蠕变、应力松弛、滞后和内耗讲解

合集下载

高分子物理名词解释

高分子物理名词解释

第二章名词解释1.凝聚态:根据物质的分子运动在宏观力学性能上的表现来区分为固体、液体、气体。

2.单分子链凝聚态:大分子特有现象,高分子最小单位。

3.内聚能:1mol凝聚体汽化时需要的能量,△E = CE =△HV-RT(△HV——摩尔蒸发热,RT——汽化时做膨胀功)4.晶胞:晶体结构中具有周期性排列的最小单位。

5.晶系:晶体按其几何形态的对称程度。

ler指数:是一种特殊的,以结晶学单胞三条棱为坐标系时确定的指数。

7.单晶:晶体的整体在三维方向上由同一空间格子组成。

8.球晶:浓溶液中析出或熔体中析出,在不存在应力的条件下,形成圆球形的晶体。

9.片晶厚度:结晶聚合物的长周期与结晶度的乘积。

10.结晶度:试样中结晶部分所占的质量分数或体积分数。

11.高分子链的缠结:高分子链之间形成物理交联点,构成网络结构,使分子链的运动受到周围分子的羁绊和限制。

12.聚合物液晶:一些物质的结晶结构受热熔融或被溶剂溶解后,表观上失去了固体物质的刚性,具有流动性,结构上仍保持有序结构,表现各向异性,成为固体-液体过渡状态。

13.溶致液晶:一种包含溶剂化合物在内的两种或多种化合物形成的液晶。

14.热致液晶:加热液晶物质时,形成的各向异性熔体。

15.液晶晶型:向列相(N相):完全没有平移有序手征性液晶(胆甾相,手征性近晶相)层状液晶(近晶A,近晶C )一维平移有序盘状液晶相(向列相ND)16.取向:在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列的结构取向度:f=1/2(3cos2θ-1)(θ:分子链主轴与取向方向之间的夹角,称为取向角)17.双折射:一条入射光线产生两条折射光线的现象。

18.相容性:共混物各组分彼此相互容纳,形成宏观均匀材料的能力。

19.多组分聚合物:多组分聚合物又称高分子合金,指该体系中存在两种或两种以上不同的聚合物组分,不论组分之间是否以化学键相互连接。

20.自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。

第六节-蠕变及应力松弛试验

第六节-蠕变及应力松弛试验

和应力松弛就愈明显
17
高分子材料分析与性能测试
第八节 疲劳试验
• 一块塑料片或细铁丝经过多次的弯折后会折断,这就 是材料的疲劳过程。
• 所有材料无论是合成的还是天然的都会受到疲劳现象 的影响。
• 80 %~90 %的设备使用损坏都是由疲劳引起的。
18
高分子材料分析与性能测试
一、概念
• 疲劳试验分为拉压、弯曲、扭转、冲击、组合应力 等试验方法 。
11
高分子材料分析与性能测试
杠杆式拉伸应力松弛仪
12
高分子材料分析与性能测试
工作原理
• 平衡重锤 1 的重量和位置是固定的,由可移动重锤 2 的 位置来调节,通过载荷杆 4 加在试样上的负荷。
• 在初始时间 t0 时,快速施加一负荷,即可移动重锤 2 达 某一位置,使试样产生一定的形变和初始的应力,且使 杠杆支点“ o ”两边的力矩相平衡,此时触点开关 3 为 开启状态。
7
高分子材料分析与性能测试
• 变形测量系统:在加载后,能随着加载时间的增加而 自动连续地侧定试样的形变。精度一般要求达到测定 形变的士 1 %。
• 加热系统:温度和湿度的控制装置,采用恒温恒湿箱。 能自动连续地记录箱内温度和湿度的装置。
• 夹具:要求保证加载轴线与试样纵向轴线相重合,升 高载荷时,试样和夹具不允许有任何位移。
• 测试标准 GB 11546-1989
• 1.试验设备试验
• 加载荷系统:恒载荷和变载荷装置
• 形变小的材料,采用恒载荷装置;
• 形变较大的材料,由于试样的横截 面积变化较大,因此其应力变化也 大,为了保持其应力恒定,应采用 变载荷的加载装置。
6
高分子材料分析与性能测试

高分子物理作业解答

高分子物理作业解答

高分子物理作业-2-答案聚合物的力学状态及转变1. 解释名词:(1)聚合物的力学状态及转变由于高分子链之间的作用力大于主链的价键力,所以聚合物只具有固态和液态力学状态。

随着温度的升高,分子热运动能量逐渐增加,当达到某一温度时,即可发生两相间的转变。

(2)松弛过程与松弛时间松弛过程:在一定温度和外场(力场、电场、磁场等)作用下,聚合物由一种平衡态通过分子运动过渡到另一种与外界条件相适应的、新的平衡态,这个过程是一个速度过程。

松弛时间τ是用来描述松弛快慢的物理理。

在高聚物的松弛曲线上,∆x t ()变到等于∆x o 的1/e 倍时所需要的时间,即松弛时间。

(3)自由体积与等自由体积状态 分子中未被占据的体积为自由体积;在玻璃态下,由于链段运动被冻结晶,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及其分布也将基本上维持固定。

因此,对任何高聚物,玻璃温度就是自由体积达到某一临界值的温度,在这临界值以下,已经没有足够的窨进行分子链的构象调整了。

因而高聚物的玻璃态可视为等自由体积状态。

(4)玻璃态与皮革态当非晶态高聚物在较低的温度下受到外力时,由于链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,高聚物受力变形是很小的,形变与受力和大小成正比,当外力除去后形变能立刻回复。

这种力学性质称为普弹性,非晶态高聚物处于具有普弹性的状态,称为玻璃态;部分结晶聚合物,存在玻璃化转变与高弹态,但由于晶区链段不能运动,此时玻璃化转变不再具有很大弹性的高弹态,而表现为具有一定高弹性、韧而硬的皮革态,即皮革态。

2. 试定性地绘出下列聚合物的形变—温度曲线(画在一张图上)1) 低分子玻璃态物质 2) 线性非晶态聚合物(1M )3) 线性非晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 4) 晶态聚合物(1M )5) 晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 6) 交联聚合物(交联度较小) 7) 交联聚合物(交联度较大)3. 判断下列聚合物(写出分子式)的Tg 的高低,阐述其理由:1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷 2) 聚氯乙烯、聚氯丁二烯、聚偏二氯乙烯、顺式1,4聚丁二烯 3) 聚乙烯、聚异丁烯、聚苯乙烯、聚乙烯基咔锉 4) 聚乙烯、聚丙烯、聚氯乙烯、聚丙烯腈5) 聚甲基乙烯基醚、聚乙基乙烯基醚、聚正丙基乙烯基醚、聚正丁基乙烯基醚1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷CH 2CH 2n聚乙烯CO C OO CH 2CH 2On聚对苯二甲酸乙二酯n聚苯Si CH 33On聚二甲基硅氧烷聚二甲基硅氧烷<聚乙烯<聚对苯二甲酸乙二酯<聚苯理由:当主链中引入苯基、联苯基、萘基和均苯甲酸二酰胺基等芳杂环以一,链上可以内旋转的单键比例相对减少,分子链的刚性增大,因此有利于玻璃化温度的提高。

材料力学性能名词解释部分

材料力学性能名词解释部分

力学性能指标及定义:脆性材料:弹性变形,然后断裂塑性材料:弹性变形,塑性变形低塑性变形材料:无颈缩高塑性材料:有颈缩弹性:是材料的可逆变形。

本质:晶体点阵内的原子具有抵抗相互分开、接近或剪切移动的性质。

弹性模量Ε:表明材料对弹性形变的抗力,代表了材料的刚度。

(斜率)弹性极限ζe:材料发生最大弹性形变时的应力值。

弹性比功W e:材料吸收变形功而又不发生永久变形的能力。

W e=1/2ζeεe=εe2/2Ε(面积)普弹形变(高分子):应力与应变的关系符合胡克定律,变形由分子链内部键长和键角发生变化产生。

高弹形变(高分子):分子链在外力作用下,原先卷曲的链沿受力方向逐渐伸展产生,伸展长度与应力不成线性关系。

弹性的不完整性:应变滞后于应力。

本质:组织的不均匀性,使材料受应力作用时各晶粒的应变不均匀或应变明显受时间的影响。

弹性后效:加载时应变落后于应力而和时间有关的现象称为正弹性后效;反之,卸载时应变落后于应力的现象称为反弹性后效。

弹性滞后:由于正反弹性后效使得应力-应变得到的封闭回线内耗:加载时消耗于材料的的变形功大于卸载时材料所放出的变形功,因而有部分变形功被材料所吸收,这被吸收的功为内耗。

(例子:①音响效果好的元件要求内耗小such as音叉、琴弦等②机件在运转时常伴有振动,需要良好的消振材料such as灰口铸铁)包申格效应:金属材料预先经少量塑性变形后再同向加载,弹性极限升高,反之降低的现象。

与位错运动所受阻力有关。

(例子:高速运转部件预先进行高速离心处理,有利于提高材料的抗变形能力。

)超弹性材料:材料在外力作用下产生远大于其弹性极限时的应变量,外力去除自动恢复其变形的现象。

脆性:弹性极限前断裂(断裂前不产生塑性变形的性质)韧性:断裂前单位体积材料所吸收的变性能和断裂能,即外力所作的功①弹性变形能②塑性变形能③断裂能塑性:材料在断裂前发生的永久型变形(不可逆变形)塑性变形:位错在外力的作用下发生滑移和孪生。

聚合物的黏弹现象及理解———蠕变及应力松弛概念解析

聚合物的黏弹现象及理解———蠕变及应力松弛概念解析

聚合物的黏弹现象及理解———蠕变及应力松弛概念解析李丽萍(东北林业大学理学院,黑龙江哈尔滨150040)摘要:针对《高分子物理》课程中黏弹现象难于理解,作者根据教学经验对聚合物的黏弹性进行解析,通过理论联系实际,让学生加深对黏弹现象的理解,对于提高学生对课程的整体认识,强化学生对课程的理解,取得了良好的教学效果。

关键词:黏弹性;蠕变;应力松弛中图分类号:G642文献标志码:A文章编号:1674-9324(2015)11-0206-02同一物体即可以是弹性的,也可以是黏性的,主要因环境温度或外力作用速率不同,在某些条件下主要表现为弹性,而在其他条件下主要表现黏性。

聚合物的这种特性称为黏弹性,对于黏性材料,应力不能保持恒定,而是以某一速率减小到零,其速率取决于施加的起始应力值和材料的性质。

这种现象称为应力松弛[1,2]。

在应力保持不变的情况下,材料可随时间继续变形,这种性能就是蠕变或流动,因此高分子材料具有黏弹性。

材料的黏弹性能主要表现在蠕变和应力松弛两个方面。

蠕变与力学松弛是材料在加载完成能够以后的力学反应,或衡量材料在使用过程中的尺寸稳定性[3,4],本文结合聚合物的分子运动,阐述聚合物的蠕变和应力松弛过程。

一、蠕变(Creep)1.蠕变概念解析。

蠕变,是在一定温度及应力下,固体材料缓慢永久性的移动或者变形的趋势。

即在较小的恒定外力作用下,应变随时间延长而慢慢增加的现象。

它的发生是低于材料屈服强度的应力长时间作用下,材料内部通过链段与网链的蠕动、变形、调整位置,逐步达到与外应力相平衡的过程。

它不同于塑性变形,塑性变形通常在应力超过弹性极限之后才出现,发生塑性形变时,微观结构相邻部分产生永久性位移,在外力去除后形变不能恢复,而蠕变只要应力的作用时间相当长,它在应力小于弹性极限时也能出现,当卸去载荷时,材料的变形部分地回复或完全地回复到起始状态。

由于高聚物既有弹性又有黏性,所以外力对他所做的功一部分以弹性能的形式储存起来,另一部分又以热的形式消耗掉。

高分子物理课后答案

高分子物理课后答案

第7章聚合物的粘弹性1.举例说明聚合物的蠕变、应力松弛、滞后和内耗现象。

为什么聚合物具有这些现象?这些现象对其的使用性能存在哪些利弊?2.简述温度和外力作用频率对聚合物内耗大小的影响。

画出聚合物的动态力学普示意图,举出两例说明谱图在研究聚合物结构与性能方面的应用。

3.指出Maxwell模型、Kelvin模型和四元件模型分别适宜于模拟哪一类型聚合物的那一种力学松弛过程?答:Maxwell模型适宜于模拟线形聚合物的应力松弛过程,Kelvin模型适宜于模拟交联聚合物的蠕变过程,四元件模型适宜于模拟线形聚合物的蠕变过程。

4.什么是时温等效原理?该原理在预测聚合物材料的长期使用性能方面和在聚合物加工过程中各有哪些指导意义?答:(1)升高温度与延长时间对分子运动是等效的,对聚合物的粘弹行为也是等效的,这就是时温等效原理。

(2)需要在室温条件下几年甚至上百年完成的应力松弛实验实际上是不能实现的,但可以在高温条件下短期内完成;或者需要在室温条件下几十万分之一秒或几百万分之一秒中完成的应力松弛实验,可以在低温条件下几个小时甚至几天内完成。

5.定量说明松弛时间的含意。

为什么说作用力的时间相当时,松弛现象才能被明显地观察到?答:(1)松弛时间是粘性系数和弹性系数的比值;(2)如果外加应力作用时间极短,材料中的粘性部分还来不及响应,观察到的是弹性应变。

反之,若应力作用的时间极长,弹性应变已经回复,观察到的仅是粘性流体贡献的应变,材料可考虑为一个简单的牛顿流体。

只有在适中的应力作用时间,材料的粘弹性才会呈现,应力随时间逐渐衰减到零,这个适中的时间正是松弛现象的内部时间尺度松弛时间τ。

6.简述聚合物粘弹理论的研究现状与展望。

答:略。

7.一某种聚合物材料作为两根管子接口法兰的密封垫圈,假设该材料的力学行为可以用Maxwell模型来描述。

已知垫圈压缩应变为0.2,初始模量为3e6N/m2,材料应力松弛时间为300d,管内流体的压力为0.3e6N/m2,试问多少天后接口处将发生泄露?答:208d。

名词解释

名词解释

一、 名词解释1、 织态结构:在聚合物中掺杂添加剂或其他杂质,或将性质不同的两种聚合物混合起来成为多组分复合材料,这种不同聚合物之间或聚合物与其他成分之间的堆砌排列称织态结构。

2、 玻璃化转变温度:聚合物从玻璃态到高弹态之间的转变称为玻璃化转变,对应的转变温度称为玻璃化转变温度,以Tg 表示。

3、 逐步聚合反应:逐步聚合反应反映大分子形成过程中的逐步性。

反应初期单体很快消失,形成二聚体、三聚体、四聚体等低聚物,随后这些低聚物间进行反应,相对分子质量随反应时间逐步增加。

在逐步聚合全过程中,体系由单体和相对分子质量递增的一系列中间产物所组成。

绝大数的缩聚反应属逐步聚合反应。

4、 凝胶点:体型缩聚反应的特点是当缩聚反应进行到一定反应程度时,反应体系的粘度突然增加,出现凝胶现象,产生既不溶解也不熔融的体型高聚物,此时的反应程度为凝胶点。

5、 粘弹性:粘弹性是高分子材料的重要性质之一,是指聚合物既具有粘性又具有弹性的性质,实质是聚合物的力学松弛行为。

6、 弹性模量:弹性模量=应力/应变 材料受力方式不同,对于理想的弹性固体,应力σ与应变ε成正比,即服从虎克定律:E=【σ/ε】ε→0 =【(F /Ao)/(△l/lo)】△l→0 式中:E为比例常数,称为弹性模量,或杨氏模量,简称模量,反应高聚物的硬度或刚性,E越大,刚性越大,越不易变形。

Ao是表面积;F是不断在改变的力;△l为系统厚度的改变值;lo是系统原有厚度。

7、 内耗:如果形变的变化落后于应力的变化,发生滞后损耗现象,则每次循环变化中要消耗功,称为内耗。

聚合物的内耗大小与聚合物本身的结构有关,同时还受温度的影响。

8、 蠕变:在一定温度和应力作用下,材料的形变随时间的延长而增加的现象称为蠕变。

一切集合物在形变时都有蠕变现象,蠕变和应力松弛一样,都是因为分子间的黏性阻力使形变和应力达到平衡需要一段时间,因此,蠕变是松弛现象的另一种表现形式。

9、 昙点:某些含聚氧乙烯基的非离子表面活性剂的溶解度开始随温度上升而加大,到某一温度后其溶解度急剧下降,使溶液变浑浊,甚至产生分层,但冷却后又可恢复澄明。

蠕变应力松弛相关介绍

蠕变应力松弛相关介绍

蠕变应力松弛相关介绍百若试验仪器服务范围:全系列电子萬能试验机、全系列电液伺服萬能试验机、全系列电液伺服压力试验机、全系列电液伺服疲劳试验机、应力腐蚀裂纹扩展速率试验机、应力腐蚀慢应变速率试验机、板材成形试验机、杯突试验机、紧固件横向振动疲劳试验机、多功能螺栓紧固分析系统、扭矩轴力联合试验机、松弛试验机、锚固试验机、扭转试验机、冲击试验机、压剪试验机、液压卧式拉力试验机、光缆成套试验设备等。

百若试验仪器就来说说蠕变应力松弛相关介绍蠕变定义:蠕变是在应力影响下,固体材料缓慢永久性的移动或者变形的趋势。

它的发生是低于材料屈服强度的应力长时间作用的结果。

这种变形的速率与材料性质、加载时间、加载温度和加载结构应力有关。

取决于加载应力和它的持续时间和环境温度,这种变形可能变得很大,以至于一些部件可能不再发挥它的作用。

阶段过程:1初步蠕变,形变率相对较大,但是随着应变的增加减慢。

2稳态蠕变,形变率达到一个最小值并接近常数,“蠕变应变率”就是指这一阶段的应变率。

3颈缩现象,应变率随着应变增大指数性的增长晶体蠕变(考虑金属)公式: Q m kTb d C e dt d εσ-=其中:ε是蠕变应变,C 是一个依赖于材料和特别蠕变机制的常数,m 和b 是依赖于蠕变机制的指数,Q 是蠕变机制的激活能,σ是加载应力,d 是材料的晶粒尺寸,k 是波尔兹曼常数,T 是绝对温度。

位错蠕变在相对于剪切模量的高应力条件下,蠕变是一个受位错控制的运动。

当应力加载在材料上时,由于滑移面中的位错移动而塑性变形发生。

位错蠕变中,self diffusion Q Q -=,46m =:,0b =。

因此位错蠕变强烈依赖于加载应力而不依赖于晶粒尺寸。

引入初始应力0σ,低于初始应力时无法测量。

这样,方程就写成0()Q m kT d C e dtεσσ-=-。

Nabarro-Herring 蠕变在N-H 蠕变中,原子通过晶格扩散,造成晶粒沿着应力轴伸长。

蠕变、应力松弛、滞后、内耗

蠕变、应力松弛、滞后、内耗

01聚合物蠕变蠕变在恒定温度、较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象,称为形变。

蠕变过程中包括三种形变:(1)瞬时普弹形变(虎克弹性)特征:施加应力,形变瞬时产生,除去外力,立即恢复。

(2)高弹形变特征:通过链段的运动逐渐展开,形变量大,且形变的发展与时间有关,恢复也是逐渐进行的。

(3)黏性形变——永久变形特征:黏性形变的发展与时间呈线性关系,外力除去后,不能恢复。

例如,软PVC丝悬挂一定重量的砝码,就会慢慢地伸长,解下砝码后,又会慢慢缩回去,这就是典型的蠕变现象。

对于工程塑料,要求蠕变越小越好,对于蠕变严重的材料,使用时需采取必要补救措施。

如硬PVC有良好的抗腐蚀性能,可用于加工化工管道、容器等设备,但它容易蠕变,使用时必须增加支架以防止蠕变.PFTE是塑料中摩擦系数最小的,由于其蠕变现象严重,所以不能用作机械零件,但却是很好的密封材料.为探究GFRP锚杆在循环荷载下的黏结锚固性能,在软岩地基边坡开展GFRP 锚杆现场拉拔试验,通过光纤光栅应变传感器测量技术进行研究。

结果表明:循环荷载作用下锚杆杆体与锚固体的黏结蜕化深度小于锚杆的有效锚固长度,黏结蜕化深度以上锚杆杆体与锚固体界面提供摩擦力,黏结蜕化深度以下提供黏聚力。

当锚固界面受到破坏时,黏聚力将失去作用。

锚杆同-锚固深度处循环荷载作用的次数越多,锚固界面的黏结蜕化现象越严重;不同锚固深度处循环荷载作用的次数越多,黏结蜕化现象反而越不明显。

图7为GFRP锚杆杆体应变时程曲线,表明不同循环荷载对锚杆杆体黏结蜕化作用的影响。

通过多变量控制下的GFRP锚杆静载和反复荷载试验发现:在静载和反复荷载试验下,GFRP锚杆的破坏形式均为杆体拔出破坏;在反复荷载作用下,较少的循环次数对GFRP筋与混凝土黏结强度和锚杆滑移量影响不明显,当在低应力水平、反复荷载循环次数较少时,GFRP锚杆黏结强度退化不显著,反而在一定程度上有所增加;而在高应力反复荷载作用下,GFRP筋与混凝土间的黏结强度降低,黏结性能退化比较明显。

高分子物理第8章第四课.

高分子物理第8章第四课.

• 3.借助于转换因子可以将在某一温度 下测定的力学数据,变成另一温度下 的力学数据,这就是时温等效原理。
• 4.实用意义
通过不同 温度下可以试验测得的力 学性质进行比较或换算,得到有些高 聚物实际上无法实测的结果(PE)
• 由实验曲线 迭合曲线
log E
T1
T2 T3
T4
T5 T6 T7
123
反映材料形变时内耗的程度(粘性)
E" tg
E'
滞后角 力学损耗因子
log E' log E"
tg
tg 损耗因子
E' 储能模量
log 0
E" 损耗模量 log
动态力学分析(DMA)
• 动态力学行为是指材料在振动条件下,即在交 变应力(交变应变)作用下做出的力学响应, 即力学性能(模量、内耗)与温度、频率的关系。
E d 可以变成 d dt
E dt
0 E
当t 0时, 0上式积分.
t 0 1 et / 1 et / E
式中 , 是t 时的平衡形变.
E 蠕变过程的松弛时间, 有时称为推迟时间.
21
模型用途:模拟交联高聚物的蠕变过程.
当F作用到模型上时,由于粘壶的存在,弹簧不能立即被拉开, 只能随着粘壶慢慢被拉开,形变是逐渐发展的.外力除去,由于 弹簧的回复力,整个模型的形ห้องสมุดไป่ตู้也慢慢被回复.所以该过程反 映了蠕变过程中的一种形变—高弹形变
38
.WLF方程的应用意义 • 由于时温等效性,可以对不同温度下测定的结果进行换
算,从而得到一些实验上无法测定的结果。 • 例如在材料的实际使用中,常常提出其室温下使用寿命

高分子物理-第七章

高分子物理-第七章
交联:橡胶交联后,应力松弛大大地被抑制,而且 应力一般不会降低到零。其原因:由于交联的存在, 分子链间不会产生相对位移,高聚物不能产生塑性 形变。
和蠕变一样,交联是克服应力松弛的重要措施。
影响应力松弛的主要因素
7.1.3 滞后和内耗
1)概述
在实际使用中,高分子材料往往受到交变应力的 作用,即外力是周期性地随时间变化 (=0sinwt),例如滚动的轮胎、传动的皮带、 吸收震动的消音器等,研究这种交变应力下的力 学行为称为动态力学行为。
a.普弹形变:当高分子材料受到应力作用时,分 子内的键角和键长会瞬时发生改变。这种形变量很 小,称为普弹形变。
b.高弹形变
2
0
E2
1 et /t'
1 et /t'
当外力作用时间和链段运动所需的松弛时间有相
当数量级时,链段的热运动和链段间的相对滑移,
使蜷曲的分子链逐步伸展开来,此时形变成为高 弹形变,用2表示。 2较大,除去外力后, 2逐 步恢复。
E ' 0 sin wt E '' 0 cos wt
此时,模量表达式正好符合数学上复数形式
E* E ' iE ''
E* (t) :复数模量,它包括两部分①实数模量或储能模量
(t)
E ' ,反映了材料形变时能量储存的大小即回弹力;②虚数模量
或损耗模量 E '' ,反映材料形变时能量损耗大小。
W
2
d
0
2 0
0
sin
wtd
0
sinwt
0 0 sin
拉伸回缩中最大储存能量 Wst
1 2
0
0
cos

蠕变及应力松弛试验课件

蠕变及应力松弛试验课件

演变规律。
解释
02
结合材料的微观结构和物理机制,解释蠕变及应力松弛行为的
机理和影响因素。
应用
03
将分析结果应用于实际工程中,为材料选择、结构设计等提供
依据。
05
试验结果应用
材料性能评估
材料蠕变特性分析
通过蠕变试验,可以分析材料在不同 温度和应力条件下的长时间变形行为 ,从而评估材料的抗蠕变性能。
在试验过程中,试验人员应佩戴必要 的安全防护用品,如防护眼镜、手套 、实验服等,以防止样品飞溅、烫伤 等意外伤害。
THANKS
感谢观看
影响因素
温度、应力和材料类型是 影响蠕变行为的三大因素 。
蠕变试验方法
恒温蠕变
在恒定温度Байду номын сангаас,对材料施加恒定 的应力,并测量其变形量随时间
的变化。
温度扫描蠕变
在不同温度下进行蠕变试验,以研 究温度对材料蠕变行为的影响。
应力扫描蠕变
在不同应力水平下进行蠕变试验, 以研究应力对材料蠕变行为的影响 。
蠕变曲线分析
在试验过程中,应严格按照设备操作手册进行操作,避免因误操作导致设备损坏或 人员伤害。
在设备运行过程中,应保持设备的稳定性和安全性,避免因剧烈振动或移动导致设 备失稳或样品破裂。
试验样品安全存储与处理
试验样品应妥善存储,避免其 受到环境因素(如温度、湿度 )的影响,确保其性能稳定。
在处理样品时,应采取必要的 安全措施,如佩戴防护眼镜、 手套等,以防止样品飞溅或烫 伤等意外伤害。
应力松弛曲线
描述材料内部的应力随时间的变 化。
分析方法
对曲线进行积分或微分,得到松 弛时间和模量等参数。
应用

3 岩石粘弹塑性理论

3 岩石粘弹塑性理论

图4-1-6 经历10天蠕变及瞬时压缩破坏的应力应变曲线
表4-1-1 蠕变后压缩破坏试验的抗压强度
蠕变不同时间后的单轴抗压强度(试验压 应力0.88倍抗压强度)
单轴抗压强度
R) (MPa
c
2天 99.6 95.3 101
4天 105 106
10天 98.1 98.8
高孔隙水压条件下岩石的蠕变特性
围压对于岩石流变的影响
影响岩石蠕变的因素
岩性(内部微结构、矿物) 应力水平和应力状态
含水量情况及孔隙水压力
温度
节理面蠕变试验
分为三个阶段:第Ⅰ阶段蠕变速率逐渐减缓; 第Ⅱ阶段蠕变速率保持为常数值不变;第Ⅲ阶 段蠕变速率急剧增大,直至试样节理面呈明显 滑移破坏。
灌浆节理面剪切蠕变曲线
1 岩石和结构面蠕变试验
试验设备
蠕变加载方式
(1)单级加载
蠕变加载方式
(2)分级加载
蠕变加载方式
(3) 循环加载
陈氏加载法 陈氏加载法
Boltzmann 叠加原理 过去某时刻加上的荷载到任一时
刻t引起的变形等于各个互不相干 的荷载到时刻t引起的变形总和。
岩石蠕变变化过程
式中, J (t ) 为蠕变柔量。
当 t 时
E1 E2 ( ) 0 E1 E2
回复:
首先产生

0
E
的瞬时变形,然后随时间回复,
1
其方程与Kelvin 体的回复过程一样。
(t ) e E
0
( t t1) E 2 /
e
tE 2 /

松弛方程:
t 0 时,施加常应变 0 ,本构方程为:

弹簧的蠕变和松弛

弹簧的蠕变和松弛

弹簧的蠕变和松弛蠕变和弹簧松弛当弹簧两端施加一定的拉应力(低于弹性极限)时,弹簧会产生一定的伸长量,但随着时间的推移,伸长量会缓慢增加,称为蠕变。

钢丝的蠕变通常由缓慢到加速再到断裂。

常温下钢丝的蠕变不明显,但随着温度的升高会加速。

工程使用弹簧在一定温度下一段时间内产生一定程度的变形。

增加应力以定义蠕变极限。

例如,200002.0s / 10000 = A表示弹簧在200℃下工作1小时,导致0.002%的变形。

需要一个(MPa)的应力。

当弹簧发生一定的变形时,会产生一定的应力,但随着时间的推移,应力会逐渐减小,称为应力松弛。

例如,要用螺栓紧固一个零件,你需要转动螺母使螺栓变长,产生一些弹性变形和相应的压缩应力。

在较高的温度下,经过一段时间,螺栓位置虽然没有改变,但压应力逐渐减小,称为应力松弛。

随着时间的推移,弛豫是由弹性变形的零件转变为塑性变形而引起的。

松弛率:经过一段时间后,应力降低值与原始应力之比为(Ro- rn / Ro) 100%。

残余应力:一般为105几小时后残余应力Rr值越高,材料的抗松弛性能越好。

蠕变和松弛是弹簧稳定性的指标。

其共同的特点是随着温度的升高和时间的延长,性能变得更加明显。

蠕变性能的影响因素有:①钢中气体和夹杂物的含量较低,而蠕变很小。

②粒度:粗晶粒钢具有较高的抗蠕变性。

③合金元素的固溶强化效果:少量的各种合金可以提高抗蠕变性。

④分散降水在第二阶段可以提高抗蠕变性。

松弛是弹性滞后的一种反映。

主要取决于钢的化学成分和微观结构。

当然,即使你了解弹簧在这个产品中的重要作用,如果弹簧的质量不好,影响也会很大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a.化学结构:刚性链滞后现象小,柔性链滞后现象大.
b.温度:当不变的情况下,T很高滞后几乎不出现,温 度很低,也无滞后.在Tg附近的温度下,链段既可运动 又不太容易,此刻滞后现象严重。
c. : 外力作用频率低时,链段的运动跟的上外力 的 变化,滞后现象很小.
外力作用频率不太高时,链段可以运动,但是跟不上外 力的变化,表现出明显的滞后现象. 外力作用频率很高时,链段根本来不及运动,聚合 物好像一块刚性的材料,滞后很小
蠕变、应力松弛、滞后和内耗

– 由于物体的弹性作用使之射出去。
弹簧 – 利用材料的弹性作用制得的零件,在外力 作用下能发生形变(伸长、缩短、弯曲、扭转 等),除去外力后又恢复原状。

– 同黏:象糨糊或胶水等所具有的、能使 一个物质附着在另一个物体上的性质。
理想弹性固体
受到外力作用形变很小,符合胡克定律 =E
图3 理想粘性流动蠕变
当聚合物受力时,以上三种形变同时发生聚合 物的总形变方程:

1
2 + 3
1
t1 t2
2 3
t
( t ) 1 2 3 -t
(1 e ) t E1 E2 3
•加力瞬间,键长、键角立即产生形变,形变直线 上升 •通过链段运动,构象变化,使形变增大 •分子链之间发生质心位移
一般认为,在小变形下,或低变形速率下,
高分子材料主要表现线性粘弹性
力学松弛或粘弹现象
聚合物的力学性质随时间变化的现象,叫力学松弛或 粘弹现象。
蠕变:固定和T, 随t增加而逐渐 增大
静态的粘弹性 (粘弹性) 力学松弛 动态粘弹性
(交变应力或 应变)
(恒定应力或应变)
应力松弛:固定和T, 随t增加而逐 渐衰减
一个拉伸-回缩循环中,链构象的改变完全回复不损耗功, 所损耗的功都用于克服链段运动的内摩擦阻力转化为热。
内耗的情况可以从橡胶拉伸—回缩的应力应变曲线上看出
σ σ0
拉伸
拉伸曲线下面积为外力对橡胶所作的拉伸功
回缩曲线下面积为橡胶对外力所作的回缩功
回缩 滞后圈
面积之差
ε
损耗的功
ε1 ε0 ε2
硫化橡胶拉伸—回缩应力应变曲线
Creep recovery 蠕变回复

1 2 3
0 t2
t
•撤力一瞬间,键长、键角等次级运动立即 回复,形变直线下降 •通过构象变化,使熵变造成的形变回复
•分子链间质心位移是永久的,留了下来
3.不同聚合物的蠕变曲线:
①线性非结晶聚合物
玻璃态 1 蠕变量很小,工程材料,作结构 材料的Tg远远高于室温 高弹态 1+2

2
t
t 0 sin t t 0 sin t - 0 某处所受的最大应力 外力变化的角频率 在受到正弦力的作用时应变落后于应力的相位差
t 0sint
对弹性材料:( t) 0 sin wt形变与时间t无关,与应力同相位
• 。

Cross-linking polymer
0e
t
Linear polymer
t
图8 应力松弛曲线
3. 应力松弛与温度的关系
0 玻璃态
高弹态
粘流态
图9 不同温度下的应力松弛曲线
t
如果T很高(>>Tg),链运动摩擦阻力很小,应力很快松 弛掉了,所以观察不到。如常温下的橡胶 如果T很低(《 Tg),内摩擦阻力很大,链段运动能力差, 应力松弛慢,也观察不到。如常温下的塑料 只有在Tg温度附近的几十度的范围内应力松弛现象 比较明显。(链由蜷曲变为伸展,以消耗外力)
滞后现象:在一定温度和和交变应 力下,应变滞后于应力变化. 力学损耗(内耗): 的变化落后于的 变化,发生滞后现象,则每一个循环都 要消耗功,称为内耗.
一、蠕变
1. 定义
蠕变是在一定的温度和较小的恒定应力(拉力、扭 力或压力等)作用下,材料的形变随时间的增长而逐 渐增加的现象。如硬塑料的电缆、挂久的雨衣。 若除掉外力,形变随时间变化而减小---称为蠕变回复
0
E1
(t)
外力除去, 立即完全回复

图1 理想弹性体(瞬时蠕变)普弹形变
t1
t2
t
0 应力
E1 普弹形变模量
b. 高弹形变
(t)
链段运动
(t)
t
外力除去, 逐渐回复
0 (t<t1) t/
(t)=
E
( 1 e ) 松弛时间
2
=2/E2
0 (t→) E2-高弹模量 特点:高弹形变是逐渐回复的.
软PVC丝
砝码
2.蠕变曲线和蠕变方程

1
2+3
1
a) 普弹形变ε1
2 3
t
b) 高弹形变ε2
c) 粘性流动ε3
线形非晶态聚合物在Tg以上单轴 拉伸的典型蠕变及回复曲线
a. 普弹形变
(t)
从分子运动的角度解释: 材料受到外力的作用,链内的 键长和键角立刻发生变化,产 生的形变很小,我们称它普弹 形变。 t
受力作用后,应力与应变速率呈线性关系;
受力时,应变随时间线性发展,外力去除后,应变 不能回复(不可逆)。


t

d dt

t1
t2
粘弹性
材料在较小的外力作用下,弹性和粘性同时存在的力学
行为称为粘弹性。 其特征是应变落后于应力,即应变对应力的响应不是 瞬时完成的,需要通过一个弛豫过程。应力与应变的关 系与时间有关。 粘弹性材料力学性质与时间有关,具有力学松弛的特征。 实际上任何材料均同时显示弹性和粘性两种性质,只是 由于结构不同,粘弹性的显化程度不同,其中最典型的是 高分子材料。一些非晶体,有时甚至多晶体,在比较小的 应力时表现粘弹性现象。
三、动态粘弹性(滞后、内耗)
在正弦或其它周期性变化的外力作用下,聚合物粘 弹性的表现。
高聚物作为结构材料在实际应用时,往往受到交变 力的作用。如轮胎、传送皮带、吸收震动的消音器等, 研究这种交变应力下的力学行为称为动态力学行为。
研究动态力学行为的实际意义?
用作结构材料的聚合物许多是在交变的力场中使 用 , 因此必须掌握作用力频率对材料使用性能的 影响。 如外力的作用频率从 0→100~1000周,对橡胶 的力学性能相当于温度降低 20~40℃ ,那么在 50℃ 还保持高弹性的橡胶,到 -20℃ 就变的脆而 硬了。
理想弹性行为:应力和应变是单值、瞬时的,弹性变形时 材料储存弹性能,弹性恢复时材料释放弹性能,循环变形 过程没有能量损耗。 内耗的情况可以从橡胶拉伸—回缩的应力应变曲线上看出 σ
拉伸
σ0
回缩
滞后圈 ε1 ε0 ε2
ε
硫化橡胶拉伸—回缩应力应变曲线
拉伸时外力对体系所做的功: 一方面用来改变链段的构象 ( 产生形变 ), 另一方面提供链段 运动时克服内摩擦阻力所需要 的能量。 回缩时体系对外做的功:一方 面使伸展的分子链重新蜷曲起 来回复到原来的状态,另一方 面用于克服链段间的内摩擦力
ε 粘流态 1+2+3 存在永久形变
②理想交联聚合物(不存在粘流态) 形变: 1+2
线性非晶 高聚物
理想粘性体 理想弹性体
交联高聚物
t
二、应力松弛
1.定义:
在恒定的温度和形变不变的情况下,聚合物内部 应力随着时间的增长而逐渐衰减的现象。如钟表的 发条、松紧带、捆扎物体的软PVC丝。
2. 应力松弛的内因:其实应力松弛和蠕变是一个问题
塑料的玻璃化温度在动态条件下 , 比静态来的高 , 就是说在动态条件下工作的塑料零件要比静态时更 耐热,因此不能依据静态下的实验数据来估计聚合物 制品在动态条件下的性能。
在周期性变化的作用力中,最简单而最容易处理的是 正弦变化的应力。 0
t
例:汽车速度60公里/小时 轮胎某处受300次/分 的周期应力作用
对牛顿粘性材料:( t) 0 sin( wt )应变落后于应力 2 2
对polymer——粘弹材料的力学响应介于弹性与粘性之间,
应变落后于应力一个相位角:
0 /2
(t ) 0 sin(wt )
δ—力学损耗角(形变落后于应力变化的相位角)
1.滞后现象
2.力学损耗(内耗)
① 定义: 定义1:如果形变的变化跟不上应力的变化 ,发生 滞后现象, 则每一次循环变化就会有功的消耗 ( 热 能), 作为热损耗掉的能量与最大储存能量之比称 为力学损耗,也叫内耗。 定义 2 :在交变应力作用下,由于力学滞后或者 力学阻尼而使机械功转变成热的现象。
② 内耗产生的原因:
①定义:聚合物在交变应力的作用下,形变落后于应力 变化的现象。 ②产生原因: 链段运动时受内摩擦阻力作用,当外力变化时,链段 的运动还跟不上外力的变化,而形变是由链段运动 产生的,所以形变落后于应力,产生一个位相差,越 大说明链段运动越困难,形变越跟不上力的变化。 δ越大,说明滞后现象越严重
③ 滞后现象与哪些因素有关?
特点:
受外力作用后,应力和应变之间呈线性关系 =E , 应力与应变随时保持同相位; 应变与t无关。受力时,应变瞬时发生达到平衡值,除 去外力,应变瞬时恢复(可逆弹性形变)。ຫໍສະໝຸດ E
t1 t2

t
理想粘性液体
d 符合牛顿流体的流动定律的流体 dt
特点:
t1
t2
t
图2 理想高弹体推迟蠕变
c.粘性流动
(t ) 无化学交联的线性高聚物,发生分 子间的相对滑移,称为粘性流动.
(t)
相关文档
最新文档