数学人教版八年级上册分式方程的应用 —— 教学设计

合集下载

人教版八年级上册数学《 分式方程》(优质教案)

人教版八年级上册数学《 分式方程》(优质教案)

人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。

本章主要内容是让学生了解分式方程的定义、解法以及应用。

通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。

二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。

但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。

因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。

三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。

2.掌握解分式方程的基本方法,能够熟练地求解分式方程。

3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。

四. 教学重难点1.分式方程的定义及其与一般方程的区别。

2.分式方程的解法及其应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。

2.案例材料:收集一些实际问题,用于教学过程中的案例分析。

3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。

七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。

同时,结合实际问题,让学生了解分式方程在生活中的应用。

3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。

人教版八年级数学上册分式方程优秀教学案例

人教版八年级数学上册分式方程优秀教学案例
本案例以“创设情境,引导探究,合作交流”为教学理念,以“师生互动,生生互动”为教学手段,以“自主学习,合作学习,探究学习”为学习方式,充分利用多媒体教学资源,结合生活实际,激发学生的学习兴趣,培养学生的数学素养。
在教学过程中,教师应注重启发式教学,引导学生从具体的情境中发现问题、提出问题,通过自主探究、合作交流,总结出分式方程的解法,并能够灵活运用到实际问题中。同时,教师还需关注学生的个体差异,给予不同程度的学生有针对性的指导,使他们在课堂上都能得到有效的提升。
在情感态度与价值观方面,具体目标如下:
1.学生能够积极参与课堂活动,对分式方程的学习保持浓厚的兴趣。
2.学生在解决实际问题的过程中,能够体验到数学的乐趣,增强自信心。
3.学生能够认识到数学在生活中的应用,培养社会责任感和实践能课通过情境创设的方式,激发学生的学习兴趣,使他们能够主动参与到分式方程的学习中来。教师可以利用多媒体展示一些与分式方程相关的实际问题,如商业问题、环保问题等,让学生在具体的情境中感受到数学与生活的紧密联系。
在问题导向的过程中,教师应注重问题的设计,使其具有启发性和挑战性,能够激发学生的思考和探究欲望。同时,教师还应关注学生的个体差异,给予不同程度的学生有针对性的指导,使他们在课堂上都能得到有效的提升。
(三)小组合作
小组合作是一种重要的教学策略,能够培养学生的团队协作能力和沟通能力。在本节课中,教师可以将学生分成若干小组,让他们在小组内进行讨论和合作,共同解决问题。
在反思与评价的过程中,教师应注重引导学生进行自我评价和同伴评价,鼓励他们积极面对自己的不足,找出问题的原因,制定改进的措施。同时,教师还应关注学生的个体差异,给予不同程度的学生有针对性的指导和建议,帮助他们提高学习效果。
四、教学内容与过程

八年级数学上册分式方程分式方程的应用教案新人教

八年级数学上册分式方程分式方程的应用教案新人教

分式方程的应用课题15.3.2 分式方程的应用授课类型新课课标依据能解可化为一元一次方程的分式方程,能根据具体问题中的数量关系列出方程(分式方程),体会方程是刻画现实世界数量关系的有效模型。

教学目标知识与技能1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.过程与方法1.经历列分式方程解实际问题的过程,体会方程是刻画现实世界的一个有效的数学模型.2.经历“实际问题——分式方程方程模型——求解——解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识.情感态度与价值观1.经过本节课的学习,培养学生抽象思维的能力和创新能力.2.感受数学知识产生于实际生产生活的需求,反之,它又服务于生产和生活,体验数学的广泛应用.教学重点难点教学重点本节课的重点是列分式方程解决实际问题教学难点难点是列分式方程表示实际问题中的等量关系.教学师生活动设计意图过程设计(一)复习回顾1.解分式方程的步骤(1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;(4)验根.2.列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.3.由学生讨论,我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么?在学生讨论的基础上,教师归纳总结基本上有五种:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.(2)数字问题在数字问题中要掌握十进制数的表示法.(3)工程问题基本公式:工作量=工时×工效.(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.(二)新课讲授教师活动:例1.两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。

哪个队的施工速度快?学生活动:认真审题,根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程,求解方程并检验.教师活动:如果学生列方程有困难,可以填空的形式给出分析,它为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.分析:甲队一个月完成总工程的31,设乙队如果单独施工1个月能完成总工程的x1,那么甲队半个月完成总工程的61,乙队半个月完成总工程的2x1,两队半个月完成总工程的61+2x1。

人教版数学八年级上册教学设计15.3《分式方程》

人教版数学八年级上册教学设计15.3《分式方程》

人教版数学八年级上册教学设计15.3《分式方程》一. 教材分析《分式方程》是人教版数学八年级上册的教学内容,本节课主要让学生掌握分式方程的定义、解法以及应用。

通过学习,学生能够理解和掌握分式方程的概念,能够熟练运用解法求解分式方程,并能够将分式方程应用于实际问题中。

二. 学情分析学生在七年级时已经学习了分式的相关知识,对分式的概念、性质和运算有一定的了解。

但是,对于分式方程的概念和解法,学生可能还没有完全掌握。

因此,在教学过程中,需要引导学生复习和巩固分式的知识,并通过例题和练习题帮助学生理解和掌握分式方程的解法。

三. 教学目标1.理解分式方程的定义,掌握分式方程的解法。

2.能够将分式方程应用于实际问题中,提高解决问题的能力。

3.培养学生的逻辑思维能力和运算能力。

四. 教学重难点1.分式方程的定义和解法。

2.将分式方程应用于实际问题中。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索;通过案例分析和练习题,让学生理解和掌握分式方程的解法;通过小组合作学习,培养学生的合作意识和团队精神。

六. 教学准备1.PPT课件。

2.练习题和案例。

3.黑板和粉笔。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生复习和巩固分式的知识。

例如:“我们已经学习了分式的哪些知识?分式有哪些性质和运算规则?”2.呈现(15分钟)通过PPT课件展示分式方程的定义和解法,让学生理解和掌握。

同时,通过案例教学法,让学生了解分式方程在实际问题中的应用。

3.操练(15分钟)让学生分组合作,解决一些简单的分式方程问题。

教师巡回指导,解答学生的问题,并给予鼓励和表扬。

4.巩固(10分钟)让学生独立完成一些分式方程的练习题,巩固所学知识。

教师选取部分题目进行讲解和分析,解答学生的问题。

5.拓展(10分钟)让学生思考和探索分式方程在实际问题中的应用,提出一些实际问题,引导学生运用分式方程进行解决。

人教版八年级上册数学《 分式方程》(优质教学设计)

人教版八年级上册数学《 分式方程》(优质教学设计)

人教版八年级上册数学《分式方程》(优质教学设计)一. 教材分析人教版八年级上册数学《分式方程》这一节内容,是在学生已经掌握了方程和等式的基本性质的基础上进行教学的。

本节课主要让学生了解分式方程的概念,学会解分式方程的方法,并能够应用分式方程解决实际问题。

教材通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。

二. 学情分析八年级的学生已经具备了一定的数学基础,对方程和等式有一定的了解。

但是,学生对分式方程的理解和应用还比较薄弱。

因此,在教学过程中,需要通过具体的例子,引导学生理解分式方程的概念,掌握解分式方程的方法,并能够应用分式方程解决实际问题。

三. 教学目标1.让学生了解分式方程的概念,理解分式方程的意义。

2.引导学生掌握解分式方程的方法,并能够熟练运用。

3.通过解决实际问题,培养学生的应用能力。

四. 教学重难点1.重点:分式方程的概念,解分式方程的方法。

2.难点:解分式方程的步骤和技巧。

五. 教学方法采用问题驱动法,通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。

同时,运用小组合作学习法,让学生在小组内讨论和分享解题经验,提高学生的合作能力和沟通能力。

六. 教学准备1.准备相关的例题和练习题。

2.准备课件,用于展示和解题过程。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式方程的概念。

例如,某商店举行打折活动,原价为100元的商品打八折后,顾客实际支付了72元,求打折的力度。

让学生尝试用方程来解决这个问题,从而引出分式方程的概念。

2.呈现(10分钟)展示几个分式方程的例子,让学生观察和分析。

例如:(1)(=2)(2)(=3)引导学生总结解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1。

3.操练(10分钟)让学生独立完成一些分式方程的练习题,检验学生对分式方程的理解和掌握程度。

教师可适时给予提示和指导。

4.巩固(10分钟)学生进行小组讨论,分享解题经验,总结解分式方程的技巧。

数学人教版八年级上册15.3分式方程的应用教学设计

数学人教版八年级上册15.3分式方程的应用教学设计

15.3分式方程的应用教学设计广西宜州市第三中学吴凤燕一、教材分析:这一节是新人教版八年级上册第十五章第三节第三课时的内容,学生已学习了分式方程的解法,本节是引导学生如何借助分式方程来解决实际问题。

列方程解应用题体现了现实世界中事物的相互联系,在能力方面,无论是逻辑思维能力、计算能力,还是分析问题、解决问题的能力,都可在本节教学中得以培养和提高。

教材通过例1与学生共同总结出列分式方程方程解决实际问题的一般步骤。

二、学情分析:本节课的教学对象是八年级247班的学生,他们思维活跃,兴趣广泛,善于思考,在进行教学时力争从教学内容,教学形式,教学评价中体现出趣味性和切近生活的原则,通过教学活动,让学生合作探究,分析讨论,引导他们得出多种方法解实际问题,由浅入深,步步推进。

三、教学目标:1、知识与技能:(1)能根据实际问题中的等量关系列出分式方程;(2)通过观察、讨论等活动经历从实际问题中抽象出数学方程模型的过程;(3)理解列分式方程解应用题的步骤;(4)培养学生分析问题,解决问题的能力;2、过程与方法:(1)通过自主探索与合作交流,合理清晰地表达自己的思维过程;(2)掌握根据具体问题中的数量关系列方程解决实际问题.3、情感与态度:(1)引导学生关注生活实际,热爱生活,当文明学生;(2)建立数学应用意识,体会数学与生活的联系紧密。

四、教学重、难点:实际问题中的相等关系,正确列出方程解决问题。

五、教学策略设计认真研究教材,分析教材,明确教学目标。

采用信息技术与传统教学相结合,引导学生,启发学生,合作探究掌握出解决问题的能力。

培养学生从解决实际问题的应用中获取新知的同时,更加有成就感。

即时评价,多鼓励学生。

六、教学过程:(一)创设情境,引入新课.播放山歌、观赏宜州风光图,自行车道图。

前面我们学习了分式方程的解法,复习分式方程解题步骤。

近段,我们宜州“创建特色旅游县”工作开展得如火如荼,很多项目建设如自行车道建设等项目需要我们数学知识来解决,下面这节课,我们就来学习如何用分式方程来解决实际问题。

八年级数学上册第十五章分式方程《分式方程的应用》

八年级数学上册第十五章分式方程《分式方程的应用》

教学设计2024秋季八年级数学上册第十五章分式方程《分式方程的应用》教学目标(核心素养)1.知识与技能:学生能够理解分式方程在解决实际问题中的应用,掌握建立分式方程模型的方法,并能准确求解。

2.数学建模:通过实际问题抽象出分式方程,培养学生的数学建模能力和问题解决能力。

3.逻辑思维:在分析和解决问题的过程中,锻炼学生的逻辑推理能力和代数运算能力。

4.情感态度:激发学生对数学的兴趣,培养应用数学知识解决实际问题的意识。

教学重点•分式方程在解决实际问题中的应用。

•建立分式方程模型的方法。

教学难点•如何根据实际问题抽象出合适的分式方程。

•求解分式方程并验证解的合理性。

教学资源•多媒体课件(包含实际问题案例、分式方程建模过程)•教材及配套习题册•黑板与粉笔•学生分组讨论用的学习材料教学方法•案例教学法:通过实际问题案例引入,引导学生思考如何建立分式方程模型。

•讨论法:组织学生分组讨论,共同探索解决方案。

•讲授法:在关键环节进行必要的讲授,帮助学生理解难点。

•练习法:通过习题练习,巩固所学知识。

教学过程导入新课•生活实例引入:展示一个与分式方程紧密相关的生活实例(如速度、时间、距离问题,工程问题,经济问题等),引导学生思考如何用数学方法解决。

•提出问题:如何将这些实际问题转化为分式方程并求解?引出本节课的学习内容。

新课教学1.案例分析•选取一个典型的实际问题案例,详细分析其中的数量关系,引导学生识别出未知数和已知量。

•逐步引导学生建立分式方程模型,讲解建模过程中的思路和方法。

2.建模过程•强调建模步骤:理解问题、设定变量、建立方程、求解验证。

•通过多媒体演示或板书,清晰展示建模的每一步骤和注意事项。

3.求解验证•教授学生如何求解分式方程,并强调验根的重要性。

•引导学生将求得的解代入原问题中验证其合理性。

4.小组讨论•组织学生分组讨论其他类似的实际问题,尝试建立分式方程模型并求解。

•教师巡视指导,鼓励学生之间的交流与合作。

人教版初二数学上册《分式方程的应用》教案

人教版初二数学上册《分式方程的应用》教案

第2课时 分式方程的应用1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力.(重点) 2.用分式方程来解决现实情境中的问题,通过分式方程的应用教学,培养学生的数学应用意识.(难点) 一、情境导入 1.引导学生回顾列方程解应用题的一般步骤.学生积极思考,并交流、讨论总结出: 第一步,审清题意; 第二步,根据题意设未知数; 第三步,列式子并找出等量关系,建立方程; 第四步,列方程,并解出答案; 第五步,检查方程的解是否符合题意;最后作答.2.提问:分式方程的应用题应该怎么解呢?二、合作探究探究点:分式方程的应用【类型一】 由实际问题抽象出分式方程几名同学包租一辆面包车去旅游,面包车的租价为180元,出发前,又增加两名同学,结果每个同学比原来少分摊3元车费,若设原来参加旅游的学生有x 人,则所列方程为( )A.180x -180x +2=3B.180x +2-180x =3C.180x -180x -2=3 D.180x -2-180x=3 解析:本题的等量关系为:原来每人分摊的钱数-实际每人分摊的钱数=3.原来参加旅游的学生有x 人,则增加两人后人数是(x +2)人,由题意得180x -180x +2=3,故选A. 方法总结:解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系. 【类型二】工程问题 抗洪抢险时,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则超期3个小时才能完成.现甲、乙两队合作2个小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需多少小时? 解析:设甲队单独完成需要x 小时,则乙队需要(x +3)小时,根据等量关系“甲工效×2+乙工效×甲队单独完成需要时间=1”列方程. 解:设甲队单独完成需要x 小时,则乙队需要(x +3)小时.由题意得:2x +xx +3=1.解得x =6.经检验x =6是方程的解.∴x+3=9.答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时.方法总结:解决工程问题的思路方法:各部分工作量之和等于1,常从工作量和工作时间上考虑相等关系.【类型三】行程问题从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.解析:(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可;(2)设普通列车的平均速度是x 千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.解:(1)根据题意得400×1.3=520(千米).答:普通列车的行驶路程是520千米; (2)设普通列车的平均速度是x 千米/时,则高铁的平均速度是2.5x 千米/时,根据题意得520x -4002.5x =3,解得x =120,经检验x =120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时).答:高铁的平均速度是300千米/时. 方法总结:解决问题的关键是分析题意,找到关键描述语和合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.【类型四】图表信息类问题某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?解析:设排球的单价为x 元,则篮球的单价为(x +60)元,根据“总价÷单价=数量”的关系建立方程.解:设排球的单价为x 元,则篮球的单价为(x +60)元,根据题意,列方程得:2000x=3200x +60.解得x =100.经检验,x =100是原方程的根,当x =100时,x +60=160.答:排球的单价为100元,篮球的单价为160元.方法总结:解答此类问题要结合图表提供的信息,找出相等关系列方程.【类型五】销售盈亏问题佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?解析:(1)根据第二次购买水果数多20千克,可得出方程,解出即可得出答案;(2)先计算两次购买水果的数量,赚钱情况:销售的水果量×(实际售价-当次进价),两次合计,就可以求得是盈利还是亏损了.解:(1)设第一次购买的单价为x 元,则第二次的单价为1.1x 元,根据题意得14521.1x -错误!=20,解得x =6.经检验,x =6是原方程的解.(2)第一次购买水果1200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钱为200×(8-6)=400(元),第二次赚钱为100×(9- 6.6)+120×(9×0.5-6.6)=-12(元).所以两次共赚钱400-12=388(元).答:第一次水果的进价为每千克6元;该老板两次卖水果总体上是赚钱了,共赚了388元.方法总结:本题具有一定的综合性,应该把问题分解成购买水果和卖水果两部分分别考虑,掌握这次活动的流程.三、板书设计分式方程的应用列分式方程解应用题的一般步骤是: 第一步,审清题意;第二步,根据题意设未知数; 第三步,根据题目中的数量关系列出式子,并找准等量关系,列出方程;第四步,解方程,并验根,还要看方程的解是否符合题意;最后作答.在教学方法上,为了充分调动学生学习的积极性,使学生主动愉快地学习,采用启发讲授、合作探究、讲练相结合的教学方式.在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的教学思想,通过引导学生列表分析、找重点语句、探寻等量关系等,使学生充分地动口、动脑,参与教学全过程.。

初中数学分式方程教案

初中数学分式方程教案

初中数学分式方程教案教案内容:一、教学内容:本节课的教学内容选自人教版初中数学八年级上册第四章第一节《分式方程》。

本节课的主要内容有:分式方程的定义、分式方程的解法以及分式方程的应用。

二、教学目标:1. 理解分式方程的定义,掌握分式方程的解法。

2. 能够运用分式方程解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点:重点:分式方程的定义,分式方程的解法。

难点:分式方程的解法,分式方程的应用。

四、教具与学具准备:教具:黑板、粉笔、多媒体设备。

学具:课本、练习本、铅笔、橡皮。

五、教学过程:1. 实践情景引入:教师可以通过展示一些实际问题,引导学生发现这些问题可以用分式方程来表示。

例如,某商品的原价是100元,商店进行了一次8折优惠活动,请问优惠后的价格是多少?2. 例题讲解:教师可以通过讲解一些典型的分式方程题目,引导学生掌握分式方程的解法。

例如,解方程:$$\frac{x2}{3}= \frac{4x}{2}$$3. 随堂练习:教师可以布置一些随堂练习题,让学生独立完成,以巩固所学知识。

例如,解方程:$$\frac{2x+1}{5}= \frac{3x}{4}$$4. 分式方程的应用:教师可以通过讲解一些分式方程在实际问题中的应用,让学生体会分式方程的重要性。

例如,某工厂生产A、B两种产品,生产A产品需要2小时,生产B产品需要3小时,如果每天工作8小时,那么一天可以生产A、B产品各多少件?六、板书设计:板书内容主要包括分式方程的定义、解法以及应用。

例如:分式方程:$$\frac{x2}{3}= \frac{4x}{2}$$解法:去分母,得:2(x2)=3(4x)去括号,得:2x4=123x移项,得:2x+3x=12+4合并同类项,得:5x=16系数化为1,得:x=$$ \frac {16}{5}$$七、作业设计:1. 解方程:$$\frac{3x1}{4}= \frac{52x}{3}$$答案:x=$$ \frac {13}{18}$$2. 某商店进行了一次8折优惠活动,原价是100元的商品,优惠后的价格是80元,请问原价是多少?答案:原价是100元。

分式方程人教版数学八年级上册教案

分式方程人教版数学八年级上册教案

分式方程人教版数学八年级上册教案分式是形如A / B的式子,其中A、B是整式,B中含有字母。

分式是不同于整式的一类代数式,分式的值随分式中字母取值的改变而改变。

以下是我整理的分式方程人教版数学八年级上册教案,欢送大家借鉴与参考!15.3分式方程教案【教学目标】学问目标1.理解分式方程的意义.2.了解解分式方程的根本思路和解法.3.理解解分式方程时可能无解的缘由,并驾驭分式方程的验根方法.实力目标经验“实际问题——分式方程——整式方程”的过程,开展学生分析问题、解决问题的实力,渗透数学的转化思想,造就学生的应用意识.情感目标在活动中造就学生乐于探究、合作学习的习惯,造就学生努力找寻解决问题的进取心,体会数学的应用价值.【教学重难点】重点:解分式方程的根本思路和解法.难点:理解解分式方程时可能无解的缘由.【教学过程】一、创设情境,导入新课问题:一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?分析:设江水的流速为v km/h,那么轮船顺流航行的速度为(30+v) km/h,逆流航行的速度为(30-v) km/h,顺流航行90 km所用的时间为小时,逆流航行60 km所用的时间为小时.可列方程=.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今日要探究的分式方程.二、探究新知1.老师提出以下问题让学生探究:(1)方程=与以前所学的整式方程有何不同?(2)什么叫分式方程?(3)如何解分式方程=呢?怎样检验所求未知数的值是原方程的解?(4)你能结合上述探究活动归纳出解分式方程的根本思路和做法吗?(学生思索、探讨后在全班沟通)2.依据学生探究结果进展归纳:(1)分式方程的定义(板书):分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程练习:判定以下各式哪个是分式方程.(1)x+y=5;(2)=;(3);(4)=0在学生答复的根底上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.(2)解分式方程=的根本思路是:将分式方程化为整式方程.详细做法是:“去分母”,即方程两边同乘最简公分母.这也是解分式方程的一般思路和做法.3.仿照上面解分式方程的做法,尝试解分式方程=,并检验所得的解,你发觉了什么?与你的同伴沟通.4.思索:上面两个分式方程中,为什么=①去分母后所得整式方程的解就是①的解,而=②去分母后所得整式方程的解却不是②的解呢?学生分组探讨产生上述结果的缘由,并相互沟通.5.归纳:(1)增根:将分式方程变为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.(2)解分式方程必需进展检验:将整式方程的解代入最简公分母,假如最简公分母的值不为0,那么整式方程的解是原分式方程的解;否那么,这个解不是原分式方程的解.三、稳固练习1.在以下方程中:①=8+;②=x;③=;④x-=0.是分式方程的有()A.①和②B.②和③C.③和④D.④和①2.解分式方程:(1)=;(2)=.四、课堂小结1.通过本节课的学习,你有哪些收获?2.在本节课的学习过程中,你有什么体会?与同伴沟通.引导学生总结得出:解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化为整式方程.(2)解这个整式方程.(3)把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解时,必需舍去.五、布置作业课本152页练习.第2课时【教学目标】学问目标会分析题意找出相等关系,并能列出分式方程解决实际问题.ok3w_ads(s002);《分式及分式方程》同步练习1.在某市举办的大型商业演出活动中,对团体购置门票思想实惠,确定在原定票价的根底上每张降价80 元,这样按原定票价需花6000 元购置的门票张数,此时此刻只花费了4800 元,求每张门票的原定价格?24.为丰富校内文化生活,某校举办了成语大赛.学校打算购置一批成语词典嘉奖获奖学生.购置时,商家给每本词典打了九折,用2880 元钱购置的成语词典,打折后购置的数量比打折前多10 本.求打折前每本笔记本的售价是多少元?2.“六•一”儿童节前,某玩具商店依据市场调查,用2500 元购进一批儿童玩具,上市后很快脱销,接着又用4500 元购进其次批这种玩具,所购数量是第一批数量的 1.5 倍,但每套进价多了10 元.(1)求第一批玩具每套的进价是多少元?(2)假如这两批玩具每套售价一样,且全部售完后总利润不低于25%,那么每套售价至少是多少元?15.3分式方程的应用:精选练习11.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.确定一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,假设一年滞尘1010毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数一样,求一片国槐树叶一年的平均滞尘量.分式方程人教版数学八年级上册教案。

《分式方程的应用》教学设计

《分式方程的应用》教学设计

《分式方程的应用》教学设计一、教学背景分析【教材内容】人教版第15章分式【课标要求】在数学课程中,能针对具体问题,根据具体问题中的数量关系列出方程,理解方程解的意义,建立方程模型,渗透方程思想。

数学课程还要特别注重发展学生的应用意识和创新意识.【内容分析】本节内容是学生学习了分式方程的解法之后的重要内容,是中考的常考内容之一,也是继学习了一元一次方程、二元一次方程(组)的应用重点知识点。

侧重点是学生在通过分析问题、解决问题中渗透模型思想,提高应用意识。

【学情分析】学生刚刚学完分式方程的解法,初步掌握了去分母解分式方程的相关知识,也在前面学习了一元一次方程、二元一次方程组的应用,知道了列方程解应用题的步骤。

但由于学生的应用知识和分析问题能力较弱,因此在本节课中主要帮助学生提升阅读理解能力、分析问题的能力和灵活应用知识的能力。

二、目标【教学目标】1.会列分式方程解决简单的实际问题,并理解要进行两方面的检验:检验所求得的未知数的取值是否为所列方程的根;检验方程的根是否符合题意.2.通过让学生经历找等量关系列方程的过程,培养学生分析问题和解决实际问题的能力,进一步体会化归思想、方程思想、建模思想.3.了解任何事物之间是相互联系的、理论来源于实践,能用所学的知识服务于我们的生活,体会数学的应用价值【教学重点】列分式方程解应用题的一般步骤.【教学难点】分析数量关系、找等量关系、列出方程.【教学策略】引导启发式、讨论合作式、多媒体辅助教学,教学中注重培养学生分析问题解决问题能力的培养。

【课前准备】多媒体课件【课的类型】新授课【课时安排】1课时三、教学活动A组1.某园林公司增加了人力进行大型树木种植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同.设现在平均每天植树x棵,则列出的方程为()。

八年级数学上册《分式方程的应用》教案、教学设计

八年级数学上册《分式方程的应用》教案、教学设计
4.拓展延伸,提高素养
针对本章节的内容,教师将设计富有挑战性的拓展题,引导学生深入思考,培养数学思维能力。同时,注重将分式方程与实际应用相结合,提高学生的数学素养。
5.评价与反馈,关注个体差异
在教学过程中,教师将实施多元化评价,关注学生的个体差异。通过课堂提问、作业批改、小组讨论等方式,全面了解学生的学习状况,及时给予指导和鼓励,提高学生的学习自信心。
3.提高拓展题:针对学有余力的学生,设计具有一定难度的分式方程拓展题,培养学生的数学思维能力和问题解决能力;
4.小组合作探究题:分组讨论并完成1-2道分式方程综合应用题,要求学生在合作中相互学习、共同进步。
作业布置要求:
1.学生独立完成作业,家长监督,确保作业质量;
2.注重作业的书写规范,要求字迹清楚、步骤完整、简洁明了;
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握分式方程的概念及求解方法;
2.能够将实际问题抽象为分式方程,并运用所学的数学知识解决;
3.掌握分式方程的运算性质,提高运算速度和准确度;
4.培养学生的数学建模思维和问题解决能力。
(二)教学设想
1.创设情境,激发兴趣
在教学过程中,教师将设计贴近学生生活的实际问题,引导学生从中发现分式方程的影子,激发学生的学习兴趣。通过情境创设,让学生感受到数学与生活的紧密联系,提高学习积极性。
二、学情分析
八年级学生在数学学习上已具备一定的知识基础,掌握了基本的代数运算和方程求解方法。但在分式方程的学习中,学生可能会遇到以下困难:对分式方程的概念理解不够深入,求解过程中容易出现运算错误,将实际问题转化为分式方程时存在困难。针对这些情况,教师在教学过程中应关注以下几点:
1.关注学生基础知识掌握情况,适时进行巩固和复习,为学生学习分式方程打下坚实基础;

人教版八年级数学上册分式方程教学设计

人教版八年级数学上册分式方程教学设计
-采用多元化的评价方式,如口头表扬、作业评语、小组互评等,以激发学生的学习积极性。
6.情感关怀,营造氛围:关注学生的学习情感,营造一个温馨、支持的学习环境,让学生在轻松的氛围中学习。
-教师应以亲切的态度对待学生,鼓励学生提出疑问,给予耐心的解答和帮助。
7.创新思维,拓展视野:在教学过程中,鼓励学生思考问题的多种可能性,培养学生的创新思维和解决问题的能力。
-第3题:将以下实际情境转化为分式方程,并求解。
这些题目旨在帮助学生巩固分式方程的基本概念和求解方法。
2.提高拓展题:选择以下两题进行解答:
-第4题:比较下列分式方程的难易程度,并说明原因。
-第5题:求解一个含有两个未知数的分式方程组,并讨论其解的情况。
这些题目旨在提高学生的分析能力和解题技巧。
3.应用实践题:结合生活实际,自选一个情境,建立分式方程,并解决以下问题:
3.应用实例:结合教材中的例题,讲解分式方程在实际生活中的应用,让学生体会数学的实用性。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
-分式方程与整式方程的联系与区别是什么?
-分式方程在实际生活中的应用有哪些?
2.汇报交流:各小组汇报讨论成果,教师点评并总结,引导学生形成系统化的认识。
针对以上情况,教师应充分了解学生的认知水平和学习需求,采用启发式教学策略,引导学生从已知知识向新知识过渡。在教学中,注重培养学生的逻辑思维能力和问题解决能力,鼓励学生积极参与课堂讨论,提高他们的自主学习能力。同时,关注学生的情感态度,营造轻松愉快的学习氛围,使学生在愉悦的情感体验中,更好地理解和掌握分式方程的知识。
六、课堂小结
1.让学生回顾本节课所学内容,总结分式方程的知识点。

人教版数学八年级上册15.3分式方程及其解法优秀教学案例

人教版数学八年级上册15.3分式方程及其解法优秀教学案例
2.分工协作:学生在小组内分工协作,共同完成任务,培养他们的团队协作能力。
3.互动评价:学生之间进行互动评价,取长补短,共同提高。
(四)反思与评价
反思与评价教学策略有助于培养学生自我反思的习惯,提高他们的自我评价能力。具体包括:
1.自我反思:学生在学习过程中进行自我反思,发现自己的不足,明确改进方向。
五、案例亮点
1.生活情境的创设:通过引入生活实例,使学生能够更好地理解分式方程的实际意义,提高学生的学习兴趣和积极性。
2.问题导向的教学策略:通过设计具有启发性的问题,引导学生主动探究分式方程的解法,培养学生的思考能力和解决问题的能力。
3.小组合作学习:通过组织学生进行小组合作探讨,培养学生的团队合作意识和沟通能力,提高学生的学习效果。
(四)总结归纳
在学生小组讨论结束后,我会对所学内容进行总结归纳。我会强调分式方程的基本概念和解法,以及解题时的一些注意事项。通过总结归纳,学生可以更好地梳理所学知识,形成体系。
(五)作业小结
最后,我会布置一些具有针对性的作业,让学生巩固所学知识。同时,我会提醒学生在做作业时要注意检查,培养他们的细心和耐心。在作业批改过程中,我会及时给予学生反馈,帮助他们发现并改正错误,提高他们的数学能力。
2.问题情境:我将设计一些具有启发性的问题,引导学生主动探究分式方程的解法,激发他们的思考。
3.操作情境:我将组织学生进行一些实际操作,如实验、演示等,让学生在操作过程中体验数学知识的具体应用。
(二)问题导向
问题导向教学策略旨在培养学生的问题意识,引导学生主动探究数学问题。具体包括:
1.问题发现:我将引导学生从实际情境中发现问题,激发他们提出问题的兴趣。
人教版数学八年级上册15.3分式方程及其解法优秀教学案例

人教版数学八年级上册15.3.2分式方程的应用(教案)

人教版数学八年级上册15.3.2分式方程的应用(教案)
(3)能够将实际问题抽象成分式方程模型,并运用数学语言描述问题。
2.教学难点
(1)理解实际问题的等量关系,将问题转化为分式方程。
-难点举例:在商场打折问题中,学生需要理解原价、折数与现价之间的关系,并能够将其转化为分式方程。
(2)在解决分式方程时,对分母的处理,避免出现除以零的情况。
-难点举例:在工资问题中,学生需注意分母不能为零的情况,确保方程有意义。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有未知数的分式等式,它在表示比例关系、解决实际问题时具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设某人以固定速度行驶,我们需要计算他在不同时间内能行驶多远。这个案例将展示分式方程在实际中的应用,以及它如何帮助我们解决问题。
在教学过程中,教师应针对上述重点和难点内容,采用生动的实例、图示和实际操作等方式,帮助学生形象理解,并逐步引导他们通过自主探究、合作交流等方法,突破难点,掌握分式方程的应用和解题技巧。同时,教师应注重培养学生的数学思维和解决问题的能力,提高他们对数学学科的兴趣和认识。
四、教学流程
(一)导入新课(用时5分钟)
人教版数学八年级上册15.3.2分式方程的应用(教案)
一、教学内容
人教版数学八年级上册15.3.2分式方程的应用。本节课我们将围绕以下内容展开:
1.掌握分式方程在实际问题中的应用。
2.学会列分式方程解决实际问题,理解等量关系。
3.能够解决涉及分数、比例、百分比等实际问题的分式方程。
具体内容包括:
(1)行程问题:如甲、乙两地相距x公里,某人从甲地出发,以v1公里/小时的速度行驶,另一个人从乙地出发,以v2公里/小时的速度行驶,问多少小时后两人相遇?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程的应用——教学设计
张国茹
教学目标
1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;
2.通过列分式方程解应用题,渗透方程的思想方法。

教学重点和难点
重点:列分式方程解应用题.
难点:根据题意,找出等量关系,正确列出方程.
教学过程设计
一、复习
例解方程:
(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1.
解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x.
解这个整式方程,得x=12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根.
(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3)即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.
二、新课
例1
一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系.
答:骑车行进路程=队伍行进路程=15(千米);
骑车的速度=步行速度的2倍;
骑车所用的时间=步行的时间-0.5小时.
请同学依据上述等量关系列出方程.
答案:方法1设这名学生骑车追上队伍需x小时,依题意列方程为
15x=2×15 x+12.方法2设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为15x-15 2x=12.
解由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程.方程两边都乘以2x,去分母,得30-15=x,所以x=15.检验:当x=15时,
2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意.
所以骑车追上队伍所用的时间为15千米30千米/时=12小时.
答:骑车追上队伍所用的时间为30分钟.
指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离时间.如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按速度找等量关系列方程,所列出的方程都是分式方程.
例2
某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?
分析:这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是s=mt,或t=sm,或m=st.请同学根据题中的等量关系列出方程.
答案:方法1工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3.依题意,列方程为2(1x+1x3)+x2-xx+3=1.指出:工作效率的意义是单位时间完成的工作量.
方法2设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程2x+xx+3=1.
方法3根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程1-2x=2x+3+x-2x+3.
用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了.重点是找等量关系列方程.
三、课堂练习
1.甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.
2.A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.
答案:1.甲每小时加工15个零件,乙每小时加工20个零件.
2.大,小汽车的速度分别为18千米/时和45千米/时.
四、小结
1.列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,例外点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去.
2.列分式方程解应用题,大凡是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数.但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数.在列分式方程解应用题时,设间接未知数,有时可使解答变得简易.例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程135 x+5-12:135x=2:5.解这个分式方程,运算较琐碎.如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简易多了.
五、作业
1.填空:
(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;
(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;
(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克.
2.列方程解应用题.
(1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?
(2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?
(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?
(4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知两车的速度之比是5:2,求两辆汽车各自的速度.答案:1.(1)mn m+n; (2)m a-b-ma; (3)ma a+b.
2.(1)第二次加工时,每小时加工125个零件.
(2)步行40千米所用的时间为40 4=10(时).答步行40千米用了10小时.(3)江水的流速为4千米/时.
课堂教学设计说明
1.教学设计中,对于例1,引导学生依据题意,找到三个等量关系,并用两种例外的方法列出方程;对于例2,引导学生依据题意,用三种例外的方法列出方程.这种安排,意在启发学生能善于从例外的角度、例外的方向思考问题,激励学生在解决问题中养成灵敏的思维习惯.这就为在列分式方程解应用题教学中培养学生的发散思维提供了广漠的空间.
2.教学设计中体现了充分发挥例题的模式作用.例1是行程问题,其中距离是已知量,求速度(或时间);例2是工程问题,其中工作总量为已知量,求完成工作量的时间(或工作效率).这些都是运用列分式方程求解的典型问题.教学中引导学生深入分析已知量与未知量和题目中的等量关系,以及列方程求解的思路,以促使学生加深对模式的主要特征的理解和识另别,让学生弄清哪些类型的问题可借助于分式方程解答,求解的思路是什么.学生完成课堂练习和作业,则是识别问题类型,能把面对的问题和已掌握的模式在头脑中建立联系,探求解题思路.
3.通过列分式方程解应用题数学,渗透了方程的思想方法,从中使学生认识到方程的思想方法是数学中解决问题的一个锐利武器.方程的思想方法可以用“以假当真”和“弄假成真”两句话形容.如何通过设直接未知数或间接未知数的方法,假设所求的量为x,这时就把它作为一个实实在在的量.通过找等量关系列方程,此时是把已知量与假设的未知量同等看待,这就是“以假当真”.通过解方程求得问题的解,原先假设的未知量x就变成了确定的量,这就是“弄假成真”.。

相关文档
最新文档