偏置移动尖顶从动件盘形凸轮轮廓线设计1

合集下载

凸轮机构介绍

凸轮机构介绍

4、根据从动件的运动形式分

动 从 动
( 对 心
件、
凸偏
轮置 机)

摆动从动件凸轮机构
0'
第二节 从动件运动规律设计
一、平面凸轮机构的结构和主要参数
S 从动件位移曲线 (,S)
BC B’
S h
基圆
0 O
A
e
0 ’

O (A) B
Dh

0 ’ ’
0

推远程休运止动角角回近程休运止动角角

e
sin

(S0

S)
cos

xB

y
B


cos sin
sin e
c
os

S0

S
xB

y
B


R
xB1

y
B1

注意:
平面旋转矩阵
1) 若从动件导路相对于凸轮回转中心的偏置
方向与x方向同向,则e>0, 反之e<0。
解:建立直角坐标系,以凸轮回转中心为原点,y 轴与从动件导路平行,凸轮理论廓线方程为:
xB (s0 s)sin e cos
yB (s0 s) cos esin
s0 rb2 e2 502 122 48.54
从动件运动规律:
升程 0,
s
0

a=0
j

v

4h
2
(

)

0

a

偏置直动尖顶从动件盘形凸轮机构

偏置直动尖顶从动件盘形凸轮机构

课程设计论文题目:偏置直动尖顶从动件盘形凸轮机构系部名称:机械工程系专业班级:机自125 学生学号:指导教师:韩洪涛教师职称:教授2014年06月16日偏置直动尖顶从动件凸轮机构,虽然从动件和凸轮之间以高副形式进行连接导致从动件易磨损不能承受较大的载荷,但由于其阅读盘形凸轮轮廓的能力较强,故应用也较为广泛。

大多数教材和专著都是从该机构的运动性能和传力性能两方面进行阐述,相关专题研究也主要论述机构的运动规律、参数选择和优化设计等。

针对效率的设计以及机构参数对效率的影响涉及较少。

本文主要介绍它的设计过程,本文主要运用了一些凸轮的运动规律及其原理。

包括正弦加速度,余弦加速度,反转法原理等。

最终设计出了包括在运动性能和传力性能等方面比较适合的凸轮结构。

关键字:偏置正弦加速度余弦加速度摘要 (1)目录 (2)第一章绪论 (3)第二章课程题目及主要技术参数说明 (4)2.1课题题目 (4)2.2主要技术参数说明 (4)2.3 偏置直动尖顶从动件盘形凸轮机构运动简图 (4)第三章偏置直动尖顶从动件盘形凸轮机构参数分析 (5)3.1基圆半径的确定 (5)3.2从动件运动规律的选取原则 (5)3.3 凸轮机构的偏距 (5)3.4凸轮轮廓设计 (6)第四章偏置直动尖顶从动件盘形凸轮机构设计计算 (7)4.1偏置直动尖顶从动件盘形凸轮机构三视图 (11)4.2偏置直动尖顶从动件盘形凸轮机构理论轮廓图 (12)结论 (14)致谢 (15)参考文献 (16)第一章绪论本文主要讲的是偏置直动尖顶从动件盘形机构的设计计算,在这次设计中运用了主要运用了,机械原理的第九章《凸轮机构及其设计》《高等数学》等的知识。

在这次课程设计中,我的能力有了很大的提高,特别是在理论应用在实践过程中的思考。

1.培养了我们的设计思路训练了综合运用机械设计课程和其他相关课程的基础理论并结合生产实际进行分析和解决工程实际问题的能力。

2.通过在凸轮设计和计算的过程中,锻炼了我们的独立思考能力,了解了凸轮是怎样设计的,以及各种他凸轮的运动规律,基圆半径的确定,还有作图技巧。

机械原理-凸轮轮廓曲线设计图解法

机械原理-凸轮轮廓曲线设计图解法


3’ 2’ 1’ ω O 1 2
1
2
3
3
直动从动件盘形凸轮轮廓的绘制
1.对心直动尖顶从动件盘形凸轮 已知凸轮的基圆半径r0,角速度ω 和从 动件的运动规律,设计该凸轮轮廓曲线。
4’ 5’ 6’
-ω ω
3’ 2’ 1’
7’
8’ 5 6 7 8
1 2 3 4
设计步骤: ①作基圆r0。
②反向等分各运动角,得到一系列与基圆的交点。
7’ 5’ 3’ 1’ 1 3 5 78 8’ 9’ 11’ 12’ 13’ 14’ 9 11 13 15
e

ω 15’ 15 14’14
k12 k11 k10 k9 k15 k14 k13
A
13’
12’
k1 13 k 12 k32 k8 k7k6 k5k4 11 10 9
O
注意:与前不同的是——过 各等分点作偏距圆的一系列 切线,即是从动件导路在反 转过程中的一系列位置线。
11’
10’ 9’
直动平底从动件盘形凸轮轮廓的绘制

直动平底从动件盘形凸轮轮廓的绘制
-

实际廓线
直动平底从动件盘形凸轮轮廓的绘制
-

实际廓线
③过各交点作从动件导路线,确定反转后从动件尖顶在各等分点的位置。 ④将各尖顶点连接成一条光滑曲线。
直动从动件盘形凸轮轮廓的绘制
2.对心直动滚子从动件盘形凸轮 已知凸轮的基圆半径r0,滚子半径 rT ,角速度ω 和从动件的运动规 律,设计该凸轮轮廓曲线。
3’ 2’ 1’ 7’ 8’ 1 2 3 4 5 6 7 8 4’

理论轮廓
ω
5’ 6’

凸轮机构图解法[整理版]

凸轮机构图解法[整理版]

滚子从动件凸轮机构设计当根据使用场合和工作要求选定了凸轮机构的类型和从动件的运动规律后,即可根据选定的基圆半径着手进行凸轮轮廓曲线的设计。

凸轮廓线的设计方法有图解法和解析法,其依据的基本原理相同。

凸轮机构工作时,凸轮和从动件都在运动,为了在图纸上绘制出凸轮的轮廓曲线,可采用反转法。

下面以图示的对心尖端移动从动件盘形凸轮机构为例来说明其原理。

从图中可以看出:凸轮转动时,凸轮机构的真实运动情况:凸轮以等角速度ω绕轴O 逆时针转动,推动从动件在导路中上、下往复移动。

当从动件处于最低位置时,凸轮轮廓曲线与从动件在A点接触,当凸轮转过φ1角时,凸轮的向径OA将转到OA´的位置上,而凸轮轮廓将转到图中兰色虚线所示的位置。

这时从动件尖端从最低位置A上升到B´,上升的距离s1=AB´。

采用反转法,凸轮机构的运动情况:现在设想凸轮固定不动,而让从动件连同导路一起绕O点以角速度(-ω)转过φ1角,此时从动件将一方面随导路一起以角速度(-ω)转动,同时又在导路中作相对移动,运动到图中粉红色虚线所示的位置。

此时从动件向上移动的距离与前相同。

此时从动件尖端所占据的位置 B 一定是凸轮轮廓曲线上的一点。

若继续反转从动件,可得凸轮轮廓曲线上的其它点。

由于这种方法是假定凸轮固定不动而使从动件连同导路一起反转,故称反转法(或运动倒置法)。

凸轮机构的形式多种多样,反转法原理适用于各种凸轮轮廓曲线的设计。

一、直动从动件盘形凸轮廓线的设计(1)尖端从动件以一偏置移动尖端从动件盘形凸轮机构为例。

设已知凸轮的基圆半径为rb,从动件轴线偏于凸轮轴心的左侧,偏距为e,凸轮以等角速度ω顺时针方向转动,从动件的位移曲线如图(b)所示,试设计凸轮的轮廓曲线。

依据反转法原理,具体设计步骤如下:1)选取适当的比例尺,作出从动件的位移线图。

将位移曲线的横坐标分成若干等份,得分点1,2, (12)2)选取同样的比例尺,以O 为圆心,rb为半径作基圆,并根据从动件的偏置方向画出从动件的起始位置线,该位置线与基圆的交点B0,便是从动件尖端的初始位置。

机械原理凸轮轮廓曲线设计

机械原理凸轮轮廓曲线设计
② 等分位移曲线及反向等分各运动角,确定反转后对应于各等分点的从动件的位置。
3
4
5
6
7
8
1
8
7
6
5
4
3
2
10
11
9
12
13
14
14
13
12
11
10
9
15
③ 确定反转后从动件尖顶在各等分点占据的位置。
设计步骤
④ 将各尖顶点连接成一条光滑曲线。
④ 将各尖顶点连接成一条光滑曲线。
0
l
d
δ
1
2
3
4
5
6
7
8
6 小结
应用反转法时应注意: 要能正确理解凸轮实际廓线和理论廓线的关系 要正确确定推杆的反转方向 正确确定推杆在反转运动中占据的位置 直动推杆:推杆在反转前后两位置线的夹角应等于凸轮的转角 摆动推杆:反转前后推杆摆动中心和凸轮轴心的两连线之间的夹角应等于凸轮的转角 正确确定推杆的位移或摆角 直动推杆:位移等于推杆所在位置与理论廓线的交点和与基圆交点之间的距离。 摆动推杆:角位移等于推杆所在位置与推杆起始位置之间的夹角。
O
s
1
3
5
7
8
60º
120º
90º
90º
60º
120º
1
2
90º
A
90º
9
11
13
151357 89
11
13
12
14
10
二、 用作图法设计凸轮廓线 1. 对心尖顶移动从动件盘形凸轮廓线的设计
已知凸轮的基圆半径r0,凸轮角速度和从动件的运动规律,设计该凸轮轮廓曲线。

偏置直动滚子从动件盘形凸轮机构

偏置直动滚子从动件盘形凸轮机构

河北工程大学机电学院机械原理课程设计说明书设计题目:偏置直动滚子从动杆盘型凸轮机构班级:姓名:学号:目录(一)设计题目及设计思路 (1)(二)凸轮基圆半径及滚子尺寸的确定 (1)(三)原始数据分析…………(四)从动杆的运动规律及凸轮轮廓线方程 (3)(五)凸轮机构的廓线设计原理 (4)(六)图解法设计盘型凸轮机构……………(七)检验压力角是否满足许用压力角的要求 (7)(八)机构示意简图 (8)(九)计算机源程序………(十)计算机程序结果及分析 (12)(一)机械原理课程设计的目的和任务一、机械原理课程设计的目的:1、机械原理课程设计是一个重要实践性教学环节。

其目的在于:进一步巩固和加深所学知识;2、培养学生运用理论知识独立分析问题、解决问题的能力;3、使学生在机械的运动学和动力分析方面初步建立一个完整的概念;4、进一步提高学生计算和制图能力,及运用电子计算机的运算能力。

二、机械原理课程设计的任务:1、偏置直动滚子从动杆盘型凸轮机构2、采用图解法设计:凸轮中心到摆杆中心A的距离为20mm,凸轮以逆时针方向等速回转,摆杆的运动规律如表:3、设计要求:①升程过程中,限制最大压力角αmax≤30º,确定凸轮基园半径r0②合理选择滚子半径rr③选择适当比例尺,用几何作图法绘制从动件位移曲线,并画于图纸上;④用反转法绘制凸轮理论廓线和实际廓线,并标注全部尺寸(用A2图纸)⑤将机构简图、原始数据、尺寸综合方法写入说明书4、用解析法设计该凸轮轮廓,原始数据条件不变,要写出数学模型,编制程序并打印出结果备注:凸轮轮廓曲率半径与曲率中心理论轮廓方程()()x xy yϕϕ=⎧⎨=⎩,其中2222////x dx d x d x dy dy d x d y dϕϕϕϕ⎧==⎪⎨==⎪⎩其曲率半径为:3 222 () x y xy xyρ+=--;曲率中心位于:2222()()y x yx xxy xyx x yy xxy xyρρ⎧+=-⎪-⎪⎨+⎪=-⎪-⎩三、课程设计采用方法:对于此次任务,要用图解法和解析法两种方法。

图解法设计凸轮轮廓

图解法设计凸轮轮廓

已知凸轮的基圆半径rmin,角速度ω、
e
从动件的运动规律和偏心距e,设计该
凸轮轮廓曲线。
8’ 7’ 5’ 3’ 1’
1 3 5 78
9’ 11’ 12’
13’ 14’
9 11 13 15
ωA
15’15 14’14
13’ 12’
13 12
11
10
kk9k1k0k1181kk21k73k14k6O1k55k4kk3k21
的距离d,摆杆角位移方程,设计该凸轮轮廓曲线。
4’ 3’ 2’ 1’
12 3 4
5’ 6’
7’
8’ 5 67 8
d A8
A7
A
l B’1 B B1
rminω1
A1-ω1
φ1
B’2 B’3φ2
A2
B2 B3
B’φ4 3
120°B4A3来自φ790 °B8 B7
60 B6
B’7
设计:潘存云
°B5
B’6
B’5
1 3 5 78
9’ 11’ 12’
13’ 14’
9 11 13 15
理论轮廓
ω
设计:潘存云
设计步骤:
实际轮廓
①选比例尺μl作基圆rmin。 ②反向等分各运动角。原则是:陡密缓疏。
③确定反转后从动件尖顶在各等份点的位置。
④将各尖顶点连接成一条光滑曲线。
⑤作各位置滚子圆的内(外)包络线。
ρa-工作轮廓的曲率半径,ρ-理论轮廓的曲率半径,
8’ 7’ 5’ 3’ 1’
1 3 5 78
9’10’ 11’ 12’
13’ 14’
9 11 13 15
-ω ω
设计:潘存云

8盘型凸轮轮廓曲线设计

8盘型凸轮轮廓曲线设计
的设计方法
“反转法”原理
凸轮转动、从动件 在导路中移动
对整个系统施 加-运动
凸轮保持不动 推杆:复合运动=
反转运动(-) + 预期运动(s)



-

A
AA
AA
AAAA
r0
r
0
对心尖顶移动从动件盘形凸轮轮廓的设计
已设知计::r凸0,轮推廓杆线运动规律,凸轮逆s 时针方向转动
简单直观,可直接得出凸轮的轮廓,但作图有一定误差,设计精度不高。

工程上应用较多。



解析法
精度较高,但设计计算量大,
多用于精密或高速凸轮机构的设计中
凸轮轮廓的设计方法 图解法
依据“反转法” 对整个系统施加-w运动
机 械 基 础上面的图,在图片中 是动画,帮录下来凸轮轮廓的设计方法
1、偏置尖顶移动从动件盘形凸轮轮廓的设计
凸轮轮廓的设计方法
2、滚子移动从动件盘形凸轮轮廓的设计
已知:r0,推杆运动规
机 械
律,滚子半径r1, 凸 轮逆时针方 向转



设计:凸轮廓线
h
s
0
120 600
900
900
理论轮廓 实际轮廓
凸轮轮廓的设计方法
总结
1、偏置尖顶移动从动件盘形凸轮轮廓曲线设计


2、滚子移动从动件盘形凸轮轮廓的设计
h

解:


1. 定比例尺l
φ
0
120 1800
2700 3600

2. 初始位置及推杆位移曲线
3. 确定推杆反转运动占据的各 角度位置

机械设计基础第28讲对心滚子移动从动件盘形凸轮轮廓曲线的设计

机械设计基础第28讲对心滚子移动从动件盘形凸轮轮廓曲线的设计

Fx

Fn sin

传力越好。
自锁 :如果凸轮机构运动到某
一位置的压力角大到使有效分力 不足以克服摩擦阻力,不论推力 多大,都不能使从动件运动。这 种现象称为凸轮机构的自锁。机 构开始出现自锁时的压力角称为 临界压力角 。
2.凸轮机构的压力角
许用压力角:凸轮机构在运转中的压力角是变化的,为避 免机构发生自锁并具有较高的传动效率,必须对最大压力 角加以限制,其许用值应远低于临界压力角,即 :
对心滚子移动从动件盘形凸轮轮廓曲线的设计










线
线
偏置尖顶移动从动件盘形凸轮轮廓曲线的设计
已知:如图所示
e
凸轮机构设计中应 注意的几个问题
设计凸轮机构,不仅要保证从动件能实现预定的运动规律, 还须使设计的机构传力性能良好,结构紧凑,满足强度和 安装等要求,为此,设计时应注意处理好下述问题。
凸轮机构工作时,往往承受动载荷的作用,同时 凸轮表面承受强烈磨损。因此,要求凸轮和滚子的工 作表面硬度高,具有良好的耐磨性,心部有良好的韧 性。当低速、轻载时,可以选用铸铁作为凸轮的材料。 中速、中载时可以选用优质碳素结构钢、合金钢作为 凸轮的材料,并经表面淬火或滲碳淬火,使硬度达到。 高速、重载凸轮可以用优质合金钢材料,并经表面淬 火或滲氮处理。
max c
对移动从动件的推程, 取[ ]=30° 对摆动从动件的推程, 取[ ]=35°~45° 回程时,可取[ ]=70°~80°
和压力角的校核:
3.凸轮基圆半径的确定
基圆半径愈小,压力角 愈大;反之,压力角则 愈小。因此,在选取基 圆半径时应注意:

第18讲盘形凸轮

第18讲盘形凸轮
F y F n cos F x F n sin
压力角越小, 传力越好。
自锁 :如果凸轮机构运动到某 一位置的压力角大到使有效分力 不足以克服摩擦阻力,不论推力 多大,都不能使从动件运动。这 种现象称为凸轮机构的自锁。机 构开始出现自锁时的压力角称为 临界压力角 。
2.凸轮机构的压力角
K
c min 0
实际轮廓相交而造成 从动件运动失真 对于内凹的凸轮廓线 : 实际轮廓为光滑曲线
c 0

K
0 . 8 min
c min 1 ~ 5 mm
2.凸轮机构的压力角
压力角:不计摩擦时,凸轮对从 动件的作用力(法向力)与从动 件上受力点速度方向所夹的锐角。 该力可分解为两个分力 :
对心滚子移动从动件盘形凸轮轮廓曲线的设计
实 际 轮 廓 曲 线
理 论 轮 廓 曲 线
偏置尖顶移动从动件盘形凸轮轮廓曲线的设计
已知:如图所示
e

凸轮机构设计中应 注意的几个问题
设计凸轮机构,不仅要保证从动件能实现预定的运动规律, 还须使设计的机构传力性能良好,结构紧凑,满足强度和 安装等要求,为此,设计时应注意处理好下述问题。
移动从动件盘形凸轮 轮廓曲线的图解设计
设计方法:
1.图解法 2.解析法
设计一般精度凸轮时常被采用图解法。而设计高精度 凸轮,则必须用解析法,但计算复杂。本节主要讨论 图解法。
基本原理:
反转法原理
移动从动件盘形凸轮 轮廓曲线的图解设计
反转法原理

反转法原理

设想给凸轮机构加上一个绕凸轮轴心并与凸轮角速度等值 反向的角速度。根据相对运动原理,机构中各构件间的相对 运动并不改变,但凸轮已视为静止,而从动件则被看成随同 导路以角速度绕点转动,同时沿导路按预定运动规律作往复 移动。从动件尖顶的运动轨迹即为凸轮的轮廓。这就是图解 法绘制凸轮轮廓曲线的原理,称为“反转法”。

偏置、摆动、平底从动件盘形凸轮轮廓设计

偏置、摆动、平底从动件盘形凸轮轮廓设计
1.0
等加等减速
2.0
五次多项式 余弦加速度
1.88 1.57
正弦加速度
改进正弦加速度

2.0 1.76
amax (hω /δ 20)×

4.0 5.77 4.93
6.28 5.53
冲击 推荐应用范围
刚性
柔性 无
柔性
无 无
低速轻载 作者:潘存云教授
中速轻载 高速中载 中速中载
高速轻载 高速重载100分

ω
1’ 2’ 1 23
3’ 4’
4 5’
5
15 6 作者:潘存云教授
6’
14’ 14 13’ 1312
87 设计:潘存云
7’
12’ 1110 9
8’
11’
8’ 9’
7’
11’
10’ 9’
5’ 3’
1’
12’
13’ 14’
1 3 5 7 8 9 11 13 15
3)对心直动平底推杆盘形凸轮
再过这一系列点画出一系列
12’
10
9
8’ 7’ 5’ 3’ 1’
1 3 5 78
9’ 11’ 12’
13’ 14’
9 11 13 15
11’
10’ 9’
设计:潘存云
4)偏置直动尖顶从动件盘形凸轮
e
首先,根据给定的从

动件运动规律,绘制出
ωA
从动件位移线图,并且 对位移线图的横坐标的 推程和回程分成若干等 份,得到等分点1, 2,、、、15,如图所
87 设计:潘存云
7’
12’ 1110 9
8’
11’ 10’ 9’
4)偏置直动尖顶从动件盘形凸轮

凸轮轮廓曲线的设计

凸轮轮廓曲线的设计

2)过辅助圆上B0点作该辅助圆的切线,该切线即为 从动件导路中心线的位置线。该位置线与基圆相交于 A0点,点A0即是从动件的初始位置,如图7-15(a)。
3)连接O A0。从O A0开始,沿(-ω)方向在基圆 上依次量取凸轮各转角δ0、δs、δ’0、δ’s,再将 推程角δ0、回程角δ’0分成与位移线图相同的等份, 得到A1、A2、A3、…等各点。
(7-6)
3.压力角与传力性能
在设计凸轮机构时,应使最大压力角αmax不超过某 一许用值[α],即
αmax≤[α]
(7-7)
工程上,一般推程阶段许用压力角[α]的推荐值分别为
移动从动件 [α]=30°~40°
摆动从动件 [α]=40°~50°
机械设计基础
Machine Design Foundation
机械设计基础
Machine Design Foundation
凸轮轮廓曲线的设计
图7-13对心滚子移动从动件盘形凸轮轮廓的绘制
机械设计基础
Machine Design Foundation
凸轮轮廓曲线的设计
图7-14平底从动件盘形凸轮轮廓的绘制
机械设计基础
Machine Design Foundation
凸轮轮廓曲线的设计
4.基圆半径 rb的确定
在选取基圆半径时,应综合考虑下述几个方面:
(1)在保证αmax≤[α]的前提下,应尽可能选用较 小的基圆半径,以满足结构紧凑的要求。
(2)为了满足凸轮结构及制造的要求,基圆半径rb 必须大于凸轮轴的半径rs,即rb> rs。
(3)为了避免从动件运动失真,必须使凸轮实际轮 廓曲线的最小曲率半径ρ’min大于零,通常规定ρ’min> 1~5 mm 。

总结偏置直动尖顶从动件盘形凸轮设计详细步骤及注意事项

总结偏置直动尖顶从动件盘形凸轮设计详细步骤及注意事项

总结偏置直动尖顶从动件盘形凸轮设计详细步骤及注
意事项
偏置直动尖顶从动件盘形凸轮的设计步骤和注意事项如下:
设计步骤:
1. 确定从动件的工作要求和运动特点,包括运动速度、加速度、停留时间等。

2. 根据工作要求确定凸轮的基本形状和大小。

3. 根据所选凸轮的直径和工作要求,计算螺纹推进机构的传动比和螺纹高度。

4. 根据计算结果,设计螺纹推进机构的螺纹结构和传动装置。

5. 根据所选凸轮的直径和工作要求,计算凸轮的齿数和模数。

6. 根据计算结果,确定凸轮的齿轮参数,包括齿轮材料、齿轮齿条等。

7. 根据设计要求,绘制凸轮的图纸,并制造凸轮。

注意事项:
1. 在设计过程中需要考虑从动件的承载能力和耐磨性,选择适当的材料。

2. 凸轮的运动速度和加速度需要根据从动件的工作要求进行合理分配,防止超过从动件的承受能力范围。

3. 凸轮的结构设计应满足从动件的运动规律和力学要求,保证运动的平稳性和精度。

4. 在凸轮制造过程中要确保凸轮的尺寸精度和表面质量,以提高传动效率和使用寿命。

5. 设计时要考虑从动件的装配和调整方便性,确保凸轮的正确安装和调整。

6. 在使用过程中要定期检查凸轮和从动件的磨损情况,及时进行维护和更换。

综上所述,设计偏置直动尖顶从动件盘形凸轮需要确定工作要求,计算凸轮参数,设计螺纹推进机构和齿轮传动装置,并注意材料选取、运动规律、力学要求、尺寸精度和磨损维护等问题。

偏置直动滚子从动件盘形凸轮机构的设计

偏置直动滚子从动件盘形凸轮机构的设计

广东工业大学华立学院课程设计(论文)课程名称机械原理课程设计题目名称偏置直动滚子从动件盘形凸轮机构的设计学生学部(系)机电工程学部专业班级机械班学号学生姓名 lilili指导教师2012 年6月28日目录目录......................................... 错误!未定义书签。

课程设计(论文)任务书. (3)摘要....................................... 错误!未定义书签。

一、根据已知基尺寸做出圆..................... 错误!未定义书签。

二、绘制推杆的位移图线....................... 错误!未定义书签。

三、用反转法设计图轮廓线..................... 错误!未定义书签。

四、压力角是否满足许用压力角的要求.......... .错误!未定义书签。

五、参考文献...............................................- 11 -广东工业大学华立学院课程设计(论文)任务书题目名称偏置直动滚子从动件盘形凸轮机构的设计学生学部(系)机电工程学部专业班级机械班姓名学号设计一个偏置直动滚子从动件盘形凸轮机构。

设计参数如表中所示,凸轮回转方向为顺时针(或逆时针),从动件推程以正弦加速度运动规律上升,回程以等加速等减速运动规律下降,其中,e、r r、r b、h分别代表偏距、滚子半径、基圆半径及从动件最大升程,ф、фs、ф‘、фs’分别代表凸轮的推程角、远休止角、回程角及近休止角。

1、设计数据:设计内容偏置直动滚子从动件盘形凸轮轮廓设计符号 e r r r b h ффsф‘фs’单位mm (º)数据10 55 40 180 30 120 302、设计要求1)、用图解法设计此盘形凸轮机构,正确确定偏距e的方向;2)、用图解法设计此盘形凸轮机构,将计算过程写在说明书中。

06-凸轮轮廓的设计计算与绘图

06-凸轮轮廓的设计计算与绘图

06-凸轮轮廓的设计计算与绘图disp ' ******** 偏置移动从动件盘形凸轮设计********'disp '已知条件:'disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边'disp ' 从动件在推程作等加速/等减速运动,在回程作余弦加速度运动' rb = 40;rt = 10;e = 15;h = 50;ft = 100;fs = 60;fh = 90;alp = 35;fprintf (1,' 基圆半径rb = %3.4f mm \n',rb)fprintf (1,' 滚子半径rt = %3.4f mm \n',rt)fprintf (1,' 推杆偏距 e = %3.4f mm \n',e)fprintf (1,' 推程升程h = %3.4f mm \n',h)fprintf (1,' 推程运动角ft = %3.4f 度\n',ft)fprintf (1,' 远休止角fs = %3.4f 度\n',fs)fprintf (1,' 回程运动角fh = %3.4f 度\n',fh)fprintf (1,' 推程许用压力角alp = %3.4f 度\n',alp)hd= pi / 180;du = 180 / pi;se=sqrt( rb^2 - e^2 );d1 = ft + fs;d2 = ft + fs + fh;disp ' 'disp '计算过程和输出结果:'disp ' 1- 计算凸轮理论轮廓的压力角和曲率半径'disp ' 1-1 推程(等加速/等减速运动)'s = zeros(ft);ds = zeros(ft);d2s = zeros(ft);at = zeros(ft);atd = zeros(ft);pt = zeros(ft);for f = 1 : ftif f <= ft / 2s(f)=2 * h * f ^ 2 / ft ^ 2;s = s(f);ds(f)=4 * h * f * hd / (ft * hd) ^ 2;ds = ds(f);d2s(f)=4 * h / (ft * hd) ^ 2;d2s = d2s(f);elses(f)=h - 2 * h * (ft - f) ^ 2 / ft ^ 2;s = s(f);ds(f)=4 * h * (ft - f) * hd / (ft * hd) ^ 2;ds = ds(f);d2s(f)=-4 * h / (ft * hd) ^ 2;d2s = d2s(f);endat(f)= atan(abs(ds - e) / (se + s));atd(f) = at(f) * du;p1=((se + s ) ^ 2 + (ds - e) ^ 2) ^ 1.5;p2= abs((se + s) * (d2s - se - s) - (ds - e) * (2 * ds - e));pt(f)= p1 /p2;p = pt(f);endatm = 0;for f = 1 : ftif atd(f) > atmatm = atd(f);endendfprintf (1,' 最大压力角atm = %3.4f 度\n',atm)for f = 1 : ftif abs(atd(f) - atm) < 0.1ftm = f;breakendendfprintf (1,' 对应的位置角ftm = %3.4f 度\n',ftm)if atm > alpfprintf (1,' * 凸轮推程压力角超过许用值,需要增大基圆!\n') endptn = rb + h;for f = 1 : ftif pt(f) < ptnptn = pt(f);endendfprintf (1,' 轮廓最小曲率半径ptn = %3.4f mm\n',ptn)for f = 1 : ftif abs(pt(f) - ptn) < 0.1ftn = f;breakendendfprintf (1,' 对应的位置角ftn = %3.4f 度\n',ftn)if ptn < rt + 5fprintf (1,' * 凸轮推程轮廓曲率半径小于许用值,需要增大基圆或减小滚子!\n') enddisp ' 1-2 回程(余弦加速度运动)'s = zeros(fh);ds = zeros(fh);d2s = zeros(fh);ah = zeros(fh);ahd = zeros(fh);ph = zeros(fh);for f = d1 : d2k = f - d1;s(f) = .5 * h * (1 + cos(pi * k / fh)); s = s(f);ds(f)=-.5 * pi * h * sin(pi * k / fh) / (fh * hd);ds = ds(f);d2s(f)= -.5 * pi ^2 * h * cos(pi * k / fh)/(fh * hd) ^2;d2s = d2s(f);ah(f)=atan(abs(ds + e) / (se + s));ahd(f) = ah(f) * du;p1=((se + s ) ^ 2 + (ds - e) ^ 2) ^ 1.5;p2= abs((se + s) * (d2s - se - s) - (ds - e) * (2 * ds - e));ph(f)= p1 /p2;p = ph(f);endahm = 0;for f = d1 : d2if ahd(f) > ahm;ahm = ahd(f);endendfprintf (1,' 最大压力角ahm = %3.4f 度\n',ahm)for f = d1 : d2if abs(ahd(f)- ahm) < 0.1fhm = f;breakendendfprintf (1,' 对应的位置角fhm = %3.4f 度\n',fhm)phn = rb + h;for f = d1 : d2if ph(f) < phnphn = ph(f);endendfprintf (1,' 轮廓最小曲率半径phn = %3.4f mm\n',phn)for f = d1 : d2if abs(ph(f) - phn) < 0.1fhn = f;breakendendfprintf (1,' 对应的位置角fhn = %3.4f 度\n',fhn)if phn < rt + 5fprintf (1,' * 凸轮回程轮廓曲率半径小于许用值,需要增大基圆或减小滚子!\n') enddisp ' 2- 计算凸轮理论廓线与实际廓线的直角坐标'n = 360;s = zeros(n);ds = zeros(n);r = zeros(n);rp = zeros(n);x = zeros(n);y = zeros(n);dx = zeros(n);dy = zeros(n);xx = zeros(n);yy = zeros(n);xp = zeros(n);yp = zeros(n);xxp = zeros(n);yyp = zeros(n);for f = 1 : nif f <= ft/2s(f) = 2 * h * f ^ 2 / ft ^ 2; s = s(f);ds(f) = 4 * h * f * hd / (ft * hd) ^ 2; ds = ds(f);elseif f > ft/2 & f <= fts(f) = h - 2 * h * (ft - f) ^ 2 / ft ^ 2; s = s(f);ds(f) = 4 * h * (ft - f) * hd / (ft * hd) ^ 2; ds = ds(f);elseif f > ft & f <= d1s = h;ds = 0;elseif f > d1 & f <= d2k = f - d1;s(f) = .5 * h * (1 + cos(pi * k / fh)); s = s(f);ds(f)= -.5 * pi * h * sin(pi * k / fh) / (fh * hd); ds = ds(f);elseif f > d2 & f <= ns = 0;ds = 0;endxx(f) = (se + s) * sin(f * hd) + e * cos(f * hd); x = xx(f);yy(f) = (se + s) * cos(f * hd) - e * sin(f * hd); y = yy(f);dx(f) = (ds - e) * sin(f * hd) + (se + s) * cos(f * hd); dx = dx(f);dy(f) = (ds - e) * cos(f * hd) - (se + s) * sin(f * hd); dy = dy(f);xp(f) = x + rt * dy / sqrt(dx ^ 2 + dy ^ 2);xxp = xp(f);yp(f) = y - rt * dx / sqrt(dx ^ 2 + dy ^ 2);yyp = yp(f);r(f) = sqrt (x ^2 + y ^2 );rp(f) = sqrt (xxp ^2 + yyp ^2 );enddisp ' 2-1 推程(等加速/等减速运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y' for f = 10 : 10 :ftnu = [f xx(f) yy(f) xp(f) yp(f)];disp(nu)enddisp ' 2-2 回程(余弦加速度运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y' for f = d1 : 10 : d2nu = [f xx(f) yy(f) xp(f) yp(f)];disp(nu)enddisp ' 2-3 凸轮轮廓向径'disp ' 凸轮转角理论r 实际r'for f = 10 : 10 : nnu = [f r(f) rp(f)];disp(nu)enddisp '绘制凸轮的理论轮廓和实际轮廓:'plot(xx,yy,'r-.') % 理论轮廓(红色,点划线)axis ([-(rb+h-10) (rb+h+10) -(rb+h+10) (rb+rt+10)]) % 横轴和纵轴的下限和上限axis equal % 横轴和纵轴的尺度比例相同text(rb+h+3,0,'X') % 标注横轴text(0,rb+rt+3,'Y') % 标注纵轴text(-5,5,'O') % 标注直角坐标系原点title('偏置移动从动件盘形凸轮设计') % 标注图形标题hold on; % 保持图形plot([-(rb+h) (rb+h)],[0 0],'k') % 横轴(黑色)plot([0 0],[-(rb+h) (rb+rt)],'k') % 纵轴(黑色)plot([e e],[0 (rb+rt)],'k--') % 初始偏置位置(黑色,虚线)ct = linspace(0,2*pi); % 画圆的极角变化范围plot(rb*cos(ct),rb*sin(ct),'g') % 基圆(绿色)plot(e*cos(ct),e*sin(ct),'c--') % 偏距圆(蓝绿色,虚线)plot(e + rt*cos(ct),se + rt*sin(ct),'y') % 滚子圆(黄色)plot(xp,yp,'b') % 实际轮廓(蓝色)。

偏心直动滚子从动件盘形凸轮机构的设计-大连交通大学机械设计基础大作业(2)

偏心直动滚子从动件盘形凸轮机构的设计-大连交通大学机械设计基础大作业(2)

大连交通大学机械设计基础大作业偏心直动滚子从动件盘形凸轮机构的设计(题号:02)班级:焊接162姓名:***学号:***********完成日期:2018年7月1日目录题目:设计偏心直动滚子从动件盘形凸轮机构设计题目及思路: (1)一、设计思路(图解法): (1)1.1反转发原理 (1)1.2 凸轮基圆半径及滚子尺寸的确定 (2)1.2.1确定凸轮基圆半径 (2)1.2.2 滚子半径的确定 (3)1.2.3 设计所求量: (3)1.2.4 从动杆的运动规律及凸轮轮廓方程 (3)1.2.5数据计算 (5)1.2.6 小结: (6)二、解析法在Pro/E中完成凸轮建模 (6)2.1凸轮的设计与造型方法: (6)2.2凸轮理论轮廓曲线方程式的建立 (6)2.3在PROE中凸轮参数化方程式的建立 (7)2.3.1 设计从动件的运动规律 (7)2.4 PRO/E参数化建模 (8)2.5 生成凸轮的理论轮廓曲线 (10)2.5.1生成凸轮的实际轮廓曲线 (10)2.6 创建凸轮的拉伸 (11)2.7创建滚子的拉伸 (12)2.8 系杆的建立 (12)三、机械大作业小结: (13)1题目:设计偏心直动滚子从动件盘形凸轮机构设计题目及思路:偏心直动滚子从动件盘形凸轮机构,已知凸轮做顺时针方向旋转,各数据如表中一、设计思路(图解法):1、由题目要求为偏心直动滚子从动件盘形凸轮机构。

2、根据工作要求选择从动件的运动规律。

推程运动规律和回程运动规律都为正弦运动。

推程运动角δ0=120°,远休止角δ01=30°,回程运动角δ0′ =150°,近休止角δ02=60°。

3、根据要求,滚子半径r r =16mm4、根据要求,选基圆半径r 0 =55mm 。

5、根据要求,偏心距e=6mm 。

6、进行计算机辅助设计。

为保证机构有良好的受力状况,推程许用压力角[α]=38º,回程许用压力角[αˊ]=70º,设计过程中要保证α推程≤[α]=38º,α回程≤[αˊ]=70º,为保证机构不产生运动失真和避免凸轮廓线应力集中,取凸轮实际廓线的许用曲率半径[ρa ]=3mm ,设计过程中要保证凸轮理论廓线外凸部分的曲率半径ρ≥[ρa ]+rr=3+18=21mm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

180º
60º 120º
max
0 A0
5.摆动尖顶从动件盘形凸轮轮廓线设计
A8
A7
-
A9
max
C
C
9
BB
8
8
A6 C
7
B
7
9
r0
C10 B10 B0
A10
o
2
1 2 3 4 5 6 7 8 910
180º
60º 120º
120°
Oa
B1 B
C1 L
C210
(1)作出角位移线图; A(0 2)作初始位置;
(3)自OC0沿ω的相反方向取角度 180 , s 60 , 120 并将它们各分成
与位移线图对应的若干等分,得 C1、C2、C3 … 等诸点。
(4)过C1、C2、C3 … 等诸点作偏距圆的切线,它们便是反转后从动件导路的各 个位置。 (5)沿以上各切线自基圆开始量取从动件相应的位移量,即取线段 B1C 1=11, ,B2C 2=22, … , 得 B1 、B2 … 等各点,这些点即为反转后尖底的 一系列位置。
A5
2
B B180°B
6 5
4C
C 3 2
C
C
A1
(A31)、按A-2方向等划点分;圆即R得得机A架0、 反转的一系列位置;
6
5
43
R
(4)找从动件反转后的一系
A4
A2
列位置,得 C1、C2、
A3
等点,即为凸轮轮廓上的点。
第四节 凸轮机构的压力角和基本尺寸
一、凸轮机构的压力角 二、凸轮基圆半径的确定 三、滚子从动件滚子半径的选择
lCP = (S+S0 )tg α S0= r02 -e2
n
得: tgα = ds/dφ + e
S + r20 - e2
于是: tgα = ds/dφ ± e
3.偏置移动滚子从动件盘形凸轮轮廓线设计
已知:从动件运动规律,凸轮基圆
半径 r0 ,凸轮以等角速度ω逆时针转 动,滚子半径 rT。
作图步骤:
(1)将滚子中心看作是尖顶从动件
rT
B0
的尖顶,按照前述方法画出尖顶从动
件的凸轮轮廓曲线,该曲线称为凸轮
r0
的理论轮廓曲线。
(2)以理论轮廓曲线上各点为圆心, 以滚子半径 rT为半径画一系列圆,作 这些圆的包络线(与每个小圆相切,
c9B0 120º c10
e c0
c5 c4 18c03ºc2c1
B1 B2 B3
(2)按基本 尺寸作出凸轮机构的 初始位置;
(c31)、按c2-方等向点划;分并偏过距这圆些得点c作0、 偏距圆的切线,即为反转导路线;
B4
B6
B5
(4)在各反转导路线上量取与位移 图相应的位移,得B1、B2、 等点,即为凸轮轮廓上的点。
作图步骤:
o
1'
2'
3'
4'
5'
6'
h
7' 8' 9' 10'
2
1 2 3 4 5 6 7 8 910
180º
60º 120º
(1)选比例尺
3 mm
,
l
1mm mm
,
作从动件位移线图,在φ轴上将3600分成
若干等份(推程、回程等份数可不同)得到11,、22,,┄┄。
(2)用与位移曲线相同的长度比例尺,以o为圆心、以 r0为半径作基圆,以e为半 径作偏距圆,按从动件偏置方向作从动件的起始位置线KC0 , 此基圆与起始位置线 KC0的交点Co,便是从动件尖顶的起始位置。
越小,受力越好。

o n
F1 F cos F2 F sin
推动从动件运动的有效分力 阻碍从动件运动的有害分力
当增大到某一数值时,有害分力F2引起的
摩擦阻力大于有效分力F1,此时无论凸轮给 从动件的作用力有多大,都不能推动从动件
运动,这种现象称为机构的自锁。
结论:从避免机构的自锁,使机构具有良好
每个圆只切一次--圆的公切线),此 包络线即为所求的凸轮的实际轮廓线。
实际轮廓曲线
'
理论轮廓曲线
注意: (1)理论轮廓与实际轮廓互为等距曲线;
(2)凸轮的基圆半径是指理论轮廓曲线的最小向径。
4.移动平底从动件盘形凸轮轮廓线设计
-
s
10 2
2
O 1 2 3 4 56 7 8 9
180º
120º 60º
的受力状况来看, 越小越好。
设计凸轮机构时务必使 max[] 许用压力角的推荐值:
推程时
对于移动从动件, []=30º 对于摆动从动件, []=35º~45º
回程时:[]=70º~80º
3、压力角与凸轮机构尺寸之间的关系
P点为速度瞬心, 于是有:
v=lOPω → lOP =v / ω = ds/dφ = lOC + lCP
(6)将Bo 、 B1 、B2 … 等各点连成光滑曲线即得到凸轮轮廓曲线。
2.偏置移动尖顶从动件盘形凸轮轮廓线设计
S 180 , s 60 , 120
-
h
o
2
1 2 3 4 5 6 7 8 910
180º
60º 120º
(1)按已设计好的运动规律作出
B9
B10
位移线图;
B8 B7
c7r0c8 c660ºO
第四节 凸轮机构的压力角和基本尺寸
一、凸轮机构的压力角
1. 压力角 :
在不计摩擦力、重力、惯性力的条件下,机
构中驱使从动件运动的力的方向线与从动 件上受力点的速度方向线所夹的锐角。
2. 压力角与凸轮机构受力情况的关系
Q n
v2
F F1 A
F2
Q—作用在从动件上的载荷
F—凸轮对从动件的作用力
F1 F cos 推动从动件运动的有效分力 F2 F sin 阻碍从动件运动的有害分力
偏置移动尖顶从动件盘形凸轮轮廓线设计
已知:基圆半径 r0 =30mm,偏e=12mm,
凸轮以等角速度ω逆时针转动,从动件 在推程中按等速运动规律上升,升程 h=40mm,从动件在回程中以等 加速等减 速运动规律下降返回原处。
180 , s 60 , 120
180, s 60, 120
lOC = e lCP = ds/dφ - e
lCP = (S+S0 )tg α S0= r20 -e2 tgα = ds/dφ - e
ω
S + r20 - e2
r0↑ →α↓
若发现设计结果α〉[α],可增大r0
nv
B
s
r0Dα v
s0
OP
eC
n
ds/dδ
同理,当导路位于中心左侧时,有:
lOP =lCP- lOC → lCP = ds/dφ + e
120º
1
180º
平底凸轮 机构
5.摆动尖顶从动件盘形
凸轮轮廓线设计
已知:凸轮逆时针转动,r0=40mm,o
从动件的运动规律,Ψmax=36。,从动件 顺时针摆动,凸轮轴心与从动件转轴之间
的中心距 OA 0=a=80mm,
AOBO=L=60mm。
B1
AB
B0
L
r0
O
a
max
2
1 2 3 4 5 6 7 8 910
相关文档
最新文档