曲柄连杆机构课程设计讲解

曲柄连杆机构课程设计讲解
曲柄连杆机构课程设计讲解

工程软件训练

目录

目录 (1)

第1章绪论 (3)

第2章活塞组的设计 (4)

2.1 活塞的设计 (4)

2.1.1 活塞的材料 (4)

2.1.2 活塞头部的设计 (4)

2.1.3 活塞裙部的设计 (5)

2.2 活塞销的设计 (5)

2.2.1 活塞销的结构 (5)

第3章连杆组的设计 (6)

3.1 连杆的设计 (6)

3.1.1 连杆材料的选用 (6)

3.1.2 连杆长度的确定 (6)

3.1.3 连杆小头的结构设计 (6)

3.1.4 连杆杆身的结构设计 (6)

3.1.5 连杆大头的结构设计 (6)

3.2 连杆螺栓的设计 (7)

第4章曲轴的设计 (8)

4.1 曲轴的结构型式和材料的选择 (8)

4.1.1 曲轴的结构型式 (8)

4.1.2 曲轴的材料 (8)

4.2 曲轴的主要尺寸的确定和结构细节设计 (8)

4.2.1 曲柄销的直径和长度 (8)

4.2.2 主轴颈的直径和长度 (9)

4.2.3 曲柄 (9)

4.2.4 平衡重 (9)

4.2.5 油孔的位置和尺寸 (10)

4.2.6 曲轴两端的结构 (10)

1

工程软件训练

第5章曲柄连杆机构的创建 (11)

5.1 活塞的创建 (11)

5.2 连杆的创建 (11)

5.3 曲轴的创建 (11)

第六章曲柄连杆机构静力学分析 (13)

6.1 活塞的静力分析 (13)

6.2 连杆的静力分析 (13)

2

工程软件训练

第1章绪论

曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题[1]。

通过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以满足实际生产的需要。

在传统的设计模式中,为了满足设计的需要须进行大量的数值计算,同时为了满足产品的使用性能,须进行强度、刚度、稳定性及可靠性等方面的设计和校核计算,同时要满足校核计算,还需要对曲柄连杆机构进行动力学分析。

为了真实全面地了解机构在实际运行工况下的力学特性,本文采用了多体动力学仿真技术,针对机构进行了实时的,高精度的动力学响应分析与计算,因此本研究所采用的高效、实时分析技术对提高分析精度,提高设计水平具有重要意义,而且可以更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,对进一步研究发动机的平衡与振动、发动机增压的改造等均有较为实用的应用价值。

本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。

3

工程软件训练

4

第2章 活塞组的设计

2.1 活塞的设计

2.1.1 活塞的材料

在发动机中,灰铸铁由于耐磨性、耐蚀性好、膨胀系数小、热强度高、成本低、工艺性好等原因,曾广泛地被作为活塞材料。但近几十年来,由于发动机转速日益提高,工作过程不断强化,灰铸铁活塞因此比重大和导热性差两个根本缺点而逐渐被铝基轻合金活塞所淘汰。

铝合金的优缺点与灰铸铁正相反,铝合金比重小,约占有灰铸铁的1/3,结构重量仅占铸铁活塞的%70~50。因此其惯性小,这对高速发动机具有重大意义。铝合金另一突出优点是导热性好,其热传导系数约为铸铁的4~3倍,使活塞温度显著下降。对汽油机来说,采用铝活塞还为提高压缩比、改善发动机性能创造了重要的条件。

共晶铝硅合金是目前国内外应用最广泛的活塞材料,既可铸造,也可锻造。含硅9%左右的亚共晶铝硅合金,热膨胀系数稍大一些,但由于铸造性能好,适应大量生产工艺的要求,应用也很广。

综合分析,该发动机活塞采用铝硅合金材料铸造而成。

2.1.2 活塞头部的设计

1、压缩高度的确定

压缩高度1H 是由火力岸高度1h 、环带高度2h 和上裙尺寸3h 构成的,即

1H =1h +2h +3h

(1)第一环位置

一般汽油机D h )12.0~06.0(1=,D 为活塞直径,该发动机的活塞标准直径mm D 80=确定火力岸高度为:

mm D h 8801.01.01=?==

(2)环带高度

一般气环高mm b 5.2~5.1=,油环高mm b 5~2=。

该发动机采用三道活塞环,取mm b 5.11=,mm b 5.22=,mm b 33=。

环岸的高度c ,D c )05.0~04.0(1=,12)2~1(b c =,汽油机接近下限。

则 mm D c 405.01==,

工程软件训练

5

mm b c 35.12212=?==。

因此,环带高度mm b c b c b h 14335.245.1322112=++++=++++=。

(3)上裙尺寸

对于汽油机D H )0.6~0.35(1=,所以mm D H 40805.05.01=?=?=。 mm h h H h 181********=--=--=。

2、活塞顶和环带断面

由于EA113 5V 1.6L 发动机为高压缩比3.9=ε,因而采用近似于平顶的活塞。实际统计数据表明,活塞顶部最小厚度,汽油机为D )0.1~0.06(=δ,即mm 6)80075.0(=?=δ。

2.1.3 活塞裙部

裙部单位面积压力(裙部比压)按下式计算:

2

m a x DH N q = 取mm D H 368045.045.02=?==。

则 799.036

8083.2410=?=q MPa 一般发动机活塞裙部比压值约为MPa 5.1~5.0,所以设计合适。

2.2活塞销的设计

2.2.1 活塞销的结构

活塞销与活塞销座和连杆小头衬套孔的连接配合,采用“全浮式”。活塞销的直径D d )3.0~25.0(1=,取mm D d 2025.01==,取mm d d 147.012==活塞销长度D l )9.0~8.0(=,取mm D l 648.0==

工程软件训练

6

第3章 连杆组的设计

3.1 连杆的设计

3.1.1 连杆材料的选用

为了保证连杆在结构轻巧的条件下有足够的刚度和强度,采用精选含碳量的优质中碳结构钢45模锻,表面喷丸强化处理,提高强度。

3.1.2连杆长度的确定

设计连杆时首先要确定连杆大小头孔间的距离,即连杆长度l 它通常是用连杆比l r /=λ来说明的,通常~25.0=λ0.3125,取27.0=λ,mm r 23.40=,则mm l 15023.4027.0=?=。

3.1.3 连杆小头的结构设计

连杆小头主要结构尺寸如图4.1所示,小头衬套内径1d 和小头宽度1B 已在活塞组设计中确定,mm 20d 1=,mm 26B 1=。

为了改善磨损,小头孔中以一定过盈量压入耐磨衬套,衬套大多用耐磨锡青铜铸造,这种衬套的厚度一般为3mm ~2=δ,取 2.2mm =δ,则小头孔直径24mm d =,小头外径d )35.1~2.1(D 1=,取mm 302427.1D 1=?=。

3.1.4 连杆杆身的结构设计

连杆杆身从弯曲刚度和锻造工艺性考虑,采用工字形断面,杆身截面宽度B 约等于D )3.0~2.0((D 为气缸直径),取mm D B 162.0==,截面高度B H )8.1~5.1(=,取mm B H 2665.1==。

为使连杆从小头到大头传力比较均匀,在杆身到小头和大头的过渡处用足够大的圆角半径。

3.1.5 连杆大头的结构设计

连杆大头的结构与尺寸基本上决定于曲柄销直径2D 、长度2B 、连杆轴瓦厚度2δ和连杆螺栓直径m d 。其中在2D 、2B 在曲轴设计中确定,mm D 8.472=,mm B 262=,

则大头宽度mm b 262=,轴瓦厚度mm )(3~5.12=

δ,取mm 5.22=δ,大头孔直径mm d 502=。

工程软件训练

7

连杆大头与连杆盖的分开面采用平切口,大头凸台高度221)5.0~35.0(d H H ≈≈,取mm d H 2245.021==,取mm d H 2245.022==,

3.2 连杆螺栓的设计

根据气缸直径D 初选连杆螺纹直径M d ,根据统计D d M )12.0~1.0(=,取mm D d M 81.0==。

工程软件训练

8

第4章 曲轴的设计

4.1 曲轴的结构型式和材料的选择

4.1.1 曲轴的结构型式

曲轴的设计从总体结构上选择整体式,它具有工作可靠、质量轻的特点,而且刚度和强度较高,加工表面也比较少。为了提高曲轴的弯曲刚度和强度,采用全支撑半平衡结构[11],即四个曲拐,每个曲拐的两端都有一个主轴颈,如图5.1所示:

图4.1 曲轴的结构型式

4.1.2 曲轴的材料

在结构设计和加工工艺正确合理的条件下,主要是材料强度决定着曲轴的体积、重量和寿命,作为曲轴的材料,除了应具有优良的机械性能以外,还要求高度的耐磨性、耐疲劳性和冲击韧性。同时也要使曲轴的加工容易和造价低廉。在保证曲轴有足够强度的前提下,尽可能采用一般材料。以铸代锻,以铁代钢。高强度球墨铸铁的出现为铸造曲轴的广泛采用提供了前提。

该发动机曲轴采用球墨铸铁铸造而成。

4.2 曲轴的主要尺寸的确定和结构细节设计

4.2.1 曲柄销的直径和长度

在考虑曲轴轴颈的粗细时,首先是确定曲柄销的直径2D 。对于汽油机,65.0~60.0/2 D D ,D 为气缸直径,已知D =80mm ,则,曲柄销直径取为2D =0.60D =48mm 。

曲柄销的长度2l 是在选定的基础上考虑的。从增加曲轴的刚性和保证轴承的工作能力出发,应使2l 控制在一定范围内,同时注意曲拐各部分尺寸协调,根据统计

工程软件训练

9

2l /2D =70.0~50.0,取2l =0.622D =30mm 。

轴颈的尺寸,最后可以根据承压面的投影面积22201.0l D F =与活塞投影面积24D F π

=之比来校核,此比值据统计在范围内,而且汽油机偏下限。 那么由26.0804

304801.0401.02222=???==ππD l D F F ,则长度取值合适。 4.2.2 主轴颈的直径和长度

为了最大限度地增加曲轴的刚度,适当地加粗主轴颈,这样可以增加曲轴轴颈的重叠度,从而提高曲轴刚度,其次,加粗主轴颈后可以相对缩短其长度,从而给加厚曲柄提高其强度提供可能。从曲轴各部分尺寸协调的观点,建议取21)25.1~05.1(D D =,取1D =1.162D =56mm 。

由于主轴承的负荷比连杆轴承轻,主轴颈的长度1l 一般比曲柄销的长度短,这样可满足增强刚性及保证良好润滑的要求。

据统计4.0~3.0/1=D l ,取1l =0.3D =24mm 。

4.2.3 曲柄

曲柄应选择适当的厚度、宽度,以使曲轴有足够的刚度和强度。根据统计,曲柄的宽度2.1~75.0/=D b ,取mm D b 800.1==,厚度25.0~18.0/=D h ,取mm D h 2025.0==。

曲柄臂以凸肩接主轴颈和曲柄销。凸肩的厚度δ根据曲轴加工工艺决定。全加工曲轴δ的只有0.5~1mm ,取δ=1mm 。

曲柄销和主轴颈至曲柄臂凸肩的过渡圆角对应力集中程度影响最大,加大圆角半径ρ可使圆角应力峰值降低,故ρ宜取大,至少不能小于0.052D 或 2.5mm ,取ρ=3mm 。

4.2.4 平衡重

对四拐曲轴来说,作用在第1、2拐和第3、4拐上的离心惯性力互成力偶。这两个力偶大小相等、方向相反,所以从整体上讲是平衡的,但是这两个力偶却还是作用在曲袖上了,曲轴这两个对称力偶的作用下可能发生弯曲变形。由于曲轴是安装在机体的主轴承中的,所以曲轴发生弯曲变形时上述力偶就将也部分地作用在机体上,使

工程软件训练

10

机体承受附加弯曲力偶的作用,尤其是在此情况下主轴承的工作条件也要变坏。安装平衡重,改善曲轴本身和机体的受力情况,尤其改善了主轴承的工作条件。

4.2.5 油孔的位置和尺寸

为保证曲轴轴承工作可靠,对它们必需有充分的润滑。曲轴中油道的尺寸和布置直接影响它的强度和刚度,同时也影响轴承工作的可靠性。 油道的孔径一般在210

1D 左右,取为4mm 。 4.2.6 曲轴两端的结构

曲轴上带动辅助系统的正时齿轮和皮带轮一般装在曲轴的前端,因为结构简单,维修方便。发动机的配气机构也是由曲轴自由端驱动。这是应为曲轴自由端的轴颈允许较细,可以采用节圆直径小的齿轮,消除扭转振动的减振器装在曲轴前端,因为这里的振幅最大。

工程软件训练

11 第5章 曲柄连杆机构的创建

运用UG 软件分别对曲柄连杆机构的各个零件进行模型的建立,具体步骤如下:

5.1 活塞的创建

(1)创建草图;

(2)旋转;

(3)打孔;

(4)制作倒角;

(5)得到活塞图。

图5.1

图5.2 5.2 连杆的创建

(1)创建草图 ;

(2)拉伸;

(3)通过拉伸打孔;

(4)得到连杆图。

图5.3

图5.4

6.4 曲轴的创建

(1)创建草图;

(2)拉伸得到平衡块;

工程软件训练

12

(3)创建草图并拉伸得到主轴颈;

(4)依次拉伸得到曲轴。

图5.5

图5.6

工程软件训练

13

第6章 曲柄连杆机构静力学分析

6.1活塞的静力分析

1.在ANSYS 添加活塞材料:硅铝合金

2.在ANSYS 中生成活塞模型

图6.1 图6.2

3.网格划分,施加约束和载荷

图6.3 图6.4 4.运算查看结果

图6.5 6.2 连杆静力分析

1.在ANSYS 中添加连杆材料:优质中碳钢55

工程软件训练

14

图6.6

2.在ANSYS 中生成连杆模型

图6.7

3. 网格划分,施加约束和载荷

图6.8 6.9

4.查看运算结果

工程软件训练

15

图6.10

图6.11

发动机课程设计汇总

课程设计说明书 设计题目 院(系)专业班学生姓名 完成日期 指导教师(签字) 华中科技大学

目录 一目的与要求 (1) 二设计任务 (2) 三工作过程模拟计算 (3) 四动力学计算 (7) 五设计感想 (10) 参考文献 (11) 附录A 发动机外特性曲线 (12) 附录 B F g-?、F j-?、F-?曲线图 (13) 附录 C F N-?、F L-?、F t-?、F k-?、R B-?曲线图 (14) 附录 D 发动机合成扭矩∑M k-?曲线图 (15)

一目的与要求 1.目的 发动机课程设计是《发动机现代设计》课程的后续教学环节,旨在对刚学习过的发动机设计课程以及发动机原理课程的知识进行综合运用,加深对专业知识的理解。在课程设计环节,通过总体性能计算(工作过程模拟计算与动力学计算)将发动机的结构参数与性能参数结合起来,弄清结构与性能之间的内在联系;通过发动机总体布置图设计,对发动机的总体结构有一个全面而具体的了解,并深化对发动机各主要零件的作用和设计要求的理解。 2.要求 对提供的教学参考资料要认真分析,在理解的基础上借鉴,不要盲目照搬照抄。独立完成,可以讨论,不许抄袭;按时完成,不得延期。交课程设计材料(计算说明书与图纸)时必须通过指导教师的考核,不得代交。计算说明书应包括:计算目的、已知条件、变量说明、计算结果及说明(分析)等,其中动力学计算应有受力分析图,曲线图应标明坐标及单位。所绘图纸应符合工程图纸规范要求。

二设计任务 4110柴油机总体方案设计 1. 技术参数 机型:立式,直列,水冷,四冲程,废气涡轮增压、中冷燃烧室型式:直喷式 气缸直径:110mm 活塞行程:125mm(曲柄半径:62.5mm) 缸数:4 发火顺序:1-3-4-2 压缩比:17 标定功率(kW)/转速(r/min):140/2300 最大扭矩(N.m)/转速(r/min): 640/1450~1550 外特性最低燃油耗率(g/kW.h):200 标定工况燃油耗率(g/kW.h):210 机油耗率(g/kW.h):≤1.0 调速率:≤8% 怠速(r/min): 750 曲轴旋转方向(从前端看):顺时针 气门间隙(冷态):进气门0.3~0.4,排气门0.4~0.5 冷却方式:强制水冷 润滑方式:压力、飞溅复合式 启动方式:电启动 配气定时:进气门开,上止点前20oCA;进气门关,下止点后43oCA排气门开,下止点前60oCA;排气门关,上止点后20oCA 供油提前角:上止点前18±2oCA 2. 其他有关数据 活塞质量:1.32kg 活塞销质量:0.58kg 活塞环总质量:0.088kg 连杆大头质量(直开口/斜开口, kg): 1.89/1.98 连杆小头质量(kg):0.704 连杆长度L(mm):210 曲柄销直径:70mm 曲柄销长度:40mm 主轴颈直径:85mm 主轴颈长度(非止推挡):36mm 曲柄臂厚度:28mm 曲柄臂宽度:126mm

插床导杆机构课程设计

大学普通高等教育 机械原理课程设计 题目题号:插床导杆机构位置3的设计 学院:机电工程学院 专业班级: 学生: 指导教师 成绩: 2013 年7月 2 日

目录 一、工作原理 二、设计要求 三、设计数据 四、设计容及工作量五. 设计计算过程 (一). 方案比较与选择 (二). 导杆机构分析与设计 1.机构的尺寸综合 2. 导杆机构的运动分析

一、工作原理: 插床机械系统的执行机构主要是由导杆机构和凸轮机构组成。下图为其参考示意图,电动机经过减速传动装置(皮带和齿轮传动)带动曲柄2转动,再通过导杆机构使装有刀具的滑块6沿导路y —y 作往复运动,以实现刀具的切削运动。刀具向下运动时切削,在切削行程H 中,前后各有一段0.05H 的空刀距离,工作阻力F 为常数;刀具向上运动时为空回行程,无阻力。为了缩短回程时间,提高生产率,要求刀具具有急回运动。刀具与工作台之间的进给运动,是由固结于轴O 2上的凸轮驱动摆动从动件D O l 8和其它有关机构(图中未画出)来完成的。 二、设计要求: 电动机轴与曲柄轴2平行,使用寿命10年,每日一班制工作,载荷有轻微冲击。允许曲柄2转速偏差为±5%。要求导杆机构的最小传动角不得小于60o ;凸轮机构的最大压力角应在许用值[α]之,摆动从动件8的升、回程运动规律均为等速运动。执行构件的传动效率按0.95计算,系统有过载保护。按小批量生产规模设计。

三、插床导杆机构设计数据 四、设计容及工作量: 1、根据插床机械的工作原理,拟定2~3个其他形式的执行机构(连杆机构),并对这些机构进行分析对比。 2、根据给定的数据确定机构的运动尺寸, ()46.0~5.0BO BC l l =。要求用图解法设计,并将 设计结果和步骤写在设计说明书中。 3、导杆机构的运动分析。分析导杆摆到两个极限位置及摆到与机架O 2O 4位于同一直线位置时,滑块6的速度和加速度。 4、凸轮机构设计。根据所给定的已知参数,确定凸轮机构的基本尺寸(基圆半径r o 、机架82O O l 和滚子半径r b ),并将运算结果写在说明书中。用几何法画出凸轮机构的实际廓线。 5、编写设计说明书一份。应包括设计任务、设计参数、设计计算过程等。 6、按1:2绘制所设计的机构运动简图。

曲柄连杆机构运动学仿真

课程设计任务书

目录 1 绪论 (1) 1.1CATIA V5软件介绍 (1) 1.2ADAMS软件介绍 (1) 1.3S IM D ESIGNER软件介绍 (2) 1.4本次课程设计的主要内容及目的 (2) 2 曲柄连杆机构的建模 (3) 2.1活塞的建模 (3) 2.2活塞销的建模 (5) 2.3连杆的建模 (5) 2.4曲轴的建模 (6) 2.5汽缸体的建模 (8) 3 曲柄连杆机构的装配 (10) 3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10) 4 曲柄连杆机构导入ADAMS (14) 4.1曲柄连杆机构各个零部件之间运动副分析 (14) 4.2曲柄连杆机构各个零部件之间运动副建立 (14) 4.3曲柄连杆机构导入ADAMS (16) 5 曲柄连杆机构的运动学分析 (17) 结束语 (21) 参考文献 (22)

1 绪论 1.1 CATIA V5软件介绍 CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。 由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。 CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。 1.2 ADAMS软件介绍 ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

(完整word版)摆动式固定凸轮与连杆机构的设计

摆动式固定凸轮与连杆机构的设计 姓名:xxx 学校:湖南工业大学 专业:机械设计制造及其自动化 班级:机设1002班 学号:xxxxxxxxxx 指导老师:贺兵 时间:2013年12月20日

目录 一、课程设计的目的 (3) 二、设计内容与步骤 (3) 1、设计内容 (3) 2、设计步骤 (3) 三、设计要求 (3) 四、设计指导 (4) 1、概述 (4) 2、基本参数 (5) 3、设计步聚 (6) 1)确定驱动方案 (6) 2)确定e (7) 3)确定h (7) 4)确定α (7) 5)确定δ (7) 6)求算b1、b2 (7) 7)设计凸轮廊线 (9) 8)检验压力角 (12) 五、结论 (14) 六、参考文献 (14) 七、附图 (14)

摘要 包装设计课程设计是在完成机械设计课程学习后,一次重要的实践性教学环节。是高等工科院校大多数专业学生第一次较全面的设计能力训练,也是对机械设计课程的全面复习和实践。其目的是培养理论联系实际的设计思想,训练综合运用机械设计和有关选修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关机械设计方面的知识。 本次设计的题目是直动式固定凸轮与连杆机构的设计。根据题目要求和机械设计的特点作者做了以下几个方面的工作:①根据有关参数进行计算或编写有关设计计算程序;②利用程序设计的方法输出结果并自动生成图形;③画出装配图及其主要零件图;④完成设计计算说明书。

一、课程设计的目的 《包装机械设计》课程设计是本课程各教学环节中重要的一环,它让学习者联系实际进一步深入理解、掌握所学的理论知识。其基本目的是: (1)培养理论联系实际的设计思想,训练综合运用包装机械和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关包装机械设计方面的知识。 (2)通过制订设计方案,合理选择裹包机中块状物品推送机构和零件类型,正确计算零件工作能力、确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,之后进行结构设计,达到了解和掌握机械零件、包装机械经常采用的机构的设计过程和方法。 (3)进行设计基本技能的训练。例如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据、进行经验估算和处理数据的能力。 二、设计内容与步骤 (一)设计内容 以裹包机中块状物品推送机构的典型机构——固定凸轮与连杆组合机构为题。课程设计通常包括如下内容:读懂块状物品推送机构典型机构——固定凸轮与连杆组合机构,了解设计题目要求;分析该块状物品推送机构设计的可能方案;具体计算和设计该方案中机构的基本参数;进行机体结构及其附件的设计;绘制装配图及零件工作图;编写计算说明书以及进行设计答辩。 (二)设计步骤: (1)设计准备 认真研究设计任务书,明确设计要求、条件、内容和步骤;通过阅读有关资料、图纸、参观实物或模型、观看电视教学片、挂图以及推送机构进行拆装实验等,了解设计对象;复习有关课程内容,熟悉零部件的设计方法和步骤;准备好设计需要的图书、资料和用具;拟定设计计划等。 (2)推送机构装置的总体设计 决定推送机构装置的方案;选择机构的类型,计算机构装置的运动参数。 (3)装配图设计 计算和选择机构的参数;确定机体结构和有关尺寸;绘制装配图草图;选择计算轴承和进行支承结构设计;进行机体结构及其附件的设计;完成装配图的其他要求;审核图纸。 (4)零件工作图设计 (5)整理和编写计算说明书 (6)设计总结和答辩 (三)、设计要求 在课程设计之前,准备好必要的设计手册或参考资料,以便在设计过程中逐步去学习查阅资料。确定设计题目后,至少应复习在课程中学过的相关内容。完成本课程设计的具体要求如下:

机械原理课程设计连杆机构B完美版

机械原理课程设计 任务书 题目:连杆机构设计B4 姓名:戴新吉 班级:机械设计制造及其自动化2011级3班 设计参数 设计要求: 1.用解析法按计算间隔进行设计计算; 2.绘制3号图纸1张,包括: (1)机构运动简图; (2)期望函数与机构实现函数在计算点处的对比表; (3)根据对比表绘制期望函数与机构实现函数的位移对比图; 3.设计说明书一份; 4.要求设计步骤清楚,计算准确。说明书规范。作图要符合国家标。按时独 立完成任务。 目录

第1节平面四杆机构设计连杆机构设计的基本问题

连杆机构设计的基本问题是根据给定的要求选定机构的型式,确定各构件的尺寸,同时还要满足结构条件(如要求存在曲柄、杆长比恰当等)、动力条件(如适当的传动角等)和运动连续条件等。 根据机械的用途和性能要求的不同,对连杆机构设计的要求是多种多样的,但这些设计要求可归纳为以下三类问题: (1)预定的连杆位置要求; (2)满足预定的运动规律要求; (3)满足预定的轨迹要求; 连杆设计的方法有:解析法、作图法和实验法。 作图法设计四杆机构 对于四杆机构来说,当其铰链中心位置确定后,各杆的长度也就确定了。用作图法进行设计,就是利用各铰链之间相对运动 的几何关系,通过作图确定各铰链的位置,从而定出各杆的长度。 作图法设计四杆机构的特点 图解法的特点是直观、简单、快捷,对三个设计位置以下的设计是十分方便的,其设计精度也能满足工作的要求,并能为解析法精确求解和优化设计提供初始值。 根据设计要求的不同分为四种情况: (1) 按连杆预定的位置设计四杆机构; (2) 按两连架杆预定的对应角位移设计四杆机构; (3) 按预定的轨迹设计四杆机构; (4) 按给定的急回要求设计四杆机构。

曲柄连杆机构课程设计

工程软件训练 目录 目录 (1) 第1章绪论 (3) 第2章活塞组的设计 (4) 2.1 活塞的设计 (4) 2.1.1 活塞的材料 (4) 2.1.2 活塞头部的设计 (4) 2.1.3 活塞裙部的设计 (5) 2.2 活塞销的设计 (5) 2.2.1 活塞销的结构 (5) 第3章连杆组的设计 (6) 3.1 连杆的设计 (6) 3.1.1 连杆材料的选用 (6) 3.1.2 连杆长度的确定 (6) 3.1.3 连杆小头的结构设计 (6) 3.1.4 连杆杆身的结构设计 (6) 3.1.5 连杆大头的结构设计 (6) 3.2 连杆螺栓的设计 (7) 第4章曲轴的设计 (8) 4.1 曲轴的结构型式和材料的选择 (8) 4.1.1 曲轴的结构型式 (8) 4.1.2 曲轴的材料 (8) 4.2 曲轴的主要尺寸的确定和结构细节设计 (8) 4.2.1 曲柄销的直径和长度 (8) 4.2.2 主轴颈的直径和长度 (9) 4.2.3 曲柄 (9) 4.2.4 平衡重 (9) 4.2.5 油孔的位置和尺寸 (10) 4.2.6 曲轴两端的结构 (10) 1

工程软件训练 第5章曲柄连杆机构的创建 (11) 5.1 活塞的创建 (11) 5.2 连杆的创建 (11) 5.3 曲轴的创建 (11) 第六章曲柄连杆机构静力学分析 (13) 6.1 活塞的静力分析 (13) 6.2 连杆的静力分析 (13) 2

工程软件训练 第1章绪论 曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题[1]。 通过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以满足实际生产的需要。 在传统的设计模式中,为了满足设计的需要须进行大量的数值计算,同时为了满足产品的使用性能,须进行强度、刚度、稳定性及可靠性等方面的设计和校核计算,同时要满足校核计算,还需要对曲柄连杆机构进行动力学分析。 为了真实全面地了解机构在实际运行工况下的力学特性,本文采用了多体动力学仿真技术,针对机构进行了实时的,高精度的动力学响应分析与计算,因此本研究所采用的高效、实时分析技术对提高分析精度,提高设计水平具有重要意义,而且可以更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,对进一步研究发动机的平衡与振动、发动机增压的改造等均有较为实用的应用价值。 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 3

机械原理课程设计偏置直动滚子从动杆盘型凸轮机构讲解

目录 (一)机械原理课程设计的目的和任务 (2) (二)设计题目及设计思路 (3) (三)凸轮基圆半径及滚子尺寸的确定 (5) (四)从动杆的运动规律及凸轮轮廓线方程 (7) (五)计算程序框图 (8) (六)计算机源程序 (11) (七)计算机程序结果及分析 (14) (八)凸轮机构示意简图 (20) (九)体会心得 (20) (十)参考资料 (21)

(一)机械原理课程设计的目的和任务 一、机械原理课程设计的目的: 1、机械原理课程设计是一个重要实践性教学环节。其目的在于: 进一步巩固和加深所学知识; 2、培养学生运用理论知识独立分析问题、解决问题的能力; 3、使学生在机械的运动学和动力分析方面初步建立一个完整的概念; 4、进一步提高学生计算和制图能力,及运用电子计算机的运算能力。 二、机械原理课程设计的任务: 1、偏置直动滚子从动杆盘型凸轮机构 2、采用图解法设计:凸轮中心到摆杆中心A的距离为160mm,凸轮以顺时针方向等速回转,摆杆的运动规律如表: 3、设计要求: ①升程过程中,限制最大压力角αmax≤30o,确定凸轮基园半径r0 ②合理选择滚子半径rr ③选择适当比例尺,用几何作图法绘制从动件位移曲线,并画于图纸上; ④用反转法绘制凸轮理论廓线和实际廓线,并标注全部尺寸(用A2

图纸) ⑤将机构简图、原始数据、尺寸综合方法写入说明书 4、用解析法设计该凸轮轮廓,原始数据条件不变,要写出数学模型,编制程序并打印出结果 备注: 凸轮轮廓曲率半径与曲率中心 理论轮廓方程 () () x x y y ? ? = ? ? = ?,其中 22 22 // // x dx d x d x d y dy d x d y d ?? ?? ?== ? ? == ?? 其曲率半径为: 3 222 () x y xy xy ρ + =- -;曲率中心位于: 22 22 () () y x y x x xy xy x x y y x xy xy ρ ρ ?+ =- ?- ? ? + ?=- ?- ? 三、课程设计采用方法: 对于此次任务,要用图解法和解析法两种方法。图解法形象,直观,应用图解法可进一步提高学生绘图能力,在某些方面,如凸轮设计中,图解法是解析法的出发点和基础;但图解法精度低,而解析法则可应用计算机进行运算,精度高,速度快。在本次课程设计中,可将两种方法所得的结果加以对照。 四、编写说明书: 1、设计题目(包括设计条件和要求); 2、机构运动简图及设计方案的确定,原始数据; 3、机构运动学综合;

课程设计--汽车转向机构说明书

汽车运动机构课程设计说明书 温州大学机电工程学院 2013年6月

机械原理设计说明书 题目:汽车转向机构 学院:机电工程学院 专业:汽车服务工程 班级:11汽车服务本 姓名:叶凌峰俞科王栋柄 王璐吴海霞欧阳凯强 学号:11113003233 11113003243 11113003199 11113003209 11113003218 11113003174指导老师:李振哲

目录 一.设计题目 (1) 1.1课程设计目的和任务 (1) 1.2课程设计内容与基本要求 (2) 1.3机构简介 ........................................................................ 错误!未定义书签。 1.4参考数据 (5) 1.5设计要求 (5) 二. 设计方案比较 (6) 2.1设计方案一 (6) 2.2设计方案二 (7) 2.3设计方案三 (8) 2.4最终设计方案 ................................................................ 错误!未定义书签。 三.虚拟样机实体建模与仿真 (9) 四.虚拟样机仿真结果分析 (10) 4.1运动学仿真 (11) 4.1.1运动学仿真--转向盘位移仿真曲线 (11) 4.1.2运动学仿真--轮胎位移仿真曲线 (11) 4.1.3运动学仿真--转向盘速度仿真曲线 (12) 4.1.4运动学仿真--轮胎速度仿真曲线 (12) 4.1.5运动学仿真--转向盘加速度仿真曲线 (13) 4.1.6运动学仿真--轮胎加速度仿真曲线 (13) 4.2动力学分析 (14) 4.2.1转向盘受力仿真曲线 (14) 4.2.2轮胎受力仿真曲线 (14) 五. 课程设计总结 (15) 5.1机械原理课程设计总结 (15) 5.2设计过程 (15) 5.3设计展望 (16) 5.4设计工作分工表 (16) 5.5参考文献 (16)

最新机械原理课程设计连杆机构B4

最新机械原理课程设计连杆机构B4 任务书 题目:连杆机构设计B4-b 姓名:GHGH 班级:机械设计制造及其自动化2006级7班 设计参数 设计要求: 1.用解析法按计算间隔进行设计计算; 2.绘制3号图纸1张,包括: (1)机构运动简图; (2)期望函数与机构实现函数在计算点处的对比表; (3)根据对比表绘制期望函数与机构实现函数的位移对比图; 3.设计说明书一份; 4.要求设计步骤清楚,计算准确。说明书规范。作图要符合国家标。按时独立完成任务。 目录 第1节平面四杆机构设计 (3)

1.1连杆机构设计的基本问题 ................................................................. 3 1.2作图法设计四杆机构 ......................................................................... 3 1.3 解析法设计四杆机构 ........................................................................ 3 第2节 设计介绍 .................................................................................... 5 2.1按预定的两连架杆对应位置设计原理 ............................................. 5 2.2 按期望函数设计 ................................................................................ 6 第3节 连杆机构设计 ............................................................................ 8 3.1连杆机构设计 ..................................................................................... 8 3.2变量和函数与转角之间的比例尺 ..................................................... 8 3.3确定结点值 ......................................................................................... 8 3.4 确定初始角0α、0? ........................................................................... 9 3.5 杆长比m,n,l 的确定 ...................................................................... 13 3.6 检查偏差值?? ................................................................................. 13 3.7 杆长的确定 ...................................................................................... 13 3.8 连架杆在各位置的再现函数和期望函数最小差值??的确定 .... 15 总结 ........................................................................................................... 18 参考文献 .................................................................................................. 19 附录 .. (20) 第1节 平面四杆机构设计 1.1连杆机构设计的基本问题 连杆机构设计的基本问题是根据给定的要求选定机构的型 式,确定各构件的尺寸,同时还要满足结构条件(如要求存在曲

曲柄连杆机构课程设计

曲柄连杆机构课程 设计

目录 目录 (1) 第1章绪论 (3) 第2章活塞组的设计 (4) 2.1 活塞的设计 (4) 2.1.1 活塞的材料 (4) 2.1.2 活塞头部的设计 (4) 2.1.3 活塞裙部的设计 (5) 2.2 活塞销的设计 (5) 2.2.1 活塞销的结构 (5) 第3章连杆组的设计 (6) 3.1 连杆的设计 (6) 3.1.1 连杆材料的选用 (6) 3.1.2 连杆长度的确定 (6) 3.1.3 连杆小头的结构设计 (6) 3.1.4 连杆杆身的结构设计 (6) 3.1.5 连杆大头的结构设计 (6) 3.2 连杆螺栓的设计 (7) 第4章曲轴的设计 (8) 4.1 曲轴的结构型式和材料的选择 (8) 4.1.1 曲轴的结构型式 (8) 4.1.2 曲轴的材料 (8)

4.2 曲轴的主要尺寸的确定和结构细节设计 (8) 4.2.1 曲柄销的直径和长度 (8) 4.2.2 主轴颈的直径和长度 (9) 4.2.3 曲柄 (9) 4.2.4 平衡重 (9) 4.2.5 油孔的位置和尺寸 (10) 4.2.6 曲轴两端的结构 (10) 第5章曲柄连杆机构的创立 (11) 5.1 活塞的创立 (11) 5.2 连杆的创立 (11) 5.3 曲轴的创立 (11) 第六章曲柄连杆机构静力学分析 (13) 6.1 活塞的静力分析 (13) 6.2 连杆的静力分析 (13)

第1章绪论 曲柄连杆机构是发动机的传递运动和动力的机构,经过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题[1]。 经过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以

机械原理课程设计说明书(凸轮送料机构)

冲床冲压机构、送料机构及传动系统的设计 一、设计题目 设计冲制薄壁零件冲床的冲压机构、送料机构及其传动系统。冲床的工艺动作如图5—1a所示,上模先以比较大的速度接近坯料,然后以匀速进行拉延成型工作,此后上模继续下行将成品推出型腔,最后快速返回。上模退出下模以后,送料机构从侧面将坯料送至待加工位置,完成一个工作循环。 图1 冲床工艺动作与上模运动、受力情况 要求设计能使上模按上述运动要求加工零件的冲压机构和从侧面将坯料推送至下模上方的送料机构,以及冲床的传动系统,并绘制减速器装配图。 二、原始数据与设计要求 1.动力源是电动机,下模固定,上模作上下往复直线运动,其大致运动规律如图b)所示,具有快速下沉、等速工作进给和快速返回的特性; 2.机构应具有较好的传力性能,特别是工作段的压力角应尽可能小;传动角γ大于或等于许用传动角[γ]=40°; 3.上模到达工作段之前,送料机构已将坯料送至待加工位置(下模上方);4.生产率约每分钟70件; 5.上模的工作段长度L=30~100mm,对应曲柄转角 0=(1/3~1/2)π;上模总行程长度必须大于工作段长度的两倍以上; 6.上模在一个运动循环内的受力如图c)所示,在工作段所受的阻力F0=5000N,在其他阶段所受的阻力F1=50N;

7.行程速比系数K≥1.5; 8.送料距离H=60~250mm; 9.机器运转不均匀系数δ不超过0.05。 若对机构进行运动和动力分析,为方便起见,其所需参数值建议如下选取:1)设连杆机构中各构件均为等截面均质杆,其质心在杆长的中点,而曲柄的质心则与回转轴线重合; 2)设各构件的质量按每米40kg计算,绕质心的转动惯量按每米2kg·m2计算;3)转动滑块的质量和转动惯量忽略不计,移动滑块的质量设为36kg; 4)传动装置的等效转动惯量(以曲柄为等效构件)设为30kg·m2; 5 ) 机器运转不均匀系数δ不超过0.05。 三、传动系统方案设计 冲床传动系统如图5-2所示。电动机转速经带传动、齿轮传动降低后驱动机器主轴运转。原动机为三相交流异步电动机,其同步转速选为1500r/min,可选用如下型号: 电机型号额定功率(kw)额定转速(r/min) Y100L2—4 3.0 1420 Y112M—4 4.0 1440 Y132S—4 5.5 1440 由生产率可知主轴转速约为70r/min,若电动机暂选为Y112M—4,则传动系统总传动比约为。取带传动的传动比i b=2,则齿轮减速器的传动比i g=10.285,故可选用两级齿轮减速器。 图2 冲床传动系统 四、执行机构运动方案设计及讨论 该冲压机械包含两个执行机构,即冲压机构和送料机构。冲压机构的主动件是曲柄,从动件(执行构件)为滑块(上模),行程中有等速运动段(称工作段),并具有急回特性;机构还应有较好的动力特性。要满足这些要求,用单一的基本机构如偏置曲柄滑块机构是难以实现的。因此,需要将几个基本机构恰当地组合在一起来满足上述要求。送料机构要求作间歇送进,比较简单。实现上述要求的机构组合方案可以有许多种。下面介绍几个较为合理的方案。

凸轮连杆机构课程设计

第一章 固定凸轮连杆机构参数选取 1.确定驱动方案 图1 如上图所示,设:与从动杆升程运动相对应的曲柄转角为1?,即101AB B ∠=?;而与降程运动相对应的曲柄转角为,即3?323AB B =?,则: (1)当21??>时,选用曲柄AB 拉着BC 杆运动的方案。 (2)当21??<时,选用曲柄AB 推着BC 杆运动的方案。 (3)当21??=时,任选其中一种驱动方案。 已知数据?=1101?,?=1503?,很明显21??<,所以选用方案2。 2.确定e 直动从动杆,取m S e 2.0~0=,取0=e 3.确定h 从结构紧凑和减小凸轮压力角考虑,应将h 值取小些。但h 值愈小,对从动杆驱动力的压力角也愈大。通常取m S h ≥,去mm h 120= 4.确定a

若a 值过小,会使凸轮压力角明显增大,甚至不能实现预期动动。可取a=0.6~0.9S m 或a=1.2~1.8lsin 2m ψ。取a=70mm 6、确定δ 其值对凸轮的压力角影响极大,δ过小,尤其是过大,会使压力角急剧增加。在前述参数确定后,最好将δ优化,目标函数为 a 1m (δ) (a 1m )min 式中a 1m 为凸轮的最大压力角。 暂时取?=8δ 7. 求算b 1、b 2 须先求算b max 、b min 。 依据铰销B 、D 的坐标,可建立它们之间距离的公式。B 的坐标为 ? ??+-=+=)cos() sin(?δ?δa y a X B B D 的坐标为 ???+==S h y e X D D 式中 ?——曲柄转角,取升程起始时的? =0°; S ——与?相对应的从动杆位移,即铰销D 至其最低位置的距离。S 值分为升程(?=0~?1)、最高位置停留(?=?1~?1+?2)、降程(?=?1+?2~?1+?2+?3)、最低位置停留(?=?1+?2+?3~360°)四个阶段求算。b 值为 b=2 2)()(D B D B y y x x -+- (1)用matlab 编程画出b 与?曲线图,并算出min max b b 、: clear sm=100; h=120; e=0; a=70; d=8*pi/180; fa1=110*pi/180; fa2=0*pi/180; fa3=150*pi/180; fa4=100*pi/180; fa01=0:0.001:fa1; s=sm/2*(1-cos(pi*fa01/fa1));

机械原理课程设计压床机构

机械原理课程设计压床机构 (总21页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

机械原理课程设计说明书 设计题目: 学院: 班级: 设计者: 学号: 指导老师:

目录 目录................................................................... 错误!未定义书签。 一、机构简介与设计数据...................................................... 错误!未定义书签。 .机构简介............................................................... 错误!未定义书签。 机构的动态静力分析...................................................... 错误!未定义书签。 凸轮机构构设计.......................................................... 错误!未定义书签。 .设计数据............................................................... 错误!未定义书签。 二、压床机构的设计.......................................................... 错误!未定义书签。 .传动方案设计........................................................... 错误!未定义书签。 基于摆杆的传动方案................................................. 错误!未定义书签。 六杆机构A .......................................................... 错误!未定义书签。 六杆机构B .......................................................... 错误!未定义书签。 .确定传动机构各杆的长度................................................. 错误!未定义书签。 三.传动机构运动分析......................................................... 错误!未定义书签。 .速度分析............................................................... 错误!未定义书签。 .加速度分析............................................................. 错误!未定义书签。 . 机构动态静力分析...................................................... 错误!未定义书签。 .基于soildworks环境下受力模拟分析:.................................... 错误!未定义书签。 四、凸轮机构设计............................................................ 错误!未定义书签。 五、齿轮设计................................................................ 错误!未定义书签。 .全部原始数据........................................................... 错误!未定义书签。 .设计方法及原理......................................................... 错误!未定义书签。 .设计及计算过程......................................................... 错误!未定义书签。参考文献.................................................................... 错误!未定义书签。

195柴油机连杆设计及连杆螺栓强度校核计算课程设计说明书

课程设计说明书 课程名称:发动机设计课程设计 课程代码: 题目:195柴油机连杆设计及连杆螺 栓强度校核计算 学院(直属系) :交通与汽车工程学院 年级/专业/班: 2009/热能与动力工程(汽车 发动机)/1班 学生姓名: 学号: 3120090805015XX 指导教师:曾东建、田维、暴秀超 开题时间: 2012 年 6 月 28 日 完成时间: 2012 年 7 月 16 日

目录 摘要 (2) 1引言 (3) 1.1国内外内燃机研究现状 (3) 1.2任务与分析 (5) 2柴油机工作过程计算 (6) 2.1 已知条件 (6) 2.2 参数选择 (7) 2.3 195柴油机额定工况工作过程计算 (7) 3 连杆设计 (11) 3.1 连杆结构设计 (11) 3.2 连杆材料选择 (13) 4 连杆螺钉强度校核 (14) 4.1 连杆螺钉的结构设计 (14) 4.2 连杆螺钉的强度校核 (14) 5 结论 (18) 致谢 (19) 参考文献 (19) 附录:195柴油机额定工况工作过程计算程序 (20)

摘要 20 世纪90 年代以来,汽车行业的竞争已从单一的性能竞争转向性能、环保、节能等多元综合竞争。仅就柴油机而言,为应对世界能源危机和减少对环境污染,其研究开发工作已侧重于降低油耗、减少排放、轻质及减少磨损等方面,在这些研究中优化技术将得到广泛的应用。汽车已经在普通民众中得到普及,随着汽车行业的不断发展,汽车产业的未来乐观与否一定意义决定于发动机的技术水平。因此,培养高素质的汽车发动机人才对当今社会的快速发展至关重要。 本次课程设计的既是通过对195柴油机结构的分析研究,计算工作过程中的热力参数绘制其工作过程的P-V图,绘制195柴油机总成横剖面图,对连杆进行设计、强度计算和绘制连杆零部件图,对并对设计好的连杆大头、小头和螺钉进行校核,以根据工况设计连杆小头、杆身、大头,合理达到要求。此次,我们就选择了对连杆螺钉进行校核。连杆螺钉在连杆盖以及连杆大头之间的联接发挥着至关重要的作用,并且由于往复惯性力和气体压力的双重作用下,使螺钉的受力十分严酷,所以对其进行强度校核就显得十分必要。 关键词:柴油机、连杆、设计、校核

机械原理课程设计之压床机构

机械原理课程设计说明书 设计题目: 学院: 班级: 设计者: 学号: 指导老师:

目录

一、机构简介与设计数据 .机构简介 图示为压床机构简图,其中六杆机构为主体机构。图中电动机经联轴器带动三对齿轮将转速降低,然后带动曲柄1转动,再经六杆机构使滑块5克服工作阻力 r F而运动。 为了减少主轴的速度波动,在曲柄轴A 上装有大齿轮 6 z并起飞轮的作用。在曲柄轴的另一端装有油泵凸轮,驱动油泵向连杆机构的供油。 (a)压床机构及传动系统 机构的动态静力分析 已知:各构件的重量G及其对质心轴的转动惯量Js(曲柄1和连杆4的重力和转动惯量(略去不计),阻力线图(图9—7)以及连杆机构设计和运动分析中所得的结果。 要求:确定机构一个位置的各运动副中的反作用力及加于曲柄上的平衡力矩。作图部分亦画在运动分析的图样上。 凸轮机构构设计 已知:从动件冲程H,许用压力角[α].推程 角δ。,远休止角δ,回程角δ',从动件的运动规 律见表9-5,凸轮与曲柄共轴。 要求:按[α]确定凸轮机构的基本尺寸.求 出理论廓 线外凸曲线的最小曲率半径ρ。选取滚子半径r, 绘制凸轮实际廓线。以上内容作在2号图纸上 .设计数据 设计内容连杆机构的设计及运动分析符号 单位mm 度mm r/min 数据 I 50 140 220 60 1201501/2 1/4 100 1/2 1/2 II 60 170 260 60 1201801/2 1/4 90 1/2 1/2 III 70 200 310 60 120 210 1/2 1/4 90 1/2 1/2 连杆机构的动态静力分析及飞轮转动惯量的确定 [δ] G2 G3 G5 N 1/30 660 440 300 4000 1/30 1060 720 550 7000 1/30 1600 1040 840 11000

连杆课程设计说明书

连杆课程设计 说明书 院别:能源与动力工程学院专业:热能与动力工程 班级:新能源1002 姓名: 学号: 指导教师:潘剑锋 2014年1月

前言 随着生活水平的提高,人们为了出行方便,汽车的性能要求也越来越高。而提高发动机性能,一方面可以降低噪音,增强发动机效率;另一方面也可以节约能源,有利于环保。连杆作为发动机活塞运动的主要部件,它把作用于活塞顶面的膨胀的压力传递给曲轴,又受曲轴的驱动而带动活塞压缩气缸中的气体,连杆在工作过程中始终承受着剧烈的动载荷作用。这就对其性能有极高的要求。而连杆的强度与任性也是决定发动机性能的因素之一。 为了保证连杆的疲劳强度,要求连杆的材料要具有良好的综合力学性能及工艺性能。以往连杆材料几乎普遍采用碳素调质钢和合金调质钢,20世纪70年代由于石油危机,为节省能源,欧美和日本开始大量应用非调质钢,并取得很大的进展。 随着汽车工业制造技术的发展,对于汽车发动机的动力性能及可靠性要求越来越高,而连杆的强度、刚度对提高发动机的动力性及可靠性至关重要,因此国内外各大汽车公司对发动机连杆用材料及制造技术的研究都非常重视。 在满足性能指标的前提下,连杆的材料和制造技术关联很大,非调质钢的应用就是考虑节省调质工序。近年来,采取裂解连杆体和连杆盖分界面技术可以大幅度地减少机械加工工序,由此开发了高强度低韧性的高碳非调质钢和粉末冶金锻件,以满足工艺的需要。

目录 前言 (2) —设计任务— (4) 一、连杆概况 (4) 1、连杆结构特点 (4) 2、工作工作环境 (5) 3、连杆设计要求 (5) 二、三维建模 (6) 1、二维图纸 (6) 2、UG三维建模模型 (6) 三、基于ANSYS对连杆有限元分析 (7) 1、材料性能参数确定: (7) 2、导入连杆三维模型 (7) 3、设置单元属性 (7) 4、网格划分 (8) 5、设置载荷和约束 (9) 6、求解及结论分析 (10) 1)位移变化图 (10) 2)应力应变结果图 (10) 四、课程设计总结: (12) 五、参考文献 (13)

相关文档
最新文档