第2章数字图像处理基础

合集下载

数字图像处理(第二版)章 (2)

数字图像处理(第二版)章 (2)
(4) 噪声。数字化设备的噪声水平也是一个重要的性能参 数。例如,数字化一幅灰度值恒定的图像,虽然输入亮度是一 个常量,但是数字化设备中的固有噪声却会使图像的灰度发生 变化。因此,数字化设备所产生的噪声是图像质量下降的根源 之一,应当使噪声小于图像内的反差点(即对比度)。
第2章 数字图像处理基础
2.2 数字图像类型
第2章 数字图像处理基础
为了减小量化误差,引入了非均匀量化的方法。非均匀量 化依据一幅图像具体的灰度值分布的概率密度函数,按总的量 化误差最小的原则来进行量化。具体做法是对图像中像素灰度 值频繁出现的灰度值范围,量化间隔取小一些; 而对那些像 素灰度值的概率分布密度函数因图像不同而异,所 以不可能找到一个适用于各种不同图像的最佳非等间隔量化方 案,因此,实用上一般多采用等间隔量化。
第2章 数字图像处理基础
3. 索引颜色图像 在介绍索引颜色图像之前,首先来了解PC机是如何处理颜 色的。大多数扫描仪都是以24位模式对图像进行采样的,即可 以从图像中采样出1670万种不同的颜色。用这种方式获得的颜 色通常称为RGB颜色。颜色深度为24位每像素的数字图像是目前 所能获取、浏览和保存的颜色信息最丰富的彩色图像,由于它 所表达的颜色远远超出了人眼所能辨别的范围,故将其称为 “真彩色”。在早期,由于技术上和价格上的原因,计算机在 处理时并没有达到24位每像素的真彩色水平,为此人们创造了 索引颜色。索引颜色通常也称为映射颜色。在这种模式下,颜 色都是预先定义的,并且可供选用的一组颜色也很有限。索引 颜色的图像最多只能显示256种颜色。索引颜色通常称为调色板。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成 该图像具体颜色的索引值就被读入程序,然后根据索引值在调 色板中找到对应的颜色。
b=M×N×Q (b)

数字图像处理基础知识

数字图像处理基础知识

国际照明委员会(CIE)规定以 规定以700nm(红)、 国际照明委员会 规定以 红 、 546.1nm (绿)、435.8nm (蓝)三个色光为三基色。 三个色光为三基色。 绿 、 蓝 三个色光为三基色 又称为物理三基色。 又称为物理三基色。自然界的所有颜色都可以通 过选用这三基色按不同比例混合而成。 过选用这三基色按不同比例混合而成。 这三基色按不同比例混合而成 C = R(R) + G(G) + B(B)
反映了将图像信息进行离散化的程度, 反映了将图像信息进行离散化的程度,常用 灰度级来衡量
主观亮度
适应范围 夜视 昼视
-6
夜间阈值
-4
-2
0
2
4
光强的对数
人眼亮度感觉范围
总范围很宽( ① 总范围很宽( C = 108) 人眼适应某一环境亮度后, ② 人眼适应某一环境亮度后,范围限制 适当平均亮度下: 适当平均亮度下:C = 103 很低亮度下: 很低亮度下:C = 10
图象“ 图象“黑”/“白”(“亮”/“暗”)对比参 白 暗 数
眼睛中图像的形成
视网膜将图像反射在中央凹区域上, 视网膜将图像反射在中央凹区域上,由光接 收器的相应刺激作用产生感觉, 收器的相应刺激作用产生感觉,感觉把辐射 能转变为电脉冲, 能转变为电脉冲,最后由大脑进行解码
电信号 光信号 视觉细胞 视神经 视神经中枢 解码 图像
人眼视觉模型
每个图像由若干个像素点组成, 每个图像由若干个像素点组成,每个点均可看作一个 点光源,每个点光源就是一个冲激函数δ 点光源,每个点光源就是一个冲激函数δ(x,y)
任意一幅图像可以表示为: 任意一幅图像可以表示为:
人眼亮度感觉
闪光极限
人的视觉系统感觉到的亮度 (主观亮度 :是进入人眼的 主观亮度): 主观亮度 光强对数函数 人眼亮度感觉范围: 人眼亮度感觉范围:通过光 强对数衡量,一般为3-10 强对数衡量,一般为 人眼的亮度适应级: 人眼的亮度适应级:视觉系 统当前对光强的灵敏度级别

第2章 数字图象处基础(1-27)

第2章 数字图象处基础(1-27)
光号 信 视胞 细 生理电信号 视经 神 视神经中枢 大成 脑像
Digital Image Processing
2.2 人的视觉特性
人的视觉模型
▓ ▓
点光源的表示函数
点源可以用 δ 函数表示,表示平面图像的二维 δ 函数 +∞ +∞ 为: ⎧ 1 y, ) x ∫ ∫−∞ δ (dxdy = −∞ ⎪ ⎪ ⎨ = = ⎧ ∞ y , x 0 0, ⎪δ ( y , ) = ⎨ x , 其他 ⎪ ⎩ 0 ⎩ 则任意一幅图像可表示为:
Digital Image Processing
2.2 人的视觉特性
人眼的构造与机理要点(续)
( 3)视细胞: 视网膜上集中了大量视细胞,分为两类: 锥状细胞 :明视细胞,在强光下检测亮度和颜色; 杆 (柱 )状细胞 :暗视细胞,在弱光下检测亮度,无色彩感觉。 其中,每个锥状视细胞连接着一个视神经末梢,故分辨率高, 分辨细节、颜色;多个杆状视细胞连接着一个视神经末梢,故分辨 率低,仅分辨图的轮廓。 (4 ) 人眼成象过程:
2.4 数字图像表示形式和特点
▓ ▓
数字图像的矩阵表示 数字图像的矩阵 矩阵表示
O n
f (0,1) ⎡ f (0,0) ⎢ f (1,1) ⎢ f (1,0) , f (mn) = ⎢ ⋮ ⋮ ⎢ ⎣ f (M−1,0) f (M−1,1)
⋯ f (0, N−1) ⎤ ⎥ ⋯ f (1, N−1) ⎥ ⎥ ⋮ ⋮ ⎥ ⋯ f (M−1, N−1)⎦
Digital Image Processing
2.1 色度学基础
RGB模型:
在三维直角坐标系中,用相互垂直的三个坐标轴代表R、 G、B三个分量,并将R、G、B分别限定在[0,1],则该单位正 方体就代表颜色空间,其中的一个点就代表一种颜色。如下图 方体就代表颜色空间,其中的一个点就代表一种颜色。 所示。 其中,r、g、b、c、m和y分别代表红色(red)、绿色 (green)、蓝色(blue)、青色(cyan)、品红(magenta) 和黄色(yellow)。

第二章 数字图像处理基础

第二章 数字图像处理基础
主要内容
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”

数字图像处理 第2章 图像的数字化与显示

数字图像处理 第2章 图像的数字化与显示
k
(2.20)
2.3.3 空间与灰 度级分辨率
对一幅图像,当量化级数Q一定 时,采样点数 M×N 对图像质量有着显 著的影响。采样点数越多,图像质量越 好;当采样点数减少时,图像越小,图 上的块状效应就逐渐明显。
图像的采样与数字图像的质量
图像的量化与数字图像的质量
量化级数越多,图像质量越好,当量化级数越少时,图像质量越 差,量化级数最小的极端情况就是二值图像,图像出现假轮廓。
2.2 图像场取样
2.2.1 取样和量化的基本概念
数字化包括取样和量化两个过程 :
取样(sampling):对空间连续坐标(x, y)的 离散化 量化(quantization):幅值 f (x, y)的离散化
(a)连续图像
(b)数字化结果
图2.1 图像的数字化过程
(a)
(b)
图2.2 采样网格 (a) 正方形网格; (b) 正六角形网格
截止频率。
u U c , v Vc u U c , v Vc
(2.8)
其中 U c , Vc 对应于空间位移变量x和y的最高
则当采样周期
x, y满足
(2.9)
1 u s 2U c x 1 vs 2Vc y
此时,通过采样信号 f ( mx, ny ) 能唯一地恢 复或重构出原图像信号f (x,y)。该条件称为 Nyquist采样定理。
• 2.3.1

标量量化
标量量化:将数值逐个量化 。 例:假设抽样信号的范围是0~5 V,将它分为8等
分,这样就有8个量化电平,分别是5/8 V,10/8 V,15/8 V,…,35/8 V。 对每一个采样将它量化为离它最近的电平。 在量化后,为了能在数字信号处理系统中处理 二进制码,还必须经过编码操作。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

数字图像处理

数字图像处理

第一章概论一、数字图像与像素数字图像是由一个个的像素(Pixel)构成的,各像素的值(灰度,颜色)一般用整数表示。

二、数字图像处理的目的1、提高图像的视觉质量。

2、提取图像中的特征信息。

3、对图像数据进行变换、编码和压缩。

三、工程三层次图像处理、图像分析和图像理解图像理解符号目标像素高层中层低层高低抽象程度数据量操作对象小大语义图像分析图像处理四、图像处理硬件系统组成图像输入设备(采集与数字化设备,如数码相机),图像处理设备(如PC机)和图像输出设备(如显示器,打印机)第二章数字图像处理基础一、图像数字化过程----采样与量化模拟图像的数字化包括采样和量化两个过程。

细节越多,采样间隔应越小。

把采样后得到的各像素的灰度值进一步转换为离散量的过程就是量化。

一般,灰度图像的像素值量化后用一个字节(8bit)来表示。

二、采样、量化与图像质量的关系采样点数越多,图像质量越好;量化级数越多,图像质量越好。

为了得到质量较好的图像采用如下原则:对缓变图像,细量化,粗采样,以避免假轮廓。

对细节化图像,细采样,粗量化,以避免模糊。

三、图像尺寸、数据量、颜色数量的计算灰度图像的像素值量化后用一个字节(8bit)来表示。

彩色图像的像素值量化后用三个字节(24bit)来表示。

一幅512X512(256K)的真彩色图像,计算未压缩的图像数据量是多少?(必考)图像总像素:512px*512px=256K总数据量:256K*3Byte=768KB一幅256X256(64K)的真彩色图像,计算未压缩的图像数据量是多少?图像总像素:256px*256px=64K总数据量:64K*1Byte=64KB四、数字图像类型二值图像、灰度图像、索引颜色图像)和真彩色图像。

五、数字图像文件的类型jpg、bmp、tif、gifJPEG采用基于DCT变换的压缩算法,为有损压缩。

六、图像文件三要素文件头、颜色表、图像数据七、读取一个图像,并将其尺寸缩小0.5倍,将缩小后的图像旋转30度。

第二章数字图像处理基础

第二章数字图像处理基础
数字图像处理
第二章 数字图像处理基础
视觉感知要素 图像感知和获取 图像取样和量化 象素间的一些基本关系 线性和非线性操作
2.1 视觉感知要素
眼睛的构造: (人眼包含有三层膜)
眼角膜与巩膜外壳 脉络膜 (前面睫状体 虹膜 晶状体) 视网膜 (视网膜表面的分离光
接收器提供图案视觉, 分为锥状体、杆状体)
感觉的亮度区域不是简单的取决于强度,还与周围的背景有关
2.1 视觉感知要素
视觉错觉
光幻觉是人视觉系 统所特有的,迄今 还没有清楚的解释。 由于以上各种特殊 现象,在进行图像 处理时,应该采取 一些特殊的补偿措 施。
图和背景反转的图形
在错觉 中,眼 睛填上 了不存 在的信 息或错 误地感 知物体 的几何 特点。
2.1 视觉感知要素
辨别光强度变化的能力
典型实验
韦伯比
可辨别增I C量/的I 50%IC
图2.5 用于描述亮度辨别特性的基本实验
图2.6 作为强度函数的典型韦伯比
当背景光保持恒定时,改变其他光源亮度,从不能察觉到可以察觉间变化,一 般观察者可以辨别12到24级不同强度的变化.
低照明级别,亮度辨别(杆状体)较差;高照明级别,亮度辨别(锥状体)较好。
几何错觉图形
2.2 光和电磁波谱
电磁波谱可以用波长( )、频率( )或能量来描述
c 光速
E hv
h 普朗克常量
为波长, 为频率, E为电磁波能量
光速c 2.998 108 m/s 普朗克常数 h=6.626068 ×10-34 m2 kg / s
2.2 光和电磁波谱
电磁波是能量的一种,任何有能量的物体,都会释放电磁波。
D8距离:D8(p,q)=max(|x-s|,|y-t|) (距离小于等于r的像素形成中心在(x,y)的方形)

数字图像处理基础2

数字图像处理基础2

数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。

由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。

所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。

设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。

显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。

在实际中,一般取L min 的值为0,L max =L-1。

这样,灰度的取值范围就可表示成[0,L-1]。

当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。

为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。

图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。

图像的数字化包括采样和量化两个过程。

连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。

即:空间坐标的离散化。

量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。

数字图像处理第2章课后题答案

数字图像处理第2章课后题答案

第二章数字图像处理基础1.将一幅光学模拟图像转换为数字图像的过程叫做图像的数字化,包括扫描、采样、量化三个过程。

采样点数越多、量化级数越高,图像质量越好。

2.图像数字化过程中造成失真的原因有两个方面:第一个方面,在采样过程中,如果采样点数满足取样定理(即采样频率不小于最高截止频率的2倍)的情况下,重建图像就不会产生失真,否则就会因为取样点数不够而产生所谓混淆失真;第二个方面,在量化过程中,若图像不产生失真,则需要量化级数无穷大,而实际量化级数往往无法满足这样的取值而造成图像的失真。

3.人的眼睛是人类视觉系统的重要组成部分,当外界景象通过眼球的光学系统在视网膜上成像后,视网膜产生相应的胜利电图像并经视神经传入大脑;人眼的视网膜由感光细胞覆盖,感光细胞吸收来自于光学图像的光线,并通过晶体透镜和角膜聚集在视网膜上。

晶状体相当于普通光学镜头,对光线有屈光作用。

4.发光强度简称光强,指单色光源在给定方向上的单位立体角内发出的发光强度。

亮度是指发光体(反光体)表面发光(反光)强弱的物理量。

照度指物体被被照面单位时间内所接受的光通量。

主观亮度是指由观察者判断出的亮度称为主观亮度。

5.常用的颜色模型有RGB模型、CMYK模型、HSI模型等。

RGB模型是色光的彩色模型,因为是由红、绿、蓝相叠加形成其它颜色,因此该模型也叫加色合成法。

所有的显示器、投影设备,以及电视等许多设备都是依赖于这种加色模型的;CMYK模型也称减色合成法,主要应用于印刷行业中;RGB和CMYK颜色模型都是面向硬件的,但从人眼视觉特性来看,HSI模型用色调、饱和度和亮度来描述彩色空间能更好地与人的视觉特性相匹配。

6.由于彩色图像为RGB图像,利用三元组(R,G,B)来表示每个像素的值。

根据题意,三基色灰度等级为8,而23=8,则存储一个颜色分量所需的比特数为3,存储一个三元组所需的比特数为3⨯3=9,该图像大小为1024*768,则存储整幅图像所需的比特数为9⨯1024⨯768=7077888bit=864KB。

数字图像处理第2章采样量化图像格式

数字图像处理第2章采样量化图像格式
3) 打印机分辨率
又称输出分辨率,是指打印机输出图像时每英寸的点数(dp i)。打印机分辨率也决定了输出图像的质量,打印机分辨率越高, 可以减少打印的锯齿边缘,在灰度的半色调表现上也会较为平滑。 打印机的分辨率可达300-1200 dpi。
4) 扫描仪分辨率
单位长度上采样的像素个数。台式扫描仪的分辨率可以分
• 曲线3:
质量
细节较多的球赛观众图像 k
5
4 32 64 128 256 N
总结
一般,当限定数字图像的大小时, 为了得到质量较好的图像 可采用如下原则:
(1)对缓变的图像,应该细量化,粗采样,以避免假轮廓。
(2)对细节丰富的图像,应细采样,粗量化,以避免模糊。 对于彩色图像,是按照颜色成分——红、绿、蓝分别采样和量
2.3.3 用传感器阵列获取图像
传感器阵列
2.4 图像数字化技术
图像的数字化包括采样和量化两个过程。 设连续图像f(x, y) 经数字化后,可以用 一个离散量组成的矩阵g(i, j)(即二维数组) 来表示。
f (0,0) f (0,1) f (0, n 1)
g(i,
j)
g(1,0)
z 蓝 (Blu e) 品 红 (Magenta )
青 (Cyan ) O 红 (Red) x
绿 (Gre en) 黄 (Yello w) y
(2) 数字化采样一般是按正方形点阵取样的, 除此之外还 有三角形点阵、正六角形点阵取样。
(3)以上是用g (i, j)的数值来表示(i, j)位置点上灰度级值的
大小,即只反映了黑白灰度的关系, 如果是一幅彩色图像, 各点
的数值还应当反映色彩的变化,可用g (i, j, λ)表示,其中λ是波 长。如果图像是运动的,还应是时间t的函数,即可表示为g (i, j, λ, t)。

精品课件-《数字图像处理(第三版)》第2章 数字图像

精品课件-《数字图像处理(第三版)》第2章 数字图像
j 1
其它
i 1,2,n
2.3 数字图像类型
矢量(Vector)图和位图(Bitmap),位图也称为栅格图像。 矢量图是用数学(准确地说是几何学)公式描述一幅图像。(计 算机图形学)
➢ 优点:一是它的文件数据量很小,因为存储的是其数学公式; 其二是图像质量与分辨率无关,这意味着无论将图像放大或 缩小了多少次,图像总是以显示设备允许的最大清晰度显示。
2.2.3 颜色变换
对彩色图像进行颜色变换,可实现对彩色图像的增强处理,改 善其视觉效果,为进一步处理奠定基础。 基本变换
➢ 颜色变换模型为:g(x,y)=T[ f ( x,y )] 式中:f ( x , y )是彩色输入图像,其值为一般为向量; g ( x , y )是变换或处理后的彩色图像,与 f(x,y)同维; T是在空间域上对f的操作。T对图像颜色的操作 有多种方式;
2.4 图像文件格式 数字图像有多种存储格式,每种格式一般由不同的软件公司开 发所支持。 文件一般包含文件头和图像数据。就像每本书都有封面,目录, 它们的作用类似于文件头,通过文件头我们可读取图像数据。 文件头的内容由该图像文件的公司决定,一般包括文件类型 、 文件制作者、制作时间、版本号、文件大小等内容,还有压缩方 式。
2.2.2 颜色模型
HSI 颜色模型 ➢ 色调H (Hue): 与光波的波长有关,它表示人的感官对不同 颜色的感受,如红色、绿色、蓝色等, ➢ 饱和度(Saturation): 表示颜色的纯度,纯光谱色是完合饱 和的,加入白光会稀释饱和度。饱和度越大,颜色看起来就 会鲜艳,反之亦然。 ➢ 强度I (Intensity):对应成像亮度和图像灰度,是颜色的 明亮程度。 ➢ HSI模型建立基于两个重要的事实: (1) I分量与图像的彩色 信息无关; (2) H和S分量与人感受颜色的方式是紧密相联 的。这些特点使得HSI模型非常适合彩色特性检测与分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DWORD
biSize;
LONG
biWidth;
LONG
biHeight;
WORD
biPlanes;
WORD
biBitCount;
DWORD
biCompression;
DWORD
biSizeImage;
LONG
biXPelsPerMeter;
LONG
biYPelsPerMeter;
DWORD
biClrUsed;
} BITMAPFILEHEADER;
这个结构的长度是固定的,为14个字节(WORD为无符号16位二 进制整数,DWORD为无符号32位二进制整数)。
第二部分为位图信息头BITMAPINFOHEADER,也是一个结构,其定义如下:
typedef struct tagBITMAPINFOHEADER{
R、 G、 B 值。下面就2色、 16色、256 色和真彩色位图分别介绍。
对于2色位图,用1位就可以表示该像素的颜色(一般0表示 黑, 1表示白),所以一个字节可以表示8个像素。
对于16色位图,用4位可以表示一个像素的颜色,所以一个 字节可以表示2个像素。
对于256色位图,一个字节刚好可以表示1个像素。
下面两点请读者注意:
(1) 每一行的字节数必须是4的整数倍,如果不是,则需 要补齐。这在前面介绍biSizeImage时已经提到过。
(2) BMP文件的数据存放是从下到上,从左到右的。也 就是说, 从文件中最先读到的是图像最下面一行的左边第一个 像素, 然后是左边第二个像素, 接下来是倒数第二行左边第 一个像素, 左边第二个像素。依次类推, 最后得到的是最上 面一行的最右边的一个像素。
2.3.1 BMP图像文件格式
第一部分为位图文件头BITMAPFILEHEADER, 它是一个结 构体,其定义如下:
typedef struct tagBITMAPFILEHEADER{ WORD bfType; DWORD bfSize; WORD bfReserved1; WORD bfReserved2; DWORD bfOffBits;
typedef struct tagRGBQUAD{
BYTE rgbBlue;
//
BYTE rgbGreen;
//
BYTE rgbRed;
//
BYTE rgbReserved;
//
} RGBQUAD;
第四部分就是实际的图像数据。对于用到调色板的位图, 图 像数据就是该像素颜色在调色板中的索引值,对于真彩色图像,
颜色由光波的频率决定
光 吸 收性 %
蓝 100
绿

80
60
40
20
0 400 450 500 550 600 650 700 波 长 / n m
图2-7 人类感光细胞的敏感曲线
根据人眼的结构,所有颜色都可看作是三种基本颜色——R 表示红(Red)、 G表示绿(Green)和B表示蓝(Blue)按照不同 的 比 例 组 合 而 成 。 为 了 建 立 标 准 , 国 际 照 度 委 员 会 (CIE) 早 在 1931年就规定三种基本色的波长分别为R:700 nm,G:546.1 nm, B: 435.8 nm。
DWORD
biClrImportant;
} BITMAPINFOHEADER;
这个结构的长度是固定的,为40个字节(LONG为32位二进 制整数)。其中,biCompression的有效值为BI_RGB、 BI_RLE8、 BI_RLE4、BI_BITFIELDS,这都是一些Windows定义好的常量。 由 于 RLE4 和 RLE8 的 压 缩 格 式 用 的 不 多 , 今 后 仅 讨 论 biCompression的有效值为BI_RGB,即不压缩的情况。
1. 三色原理
在人的视觉系统中存在着杆状细胞和锥状细胞两种感光细胞。 杆状细胞为暗视器官,锥状细胞是明视器官,在照度足够高时起 作用, 并能分别辨颜色。锥状细胞将电磁光谱的可见部分为 三个波段:红、绿、蓝。由于这个原因,这三种颜色被称为三基 色, 图2-7表示了人类视觉系统三类锥状细胞的光谱敏感曲线。
前面已讲过,一幅彩色图像的像素值可看作是光强和波长的 函数值f(x, y, λ),但实际使用时,将其看作是一幅普通二维图像, 且每个像素有红、绿、蓝三个灰度值会更直观些。
2. 颜色的三个属性
颜色是外界光刺激作用于人的视觉器官而产生的主观感觉。 颜色分两大类:非彩色和彩色。非彩色是指黑色、白色和介于 这两者之间深浅不同的灰色, 也称为无色系列。彩色是指除了 非彩色以外的各种颜色。颜色有三个基本属性, 分别是色调、 饱和度和亮度。基于这三个基本属性,提出了一种重要的颜色 模型HSI(Hue、 Saturation、 Intensity)。在HSI颜色模型部分 中, 我们将详细介绍这三个基本属性。
第二章 数字图像处理基础
2.1 图像文件格式 2.2 色度学基础 2.3 颜色模型
2.1 图像文件格式
数字图像有多种存储格式,每种格式一般由不同的开发商支 持。随着信息技术的发展和图像应用领域的不断拓宽,还会出现 新的图像格式。因此,要进行图像处理,必须了解图像文件的格 式, 即图像文件的数据构成。每一种图像文件均有一个文件头, 在文件头之后才是图像数据。文件头的内容由制作该图像文件的 公司决定,一般包括文件类型、文件制作者、制作时间、版本号、 文件大小等内容。各种图像文件的制作还涉及到图像文件的压缩 方式和存储效率等。
2.2 色度学基础
在前面学习灰度图像时,图像的像素值是光强, 即二 维空间变量的函数f(x, y)。如果把灰度值看成是二维空间变 量和光谱变量的函数f(x, y, λ),即多光谱图像,也就是通常 所说的彩色图像。在计算机上显示一幅彩色图像时,每一 个像素的颜色是通过三种基本颜色(即红、绿、蓝)合成 的,即最常见的RGB颜色模型。要理解颜色模型, 首先应 了解人的视觉系统。
第三部分为调色板(Palette),当然,这里是对那些需要调色板 的位图文件而言的。真彩色图像是不需要调色板的,
BITMAPINFOHEADER后直接是位图数据。调色板实际上是一个 数组, 共有biClrUsed个元素(如果该值为零,则有2的biBitCount 次方个元素)。数组中每个元素的类型是一个RGBQUAD结构, 占4个字节,其定义如下:
相关文档
最新文档