蠕变、应力松弛、滞后和内耗讲解 共34页

合集下载

《材料的蠕变》课件

《材料的蠕变》课件
《材料的蠕变》ppt课件
目 录
• 引言 • 蠕变现象的基本概念 • 材料的蠕变特性 • 蠕变机制的理论解释 • 材料的蠕变测试与表征 • 材料的抗蠕变设计 • 蠕变现象的应用与展望
01
引言
蠕变现象的发现
蠕变现象的早期观

早在古希腊时期,人们就注意到 材料在长时间受力的过程中会发 生变形。
科学研究的进展
02
蠕变现象的基本概念
蠕变的定义
01
蠕变:在恒定温度和恒定应力作用下,材料随时间 发生的缓慢的塑性变形现象。
02
蠕变是由材料内部微观结构的变化引起的,这些变 化包括位错的运动、晶界的滑移等。
03
蠕变会导致材料的形状和尺寸发生不可逆的变化, 从而影响材料的性能。
蠕变与松弛的区分
蠕变
在恒定温度和恒定应力作用下,材料 随时间发生的塑性变形现象。
影响材料蠕变速率的因素
01
02
温度
应力大小
温度是影响蠕变速率的主要因素。在 较高的温度下,原子或分子的运动速 度更快,导致材料更易发生蠕变。
应力的大小直接影响材料的蠕变速Байду номын сангаас 。较大的应力通常会导致更快的蠕变 速率。
03
加载时间
加载时间越长,材料发生蠕变的程度 通常越大。这主要是因为长时间的应 力作用提供了更多时间供材料内部结 构发生调整和变化。
型材料。
持续改进与创新
03
不断改进现有材料和工艺,推动抗蠕变设计的创新与发展。
07
蠕变现象的应用与展望
蠕变现象在工程中的应用
石油工业
核工业
在石油工业中,油井的套管和油管在 高温度和压力下会发生蠕变变形,影 响油井的正常生产和安全。通过研究 蠕变现象,可以预测套管和油管的寿 命,及时更换,避免事故发生。

高分子材料的力学状态.pptx

高分子材料的力学状态.pptx

运动单元多重性:
键长、键角、侧基、支链、 链节、链段、分子链
需要时间
( 10-1 ~ 10+4 秒)
第7页/共35页
Tg 粘流态
Tf
Td
Tf ~ Td
分解温 度
(1)分子运动机制:整链分子产生相对位移
(2)力学特征:形变量很大(流动)
形变不可逆
模量极小
(3)Tf与摩尔平均质量有关
第8页/共35页
2.1 高分子材料的力学状态
材料受力方式的基本类型
F
A0
A
A0
l0
l
F
F Dl
F
简单拉伸示意图
产生的形变-拉伸形变/相对伸长率
简单剪切示意图
剪切应力、剪切应变
第15页/共35页
2.2 高分子材料的力学性能
F
F
A0
一点弯曲
三点弯曲
均匀压缩 体积形变 压缩应变
F
F
扭转
第16页/共35页
2.2 高分子材料的力学性能
应力-应变曲线 Stress-strain curve
Strain softening 应变软化 B
B Y
Y
N
D
A A
plastic deformation
塑性形变
Strain hardening 应变硬化
E D A D A
O A
B
y
图2.4 非晶态聚合物的应力-应变曲线(玻璃态)
第19页/共35页
2.2 高分子材料的力学性能
第20页/共35页
2.2 高分子材料的力学性能
序号 类型
1
2
硬而脆 硬而强
3 强而韧

6.6 蠕变及应力松弛试验

6.6 蠕变及应力松弛试验

14
试验操作
测量试样; 测量试样; 夹持试样; 夹持试样; 预加载试样; 预加载试样; 连续加载试样; 连续加载试样; 夹具的移动速度为 (5 ±1) mm/min; ) ; 测定蠕变极限强度
15
结果处理
应变与时间的关系,绘出应变 的关系曲线 在此曲线上, 的关系曲线。 应变与时间的关系,绘出应变—的关系曲线。在此曲线上, 截取某一规定时间, 或其他时间, 截取某一规定时间,如1000h或其他时间,求得应力和相 或其他时间 对应的蠕变应变。 对应的蠕变应变。
19
试验操作
先将试样连同夹具一起置于恒温箱中, 先将试样连同夹具一起置于恒温箱中,保持足够时间使试 样达到温度平衡,然后在一定时间内( ) 样达到温度平衡,然后在一定时间内(6s)向试样施加一 定外力,使试样达到约20%的压缩变形。 的压缩变形。 定外力,使试样达到约 的压缩变形 加力必须均衡、稳步进行,防止冲击式地加力, 加力必须均衡、稳步进行,防止冲击式地加力,所施加的 力在整个试验过程中必须恒定不变,精度为± 力在整个试验过程中必须恒定不变,精度为±1% 。 加力后在内测初始变形,以后在规定时间间隔内测量变形, 加力后在内测初始变形,以后在规定时间间隔内测量变形, 一般时间间隔为100、1000、10000min;或1、2、4、7d, 一般时间间隔为 、 、 ; 、 、 、 , 从而计算其蠕变值,蠕变测量的精度要求为± 从而计算其蠕变值,蠕变测量的精度要求为±0.1% 。
在恒定形变下应力随时间的衰减过程 拉伸一块未交联的橡胶到一定长度,并保持长度不变, 拉伸一块未交联的橡胶到一定长度,并保持长度不变, 随着时间的增长, 随着时间的增长,这块橡胶的回弹力会逐渐减小
原因? 原因?
高聚物一开始被拉长时,其中分子处于不平衡的构象, 高聚物一开始被拉长时,其中分子处于不平衡的构象, 要逐渐过渡到平衡的构象, 要逐渐过渡到平衡的构象,也就是链段顺着外力的方向 运动以减少或消除内部应力

第六节-蠕变及应力松弛试验

第六节-蠕变及应力松弛试验

和应力松弛就愈明显
17
高分子材料分析与性能测试
第八节 疲劳试验
• 一块塑料片或细铁丝经过多次的弯折后会折断,这就 是材料的疲劳过程。
• 所有材料无论是合成的还是天然的都会受到疲劳现象 的影响。
• 80 %~90 %的设备使用损坏都是由疲劳引起的。
18
高分子材料分析与性能测试
一、概念
• 疲劳试验分为拉压、弯曲、扭转、冲击、组合应力 等试验方法 。
11
高分子材料分析与性能测试
杠杆式拉伸应力松弛仪
12
高分子材料分析与性能测试
工作原理
• 平衡重锤 1 的重量和位置是固定的,由可移动重锤 2 的 位置来调节,通过载荷杆 4 加在试样上的负荷。
• 在初始时间 t0 时,快速施加一负荷,即可移动重锤 2 达 某一位置,使试样产生一定的形变和初始的应力,且使 杠杆支点“ o ”两边的力矩相平衡,此时触点开关 3 为 开启状态。
7
高分子材料分析与性能测试
• 变形测量系统:在加载后,能随着加载时间的增加而 自动连续地侧定试样的形变。精度一般要求达到测定 形变的士 1 %。
• 加热系统:温度和湿度的控制装置,采用恒温恒湿箱。 能自动连续地记录箱内温度和湿度的装置。
• 夹具:要求保证加载轴线与试样纵向轴线相重合,升 高载荷时,试样和夹具不允许有任何位移。
• 测试标准 GB 11546-1989
• 1.试验设备试验
• 加载荷系统:恒载荷和变载荷装置
• 形变小的材料,采用恒载荷装置;
• 形变较大的材料,由于试样的横截 面积变化较大,因此其应力变化也 大,为了保持其应力恒定,应采用 变载荷的加载装置。
6
高分子材料分析与性能测试

蠕变、应力松弛、滞后和内耗讲解

蠕变、应力松弛、滞后和内耗讲解
a.化学结构:刚性链滞后现象小,柔性链滞后现象大.
b.温度:当不变的情况下,T很高滞后几乎不出现,温 度很低,也无滞后.在Tg附近的温度下,链段既可运动 又不太容易,此刻滞后现象严重。
c. : 外力作用频率低时,链段的运动跟的上外力 的 变化,滞后现象很小.
外力作用频率不太高时,链段可以运动,但是跟不上外 力的变化,表现出明显的滞后现象. 外力作用频率很高时,链段根本来不及运动,聚合 物好像一块刚性的材料,滞后很小
蠕变、应力松弛、滞后和内耗

– 由于物体的弹性作用使之射出去。
弹簧 – 利用材料的弹性作用制得的零件,在外力 作用下能发生形变(伸长、缩短、弯曲、扭转 等),除去外力后又恢复原状。

– 同黏:象糨糊或胶水等所具有的、能使 一个物质附着在另一个物体上的性质。
理想弹性固体
受到外力作用形变很小,符合胡克定律 =E
图3 理想粘性流动蠕变
当聚合物受力时,以上三种形变同时发生聚合 物的总形变方程:

1
2 + 3
1
t1 t2
2 3
t
( t ) 1 2 3 -t
(1 e ) t E1 E2 3
•加力瞬间,键长、键角立即产生形变,形变直线 上升 •通过链段运动,构象变化,使形变增大 •分子链之间发生质心位移
一般认为,在小变形下,或低变形速率下,
高分子材料主要表现线性粘弹性
力学松弛或粘弹现象
聚合物的力学性质随时间变化的现象,叫力学松弛或 粘弹现象。
蠕变:固定和T, 随t增加而逐渐 增大
静态的粘弹性 (粘弹性) 力学松弛 动态粘弹性
(交变应力或 应变)
(恒定应力或应变)

4.4 蠕变ppt

4.4  蠕变ppt


同一材料的蠕变曲线随着温度高低及应力的大小而有 不同,见下图:

应力较小、温度较低时:蠕变的恒速蠕变阶段持续时间长,甚至 不出现加速蠕变阶段; 应力较大、温度较高时:蠕变恒速蠕变阶段持续时间短,甚至消 失,试样在短时间内断裂,主要为加速蠕变。



由于金属在长时高温载荷下会产生蠕变现象,对于在 高温下工作、依靠原始弹性变形获得工作应力的机件, 如高温管道内用的螺栓等, 就可以随着时间的延长,在总变形量不变的前提下, 弹性变形变为塑性变形,从而使工作应力降低,以致 失效。 这种在温度及初始应力一定时,材料中的应力随着时 间的增加而减小的现象称为应力松弛。 这种现象可看作应力不断降低条件下的蠕变过程。
(二)冶炼工艺的影响


各种耐热钢及高温合金对冶炼工艺的要求较高,由于钢中的夹杂 物和某些冶金缺陷会使材料的持久强度极限降低。 高温合金对杂质元素及气体含量要求很严格,即使含量只有十万 分之一,当其在晶界偏聚后,会导致晶界的严重弱化,使热弹性 降低。
(三)热处理工艺的影响



珠光体耐热钢一般采用正火加高温回火工艺,正火温度较高,以 促使C化物充分溶于奥氏体中,回火温度高于使用温度100-150℃, 以提高使用温度下的组织稳定性。 采用形变热处理改变晶界的形状,形成锯齿状,并在晶内形成多 边化的亚晶界,则可使合金进一步强化。

由于蠕变断裂主要在晶界上产生,所以晶界的形态、 晶界上的析出物和杂质偏聚、晶粒大小和晶粒度的均 匀性对蠕变断裂都会产生很大影响。
蠕变断裂断口的宏观特征:


(1) 断口附近产生塑性变形,在变形区附近有很多裂纹,断 裂机件表面出现龟裂现象; (2) 由于高温氧化,断口表面被一层氧化膜所覆盖。

材料在高温下的力学性能(蠕变、松弛)

材料在高温下的力学性能(蠕变、松弛)

材料在高温下的力学性能(蠕变、松弛)第7章材料在高温下的力学性能7.1 材料在高温下力学性能的特点有许多机件是在高温下工作的,如高压锅炉,蒸汽轮机、燃气轮机、以及化工厂的反应容器等,对于这些机件的性能要求,就不能以常温下的力学性能来衡量。

材料在高温下的力学性能明显地不同于室温。

首先,材料在高温将发生蠕变现象。

即在应力恒定的情况下,材料在应力的持续作用下不断地发生变形。

这样,材料在高温下的强度便与载荷作用的时间有关了。

载荷作用的时间越长,引起一定变形速率(如)或变形量的形变抗力(蠕变极限)以及断裂抗力(持久强度)就越低。

粗略地说,发生蠕变现象的温度,对金属材料约为T>0.3-0.4TM ;(TM为材料的熔点以绝对温度K计);对陶瓷约为T>0.4-0.5TM ;对高分子材料为T>Tg,Tg为玻璃化温度,多数高分子材料在室温下就发生蠕变。

由于蠕变的产生,我们就不能笼统地说材料在某一高温下其强度是多少,因为高温强度与时间这一因素有关。

而材料在常温下的强度是不考虑时间因素的。

除非试验时加载的应变速率非常高。

材料在高温下不仅强度降低,而且塑性也降低。

应变速率越低,载荷作用时间越长,塑性降低得越显著。

和蠕变现象相伴随的还有高温应力松驰。

一个紧固螺栓在高温长时间作用下,其初始预紧力逐渐下降,这种现象也是由蠕变造成的。

另外,蠕变还会产生疲劳损伤,使高温疲劳强度下降,为此,必须研究蠕变和疲劳的交互作用。

材料在高温下的力学性能特点都是和蠕变过程紧密相连的。

第一,材料在变形时首先总是引起形变强化,蠕变之所以能发生,必然还伴随着一个变形的软化过程,这个软化过程就是高温回复。

第二,蠕变的变形机制必然与在常温下的不同。

材料在常温下的变形可通过位错的滑动产生滑移和孪晶两种变形型式。

而在高温下位错还可通过攀移,使位错遇到障碍时作垂直于滑移面的运动,如图7-0所示。

这样位错便不会阻塞在障碍面前,而使得变形能继续下去,这就是一个变形的软化过程。

力学松弛-粘弹性

力学松弛-粘弹性
的应力松弛实验)
• 动态扭摆仪
• 扭摆测量原理:
由于试样内部高 分子的内摩擦作 用,使得惯性体 的振动受到阻尼 后逐渐衰减,振 幅随时间增加而 减小。
3-7 粘弹性模型
• 弹簧能很好地描述理想弹性体力学行为
(虎克定律)
• 粘壶能很好地描述理想粘性流体力学行
为(牛顿流动定律)
• 高聚物的粘弹性可以通过弹簧和粘壶的
• 这种由于力学滞后而
使机械功转换成热的 现象,称为力学损耗 或内耗。
• 以应力~应变关系作
图时,所得的曲线在 施加几次交变应力后 就封闭成环,称为滞 后环或滞后圈,此圈 越大,力学损耗越大
拉伸曲线 回缩曲线
• 例1:对于作轮胎的橡胶,则希望它有最小
的力学损耗才好
• 顺丁胶:内耗小,结构简单,没有侧基,
起始部分,要观察到全部曲线要几个 月甚至几年
• 如果 Tg 时作实验,只能看到蠕变
的最后部分
• 在 Tg 附近作试验可在较短的时间内
观察到全部曲线
• 交联高聚物的蠕变
无粘性流动部分
• 晶态高聚物的蠕变
不仅与温度有关,而且由于再结晶等 情况,使蠕变比预期的要大
• ⑺应用
各种高聚物在室温时的蠕变现象很不相同, 了解这种差别对于系列实际应用十分重要
( %)
2.0
8
7
1——PSF
6
2——聚苯醚
1.5
5
3——PC
4
3
4——改性聚苯醚
1.0
2
5——ABS(耐热)
0.5
1
6——POM
1000 2000
t 小时
7——尼龙 8——ABS
23℃时几种高聚物蠕变性能

蠕变及应力松弛试验

蠕变及应力松弛试验

• 当试样发生应力松弛时,弹簧片逐渐回复原状,利 用差动变压器或应变电阻侧定弹簧片的回复形变, 然后换算成应力,即可测出高聚物试样的应力松弛 情况。
• CD 段,称为黏性流变,这是由于分子链之间产生了相 对滑动引起的形变,这种形变是会随时间无限发展的, 并且是不可逆形变。 • DE 段,为永久形变,由于黏性流动的不可逆形变造成 的。
4
高分子材料分析与性能测试
蠕变的结果表示
• 蠕变应力:试样在加载后单位横截面上所承受的力
• 蠕变应变:试样在承受外力后单位长度的形变 • 蠕变模量:把蠕变应力与蟠变应变之比 • 在规定的温度和湿度下,在规定的时间内导致试验达 到规定的形变(应变)或导致试样断裂的应力称为蠕 变极限强度,用σt来表示。 • 蠕变断裂时间:从加满载荷时起,直至试样断裂时所 经过的时间称为,用τ来表示。
蠕变及应力松弛试验
• 一条已架设的硬聚氯乙烯管线,随着时间的增加它会 弯曲变形;一件经常挂在墙上的雨衣,由于它本身的 自重也会使它沿着悬挂方向变形。这些现象都认为是 材料的蠕变现象。 • 将一条橡皮拉伸到一定长度并使之固定起来,橡皮同 部会产生与所加外力大小相等方向相反的应力(弹 力),这种弹力会随着时间的延长而逐渐减小,慢慢 地松弛下来,这就是应力松弛。 • 蠕变现象是在恒定应力下形变随时间的发展过程; • 应力松弛是在恒定形变下应力随时间的衰减过程。 • 蠕变和应力松弛现象严重,意味着高聚物制品的尺寸 不稳定。
13
高分子材料分析与性能测试
应力松弛仪示意图
14
高分子材料分析与性能测试
工作原理
• 利用模量比试样的模量大得多的弹簧片,通过弹簧 片的形变来检测高聚物试样被拉伸时的应力松弛。 • 试样臵于恒温箱中,并且同弹簧片相连,当试样被 拉杆拉长时,弹簧片同时向下弯曲,试样拉伸应变 的大小由拉杆调节。 • 拉伸力为弹簧片的弹性力,通过差动变压器或应变 电阻测定弹簧片的形变量来确定。

蠕变应力松弛

蠕变应力松弛

蠕变定义:蠕变是在应力影响下,固体材料缓慢永久性的移动或者变形的趋势。

它的发生是低于材料屈服强度的应力长时间作用的结果。

这种变形的速率与材料性质、加载时间、加载温度和加载结构应力有关。

取决于加载应力和它的持续时间和环境温度,这种变形可能变得很大,以至于一些部件可能不再发挥它的作用。

阶段过程:1初步蠕变,形变率相对较大,但是随着应变的增加减慢。

2稳态蠕变,形变率达到一个最小值并接近常数,“蠕变应变率”就是指这一阶段的应变率。

3颈缩现象,应变率随着应变增大指数性的增长。

晶体蠕变(考虑金属)公式: Q m kTb d C e dt d εσ-=其中:ε是蠕变应变,C 是一个依赖于材料和特别蠕变机制的常数,m 和b 是依赖于蠕变机制的指数,Q 是蠕变机制的激活能,σ是加载应力,d 是材料的晶粒尺寸,k 是波尔兹曼常数,T 是绝对温度。

位错蠕变在相对于剪切模量的高应力条件下,蠕变是一个受位错控制的运动。

当应力加载在材料上时,由于滑移面中的位错移动而塑性变形发生。

位错蠕变中,self diffusion Q Q -=,46m =,0b =。

因此位错蠕变强烈依赖于加载应力而不依赖于晶粒尺寸。

引入初始应力0σ,低于初始应力时无法测量。

这样,方程就写成0()Q m kT d C e dtεσσ-=-。

Nabarro-Herring 蠕变在N-H 蠕变中,原子通过晶格扩散,造成晶粒沿着应力轴伸长。

k 和原子通过晶格的扩散系数有关,self diffusion Q Q -=,1m =,2b =。

因此N-H 蠕变是一种弱应力依赖、中等晶粒尺寸依赖的蠕变,它的蠕变形变率随着晶粒尺寸增长而降低。

故公式变化成:2Q kT d C e dt dεσ-= 上图是相关文献中的表格,按蠕变机理不一样确定指数m (在表中是n ),以及常见金属对应的激活能。

注意:金属蠕变在受力元件温度超过0.3T α(T α是熔点温度)时才开始显现出来,把常见金属熔点温度列出来。

高分子物理第6章

高分子物理第6章

4. 什么是时温等效原理?该原理在预测聚合物材料的长期使用性能方面和在聚合物加工过程中各有哪些指导意义?
5. 定量说明松弛时间的含意。为什么说作用力的时间与松弛时间相当时,松弛现象才能被明显地观察到? .
6. 简述聚合物粘弹理论的研究现状与展望。
7. 以某种聚合物材料作为两根管子接口法兰的密封垫圈,假设该材料的力学行为可以用Maxwell模型来描述。已知垫圈压缩应变为0.2,初始模量为3×106N/m2,材料应力松驰时间为300d,管内流体的压力为0.3×106N/m2,试问多少天后接口处将发生泄漏?
试计算1500s时,该材料的应变值。
解:
11. 在频率为1Hz条件下进行聚苯乙烯试样的动态力学性能实验,125℃出现内耗峰、请计算在频率1000Hz条件下进行上述实验时,出现内耗峰的温度。(已知聚苯乙烯的Tg=100℃)
解:
12. 某聚合物试样,25℃时应力松弛到模量为105N/m2需要10h,试计汁算-20℃时松弛列同一模量需要多少时间?(已知该聚合物的Tg从Kelvin模型,其中η值服从WLF方程,E值服从相交弹性统计理论。该聚合构的玻璃化温度为5℃,该温度下粘度为1×1012Pas,有效网链密度为1×10-4mol/cm3。试写出30℃、1×106Pa应力作用下该聚合物的蠕变方程。
解: 天

8. 将一块橡胶试片—端夹紧,另一端加上负荷,使之自由振动。已知振动周期为0.60s,振幅每一周期减少5%、试计算:
(1) 橡胶试片在该频率(或振幅)下的对数减量(△)和损耗角正切(tgδ);
(2) 假定△=0.02,问多少周期后试样的振动振幅将减少到起始值的—半?
解:
第7章 聚合物的粘弹性

蠕变、应力松弛、滞后、内耗

蠕变、应力松弛、滞后、内耗

01聚合物蠕变蠕变在恒定温度、较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象,称为形变。

蠕变过程中包括三种形变:(1)瞬时普弹形变(虎克弹性)特征:施加应力,形变瞬时产生,除去外力,立即恢复。

(2)高弹形变特征:通过链段的运动逐渐展开,形变量大,且形变的发展与时间有关,恢复也是逐渐进行的。

(3)黏性形变——永久变形特征:黏性形变的发展与时间呈线性关系,外力除去后,不能恢复。

例如,软PVC丝悬挂一定重量的砝码,就会慢慢地伸长,解下砝码后,又会慢慢缩回去,这就是典型的蠕变现象。

对于工程塑料,要求蠕变越小越好,对于蠕变严重的材料,使用时需采取必要补救措施。

如硬PVC有良好的抗腐蚀性能,可用于加工化工管道、容器等设备,但它容易蠕变,使用时必须增加支架以防止蠕变.PFTE是塑料中摩擦系数最小的,由于其蠕变现象严重,所以不能用作机械零件,但却是很好的密封材料.为探究GFRP锚杆在循环荷载下的黏结锚固性能,在软岩地基边坡开展GFRP 锚杆现场拉拔试验,通过光纤光栅应变传感器测量技术进行研究。

结果表明:循环荷载作用下锚杆杆体与锚固体的黏结蜕化深度小于锚杆的有效锚固长度,黏结蜕化深度以上锚杆杆体与锚固体界面提供摩擦力,黏结蜕化深度以下提供黏聚力。

当锚固界面受到破坏时,黏聚力将失去作用。

锚杆同-锚固深度处循环荷载作用的次数越多,锚固界面的黏结蜕化现象越严重;不同锚固深度处循环荷载作用的次数越多,黏结蜕化现象反而越不明显。

图7为GFRP锚杆杆体应变时程曲线,表明不同循环荷载对锚杆杆体黏结蜕化作用的影响。

通过多变量控制下的GFRP锚杆静载和反复荷载试验发现:在静载和反复荷载试验下,GFRP锚杆的破坏形式均为杆体拔出破坏;在反复荷载作用下,较少的循环次数对GFRP筋与混凝土黏结强度和锚杆滑移量影响不明显,当在低应力水平、反复荷载循环次数较少时,GFRP锚杆黏结强度退化不显著,反而在一定程度上有所增加;而在高应力反复荷载作用下,GFRP筋与混凝土间的黏结强度降低,黏结性能退化比较明显。

高分子物理第8章第四课.

高分子物理第8章第四课.

• 3.借助于转换因子可以将在某一温度 下测定的力学数据,变成另一温度下 的力学数据,这就是时温等效原理。
• 4.实用意义
通过不同 温度下可以试验测得的力 学性质进行比较或换算,得到有些高 聚物实际上无法实测的结果(PE)
• 由实验曲线 迭合曲线
log E
T1
T2 T3
T4
T5 T6 T7
123
反映材料形变时内耗的程度(粘性)
E" tg
E'
滞后角 力学损耗因子
log E' log E"
tg
tg 损耗因子
E' 储能模量
log 0
E" 损耗模量 log
动态力学分析(DMA)
• 动态力学行为是指材料在振动条件下,即在交 变应力(交变应变)作用下做出的力学响应, 即力学性能(模量、内耗)与温度、频率的关系。
E d 可以变成 d dt
E dt
0 E
当t 0时, 0上式积分.
t 0 1 et / 1 et / E
式中 , 是t 时的平衡形变.
E 蠕变过程的松弛时间, 有时称为推迟时间.
21
模型用途:模拟交联高聚物的蠕变过程.
当F作用到模型上时,由于粘壶的存在,弹簧不能立即被拉开, 只能随着粘壶慢慢被拉开,形变是逐渐发展的.外力除去,由于 弹簧的回复力,整个模型的形ห้องสมุดไป่ตู้也慢慢被回复.所以该过程反 映了蠕变过程中的一种形变—高弹形变
38
.WLF方程的应用意义 • 由于时温等效性,可以对不同温度下测定的结果进行换
算,从而得到一些实验上无法测定的结果。 • 例如在材料的实际使用中,常常提出其室温下使用寿命

高分子物理-第七章

高分子物理-第七章
交联:橡胶交联后,应力松弛大大地被抑制,而且 应力一般不会降低到零。其原因:由于交联的存在, 分子链间不会产生相对位移,高聚物不能产生塑性 形变。
和蠕变一样,交联是克服应力松弛的重要措施。
影响应力松弛的主要因素
7.1.3 滞后和内耗
1)概述
在实际使用中,高分子材料往往受到交变应力的 作用,即外力是周期性地随时间变化 (=0sinwt),例如滚动的轮胎、传动的皮带、 吸收震动的消音器等,研究这种交变应力下的力 学行为称为动态力学行为。
a.普弹形变:当高分子材料受到应力作用时,分 子内的键角和键长会瞬时发生改变。这种形变量很 小,称为普弹形变。
b.高弹形变
2
0
E2
1 et /t'
1 et /t'
当外力作用时间和链段运动所需的松弛时间有相
当数量级时,链段的热运动和链段间的相对滑移,
使蜷曲的分子链逐步伸展开来,此时形变成为高 弹形变,用2表示。 2较大,除去外力后, 2逐 步恢复。
E ' 0 sin wt E '' 0 cos wt
此时,模量表达式正好符合数学上复数形式
E* E ' iE ''
E* (t) :复数模量,它包括两部分①实数模量或储能模量
(t)
E ' ,反映了材料形变时能量储存的大小即回弹力;②虚数模量
或损耗模量 E '' ,反映材料形变时能量损耗大小。
W
2
d
0
2 0
0
sin
wtd
0
sinwt
0 0 sin
拉伸回缩中最大储存能量 Wst
1 2
0
0
cos

蠕变及应力松弛试验课件

蠕变及应力松弛试验课件

演变规律。
解释
02
结合材料的微观结构和物理机制,解释蠕变及应力松弛行为的
机理和影响因素。
应用
03
将分析结果应用于实际工程中,为材料选择、结构设计等提供
依据。
05
试验结果应用
材料性能评估
材料蠕变特性分析
通过蠕变试验,可以分析材料在不同 温度和应力条件下的长时间变形行为 ,从而评估材料的抗蠕变性能。
在试验过程中,试验人员应佩戴必要 的安全防护用品,如防护眼镜、手套 、实验服等,以防止样品飞溅、烫伤 等意外伤害。
THANKS
感谢观看
影响因素
温度、应力和材料类型是 影响蠕变行为的三大因素 。
蠕变试验方法
恒温蠕变
在恒定温度Байду номын сангаас,对材料施加恒定 的应力,并测量其变形量随时间
的变化。
温度扫描蠕变
在不同温度下进行蠕变试验,以研 究温度对材料蠕变行为的影响。
应力扫描蠕变
在不同应力水平下进行蠕变试验, 以研究应力对材料蠕变行为的影响 。
蠕变曲线分析
在试验过程中,应严格按照设备操作手册进行操作,避免因误操作导致设备损坏或 人员伤害。
在设备运行过程中,应保持设备的稳定性和安全性,避免因剧烈振动或移动导致设 备失稳或样品破裂。
试验样品安全存储与处理
试验样品应妥善存储,避免其 受到环境因素(如温度、湿度 )的影响,确保其性能稳定。
在处理样品时,应采取必要的 安全措施,如佩戴防护眼镜、 手套等,以防止样品飞溅或烫 伤等意外伤害。
应力松弛曲线
描述材料内部的应力随时间的变 化。
分析方法
对曲线进行积分或微分,得到松 弛时间和模量等参数。
应用

聚合物的粘弹性-第七章

聚合物的粘弹性-第七章

① 普弹形变ε1:
键长和键角发生变化而引起的,形变量很小,瞬间响应。
示意图
1
1
E1
t1
t2
t
σ:应力;E1:普弹形变模量
②高弹形变ε2: 链段运动使分子链逐渐伸展发生构象变化而引起 :
2
2
E2
(1 e t / )
t
t1 t2 τ :松弛时间,与链段运动的粘度η2和高弹模量E2有关, τ=η2/ E2。
2. 温度
高 链段运动很容易,应变几乎不滞后于应力的变化; 低
链段运动速度很慢,在应力变化的时间内形变来不 及发展,也无所谓滞后; Tg附近 链段既可以运动,但受到的粘滞阻力又较大,此时 滞后现象严重。
滞后现象发生的原因
链段在运动时要受到内摩擦阻力的作用。 内摩擦阻力越大,δ也就越大。
δ又称为力学损耗角。 为了方便常用tanδ来 表示内耗大小。
(t) o sint
(t) o sin(t )
相位差δ在0-π/2之间。
影响滞后现象的因素:
1.外力变化的频率 低 链段运动能跟得上外力的变化,滞后现象就很小; 高 链段根本来不及运动,高聚物就像一块刚硬的固体,滞
后现象也很小; 适中
链段既可以运动,但又跟不上应力的变化,才出现 较明显的滞后现象。
E′、E″及tgδ都是温度和频率的函数。 动态力学频率谱: 在一定T时,以lgE′、lgE″和tgδ对lgω作图 动态力学温度谱: 在一定频率时,以lgE′、lgE″和tgδ对T作图
当<<1/
运动单元完全跟得上外力作用的变化, E′与无关,E″和tgδ几乎为零
表现橡胶的高弹态。
当≈1/
运动单元运动,但又不能完全跟上外应力的变化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蠕变、应力松弛、滞后和内耗
弹 – 由于物体的弹性作用使之射出去。
弹簧 – 利用材料的弹性作用制得的零件,在外力 作用下能发生形变(伸长、缩短、弯曲、扭转 等),除去外力后又恢复原状。
粘 – 同黏:象糨糊或胶水等所具有的、能使
一个物质附着在另一个物体上的性质。
理想弹性固体
受到外力作用形变很小,符合胡克定律 =E
回复,形变直线下降
•通过构象变化,使熵变造成的形变回复 •分子链间质心位移是永久的,留了下来
3.不同聚合物的蠕变曲线:
①线性非结晶聚合物
玻璃态 1 蠕变量很小,工程材料,作结构 材料的Tg远远高于室温
高弹态 1+2
粘流态 1+2+3 存在永久形ε变 线性非晶
②理想交联聚合物(不存在粘流态)
高聚物
理想粘性体 理想弹性体
形变: 1+2
交联高聚物
t
二、应力松弛
1.定义:
在恒定的温度和形变不变的情况下,聚合物内部 应力随着时间的增长而逐渐衰减的现象。如钟表的 发条、松紧带、捆扎物体的软PVC丝。
2. 应力松弛的内因:其实应力松弛和蠕变是一个问题
的两个方面,都反映了高聚物内部分子运动的三种情况。 在外力作用下,高分子链段不得不顺着外力方向被迫舒展 ,因而产生内部应力,与外力相抗衡。但是,通过链段热 运动使有些缠结点散开以致分子链产生相对滑移,调整分 子构象,逐渐回复其蜷曲状态,内应力逐渐消除,与之相 平衡的外力当然也逐渐衰减,以维持恒定的形变。
软PVC丝
砝码
2.蠕变曲线和蠕变方程
2+3
1
1 2 3
a) 普弹形变ε1 b) 高弹形变ε2 c) 粘性流动ε3
t
线形非晶态聚合物在Tg以上单轴 拉伸的典型蠕变及回复曲线
a. 普弹形变
(t)
(t)
t
外力除去, 立即完全回复
t1
t2 t
图1 理想弹性体(瞬时蠕变)普弹形变
从分子运动的角度解释: 材料受到外力的作用,链内的 键长和键角立刻发生变化,产 生的形变很小,我们称它普弹 形变。

1
(t) 1 2 3
2+3 1
2




-t
(1e
)


t
3
E1 E2
3
t1
t2
t
•加力瞬间,键长、键角立即产生形变,形变直线 上升
•通过链段运动,构象变化,使形变增大 •分子链之间发生质心位移
Creep recovery 蠕变回复

1 2
3
0
t2
t
•撤力一瞬间,键长、键角等次级运动立即
0
E1
0 应力
E1 普弹形变模量
b. 高弹形变
(t)
链段运动
(t)
t
外力除去, 逐渐回复
(t)=
0 (t<t1)
(1 t/) 松弛时间
E e 2
=2/E2
0 (t→)
t1
t2 t
图2 理想高弹体推迟蠕变
E2-高弹模量 特点:高弹形变是逐渐回复的.
c.粘性流动
•。

Cross-linking
polymer
0et
Linear polymer
t
图8 应力松弛曲线
3. 应力松弛与温度的关系0玻璃态Fra bibliotek高弹态
粘流态 t
图9 不同温度下的应力松弛曲线
如果T很高(>>Tg),链运动摩擦阻力很小,应力很快松 弛掉了,所以观察不到。如常温下的橡胶 如果T很低(《 Tg),内摩擦阻力很大,链段运动能力差, 应力松弛慢,也观察不到。如常温下的塑料 只有在Tg温度附近的几十度的范围内应力松弛现象 比较明显。(链由蜷曲变为伸展,以消耗外力)
动态粘弹性 力下,应变滞后于应力变化.
(交变应力或 应变)
力学损耗(内耗): 的变化落后于的 变化,发生滞后现象,则每一个循环都
要消耗功,称为内耗.
一、蠕变
1. 定义
蠕变是在一定的温度和较小的恒定应力(拉力、扭 力或压力等)作用下,材料的形变随时间的增长而逐 渐增加的现象。如硬塑料的电缆、挂久的雨衣。 若除掉外力,形变随时间变化而减小---称为蠕变回复
高聚物粘弹性 The viscoelasticity of polymers
•高聚物材料表现出弹性和粘性的结合 •在实际形变过程中,粘性与弹性总是共存的 •聚合物受力时,应力同时依赖于应变和应变速 率,即具备固、液二性,其力学行为介于理想 弹性体和理想粘性体之间。
= const.
线性粘弹性:如果高聚物的粘弹性是由服从 虎克定律的理想固体的线性弹性行为和理 服从牛顿流动定律的理想液体的线性粘性 行为组合起来的。否则,则称为非线性粘弹 性。
一般认为,在小变形下,或低变形速率下, 高分子材料主要表现线性粘弹性
力学松弛或粘弹现象
聚合物的力学性质随时间变化的现象,叫力学松弛或 粘弹现象。
蠕变:固定和T, 随t增加而逐渐 增大
静态的粘弹性
(恒定应力或应变)
应力松弛:固定和T, 随t增加而逐
渐衰减
(粘弹性)
力学松弛
滞后现象:在一定温度和和交变应
受力时,应变随时间线性发展,外力去除后,应变
不能回复(不可逆)。


d
dt

t
t1 t2
粘弹性
材料在较小的外力作用下,弹性和粘性同时存在的力学 行为称为粘弹性。
其特征是应变落后于应力,即应变对应力的响应不是 瞬时完成的,需要通过一个弛豫过程。应力与应变的关 系与时间有关。 粘弹性材料力学性质与时间有关,具有力学松弛的特征。 实际上任何材料均同时显示弹性和粘性两种性质,只是 由于结构不同,粘弹性的显化程度不同,其中最典型的是 高分子材料。一些非晶体,有时甚至多晶体,在比较小的 应力时表现粘弹性现象。
特点:
受外力作用后,应力和应变之间呈线性关系 =E , 应力与应变随时保持同相位;
应变与t无关。受力时,应变瞬时发生达到平衡值,除 去外力,应变瞬时恢复(可逆弹性形变)。



E

t
t1
t2
理想粘性液体

符合牛顿流体的流动定律的流体


d
dt
特点:
受力作用后,应力与应变速率呈线性关系;
(t)
无化学交联的线性高聚物,发生分 子间的相对滑移,称为粘性流动.
(t)
t
不可回复
t1 t2
t
图3 理想粘性流动蠕变
(t)=
0 (t<t1)
0 3
t(t1

t
t2)
0 3
t2 (t

t2 )
3-----本体粘度
注:不可逆形变
当聚合物受力时,以上三种形变同时发生聚合 物的总形变方程:
相关文档
最新文档