Z)C. (k∈Z)D. (k∈Z)5.函数的单调递减区间为()A. B.C. D.6.函数在定义域内零点的个数为A. 3B. 4C. 6D. 77.下列函数中最小值为8的是()A. B. C . D.18.函数的图象向右平移个单位长度后得到函数g(x)的图象,且g(x)的图象的一条对称轴是直线,则ω的最小值为.9.函数的单调减区间为()A. B.C. D.10.已知函数.(1)求的最小正周期和单调递减区间;(2)试比较与的大小.1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】D8.【答案】9.【答案】A10.【答案】解:(1),∴函数的最小正周期为.令,得,函数的单调增区间为,函数的单调减区间为,(2),.,且在上单调递增,,即.3。
(完整版)高中三角函数知识点总结(人教版)

高中三角函数总结1.任意角的三角函数定义:设 为任意一个角,点 P( x, y) 是该角终边上的任意一点 (异于原点) , P(x, y) 到原点的距离为 rx 2 y 2 ,则:siny(正负看 y),cosx(正负看 x), tany(正负看 x y)rrx2.特别角三角函数值:0° 30° 45°60°90° sin0 12 3 122 2cos1 32 1 02 22tan13 13没心义33.同角三角函数公式:tansin , sin 2cos 21cossec1,csc 11cos,cottansin4.三角函数引诱公式:(1) sin( 2k ) sin , cos( 2k ) cos , tan( 2k ) tan ; (kZ )(2) sin( ) sin , cos( )cos , tan() tan ;(3) sin()sin , cos( )cos , tan()tan ;(函数名称不变,符号看象限)(4) sin() cos ,cos( )sin, tan() cot ;222(5) sin() cos , cos()sin , tan() cot ;222(正余互换,符号看象限)注意: tan 的值,总为 sin/cos ,便于记忆;5.三角函数两角引诱公式:(1)和差公式sin( ) sin coscos sin cos( ) cos cos sin sintantantan( )1 tan tan(2)倍角公式令上面的可得: sin( 2 ) 2 sin coscos(2 ) cos2 sin 22 tan 2 cos2 1 tan(2 )1 2sin 21 tan2 6.正弦定理:△ABC 中三边分别为a,b, c ,外接圆半径为R ,则有:a b cR sin A sin B27.余弦定理:sin C△ABC 中三边分别为a,b, c ,则有: cosC a2 b2 c22ab8.面积公式:1ab sinC(两边与夹角正弦值 ) △ABC 中三边分别为a,b, c ,面积为S,则有:S2三角函数图象:9.函数名图像单调区间y=sinx递加区间:[ 2k ,2k ]2 2递减区间:[ 2k ,2k 3], k Z2 2y=cosx递加区间:[ 2k,2k ]递减区间:[ 2k ,2k], k Zy=tanx递加区间:(k, k), k Z2 2定义域非R,为:{ x | x k}210.关于y Asin( x ) B 的性质:(1)最大值为| A | B ,最小值为| A | B ( sin( x )1时 ,得最大最小)(2)周期2 1 | |x ,初相是T ,频率 f ,相位是| | T 2(3)图像的对称轴是直线:(4)图像的对称中心为:x k (k Z ) ,可化简为x=的形式;2y A sin( x ) B B 时获取的所有交点(x,B )(5)单调区间求取:一利用引诱公式将变为正,如变为cos 等,此处假设0 ,二求出 y Asin x 的单调区间,令x分别位于单调区间地域,反解x 范围;11.图像变换:y Asin( x) B :y sin x沿x轴左移个单位y sin(x )横坐标x变为原来的1 倍xy sin( ) sin( x )1纵坐标 y变为原来的 A倍y ) y Asin( x )sin( xA沿y轴下移 B个单位y B Asin( x ) y Asin( x ) B 要点点:上 +下 -( y),左 +右 -( x),倍数相除(变为原来的n 倍,则对应的坐标都除以n)。
人教版高考总复习一轮数学精品课件 第五章 三角函数、解三角形-第二节 同角三角函数基本关系及诱导公式

故选C.
≠ .
(2)已知方程sin2 + 2sin cos − 2sin − 4cos = 0,则cos 2 − sin cos =
() B
4 3
3 4
A.− B. C.− D.
5 5
5 5
[解析]因为方程 + − − = ,
角
2π + ∈
π+
−
关于原点对称
______________
π
−
2
关于轴对称
_____________
π
+
2
图示
与角终边的关系
相同
______
角
π −
续表
角
2π + ∈
π+
图示
与角终边的关系
关于轴对称
关于直线 = 对称
−
三、诱导公式
组数
一
二
三
= ,即 = ,即 = .
因为 ∈ , ,所以 = , =
.故 − = −
C
=−
.故选C.
1
5
2或
(2)已知sin − cos = ,则tan =_____.
sin2 +cos2
=
2tan2 + 3tan − 1
=
2
tan + 1
=
sin +cos
[对点训练2](1)已知
sin −cos
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学三角函数复习专题(附参考答案)一、知识点整理:1、角的概念的推广:正负,范围,象限角,坐标轴上的角; 2、角的集合的表示: ①终边为一射线的角的集合:⇔{}Z k k x x ∈+=,2απ={}|360,k k Z ββα=+⋅∈ ②终边为一直线的角的集合:⇔{}Z k k x x ∈+=,απ;③两射线介定的区域上的角的集合:⇔{}Z k k x k x ∈+≤<+,22απβπ ④两直线介定的区域上的角的集合:⇔{}Z k k x k x ∈+≤<+,απβπ;3、任意角的三角函数:(1) 弧长公式:R a l = R 为圆弧的半径,a 为圆心角弧度数,l 为弧长。
(2) 扇形的面积公式:lR S 21= R 为圆弧的半径,l 为弧长。
(3) 三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则:,cos ,sin r x r y ==αα xy =αtan r=22b a + 反过来,角α的终边上到原点的距离为r 的点P 的坐标可写为:()cos ,sin P r r αα比如:公式βαβαβαsin sin cos cos )cos(+=- 的证明 (4)特殊角的三角函数值 α 06π 4π 3π 2π π23π 2π sin α21 22 23 1-1cos α 123 22 21 0 -1 0 1tan α 033 13不存在0 不存在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等) 如图,角α的终边与单位圆交于点P ,过点P 作x 轴的垂线, 垂足为M ,则过点A(1,0)作x 轴的切线,交角终边OP 于点T ,则 。
(7)同角三角函数关系式:①倒数关系: 1cot tan =a a ②商数关系:aaa cos sin tan =③平方关系:1cos sin 22=+a a(8)诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限:比如sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭sin cos tan-α-αsin +αcos -αtan π-α +αsin -αcos -αtan π+α-αsin -αcos +αtan 2π-α-αsin +αcos -αtan2k π+α +αsin +αcos +αtansin con tanαπ-2 +αcos +αsin +αcot απ+2+αcos -αsin -αcot απ-23 -αcos -αsin +αcot απ+23 -αcos +αsin -αcotxyo MTPA4.两角和与差的三角函数: (1)两角和与差公式:βββαsin sin cos cos )cos(a a =± βββs i n c o s c o s s i n )s i n (a a a ±=±βββtan tan 1tan tan )(tan a a a a ±=± 注:公式的逆用或者变形......... (2)二倍角公式:a a a cos sin 22sin = 1c o s 2s i n 21s i n c o s 2c o s 2222-=-=-=a a a a a a aa 2tan 1tan 22tan -=(3)几个派生公式: ①辅助角公式:)cos()sin(cos sin 2222ϕϕ-+=++=+x b a x b a x b x a例如:sin α±cos α=2sin ⎪⎭⎫ ⎝⎛±4πα=2cos ⎪⎭⎫ ⎝⎛±4πα.sin α±3cos α=2sin ⎪⎭⎫ ⎝⎛±3πα=2cos ⎪⎭⎫ ⎝⎛±3πα等.②降次公式:ααα2sin 1)cos (sin 2±=±221cos 21cos 2cos ,sin 22αααα+-==③)tan tan 1)(tan(tan tan βαβαβα⋅-+=+5、三角函数的图像和性质:(其中z k ∈)三角函数x y sin = x y cos =x y tan =定义域(-∞,+∞)(-∞,+∞)2ππ+≠k x值域 [-1,1][-1,1](-∞,+∞)最小正周期 π2=Tπ2=Tπ=T奇偶性奇偶奇单调性]22,22[ππππ+-k k 单调递增]232,22[ππππ++k k单调递减]2,)12[(ππk k - 单调递增 ])12(,2[(ππ+k k 单调递减)2,2(ππππ+-k k 单调递增对称性2ππ+=k x)0,(πkπk x =)0,2(ππ+k)0,2(πk 零值点πk x = 2ππ+=k xπk x =最值点2ππ+=k x1max =y2ππ-=k x1min -=yπk x 2=,1max =y ;π)12(+=k x , 1min -=y无6、.函数)sin(ϕω+=x A y 的图像与性质:(本节知识考察一般能化成形如)sin(ϕω+=x A y 图像及性质) (1) 函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T(2) 函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ωπ=T (3) 五点法作)sin(ϕω+=x A y 的简图,设ϕω+=x t ,取0、2π、π、23π、π2来求相应x 的值以及对应的y 值再描点作图。
(4) 关于平移伸缩变换可具体参考函数平移伸缩变换,提倡先平移后伸缩。
切记每一个变换总是对字母x 而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。
(附上函数平移伸缩变换):函数的平移变换:①)0)(()(>±=→=a a x f y x f y 将)(x f y =图像沿x 轴向左(右)平移a 个单位 (左加右减)②)0()()(>±=→=b b x f y x f y 将)(x f y =图像沿y 轴向上(下)平移b 个单位 (上加下减)函数的伸缩变换:①)0)(()(>=→=w wx f y x f y 将)(x f y =图像纵坐标不变,横坐标缩到原来的w1倍(1>w 缩短, 10<<w 伸长)②)0)(()(>=→=A x Af y x f y 将)(x f y =图像横坐标不变,纵坐标伸长到原来的A 倍(1>A 伸长,10<<A 缩短) 函数的对称变换:①)()(x f y x f y -=→=) 将)(x f y =图像沿y 轴翻折180°(整体翻折)(对三角函数来说:图像关于y 轴对称)②)()(x f y x f y -=→=将)(x f y =图像沿x 轴翻折180°(整体翻折)(对三角函数来说:图像关于x 轴对称)③)()(x f y x f y =→= 将)(x f y =图像在y 轴右侧保留,并把右侧图像绕y 轴翻折到左侧(偶函数局部翻折)④)()(x f y x f y =→=保留)(x f y =在x 轴上方图像,x 轴下方图像绕x 轴翻折上去(局部翻动)7、解三角形()1正弦定理:2sin sin sin a b cR A B C===, ()2余弦定理:222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧⎪=+-+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩()3推论:正余弦定理的边角互换功能① 2sin a R A =,2sin b R B =,2sin c R C = ②sin 2a A R =,sin 2b B R =,sin 2cC R= ③sin sin sin a b c A B C ===sin sin sin a b c A B C++++=2R ④::sin :sin :sin a b c A B C = (4)面积公式:S=21ab*sinC=21bc*sinA=21ca*sinB 二、练习题1、sin330︒等于 ( ) A .32-B .12-C .12D .322、若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角3、如果1弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长为( )A .1sin0.5 B .sin0.5 C .2sin0.5 D .tan0.54、在△ABC 中,“A >30°”是“sinA >12”的 ( )A .仅充分条件B .仅必要条件C .充要条件D .既不充分也不必要条件5、角α的终边过点b b 则且(,53cos ),4,--=α的值( ) A 、3 B 、-3 C 、3± D 、5 6、已知2πθπ<<,3sin()25πθ+=-,则tan(π-θ)的值为( ) A .34 B .43 C .34- D .43- 7、2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数8、若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为 ( ) A .1B .2C .3D .29、为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( )A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位10、正弦型函数在一个周期内的图象如图所示,则该函数的表达式是( )A. y = 2sin(x -4π)B. y = 2sin(x +4π)C. y = 2sin (2x -8π)D. y = 2sin (2x +8π)11、函数)32cos(π--=x y 的单调递增区间是( )A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B. )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππC .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D. )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ12、在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知,3,13A a b π===,则c =( )yxo 24π-43πA.1B.2C.31-D.313、在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A.223 B.233 C.23 D.3314、 在ABC △中,已知222sin sinsin 3sin sin B C A A C --=,则B ∠的大小为( ).A 150︒ .B 30︒ .C 120︒ .D 60︒ 15、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =, 则cos B = ( )A.14 B. 34 C. 24 D. 2316、若2cos sin =+θθ,则=θθcos sin .2117、已知函数)(x f 是周期为6的奇函数,且1)1(=-f ,则=-)5(f .18、在平面直角坐标系xOy 中,已知△ABC 顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin C sin B=________.19、函数)3sin 2lg(cos 21+++=x x y 的定义域 ___________20、已知=++++∈=)100()...4()3(21),(4sin )(*f f f f f N n n x f )()(则π_________21、关于函数f(x)=4sin(2x+π3 ) (x ∈R),其中正确的命题序号是___________.(1)y=f(x )的表达式可改写为y=4cos(2x-π6 ); (2)y=f(x )是以2π为最小正周期的周期函数;(3)y=f(x ) 的图象关于点(-π6 ,0)对称;(4)y=f(x ) 的图象关于直线x=-π6 对称;22、给出下列四个命题,则其中正确命题的序号为 _________ (1)存在一个△ABC ,使得sinA+cosA=1 (2)在△ABC 中,A>B ⇔sinA>sinB(3)终边在y 轴上的角的集合是{|,2k k Z παα=∈} (4)在同一坐标系中,函数y=sinx 的图象与函数y=x 的图象有三个公共点(5)函数sin()2y x π=-在[0,π]上是减函数23、在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos25A =, 3AB AC ⋅=. (I )求ABC ∆的面积; (II )若1c =,求a 的值.24、已知函数()f x =223sin cos 2cos 1()x x x x R +-∈.(Ⅰ)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值;(Ⅱ)若06()5f x =,0,42x ππ⎡⎤∈⎢⎥⎣⎦,求0cos 2x 的值.参考答案:1-5BCABA 6-10BDBCB 11-15CBBAB16、21 17、-1 18、4519、]234,23[ππππk k ++- 20、21+21、(1)(3) 22、(1)(2)(4)23、(1)由25cos 25A =得552sin =A ,54sin ,53cos ==A A因3AB AC ⋅=,所以bc=5,故2=∆ABC S(2)由(1)bc=5,且c=1,所以b=5, 由余弦定理易得52=a24、(Ⅰ)解:由2()23sin cos 2cos 1f x x x x =+-,得2()3(2sin cos )(2cos 1)3sin 2cos 22sin(2)6f x x x x x x x π=+-=+=+.所以函数()f x 的最小正周期为π.因为()2sin 26f x x π⎛⎫=+⎪⎝⎭在区间0,6π⎡⎤⎢⎥⎣⎦上为增函数,在区间,62ππ⎡⎤⎢⎥⎣⎦上为减函数,又 (0)1,2,162f f f ππ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为-1.(Ⅱ)解:由(Ⅰ)可知00()2sin 26f x x π⎛⎫=+⎪⎝⎭. 又因为06()5f x =,所以03sin 265x π⎛⎫+= ⎪⎝⎭.由, 42xππ⎡⎤∈⎢⎥⎣⎦,得272,636xπππ⎡⎤+∈⎢⎥⎣⎦.。