二氧化碳气体保护焊机工作原理教案资料
二氧化碳气体保护焊原理学习
二氧化碳气体保护焊教学目的:通过对二氧化碳气体保护焊的学习,使学生掌握二氧化碳气体保护的焊接方法。
重点:掌握二氧化碳焊的相关基础知识及电流和电压的匹配。
难点:CO2焊冶金原理。
教学内容:1、CO2气体保护焊的概念及特点。
2、CO2气体保护焊的冶金原理及焊接材料的选择。
3、焊机及二次回路接线、焊接工艺参数。
一、概述:CO2气体保护焊是利用CO2作为保护气体的气体保护电弧焊,简称CO2焊。
CO2 =CO﹢1/2 O2 --Q 放热反应上式反应有利于对熔池的冷却作用二、特点1、优点:①生产效率高和节省能量。
②焊接成本低。
③焊接变形小。
④对油、锈的敏感度较低。
⑤焊缝中含氢量少,提高了低合金高强度钢抗冷裂纹的能力。
⑥电弧可见性好,短路过渡可用于全位置焊接。
2、缺点:①设备复杂,易出现故障。
②抗风能力差及弧光较强。
三、CO2焊冶金原理在进行焊接时,电弧空间同时存在CO2、CO、O2和O原子等几种气体,其中CO不与液态金属发生任何反应,而CO2、O2、O原子却能与液态金属发生如下反应:Fe+CO2→FeO+CO(进入大气中)Fe+O →FeO (进入熔渣中)C+O →CO (进入大气中)CO气孔问题:由上述反应式可知,CO2和O2 对Fe和C都具有氧化作用,生成的FeO一部分进入渣中,另一部分进入液态金属中,这时FeO 能够被液态金属中的C所还原,反应式为:FeO+C →Fe+CO这时所生成的CO一部分通过沸腾散发到大气中去,另一部分则来不及逸出,滞留在焊缝中形成气孔。
针对上述冶金反应,为了解决CO气孔问题,需使用焊丝中加入含Si 和Mn的低碳钢焊丝,这时熔池中的FeO将被Si、Mn还原:2FeO+Si →2Fe+SiO2 (进入渣中)FeO+Mn →Fe+MnO (进入渣中)反应物SiO2、MnO它们将生成FeO和Mn的硅酸盐浮出熔渣表面,另一方面,液态金属含C量较高,易产生CO气孔,所以应降低焊丝中的含C 量,通常不超过0.1%。
二氧化碳气体保护焊原理
二氧化碳气体保护焊原理
二氧化碳气体保护焊是一种常用的焊接方法,它使用二氧化碳气体作为焊接过程中的保护气体,以保护焊接区域免受氧气和空气中其他杂质的污染和氧化。
二氧化碳气体通过形成一个保护气氛,防止焊接区域发生氧化反应,从而提供良好的焊接质量和强度。
二氧化碳气体保护焊的原理基于以下两个方面:
1. 保护氧化作用:焊接区域处于高温状态时,氧气会与熔融金属发生氧化反应,导致氧化物的生成。
这会降低焊接接头的质量和强度。
通过向焊接区域注入二氧化碳气体,可以形成一个保护气氛,将氧气与焊接区域隔绝,减少氧气的接触,从而减少氧化反应的发生。
2. 冷却效应:二氧化碳气体在喷射出来的同时,也会起到冷却的效果。
焊接区域的温度会被减低,有助于金属快速凝固和固化,从而在焊缝形成可靠的连接。
此外,二氧化碳气体的冷却效应还有助于控制焊接速度和焊接热输入,使焊后的接头具有更好的力学性能。
总之,二氧化碳气体保护焊通过提供保护气氛和冷却效应,实现了焊接区域的保护和控制,从而提高了焊接的质量和强度。
这种焊接方法被广泛应用于许多工业领域,如汽车制造、船舶建造和钢结构等。
CO2气体保护焊培训课件
适用范围广
CO2气体保护焊可焊接 低碳钢、低合金钢、不 锈钢等多种金属材料。
操作简便
CO2气体保护焊设备简 单,操作方便,易于实
现自动化和机械化。
适用范围与局限性
适用范围
适用于低碳钢、低合金钢等黑色 金属材料的焊接,尤其适用于中 厚板结构件的焊接。
局限性
对于有色金属、高合金钢等材料 的焊接有一定困难;在室外作业 或野外环境下使用时,需采取防 风措施以保证焊接质量。
CHAPTER 05
质量检查与缺陷分析
外观质量检查标准
焊缝成形
焊缝应呈现均匀、平滑的外观,无明显的凹 凸不平或波纹状。
咬边与烧穿
咬边深度不应超过允许范围,烧穿现象应得 到控制。
焊缝宽度与余高
焊缝宽度应满足设计要求,余高应适中,不 应过高或过低。
表面气孔与夹渣
焊缝表面不应有气孔、夹渣等缺陷。
内部缺陷产生原因及预防措施
收弧处理
填满弧坑:在收弧前适当减慢焊接速 度,填满弧坑,避免产生裂纹和缩孔
。
熄弧处理:在填满弧坑后,将焊枪逐 渐离开工件表面,同时减小焊接电流 直至熄弧。
接头方法
热接法:在收弧处重新引燃电弧进行 焊接,适用于薄板及要求不高的焊缝 。
冷接法:在收弧处打磨出斜坡或凹槽 后重新焊接,适用于厚板及要求较高 的焊缝。
匹配原则
为了实现良好的焊缝成形和减少飞溅,需要合理匹配电流和电压。通常,根据 焊丝直径和焊接位置选择合适的电流,然后调整电压至最佳匹配状态。
送丝速度与角度调整
送丝速度
送丝速度是影响焊接过程稳定性和焊缝质量的重要因素。送 丝速度过快可能导致焊丝熔化不良、飞溅增加;送丝速度过 慢则可能使电弧不稳定、焊缝成形不良。因此,需要根据焊 接电流和电压合理调整送丝速度。
二氧化碳保护焊机原理及安全操作规程范本(2篇)
二氧化碳保护焊机原理及安全操作规程范本一、二氧化碳保护焊机原理二氧化碳保护焊机是利用电弧的高温和高能量,通过钨极和焊丝间的电弧击打工件表面,使工件和焊丝熔化,形成焊缝的焊接方法。
其原理可以归纳为以下几个步骤:1. 电源供电:二氧化碳保护焊机通过电源输入交流电,并经过整流、滤波等控制,将电能转化为适合于焊接的直流电。
2. 电弧产生:经过控制电流和电压的调节,焊机产生一定强度的电弧。
电弧是一种以高温和高能量为特征的放电现象,其高温可以熔化工件和焊丝,形成焊缝。
3. 二氧化碳气体保护:为了防止电弧与空气中的氧气反应,造成氧化和其他不良反应,焊机通过喷射二氧化碳气体,形成保护气罩,将焊接区域与空气隔离,并有效地保护焊缝。
4. 熔化和熔池形成:通过电弧的瞬间高温和高能量作用下,焊丝和工件的表面被加热至熔点以上,产生熔化状态。
同时,由于电流的作用,焊丝会逐渐消耗,不断输入新的焊丝。
5. 熔池冷却和凝固:当焊丝和工件表面熔化后,组成了一定大小的熔池。
在焊接完成后,焊机停止供电,熔池会逐渐冷却并凝固,形成焊缝。
二、二氧化碳保护焊机安全操作规程范本为了确保焊工和周围人员的安全,并保证焊接质量,使用二氧化碳保护焊机时应遵循以下操作规程:1. 穿戴个人防护装备:在进行焊接工作前,焊工应穿戴适当的个人防护装备,包括焊接手套、防护面罩、防护眼镜、耳塞等,以防止火花、飞溅物和噪音的伤害。
2. 通风良好的场所:焊接过程中产生的烟尘和废气对健康有害,应在通风良好的场所进行焊接操作,以减少对呼吸系统的影响。
3. 检查设备和工具:在开始焊接之前,焊工应检查二氧化碳保护焊机、焊接电缆、电极头、气体罐等设备和工具的完好性和正常工作状态,确保安全性和可靠性。
4. 正确连接电缆和气源:焊工应确保焊机的电缆和气源正确连接,保证电流和气体供应的稳定性。
同时,要避免电缆和气管的交叉和绊倒。
5. 注意电流和电压设置:根据焊接材料和焊缝的要求,焊工应正确设置焊机的电流和电压。
二氧化碳气体保护电弧焊
焊工工艺教案12 二氧化碳气体保护电弧焊教学目的:了解其他焊接方法教学要求:掌握其他焊接方法教学重点:二氧化碳气体保护电弧焊教学难点:二氧化碳气体保护电弧焊导入:二氧化碳气体保护电弧焊概述讲课内容:一、二氧化碳气体保护电弧焊概述二氧化碳气体保护电弧焊是利用CO2作为保护气体的气体保护电弧焊,简称CO2焊。
CO2焊的基本过程如图3-1所示,在电源作用下,焊丝与焊件间产生焊接地弧,由于电弧的高温使金属局部熔化形成熔池。
同时,气瓶中送出的CO2气体,以一定的压力和流量从焊枪的喷嘴中喷出,形成保护气流,使焊接区与空气隔离,随着焊枪的移动,熔池金属凝固后形成焊缝。
焊接时,CO2气流可排开焊接区的空气,防止空气对熔化金属的有害作用,但在电弧高温作用下,CO2能进行分解,以致使电弧气氛具有强烈的氧化性,从而使金属元素氧化烧损,降低焊缝的机械性能,还可能变为产生气孔及飞溅的主要原因。
因此,必须采取有效的脱氧措施。
目前是通过在焊丝中加一定的硅,锰等脱氧元素来解决这一问题的。
CO2焊时的,加一问题是飞溅较多,隙避免氧化外,一般还采用手特性的直流电源,反接法,采用小电流,低电压等措施来减小飞溅。
为了更好地解决飞溅问题,进一步提高焊接质量,采用药芯焊丝,或采用混合气体保护焊接等。
CO2焊要用焊接低碳钢,低合金钢。
它具有很多优点,例如电弧热量集中,焊接变形小,焊缝质量好,可用较大的电流密度,生产率高,CO2气体价格便宜,焊接成本低,以及明弧,操作简便等,因而在国内外得到越来越广泛的应用。
CO2焊根据所用焊丝的不同,可分为细丝CO2焊,和粗CO2焊。
CO2焊焊接时,可用自动或半自动的分式,目前应泛名用的是半自动CO2焊。
二、半自动CO2焊1、设备简介,半自动CO2气体保护焊的设备简图。
(1)设备简介,为了保证稳定焊接,一般采用手的外特性的直流电源。
(2)供气系统(3)送丝系统(4)控制系统(5)焊枪2、主要焊接工艺参数(1)焊丝直径(2)焊接电流及电弧电压(3)焊丝伸出长度(4)焊接速度(5)气体流量3、操作要点(1)引电弧与熄弧(2)熄弧(3)平焊(4)立焊(5)横焊(6)仰焊(7)管子焊接复习小结:CO2碳焊作业:操作要点。
二保焊焊机培训教材
二氧化碳气体保护焊机培训教材1第一部分:二氧化碳气保焊机机概述1、二氧化碳气体保护焊发展动态二氧化碳气体保护焊是50年代发展起来的一种新的焊接技术。
半个世纪来,它已发展成为一种重要的熔焊方法。
广泛应用于汽车工业,工程机械制造业,造船业,机车制造业,电梯制造业,锅炉压力容器制造业,各种金属结构和金属加工机械的生产。
二氧化碳气体保护焊焊接质量好,成本低,操作简便,取代大部分手工电弧焊和埋弧焊,已成定局。
二氧化碳气体保护焊装在机器手或机器人上很容易实现数控焊接,将成为二十一世纪初的主要焊接方法。
目前二氧化碳气体保护焊,使用的保护气体,分CO2和CO2+Ar两种。
使用的焊丝主要是锰硅合金焊丝,超低碳合金焊丝及药芯焊丝。
焊丝主要规格有:0.5 0.8 1.0 1.2 等。
2◆2、特点◆1.焊接成本低——其成本只有埋弧焊和手工电弧焊的40~50%。
◆2.生产效率高——其生产率是手工电弧焊的1~4倍。
◆3.操作简便——明弧,对工件厚度不限,可进行全位置焊接而且可以向下焊接。
◆4.焊缝抗裂性能高——焊缝低氢且含氮量也较少。
◆5.焊后变形较小——角变形为千分之五,不平度只有千分之三。
◆6.焊接飞溅小——当采用超低碳合金焊丝或药芯焊丝,或在CO2中加入Ar,都可以降低焊接飞溅。
3分:二氧化碳气体保护焊焊材4(一)CO 2气体1.CO 2气体的性质纯CO 2气体是无色,略带有酸味的气体。
密度为本1.97kg/m3,比空气重。
在常温下把CO 2气体加压至5~7Mpa 时变为液体。
常温下液态CO 2比较轻。
在0℃,0.1Mpa 时,1kg 的液态CO 2可产生509L 的CO 2气体。
2.瓶装CO2气体采用40L 标准钢瓶,可灌入25kg 液态的CO 2,约占钢瓶的80%,基余20%的空间充满了CO 2气体。
在0℃时保饱各气压为3.63Mpa ;20℃时保饱各气压为5.72Mpa ;30℃时保饱各气压为7.48 Mpa ,因此,CO 2气瓶要防止烈日暴晒或靠近热源,以免发生爆炸。
二氧化碳气体保护焊接操作技术
二氧化碳气体保护焊接操作技术一、引言二氧化碳气体保护焊接是一种高效、低成本的焊接方法,广泛应用于制造业和维修行业。
该技术利用二氧化碳气体保护熔融的金属免受空气的干扰,从而实现高质量的焊接效果。
本文将详细介绍二氧化碳气体保护焊接的原理、操作方法、工艺参数以及安全注意事项。
二、二氧化碳气体保护焊接原理二氧化碳气体保护焊接的原理是利用二氧化碳气体的保护作用,将熔融的金属与空气隔离,从而防止金属氧化。
焊接过程中,电弧加热金属,使其熔化成为液态。
在液态金属表面形成一层二氧化碳气体薄膜,阻止空气与液态金属接触,从而实现高质量的焊接。
三、焊接操作方法1.准备焊机、焊丝和保护气体,检查设备是否正常工作。
2.根据焊接材料和厚度选择合适的电流、电压和焊接速度。
3.清理焊接区域,确保没有杂质和油污。
4.将焊丝送入焊接区域,调整焊枪角度和位置。
5.启动焊机,点燃电弧,开始焊接。
6.保持稳定的焊接速度和送丝速度,确保焊缝质量。
7.完成焊接后,关闭焊机,清理工作区域。
四、焊接工艺参数在二氧化碳气体保护焊接过程中,以下工艺参数是影响焊接质量的关键因素:1.电流:电流大小直接影响焊接熔深和焊接速度。
根据焊丝直径、母材厚度和焊接速度等因素选择合适的电流值。
2.电压:电压主要影响电弧长度和焊接稳定性。
根据实际情况调整电压,以保证电弧稳定燃烧。
3.焊接速度:焊接速度决定了焊缝宽度和熔深。
较快的焊接速度会导致焊缝窄而浅,反之则会增宽焊缝并加深熔深。
4.送丝速度:送丝速度决定了焊丝的熔化速度,进而影响焊接效率和焊缝质量。
根据电流和电压调整送丝速度,以保持稳定的熔化速度。
5.保护气体流量:保护气体流量应足以形成稳定的气体保护层,防止空气与熔融金属接触。
根据焊接电流和电压调整气体流量。
6.干伸长度:干伸长度是指焊丝伸出喷嘴的长度。
过长的干伸长度会导致气体保护效果减弱,过短则可能阻塞焊丝。
根据实际操作调整干伸长度,以保持合适的送丝角度。
7.喷嘴距离:喷嘴距离指喷嘴与焊接表面的距离。
CO2气体保护焊培训资料
CO2气体保护焊培训资料随着现代工业的发展,焊接技术在制造业中扮演着至关重要的角色。
CO2气体保护焊作为一种常用的焊接方法,不仅具有高效、高质量的特点,还能够适应各种不同材料的焊接需求。
本文将为大家介绍CO2气体保护焊的原理、应用领域以及培训资料。
一、CO2气体保护焊的原理CO2气体保护焊是一种利用CO2气体作为保护气体的焊接方法。
在焊接过程中,通过将CO2气体注入焊接区域,形成一个保护层,防止空气中的氧气和水分进入焊接区域,从而避免氧化和腐蚀的问题。
同时,CO2气体还能够提供足够的热量,使焊接区域达到所需的温度,从而实现焊接。
二、CO2气体保护焊的应用领域CO2气体保护焊广泛应用于各个行业,特别是金属制造业。
它适用于焊接各种金属材料,如碳钢、不锈钢、铝合金等。
在汽车制造、船舶建造、建筑结构、石油化工等领域,CO2气体保护焊都扮演着重要的角色。
它不仅能够提高焊接速度和效率,还能够保证焊接接头的质量和强度。
三、CO2气体保护焊的培训资料CO2气体保护焊的培训资料包括理论知识和实践操作两部分。
在理论知识方面,培训资料应包括CO2气体保护焊的原理、设备和工具的使用、焊接参数的选择等内容。
学员需要了解CO2气体保护焊的基本原理和操作方法,掌握焊接过程中的注意事项和安全措施。
在实践操作方面,培训资料应提供焊接实验的步骤和要求,以及常见焊接缺陷的识别和处理方法。
学员需要通过实际操作来熟悉焊接设备的使用,掌握焊接技术的要领。
同时,培训资料还可以提供一些实际案例和示范视频,帮助学员更好地理解和应用CO2气体保护焊技术。
除了理论知识和实践操作,培训资料还可以包括一些相关的参考书籍、学术论文和行业标准。
这些资料可以帮助学员深入了解CO2气体保护焊的发展历程和应用前景,提高其专业素养和创新能力。
总结起来,CO2气体保护焊作为一种重要的焊接方法,在现代制造业中具有广泛的应用前景。
通过系统的培训资料,学员可以全面了解CO2气体保护焊的原理和应用,掌握焊接技术的要领,提高工作效率和质量。
任务9 二氧化碳气体保护焊
课题9 二氧化碳气体保护焊【教学目的】通过本课题的学习,了解它的工作原理、安装与调整,适用范围。
熟练掌握薄板及中厚板各种位置的焊接操作方法。
【重点和难点】焊接工艺参数的选择、焊丝的安装、飞溅、气孔及焊缝成型的控制【教学内容】1. 二氧化碳气体保护焊安全操作规程2.基本操作练习3.平焊操作练习【教学过程】Ⅰ、基础知识讲解1.二氧化碳气体保护焊安全操作规程(1)保证工作环境有良好的通风由于CO2气体保护焊是以CO2作为保护气体,在高温下有大量的CO2气体将发生分解,生成CO以及产生大量的烟尘。
CO极易和人体血液中的血红蛋白结合,造成人体缺氧。
当空气中只有很少量的CO时,会使人感到身体不适、头痛,而当CO的含量超过一定范围会造成人呼吸困难、昏迷等,严重时甚至引起死亡。
如果空气中CO2气体浓度超过一定的范围,也会引起上述的反应。
这就要求焊接工作环境应有良好的通风条件,在不能进行通风的局部空间施焊时,应佩戴能供给新鲜氧气的面具及氧气瓶。
(2)注意选用容量恰当的电源、电源开关、熔断器及辅助设备,以满足高负载率持续工作的要求。
(3)采用必要的防止触电措施与良好的隔离防护装置和自动断电装置;焊接设备必须保护接地或接零并经常进行检查和维修。
(4)采用必要的防火措施。
由于金属飞溅引起火灾的危险性比其他焊接方法大,要求在焊接作业的周围采取可靠的隔离、遮蔽或防止火花飞溅的措施;焊工应有完善的劳动防护用具,防止人体灼伤。
(5)由于CO2气体保护焊比普通埋弧电弧焊的弧光更强,紫外线辐射更强烈,应选用颜色更深的滤光片。
(6)采用CO2气体电热预热器时,电压应低于36v,外壳要可靠接地。
(7)由于CO2是以高压液态盛装在气瓶中,要防止CO2气瓶直接受热,气瓶不能靠近热源,也要防止剧烈振动。
(8)加强个人防护。
戴好面罩、手套,穿好工作服、工作鞋。
(9当焊丝送入导电嘴后,不允许将手指放在焊枪的末端来检查焊丝送出情况;也不允许将焊枪放在耳边来试探保护气体的流动情况。
二氧化碳气体保护焊的工作原理
二氧化碳气体保护焊的工作原理
二氧化碳气体保护焊是一种常见的焊接技术,其工作原理是利用二氧化碳气体的特性来保护焊接区域,从而达到焊接的效果。
在二氧化碳气体保护焊中,焊接区域被包围在一个气体环境中,这个环境通常由二氧化碳和其他惰性气体组成。
这个环境能够保护焊接区域免受空气中的氧、氮等元素的影响,从而防止氧化、腐蚀等问题的发生。
二氧化碳气体保护焊的工作原理可以分为两个方面:一是保护焊接区域,二是提供热量。
保护焊接区域
在焊接过程中,焊接区域会受到来自空气中的氧、氮等元素的影响,这些元素会导致焊接区域的氧化、腐蚀等问题。
而二氧化碳气体则可以起到保护作用,它能够将空气中的这些元素隔离开来,从而保护焊接区域。
二氧化碳气体保护焊中,二氧化碳会在焊接过程中被加热并分解成一氧化碳和氧气。
这些分解产物会与空气中的其他元素发生反应,形成一层保护层,将焊接区域隔离开来。
这个保护层能够防止空气中的元素进入焊接区域,从而避免了氧化、腐蚀等问题的发生。
提供热量
在焊接过程中,需要提供足够的热量来使金属材料熔化并进行连接。
二氧化碳气体保护焊中,热量主要来自于电弧。
当电弧通过金属材料时,会产生高温,使金属材料熔化并形成连接。
在二氧化碳气体保护焊中,电弧产生的热量同时也会加热周围的二氧化碳气体。
这样,二氧化碳气体就可以提供更多的热量来加快金属材料的熔化速度,并使连接更加牢固。
总结
二氧化碳气体保护焊是一种常见的焊接技术,其工作原理是利用二氧化碳气体的特性来保护焊接区域,并提供足够的热量来使金属材料熔化并进行连接。
通过这种方式,可以达到高质量、高效率的焊接效果。
二氧化碳保护焊机原理及安全操作规程
二氧化碳保护焊机原理及安全操作规程(一)二氧化碳保护焊机原理二氧化碳气体保护电弧焊(简称CO2焊)的保护气体是二氧化碳(有时采纳CO2+O2的混合气体)。
由于二氧化碳气体的热物理性能的特别影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采纳短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。
但如采纳优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。
由于所用保护气体价格低廉,采纳短经过渡时焊缝成形优良,加上使用含脱氧剂的焊丝即可获得无内部缺陷的优质质量焊接接头。
因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。
二氧化碳焊设备由弧焊电源、控制箱、送丝机构、焊炬及供气系统组成。
自动CO2焊设备还配有行车小车或悬臂梁等,而送丝机构及焊炬均安装在小车上或悬臂梁的机头上。
大电流CO2焊设备还配有水冷系统。
(二)二氧化碳保护焊机安全操作规程1.操作工开机前必须先检查电源线及各操作按钮是否安全可靠,然后通电、通气,检查气体压力是否在规定范围内。
2.接好焊接回路,焊机采纳反极性接法,负极接工件,正极与焊枪连接。
3.检查气路,二氧化碳经高压预热,经减压阀与焊枪连接,各连接处不同意有漏气现象。
4.焊丝盘装在送丝机构上,焊丝经导丝咀、送丝轮、送丝咀进入弹簧软管然后压紧送丝轮。
送丝金属外壳不得与地线相接触。
5.合上电源开关,将预示开关打开,观察电压表,调节电压转换开关,从左至右,电压从小到大,看电压是否正常(注:不得带载转换)。
6.松开预示开关,按下送丝开关,调节送丝电位器,观察送丝电路是否正常。
8.依据焊接厚度和焊缝空间位置,确定焊接规范参数。
9.引弧试焊,观察电流、电压表之数值,观察焊缝和飞溅状况,调节各参数至最正确值,即可正式施焊。
10.使用过程中,应随时检查喷咀、导电咀是否牢固、堵塞、变形。
11.点焊工在进行操作时,必须配有防护面罩及焊工专用手套。
二氧化碳保护焊机原理及安全操作规程模版
二氧化碳保护焊机原理及安全操作规程模版二氧化碳(CO2)保护焊机原理及安全操作规程模版1. 引言1.1 本文旨在介绍二氧化碳保护焊机的原理和安全操作规程,以确保焊接操作的安全和高效进行。
了解并掌握这些内容对操作人员至关重要。
2. 二氧化碳保护焊机原理2.1 二氧化碳保护焊机是一种常用的电弧焊接设备,它主要采用二氧化碳气体作为焊接过程中的保护气体,以防止焊缝处熔融金属受到空气中氧气和水蒸气的氧化和腐蚀。
2.2 二氧化碳气体在焊接过程中通过喷射枪形成保护气氛,包围焊缝和电弧,形成稳定和连续的气体屏障,保护焊接过程中的熔融池。
2.3 二氧化碳保护焊机通常具有电源、电焊机、选择器、气源部分等组成。
通过电源提供所需的电能,通过电焊机将电能转化为焊接电弧,并通过选择器调节电流,同时通过气源提供足够的二氧化碳气体。
3. 二氧化碳保护焊机安全操作规程3.1 装配工作区3.1.1 确保焊接区域干燥、通风良好,并远离易燃和易爆物品。
应确保工作区域设有足够的灭火设备。
3.1.2 焊接设备和气源应放置在稳定的平台上,确保其不会倾斜或移动。
3.1.3 焊接区应设置合适的围栏或警示标志,以防止他人进入,并提醒其他工作人员注意安全。
3.2 操作人员准备3.2.1 操作人员应穿戴合适的个人防护装备,包括防火衣、防护手套、护目镜和焊接面罩等。
3.2.2 操作人员应清理焊接表面,确保没有油脂、氧化物、尘埃或其他污染物。
3.2.3 确保焊机及其相关设备处于正常工作状态,电源和气源连接稳固可靠。
3.3 焊接操作3.3.1 操作人员应熟悉焊接机的使用说明书,了解各部件的功能和操作方法。
3.3.2 操作人员应根据焊接要求选择合适的电流、电压和气体流量,并进行相应的调节。
3.3.3 操作人员应保持正确的姿势和动作,确保焊接电弧和保护气流正常工作。
3.3.4 在焊接过程中,操作人员应密切关注焊接区域,避免触碰热金属表面,以免烫伤。
3.3.5 焊接操作完成后,操作人员应关闭焊机电源和气源,将设备归位并清理焊接区域,确保安全和整洁。
co2气体保护焊教案
co2气体保护焊教案篇一:co2焊、平焊教案理论实习一体化授课课题教案篇二:co2气体保护焊平焊实习教案第1页篇三:二氧化碳气体保护焊-项目教学法教案二氧化碳气体保护焊项目教学法电气工程系焊接教研室摘要:在新课程改革理念指导下,项目教学法在我国已经有了广泛的应用和发展,各大职业教育院校开始陆续采用项目教学法来培养学生的实践动手能力、社会能力和其他关键能力,进一步为培养创新性人才奠定基础。
关键字:项目教学;案例;制作流程;合作;验收;一、项目目标(一)知识与能力目标1.掌握二氧化碳的焊接工艺特点。
2.熟悉半自动二氧化碳焊焊接设备与材料。
3.能合理地选择焊接工艺参数。
(二)过程与方法目标1、通过教师及同学的帮助,还可以借助一些资料及多媒体的帮助来体会和感受实际工作中二氧化碳气体保护焊接的一般工作程序。
2、掌握半自动二氧化碳气体保护焊一般操作要领。
3、学会解决实际问题的过程和方法,培养学生综合处理实际问题的能力。
4、锻炼学生运用自己掌握的知识去解决问题并且运用知识分析、讨论、协作去发现问题、分析问题、解决问题,提高学生的综合技能。
(三)教育情感与价值观目标培养学生的情感、价值观:培养与提高学生实际动手能力,以及与其他人合作交流的能力,加强团队意识和合作意识。
二、项目重点1.掌握二氧化碳气体保护焊焊接工艺参数的选择。
2.使学生了解完成一个项目的全部程序。
3.运用自己所掌握的知识解决实际问题。
三、项目难点1.运用掌握的知识来解决实际问题。
2.各工位团结协作完成整个项目。
3.借助资料及多媒体的帮助结合实际的创新能力。
四、教学方法项目教学法五、教学过程引出项目分析、计划、调研、汇报、讨论分析、师生总结制定解决问题方案项目实施分组实际操作完成任务项目验收作品展示、互评互学、教师点评、并提出更高要求,需求方点评,需求方验收是否满足需求,按企业标准对学生各个环节点评提出需求六、项目要求让学生更好地了二氧化碳气体保护焊的工艺特点及操作技能。
第11章二氧化碳气体保护焊机工作原理
第十一章二氧化碳气体保护焊机工作原理第一节二氧化碳气体保护焊机的特点与一般要求一、二氧化碳气体保护焊机的一般结构图二氧化碳气体保护焊即熔化极惰性气体保护焊,指用金属熔化极作电极,惰性气体(CO2)作焊接方法,简称MIG。
相对于其它弧焊机,MIG焊机添加了送丝结构及相应的送丝控制电路,在焊接过程中实现了半自动化,不但提高了效率,也减少了损耗。
焊接过程中使用廉价的CO2气体作保护,使得起弧容易,焊接成本低而效果好。
而且,送丝速度、输出电压可调节,可使两者达到良好匹配,提高了焊接质量,适用于各类焊接。
MIG机的送丝方式一般有三种:推丝式、拉丝式、推拉结合式,不同的送丝方式对送丝的软管要求各不相同。
对于推丝式送丝软管一般在2.5米左右,而推拉结合式的送丝软管可达15米,为了保正送丝稳定,相应的送丝电机和送丝控制电路都要求严格。
二、MIG焊的特点1、工作效率高:CO2的电弧穿透力强、熔深池大、焊丝熔化率高、熔敷速度快、,工作效率比手工弧焊高1~3倍;2、焊接成本低:CO2气体是工厂的副产品,来源广、价格低。
其成本只有埋弧焊和手工焊的40%~50%左右。
3、能耗低:相同条件下,MIG焊与手弧焊相比,前者消耗的电能约为后者的40%~70%。
4、适用范围广:MIG焊能焊接任何位置,薄板可焊致电1mm,最厚几乎不受限制。
而且焊接薄板时,较氩气焊速度快、变形小。
5、抗锈能力强:焊缝含氩量低,抗裂性好。
6、焊后无需清渣,因是阴弧,便于监视和控制,便于实现自动化。
三、MIG焊机的一般要求1、MIG焊机的焊接过程①起始时,焊丝由送丝机送出,接触工件;②焊丝与工件短路,产生大电流,使得焊丝顶端熔化;③焊丝与工件间形成电弧;④焊丝送出,电弧变短;⑤焊丝再次接触工件。
如此周而复始。
2、MIG焊机的一般要求在焊接过程中,电弧不断地燃弧、短路、重新引弧,燃弧如此周而复始,从而使得弧焊电源经常在负载短路,空截三态间转换,因此,要获得良好的引弧,燃弧和熔滴过渡状态,必须对电源的动特性提出如下要求:①焊接电压可调,以适应不同焊接需求;②最大电流限制,即有截流功能,避免因短路、干扰而引起的大电流损坏机器,而电流正常后,又能正常工作;③适合的电流上升、下降速度,以保证电源负载状态变化,而不影响电源稳定和焊接质量;④满足送丝电机的供电需求;⑤平稳可调的送丝速度,以满足不同焊接需求,保证焊接质量;⑥满足其它焊接要求,如手开关控制,焊接电流、电压显示,2T/4T功能,反烧时间调节,焊丝选择,完善的指示与保护系统等等。
二氧化碳气体保护
二氧化碳气体保护焊教学目的:通过对二氧化碳气体保护焊的学习,使学生掌握二氧化碳气体保护的焊接方法。
重点:掌握二氧化碳焊的相关基础知识及电流和电压的匹配。
难点:CO2焊冶金原理。
教学内容:1、CO2气体保护焊的概念及特点。
2、CO2气体保护焊的冶金原理及焊接材料的选择。
3、焊机及二次回路接线、焊接工艺参数。
一、概述:CO2气体保护焊是利用CO2作为保护气体的气体保护电弧焊,简称CO2焊。
CO2 =CO﹢1/2 O2 --Q 放热反应上式反应有利于对熔池的冷却作用二、特点1、优点:①生产效率高和节省能量。
②焊接成本低。
③焊接变形小。
④对油、锈的敏感度较低。
⑤焊缝中含氢量少,提高了低合金高强度钢抗冷裂纹的能力。
⑥电弧可见性好,短路过渡可用于全位置焊接。
2、缺点:①设备复杂,易出现故障。
②抗风能力差及弧光较强。
三、CO2焊冶金原理在进行焊接时,电弧空间同时存在CO2、CO、O2和O原子等几种气体,其中CO不与液态金属发生任何反应,而CO2、O2、O原子却能与液态金属发生如下反应:Fe+CO2→FeO+CO(进入大气中)Fe+O →FeO (进入熔渣中)C+O →CO (进入大气中)CO气孔问题:由上述反应式可知,CO2和O2 对Fe和C都具有氧化作用,生成的FeO一部分进入渣中,另一部分进入液态金属中,这时FeO 能够被液态金属中的C所还原,反应式为:FeO+C →Fe+CO这时所生成的CO一部分通过沸腾散发到大气中去,另一部分则来不及逸出,滞留在焊缝中形成气孔。
针对上述冶金反应,为了解决CO气孔问题,需使用焊丝中加入含Si 和Mn的低碳钢焊丝,这时熔池中的FeO将被Si、Mn还原:2FeO+Si →2Fe+SiO2 (进入渣中)FeO+Mn →Fe+MnO (进入渣中)反应物SiO2、MnO它们将生成FeO和Mn的硅酸盐浮出熔渣表面,另一方面,液态金属含C量较高,易产生CO气孔,所以应降低焊丝中的含C 量,通常不超过%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章二氧化碳气体保护焊机工作原理第一节二氧化碳气体保护焊机的特点与一般要求一、二氧化碳气体保护焊机的一般结构图二氧化碳气体保护焊即熔化极惰性气体保护焊,指用金属熔化极作电极,惰性气体(CO2)作焊接方法,简称MIG。
相对于其它弧焊机,MIG焊机添加了送丝结构及相应的送丝控制电路,在焊接过程中实现了半自动化,不但提高了效率,也减少了损耗。
焊接过程中使用廉价的CO2气体作保护,使得起弧容易,焊接成本低而效果好。
而且,送丝速度、输出电压可调节,可使两者达到良好匹配,提高了焊接质量,适用于各类焊接。
MIG机的送丝方式一般有三种:推丝式、拉丝式、推拉结合式,不同的送丝方式对送丝的软管要求各不相同。
对于推丝式送丝软管一般在2.5米左右,而推拉结合式的送丝软管可达15米,为了保正送丝稳定,相应的送丝电机和送丝控制电路都要求严格。
二、MIG焊的特点1、工作效率高:CO2的电弧穿透力强、熔深池大、焊丝熔化率高、熔敷速度快、,工作效率比手工弧焊高1~3倍;2、焊接成本低:CO2气体是工厂的副产品,来源广、价格低。
其成本只有埋弧焊和手工焊的40%~50%左右。
3、能耗低:相同条件下,MIG焊与手弧焊相比,前者消耗的电能约为后者的40%~70%。
4、适用范围广:MIG焊能焊接任何位置,薄板可焊致电1mm,最厚几乎不受限制。
而且焊接薄板时,较氩气焊速度快、变形小。
5、抗锈能力强:焊缝含氩量低,抗裂性好。
6、焊后无需清渣,因是阴弧,便于监视和控制,便于实现自动化。
三、MIG焊机的一般要求1、MIG焊机的焊接过程①起始时,焊丝由送丝机送出,接触工件;②焊丝与工件短路,产生大电流,使得焊丝顶端熔化;③焊丝与工件间形成电弧;④焊丝送出,电弧变短;⑤焊丝再次接触工件。
如此周而复始。
2、MIG焊机的一般要求在焊接过程中,电弧不断地燃弧、短路、重新引弧,燃弧如此周而复始,从而使得弧焊电源经常在负载短路,空截三态间转换,因此,要获得良好的引弧,燃弧和熔滴过渡状态,必须对电源的动特性提出如下要求:①焊接电压可调,以适应不同焊接需求;②最大电流限制,即有截流功能,避免因短路、干扰而引起的大电流损坏机器,而电流正常后,又能正常工作;③适合的电流上升、下降速度,以保证电源负载状态变化,而不影响电源稳定和焊接质量;④满足送丝电机的供电需求;⑤平稳可调的送丝速度,以满足不同焊接需求,保证焊接质量;⑥满足其它焊接要求,如手开关控制,焊接电流、电压显示,2T/4T功能,反烧时间调节,焊丝选择,完善的指示与保护系统等等。
3、MIG焊电源的外特性曲线由于MIG焊接电源的负载状态不断地在负载、短路、空截三态间转换(其输出电压、电流特性曲线如图10.1),为了得到适宜的输出和良好的焊接效果,采用了具有图11.2的外特性的焊接电源。
图10.1 图10.2采用恒速送丝配合如图10.2的平台型外特性电源的控制系流,有以下优点:①弧长变化时引起较大的电流变化,因而电弧自调节作用强,而且短路电流大,引弧容易;②可对焊接电压和焊接电流单独加以调节。
通过改变占空比调节电压,改变送丝速度来调节电流,两者间相互影响小;③焊接电压基本不受焊丝伸出长度变化的影响;④有利于防止焊丝回烧和粘丝。
因为电弧回烧时,随着电弧拉长,电弧电流很快减小,使得电弧在来回烧到导电嘴前已熄灭,焊丝粘丝时,平特性电源有足够大的短路电流使粘接处爆开,从而可避免粘丝。
第二节MIG焊机控制板电路工作原理一、他激式辅助电源工作原理1、3843集成脉宽调制器工作原理:通常采用脉宽调制器调节脉宽,以达到调节输出电压的目的;反之,通过反馈的方式,可以把对输出电压的采样信号反馈到脉宽,调制器中,利用脉宽调制器的特性控制开关电源的开关,从而达到稳定输出的脉宽。
3843集成脉宽调制器是一种单端输出电路控制型电路,其内部结构框图如图10.3所示:工作原理:①供电:电源由7脚输入,在施密特触发器的控制下,电源电压大于16V时,芯片工作,低于10V时关闭。
6V的启动、关闭的差值电压可有效防止电路在阀值电压附近工作时振荡。
输入端设置了一个34V的齐纳稳压管,保证其内部电路绝对在34V以下工作,防止高压损坏。
通常,从高压输入端用电阻分压后供给7脚。
②振荡信号的产生:其振荡器的工作频率由4脚外接的电阻、电容值决定,由8脚供给振荡的电源。
通常,在4脚与地间接电容,4脚与8脚间接电阻,其振荡频率5=1/T=1/(tc+td)(tc、td分别为电容充放电时间)③输出控制:输出信号的控制由误差放大器、电流比较器、锁存器完成。
分述如下:误差放大器:其同相输入端接内部+2.5V基准电压,反相输入端接受外控制信号。
输出端通常接补偿R、C回路,R、C回路接到反相输入端,以控制广大器闭环增益,并起到稳定的作用。
电流比较器:用于电流感应和限制,防止过大电流损坏外部电路,通常,在3脚处接一采样信号(可通过电阻接地把外部电路电流转为电压信号),其与误差放大器的输出电压经两个二极管降压后所得的电压进行比较。
锁存器:加入锁存器可以保证输出端在每一振荡周期内仅出现一个单控制脉冲,防止了噪声干扰和开关管的超功耗。
由图可知,当电流比较器输出高电平时,锁存器复位,关闭输出(与非门输出低电平、三极管截止),至下一个时钟脉冲中又将锁存器位置,输出开启(高电平)。
④脉宽调制:3843脉宽调制器的6脚外接开关器件,当开关器件流过的电流改变(因负载变化)时,3脚所采样到的电压信号也随之改变,通过电流比较器,就能改变输出脉冲宽度,从而调节开关管导通时间,即占空比。
2、他激式开关电源工作原理:图10.4为他激式开关电源原理图:图10.4工作原理:(1)充能:主电源开关闭合后,电源经变压器T的初级线圈N1供电给功率开关管Q1的漏极。
同时,UC3843集成PWM的7脚也获得电源电压经分压后(R1、R2、R3分压),大于16V的电压,芯片工作,6脚输出幅值为12V的脉冲,使得开关管Q1导通。
此时,电源给N1充电,电能转化为磁能储存于变压器中。
(2)开关管断开:3843的6脚输出脉冲的频率由内部电路的振荡频率(由C6和R8决定),经一定时间,第一个高电平结束,转为输出低电平,使开关管截止。
(3)放能:开关管Q1截止,由于电感(线圈N1)的续流作用,N1继续给电容C8和Q1的漏电容cds充电。
此时,在N1上的电压方向为上负下正,而N2上的感应电动势方向为上正下负,二极管D4导通,给负载供电并向C10充电。
由于稳压管D5的稳压钳住作用,使得N1、N2上的电压不会太高,而N1上的电压也不会因电感特性(续流)而产生尖锋而损坏电路。
(4)振荡:变压器初级线圈在向负截供电的同时也给电容C8、cds充电。
当电容两端的电压大于N1上的电压时,电容反向向电感供电,能量由电容向电感和电源转移,等到两者的端电压的大小再发生变化时,电感向电容充能,如此反复,形成正弦振荡(阻尼振荡)。
而且,每当电容向电感充电时,N1线圈都通过N2向负载供电并各电容C10充电。
(5)稳压输出:在N1向N2供能时,负载从变压器中得到能量,当N2上的感应电动势反向(上负下正)时,电容C10向负载供电,从而,在负载上得到稳定的电压供给。
(6)开关管导通,再次充能:在3843的输出脉冲控制下,开关管Q1再次导通,回复到初始状态。
如此周而复始,负载得到持续的稳定的能量供给。
(7)稳压:当负载变化时,辅助电源(他激式开关电源)的输出电压、电流都将发生变化。
此时,3843芯片2脚采样到的电压信号(通过N1和N3采样)以及3脚的电平值(输出电流反映到N1上的电流在R12而形成的压降)也随之改变,从而,3843内部的电流比较器输出值也发生改变,由此而改变了6脚的输出脉宽。
例如:当负载变大时,电流变小,使得3843内部的电流比较器输出低电平,使锁存器锁存,降低占空比,开关关断时间长,使得振荡次数加大,负载获得的能量变大,保证了负载的需求。
(8)过压、过流保护:如果输入电压过高,在开关导通时,在N2上感应到的感应电动势过高,使得D6(27V)稳压管被击穿,光耦U2动作,触发可控硅VS,可控硅阴阳两极导能,拉低3843的7脚电位,芯片停止工作。
如果因漏感作用干扰或不正常输入使得开关管漏源电流过大,此时,在R12上形成的压降也变大,3843内部的电流比较器的同相输入端(3脚)电位变高,当大于1V时,电流比较器输出翻转,变为高电平,使得锁存器锁住,芯片输出低电平,关闭开关管,从而保护了功率开关管。
(9)辅助电路:线圈N3及D2、C2、R5组成一个滤波电路,吸收因电感作用而产生的电流尖锋(当N1电流方向改变时,由于电感续流和漏感的作用,会产生尖锋)避免开关管造成误动作,D1、C1及R4组成的电路也具有同样的功效。
线圈N4、D7、D8、R15、R16组成的电路具有电网补偿的作用。
接上一定的控制电路,可以控制因电网波动而引起辅助电源的输出值。
其输出与整机电路的给定值叠加,通过反馈的形式,可以控制输出值,从而避免因输入波动而改变电流的输出值。
在输出端接有7812集成稳压器件,可以轻易得到Q2的直流稳压电,以满足不同负载的需求。
(10)特征波形:当负载变化时,3843的输出脉冲的脉宽、电流比较器的同相输入信号,开关管漏极波形都随着改变,反应了电路对输出变化的应变能力和调整能力。
当负载变大时,脉冲变窄,开关管的导通时间变短,则线圈N1与电容C8、cds间的振荡次数变多,这样,负载获得能量补充的次数也变多,一周期内获得能量变大。
当负载变小时,脉冲变宽,开关管导能野变长,线圈N1所获得的能量虽然加大,但其供给负载的变小。
这样,在负载的输入端,就能得到稳定的电压供给。
而且,开关管的控制脉冲的脉宽与输出的波动有良好的线性关系,所以,电路对负载的反应灵敏,线性调整好。
此种辅助电源因输出电流较大、功率在,适用于大功率的机器。
第三节送丝机构一、送丝控制功能的一般要求MIG焊机采用自动送丝的焊接方式,其要求:1、焊丝的送出速度可调,以满足不同的环境、人为要求;2、送丝速度平稳,以达到良好的焊接效果;3、尽可能短的送丝停止时间,即急刹车功能;另外:送丝控制与开关控制是同步的,为了方便控制,在送丝板电路中,包含了手开关控制电路,MIG焊机要求手开关具有:①灵敏的送丝起动、刹车控制;②适宜的输出电流延时、封波控制;③灵敏、可靠、适宜的通断气体控制。
二、送丝机构控制电路工作原理1、TL494脉宽调制器(PWM)工作原理。
与其它控制电路相似,为了满足良好焊接对送丝的要求,送丝机构控制电路也采用了调节脉宽输出(送丝速度)并输出反馈而稳定输出的方式。
MIG焊机的送丝控制电路采用TL494PWM作为主控器件,其内部结构框图如图10.6所示。
工作原理:①振荡信号产生:TL494中有一振荡器,其振荡信号由阴容器件产生,其振荡频率由外接的电容的充放电决定,f=1/(tc+td)(tc、td分别为电容充放电时间)。