第十七章 波动光学习题析与解答
波动光学试题及答案
波动光学试题及答案1. 光波的波长为600nm,其频率是多少?答案:根据光速公式c = λν,其中c为光速(约为3×10^8m/s),λ为波长(600×10^-9 m),可得ν = c/λ = (3×10^8m/s) / (600×10^-9 m) = 5×10^14 Hz。
2. 一束光在折射率为1.5的介质中传播,其在真空中的速度是多少?答案:在折射率为1.5的介质中,光的速度v = c/n,其中c为真空中的光速(3×10^8 m/s),n为折射率。
因此,v = (3×10^8 m/s) / 1.5 = 2×10^8 m/s。
3. 光的偏振现象说明了什么?答案:光的偏振现象说明光是一种横波,即光波的振动方向与传播方向垂直。
4. 何为布儒斯特角?答案:布儒斯特角是指当光从一种介质(如空气)入射到另一种介质(如玻璃)时,反射光完全偏振时的入射角。
5. 干涉现象产生的条件是什么?答案:干涉现象产生的条件是两束光波的频率相同、相位差恒定且具有相同的振动方向。
6. 描述杨氏双缝干涉实验的基本原理。
答案:杨氏双缝干涉实验的基本原理是利用两个相干光源(如激光)通过两个相邻的狭缝产生两束相干光波,这两束光波在屏幕上相互叠加,形成明暗相间的干涉条纹。
7. 光的衍射现象说明了什么?答案:光的衍射现象说明光在遇到障碍物或通过狭缝时,其传播方向会发生改变,形成明暗相间的衍射图样。
8. 单缝衍射的中央亮条纹宽度与哪些因素有关?答案:单缝衍射的中央亮条纹宽度与光的波长、缝宽以及观察距离有关。
9. 光的色散现象是如何产生的?答案:光的色散现象是由于不同波长的光在介质中传播速度不同,导致折射率不同,从而在介质界面处发生不同程度的折射。
10. 描述光的全反射现象。
答案:光的全反射现象是指当光从光密介质(折射率较大)向光疏介质(折射率较小)传播时,如果入射角大于临界角,则光线不会折射,而是全部反射回光密介质中。
(完整版)大学物理波动光学的题目库及答案
一、选择题:(每题3分)1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ. [ ]2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ ]3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ ]4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为∆φ,则(A) l =3 λ / 2,∆φ=3π. (B) l =3 λ / (2n ),∆φ=3n π.(C) l =3 λ / (2n ),∆φ=3π. (D) l =3n λ / 2,∆φ=3n π. [ ]5、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为(A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ]6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2).[ ]7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2>n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2.(C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2). P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1n 13λn 3n 3[ ]8在双缝干涉实验中,两缝间距为d ,双缝与屏幕的距离为D (D>>d ),单色光波长为λ,屏幕上相邻明条纹之间的距离为(A) λ D/d . (B) λd /D .(C) λD /(2d ). (D) λd/(2D ). [ ]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ ]10、在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm . [ ]11、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ ]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. [ ]13、在双缝干涉实验中,两缝间距离为d ,双缝与屏幕之间的距离为D (D >>d ).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d . (B) λ d / D .(C) dD / λ. (D) λD /d . [ ]14把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ ]15、一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ ]16、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它S S '们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为(A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ. [ ]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [ ]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A) λ / 2. (B) λ / (2n ).(C) λ / n . (D) ()12-n λ. [ ]19、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个. [ ]20、一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为(A) λ / 2. (B) λ. (C) 3λ / 2 . (D) 2λ . [ ]21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加. [ ]22、波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.(C) 2λ. (D) 3 λ . [ ]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变. [ ]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为ϕ=30°的方位上.所用单色光波长为λ=500 nm ,则单缝宽度为(A) 2.5×10-5 m . (B) 1.0×10-5 m .(C) 1.0×10-6 m . (D) 2.5×10-7 . [ ]25、一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm ,则入射光波长约为 (1nm=10−9m) (A) 100 nm (B) 400 nm(C) 500 nm (D) 600 nm [ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大. [ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小. [ ]28、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成 3个半波带,则缝宽度a 等于(A) λ. (B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ ]29、在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的 (A) 3 / 4倍. (B) 2 / 3倍. (C) 9 / 8倍. (D) 1 / 2倍. (E) 2倍. [ ]30、测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 . (C) 单缝衍射. (D) 光栅衍射. [ ]31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光. [ ]33、对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲O y x λL C fa使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动. [ ]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0×10-1 mm . (B) 1.0×10-1 mm .(C) 1.0×10-2 mm . (D) 1.0×10-3 mm . [ ]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b . (C) a=2b . (D) a=3 b . [ ]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强.(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹. [ ]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D) 2I 0 / 2. [ ]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光. [ ]二、填空题:(每题4分)41、若一双缝装置的两个缝分别被折射率为n 1和n 2的两块厚度均为e 的透明介 质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差δ=_____________________________.42、波长为λ的单色光垂直照射如图所示的透明薄膜.膜厚度为e ,两束反射光的光程差δ = __________________________.43、用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为1.5的透明薄膜,两束反射光的光程差δ =________________________.44、波长为λ的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为e ,折射率为n ,透明薄膜放在折射率为n 1的媒质中,n 1<n ,则上下两表面反射的两束反射光在相遇处的相 位差 ∆φ=__________________.45、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为r 1和r 2.设双缝和屏之间充满折射率为n 的媒质,则P 点处二相干光线的光程差为________________.46、在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e .波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=_______________________.47、如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________.48、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49、一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm .若整个装置放 在水中,干涉条纹的间距将为____________________mm .(设水的折射率为4/3)50、在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察n 11 λp d r 1 r 2 S 2 S 1 n屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ___________;若使单色光波长减小,则干涉条纹间距_________________.52、把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D ,两缝之间的距离为d (d <<D ),入射光在真空中的波长为λ,则屏上干涉条纹中相邻明纹的间距是_______________________.53、在双缝干涉实验中,双缝间距为d ,双缝到屏的距离为D (D >>d ),测得中央 零级明纹与第五级明之间的距离为x ,则入射光的波长为_________________.54、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝 的距离为D ,则屏上相邻明纹的间距为_______________ .55、用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑)暗环对应的空气膜厚度为_______________________μm .(1 nm=10-9 m)56、在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad ,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm ,由此可知此透明材料的折射率n =______________________.(1 nm=10-9 m)57、用波长为λ的单色光垂直照射折射率为n 2的劈形膜(如图)图中各部分折射率的关系是n 1<n 2<n 3.观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e =____________________.58、用波长为λ的单色光垂直照射如图所示的、折射率为n 2的劈形膜(n 1>n 2 ,n 3>n 2),观察反射光干涉.从劈形膜顶开始,第2条明条纹对应的膜厚度e =___________________.59、用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=_______________.60、用波长为λ的单色光垂直照射如图示的劈形膜(n 1>n 2>n 3),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度e =___________________________.61、已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移 动距离d 的过程中,干涉条纹将移动________________条.n 1n 2n 3 n 1n 2n 3 n 1n 2n 362、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为d的透明薄片.插入这块薄片使这条光路的光程改变了_______________.63、在迈克耳孙干涉仪的可动反射镜移动了距离d的过程中,若观察到干涉条纹移动了N条,则所用光波的波长λ =______________.64、波长为600 nm的单色平行光,垂直入射到缝宽为a=0.60 mm的单缝上,缝后有一焦距f'=60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm=10﹣9 m)65、He-Ne激光器发出λ=632.8 nm (1nm=10-9 m)的平行光束,垂直照射到一单缝上,在距单缝3 m远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是10 cm,则单缝的宽度a=________.66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半,P点处将是______________级__________________纹.68、波长为λ的单色光垂直入射在缝宽a=4 λ的单缝上.对应于衍射角ϕ=30°,单缝处的波面可划分为______________个半波带.69、惠更斯引入__________________的概念提出了惠更斯原理,菲涅耳再用______________的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P的_________________,决定了P点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长λ=500 nm (1 nm = 10-9 m),则单缝宽度为_____________________m.72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的2倍,则中央明条纹边缘对应的衍射角ϕ =______________________.73、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a=2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个.74、如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为______________.75、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =______________________________.76、在如图所示的单缝夫琅禾费衍射装置示意图中,用波长为λ的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则由单缝边缘的A 、B 两点分别到 达P 点的衍射光线光程差是__________.77、测量未知单缝宽度a 的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为l (实验上应保证D ≈103a ,或D 为几米),则由单缝衍射的原理可标出a 与λ,D ,l 的关系为a =______________________.78、某单色光垂直入射到一个每毫米有800 条刻线的光栅上,如果第一级谱线的 衍射角为30°,则入射光的波长应为_________________.79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的 ____________相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称为______________晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是 __________波.三、计算题:(每题10分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为1.2 mm 双缝与屏相距500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离D =1.2 m ,双缝间距d =0.45 mm ,若测得屏上干涉条纹相邻明条纹间距为1.5 mm ,求光源发出的单色光的波长λ.83、用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A 处的范围内共有几条明纹?几条暗纹?aλλP84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为0.50 μm 的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?(1 nm=10-9 m)86、两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10-9 m)87、一平面衍射光栅宽2 cm ,共有8000条缝,用钠黄光(589.3 nm)垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=109m)88、如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上.(1) 求通过P 2后的光强I .(2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).89、三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.90、两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?93、如图所示,媒质Ⅰ为空气(n 1=1.00),Ⅱ为玻璃(n 2=1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以i角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光, (1) 入射角i 是多大?(2) 图中玻璃上表面处折射角是多大? (3) 在图中玻璃板下表面处的反射光是否也是线偏振光?94、在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i .95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角i 0=48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为1.56 ,求:(1) 该液体的折射率.(2) 折射角.97、一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?98、一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33,求布儒斯特角.水玻璃大学物理------波动光学参考答案 一、选择题 01-05 ACBCA 06-10 ABABB 11-15 BBDAB 16-20 BADBB21-25 DCBCC 26-30 ABD D D 31-35 BD B DB 36-40 BABAC二、填空题41. e n n )(21- or e n n )(12-; 42. e 60.2; 43.3.0e +λ/2 or 3.0e -λ/2; 44. πλ)14(+e n or πλ)14(-e n; 45. )(12r r n -; 46. λπen n )(212-;47. λθπ/sin 2d ; 48. (1) 使两缝间距变小,(2)使屏与两缝间距变大; 49. 75.0; 50. mm 45.0; 51. 变小, 变小; 52.dn D λ; 53. D dx 5; 54. N D ; 55. m μ2.1; 56. 40.1; 57. 249n λ; 58. 243n λ; 59. rad nl2λ; 60. 22n λ; 61. λ/2d ; 62. d n )1(2-; 63. N d /2; 64. mm 2.1,mm 6.3;65. mm 21060.7-⨯; 66. 6,第一级明纹; 67. 4,第一, 暗; 68. 4;69. 子波, 子波相干叠加; 70. 相干叠加; 71. m 610-; 72. 030±; 73. 2; 74. π; 75. 030; 76. λ2; 77. l D /2λ; 78. nm 625;79. 传播速度, 单轴; 80. 波动, 横波。
大学物理之波动光学习题与解答
r1.如图,S1、S2 是两个相干光源,它们到P 点的距离分别为r1 和r2.路径S1P 垂直穿过一块厚度为t1,折射率为n1 的介质板,路径S2P 垂直穿过厚度为t2,折射率为S1t1 r1Pt21 2(A) (r2 + n2t2 ) − (r1 + n1t1 )(B) [r2 + (n2 − 1)t2 ] −[r1 + (n1 − 1)t2 ](C) (r2 − n2t2 ) − (r1 − n1t1 )S2 n2(D) n2t2 − n1t12. 如图所示,波长为λ的平行单色光垂直入射在折射率为n2 的薄膜上,经上下两个表面n1 λ反射的两束光发生干涉.若薄膜厚度为e,而且n1>n2>n3,则两束反射光在相遇点的相(B) 2πn2 e / λ.(A) λD / (nd) (B) nλD/d.(C) λd / (nD).(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.5.在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光(A) r k = kλR .(B) r k = kλR / n .(C) r k = knλR .(D) r k = kλ /(nR)二.填空题:1.在双缝干涉实验中,两缝分别被折射率为n1 和n2 的透明薄膜遮盖,二者的厚度均为e.波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=.2. 在双缝干涉实验中,双缝间距为d,双缝到屏的距离为D (D>>d),测得中央零级明纹与第五级明之间的距离为x,则入射光的波长为.3.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距;若使单色光波长减小,则干涉条纹间距.4. 在双缝干涉实验中,所用光波波长λ=5.461×10–4 mm,双缝与屏间的距离D=300 mm,双缝间距为d=0.134 mm,则中央明条纹两侧的两个第三级明条纹之间的距离为.n2en3n一.选择题:n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于( )位差为( )(A) 4πn2e/λ.(C) (4πn2e/λ)+π.(D) (2πn2e/λ)−π.3.把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D(D>>d),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是( )(D)λD/(2nd).4.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是( )程大2.5λ,则屏上原来的明纹处( )(A)仍为明条纹;(B)变为暗条纹;(C)既非明纹也非暗纹;(D)无法确定是明纹,还是暗纹6.在牛顿环实验装置中,曲率半径为R的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k的表达式为( ).一.光的干涉5. 图 a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波 长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图 b 所示.则干涉 图 a 条纹上 A 点处所对应的空气薄膜厚度为 e = .图 b6. 用波长为λ的单色光垂直照射到空气劈形膜上,从反射光中观察干涉条纹, 距顶点为 L 处是暗条纹.使劈尖角θ 连续变大,直到该点处再次出现暗条纹为止.劈尖角 的改变量∆θ是.7. 波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ (以弧度计),劈形膜的折射率为 n ,则反射光形成的干 涉条纹中,相邻明条纹的间距为 .8. 波长为λ的平行单色光垂直地照射到劈形膜上,劈形膜的折射率为 n ,第二条明纹与第五条明纹所对应的薄膜厚 度之差是 .9. 已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移动距离 d 的过程中,干涉条纹将移动 条.10. 在迈克耳孙干涉仪的一条光路中,插入一块折射率为 n ,厚度为 d 的透明薄片.插入这块薄片使这条光路的光 程改变了 .11. 以一束待测伦琴射线射到晶面间距为 0.282 nm (1 nm = 10-9 m)的晶面族上,测得与第一级主极大的反射光相应 的掠射角为 17°30′,则待测伦琴射线的波长为 .三.计算题:屏AθL1.在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求:(1)零级明纹到屏幕中央O 点的距离.(2)相邻明条纹间的距离.2.在杨氏双缝实验中,设两缝之间的距离为 0.2 mm .在距双缝 1 m 远的屏上观察干涉条纹,若入射光是波长为 400 nm 至 760 nm 的白光,问屏上离零级明纹 20 mm 处,哪些波长的光最大限度地加强?(1 nm =10-9 m)3.图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是 R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm .(1) 求入射光的波长. (2) 设图中 OA =1.00 cm ,求在半径为 OA 的范围内可观察到的明环数目.4.在 Si 的平表面上氧化了一层厚度均匀的 SiO 2 薄膜.为了测量薄膜厚度,将它的一部分磨成劈形(示意图中的 AB段).现用波长为 600 nm 的平行光垂直照射,观察反射光形成的等厚干涉条纹.在图中 AB 段共有 8 条暗纹,且 B处恰好是一条暗纹,求薄膜的厚度.(Si 折射率为 3.42,SiO 2 折射率为1.50)5.在折射率为1.58 的玻璃表面镀一层MgF2(n = 1.38)透明薄膜作为增透膜.欲使它对波长为λ = 632.8 nm 的单色光在正入射时尽量少反射,则薄膜的厚度最小应是多少?一.选择题:二.光的衍射1 (A) a=2b.(B) a=b.(C) a=2b.(D) a=3 b.1.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹( )(A)对应的衍射角变小.(B)对应的衍射角变大.(C)对应的衍射角也不变.(D)光强也不变.2.一单色平行光束垂直照射在宽度为1.0m m的单缝上,在缝后放一焦距为2.0m的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm,则入射光波长约为( )(1nm=10−9m)(A) 100n m(B) 400n m(C) 500n m(D) 600n m3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于( )(A)λ.(B) 1.5λ.(C) 2λ.(D) 3λ.4.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹( )(A)对应的衍射角变小.(B)对应的衍射角变大.(C)对应的衍射角也不变.(D)光强也不变.5.测量单色光的波长时,下列方法中哪一种方法最为准确?( )(A)双缝干涉.(B)牛顿环.(C)单缝衍射.(D)光栅衍射.6.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为( )二.填空题:1.将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于.2.在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的 2 倍,则中央明条纹边缘对应的衍射角ϕ= .3.波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d 的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为.4.若波长为625 nm(1nm=10−9m)的单色光垂直入射到一个每毫米有800 条刻线的光栅上时,则第一级谱线的衍射角为5.衍射光栅主极大公式(a+b) sinϕ=±kλ,k=0,1,2…….在k=2 的方向上第一条缝与第六条缝对应点发出的两条衍射光的光程差δ=6.设天空中两颗星对于一望远镜的张角为4.84×10−6 rad,它们都发出波长为550 nm 的光,为了分辨出这两颗星,望远镜物镜的口径至少要等于cm.(1 nm = 10-9 m)三.计算题:1.在用钠光(λ=589.3 nm)做光源进行的单缝夫琅禾费衍射实验中,单缝宽度a=0.5 mm,透镜焦距f=700 mm.求透镜焦平面上中央明条纹的宽度.(1nm=10−9m)2.某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm.缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm,求入射光的波长.3.用每毫米300 条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长λR 在0.63─0.76µm 范围内,蓝谱线波长λB 在0.43─0.49 µm 范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现.(1) 在什么角度下红蓝两谱线还会同时出现?(2) 在什么角度下只有红谱线出现?4.一平面衍射光栅宽2 cm,共有8000 条缝,用钠黄光(589.3 nm)垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=109m)5.某种单色光垂直入射到每厘米有8000 条刻线的光栅上,如果第一级谱线的衍射角为30°那么入射光的波长是多少?能不能观察到第二级谱线?6.用钠光(λ=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°.(1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2) 若以白光(400 nm-760 nm) 照射在该光栅上,求其第二级光谱的张角.(1 nm= 10-9 m)三.光的偏振一.空题:1.马吕斯定律的数学表达式为I = I0 cos2 α.式中I 为通过检偏器的透射光的强度;I0 为入射的强度;α为入射光方向和检偏器方向之间的夹角.2.两个偏振片叠放在一起,强度为I0 的自然光垂直入射其上,若通过两个偏振片后的光强为I0 / 8 ,则此两偏振片的偏振化方向间的夹角(取锐角)是,若在两片之间再插入一片偏振片,其偏振化方向与前后两片的偏振化方向的夹角(取锐角)相等.则通过三个偏振片后的透射光强度为.3.要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过块理想偏振片.在此情况下,透射光强最大是原来光强的倍.4.自然光以入射角57°由空气投射于一块平板玻璃面上,反射光为完全线偏振光,则折射角为.5.一束自然光以布儒斯特角入射到平板玻璃片上,就偏振状态来说则反射光为,反射光E 矢量的振动方向,透射光为.6.在双折射晶体内部,有某种特定方向称为晶体的光轴.光在晶体内沿光轴传播时,光和光的传播速度相等.二.计算题:1.将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为60o ,一束光强为I0 的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.2.两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.3.将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45°和90°角.(1) 强度为I0 的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?波动光学解答一.光的干涉一. 选择题:1 2 3 4 5 6B A A B B B 二. 填空题:1.2π(n1 – n2) e / λ2.xd / (5D)3.变小变小4.7.32 mm35.λ26.λ / (2L)7. λ/(2nθ)8.3λ / (2n)9.2d/λ10.2( n – 1) d11.0.170 nm三.计算题:121.解:(1) 如图,设P 0为零级明纹中心 则 D O P d r r /012≈-(l 2 +r 2) - (l 1 +r 1) = 0 ∴ r 2 – r 1 = l 1 – l 2 = 3λ ∴()dD d r r D O P /3/120λ=-=(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx明纹条件 λδk ±= (k =1,2,....)()d D k x k /3λλ+±= 在此处令k =0,即为(1)的结果.相邻明条纹间距d D x x x k k /1λ=-=+∆2.解:已知:d =0.2 mm ,D =1 m ,l =20 mm 依公式: λk l DdS ==∴ Ddl k =λ=4×10-3 mm =4000 nm故当 k =10 λ1= 400 nm k =9 λ2=444.4 nm k =8 λ3= 500 nm k =7 λ4=571.4 nm k =6 λ5=666.7 nm这五种波长的光在所给观察点最大限度地加强.3.解:(1) 明环半径 ()2/12λ⋅-=R k r()Rk r 1222-=λ=5×10-5 cm (或500 nm)(2) (2k -1)=2 r 2 / (R λ)对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5故在OA 范围内可观察到的明环数目为50个.4.解:上下表面反射都有相位突变π,计算光程差时不必考虑附加的半波长. 设膜厚为e , B 处为暗纹,2ne =21( 2k +1 )λ, (k =0,1,2,…) A 处为明纹,B 处第8个暗纹对应上式k =7()nk e 412λ+==1.5×10-3 mm5.解:尽量少反射的条件为2/)12(2λ+=k ne ( k = 0, 1, 2, …)令 k = 0 得 d min = λ / 4n= 114.6 nm二.光的衍射一. 选择题: 1 2 3 4 5 6 B C D B D B一. 填空题:1.λ / sin θ2.±30° (答30° 也可以)3.d sin ϕ =k λ ( k =0,±1,±2,···)4.30 °5.10λ6.13.9三.计算题:1.解: a sin ϕ = λ a f f f x /sin tg 1λφφ=≈== 0.825 mm ∆x =2x 1=1.65 mm2.解:设第三级暗纹在ϕ3方向上,则有 a sin ϕ3 = 3λ此暗纹到中心的距离为x 3 = f tg ϕ3因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f λ / a .两侧第三级暗纹的距离是 2 x 3 = 6f λ / a = 8.0mm∴ λ = (2x 3) a / 6f = 500 nm3.解: ∵ a +b = (1 / 300) mm = 3.33 μm(1) (a + b ) sin ψ =k λ∴ k λ= (a + b ) sin24.46°= 1.38 μm∵ λR =0.63─0.76 μm ;λB =0.43─0.49 μm对于红光,取k =2 , 则λR =0.69 μm对于蓝光,取k =3, 则 λB =0.46 μm红光最大级次 k max = (a + b ) / λR =4.8,取k max =4则红光的第4级与蓝光的第6级还会重合.设重合处的衍射角为ψ' , 则()828.0/4sin =+='b a R λψ∴ ψ'=55.9°(2) 红光的第二、四级与蓝光重合,且最多只能看到四级,所以纯红光谱的第一、三级将出现.()207.0/sin 1=+=b a R λψ ψ1 = 11.9° ()621.0/3sin 3=+=b a R λψ ψ3 = 38.4°4.解:由光栅公式 (a +b )sin ϕ = k λ sin ϕ = k λ/(a +b ) =0.2357kk =0 ϕ =0k =±1 ϕ1 =±sin -10.2357=±13.6°k =±2 ϕ2 =±sin -10.4714=±28.1°k =±3 ϕ3 =±sin -10.7071=±45.0°k =±4 ϕ4 =±sin -10.9428=±70.5°5.解:由光栅公式(a +b )sin ϕ =k λk =1, φ =30°,sin ϕ1=1 / 2∴ λ=(a +b )sin ϕ1/ k =625 nm 若k =2, 则 sin ϕ2=2λ / (a + b ) = 1, ϕ2=90° 实际观察不到第二级谱线6.解:(1) (a + b ) sin ϕ = 3λa +b =3λ / sin ϕ , ϕ=60°a +b =2λ'/sin ϕ' ϕ'=30° 3λ / sin ϕ =2λ'/sin ϕ' λ'=510.3 nm (2) (a + b ) =3λ / sin ϕ =2041.4 nm2ϕ'=sin -1(2×400 / 2041.4) (λ=400nm)2ϕ''=sin -1(2×760 / 2041.4) (λ=760nm) 白光第二级光谱的张角 ∆ϕ = 22ϕϕ'-''= 25°三.光的偏振一.填空题:1.线偏振光(或完全偏振光,或平面偏振光) 光(矢量)振动 偏振化(或透光轴)2.60°(或π / 3)9I 0 / 32 3.2 1/44.33°5.完全(线)偏振光 垂直于入射面 部分偏振光6.寻常非常 或:非常寻常二.计算题:1.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230°=3 I 0 / 4 透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16(2) 原入射光束换为自然光,则I 1=I 0 / 2 I 2=I 1cos 260°=I 0 / 82.解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2和I 2 / 2马吕斯定律,透过检偏器的光强分别为1211cos 21αI I =', 2222cos 21αI I ='按题意,21I I '=',于是 222121cos 21cos 21ααI I = 得 3/2cos /cos /221221==ααI I3.解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平行. (2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. I 1仍不变.4.解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知 tg i 1= n 1=1.33; tg i 2=n 2 / n 1=1.57 / 1.333,由此得 i 1=53.12°,i 2=48.69°.由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1 将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8°5.解:设I 为自然光强;I 1、I 2分别表示转动前后透射光强.由马吕斯定律得8/330cos 2121I I I =︒=8/60cos 2122I I I =︒=故 3)8//()8/3(/21==I I I I。
(完整版)大学物理--波动光学题库及其答案.doc
一、选择题:(每题3 分)1、在真空中波长为的单色光,在折射率为n 的透明介质中从 A 沿某路径传播到B,若A、 B 两点相位差为 3 ,则此路径 AB 的光程为(A) 1.5 .(B) 1.5 n.(C) 1.5 n .(D) 3 .[]2、在相同的时间内,一束波长为的单色光在空气中和在玻璃中(A)传播的路程相等,走过的光程相等.(B)传播的路程相等,走过的光程不相等.(C)传播的路程不相等,走过的光程相等.(D)传播的路程不相等,走过的光程不相等.3、如图, S1、S2是两个相干光源,它们到P 点的距离分别为 r 1 2 1 1 1 和 r .路径 S P 垂直穿过一块厚度为t ,折射率为 n的介质板,路径S2P 垂直穿过厚度为 t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) (r2 n2t 2 ) (r1 n1t1 ) S1S2[]t1 r1t2Pn1 r2n2(B) [ r2 ( n2 1)t2 ] [ r1 (n1 1)t2 ](C) (r2 n2t 2 ) (r1 n1 t1 )(D) n2 t2 n1t1 []4、真空中波长为的单色光,在折射率为n 的均匀透明媒质中,从 A 点沿某一路径传播到 B 点,路径的长度为l. A、 B 两点光振动相位差记为,则(A) l = 3 / 2,=3.(B) l= 3 / (2n),=3n.(C) l = 3 / (2 n),=3.(D) l= 3n / 2,=3n.5、如图所示,波长为的平行单色光垂直入射在折射率为n2 的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为 e,而且 n1> n2> n3,则两束反射光在相遇点的相位差为(A) 4 n e / .(B) 2 n e / .2 2(C) (4 n2 e / .(D) (2 n2 e / .[]6、如图所示,折射率为n 、厚度为 e 的透明介质薄膜2的上方和下方的透明介质的折射率分别为n1和 n3,已知 n1<n2< n3.若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2 n2 e.(B) 2 n2 e-/ 2 .(C) 2 n2 e-.(D) 2 n2 e-/ (2n2).7、如图所示,折射率为n 、厚度为 e 的透明介质薄膜的2上方和下方的透明介质的折射率分别为n1和 n3,已知 n1< n2>n .若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜3上、下两表面反射的光束(用①与②示意 )的光程差是(A) 2 n e.(B) 2 n e- / 2.2 2 []n1n2 e n3① ②n1n2 en3[]① ②n1n2 e[]8 在双缝干涉实验中,两缝间距为d,双缝与屏幕的距离为 D (D>>d ) ,单色光波长为,屏幕上相邻明条纹之间的距离为(A) D/d .(B)d/D .(C) D/(2 d).(D) d/(2D ).[]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A)使屏靠近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[]10、在双缝干涉实验中,光的波长为600 nm ( 1 nm= 10-9 m) ,双缝间距为 2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm .(B) 0.9 mm .(C) 1.2 mm(D) 3.1 mm .[]11、在双缝干涉实验中, 1 2 距离相等,若单色光源 S 到两缝 S 、S则观察屏上中央明条纹位于图中O 处.现将光源 S 向下移动到示意S1图中的S 位置,则S O(A) 中央明条纹也向下移动,且条纹间距不变.S S2(B) 中央明条纹向上移动,且条纹间距不变.(C) 中央明条纹向下移动,且条纹间距增大.(D)中央明条纹向上移动,且条纹间距增大.[]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A)向下平移,且间距不变.(B) 向上平移,且间距不变.(C) 不移动,但间距改变.(D)向上平移,且间距改变.[]13、在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为 D (D >> d).波长为的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2 D / d.(B) d / D.(C) dD /.(D) D /d.[]14 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d,双缝到屏的距离为D (D >> d) ,所用单色光在真空中的波长为,则屏上干涉条纹中相邻的明纹之间的距离是(A) D / (nd)(B) n D /d.(C) d / (nD ).(D) D / (2 nd).[]15、一束波长为的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A).(B)/ (4 n).(C).(D) / (2n) .[]大学物理波动光学们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为,则反射光形成的干涉条纹中暗环半径r k的表达式为(A) r k =k R .(B) r k =k R / n .(C) r k =kn R .(D) r k =k / nR .[]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为 d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n- 1 ) d.(B) 2 nd.(C) 2 ( n- 1 ) d+ / 2 .(D) nd.(E) ( n- 1 ) d.[]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长,则薄膜的厚度是(A) / 2.(B)/ (2 n).(C) / n.(D).[]2 n 119、在单缝夫琅禾费衍射实验中,波长为的单色光垂直入射在宽度为a= 4的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2个.(B) 4个.(C) 6 个.(D) 8个.20、一束波长为的平行单色光垂直入射到一单缝 AB 上,装置如图.在屏幕 D 上形成衍射图样,如果 P 是中央亮纹一侧第一个暗纹所在的位置,则[]L DAPBC 的长度为(A).(B).(C) 3 / 2 .(D) 2.[]BCf屏21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则 S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A)振动振幅之和.(B)光强之和.(C) 振动振幅之和的平方.(D)振动的相干叠加.[]22、波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为 =± / 6,则缝宽的大小为(A) .(B) .(C) 2 .(D) 3 .[]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上.所用单色光波长为=500 nm ,则单缝宽度为(A) 2.5 × 10 -m.(B) 1.0 × 10 m.25、一单色平行光束垂直照射在宽度为 1.0 mm 的单缝上, 在缝后放一焦距为 2.0 m 的会聚透镜. 已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0 mm ,则入射光波长约 为 (1nm=10 - 9m)(A) 100 nm (B) 400 nm(C) 500 nm(D) 600 nm[ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小. (B) 宽度变大.(C) 宽度不变,且中心强度也不变. (D) 宽度不变,但中心强度增大.[ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小; (B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[ ]28、在单缝夫琅禾费衍射实验中波长为 的单色光垂直入射到单缝上.对应于衍射角 为 30°的方向上,若单缝处波面可分成 3 个半波带,则缝宽度 a 等于(A) .(B) 1.5 .(C) 2 .(D) 3 .[ ]29、在如图所示的单缝夫琅禾费衍射装置中,设 LC中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的 3,同时使入射的单色光的波长变为原来的 3 /a24,则屏幕 C 上单缝衍射条纹中央明纹的宽度 x 将变为原来的f(A) 3 / 4 倍.(B) 2 / 3 倍. y(C) 9 / 8 倍. (D) 1 / 2 倍.Ox(E) 2 倍.[]30、测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉.(B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射.[] 31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b)为下列哪种情况时(a 代表每条缝的宽度 ), k=3、 6、 9 等级次的主极大均不出现?(A) a + b=2 a .(C) a + b=4 a .(B) a +b=3 a .(A) a + b=6 a . [ ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远 的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.[]使屏幕上出现更高级次的主极大,应该(A)换一个光栅常数较小的光栅.(B)换一个光栅常数较大的光栅.(C)将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动.[]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0 × 10 - 1 mm.(B) 1.0 × 10 - 1 mm.(C) 1.0 × 10 - 2 mm.(D) 1.0 × 10 -3 mm .[]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度 a 和相邻两缝间不透光部分宽度 b 的关系为1(B) a=b .(A) a= b.2(C) a= 2b.(D) a= 3 b.[]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A)干涉条纹的间距不变,但明纹的亮度加强.(B)干涉条纹的间距不变,但明纹的亮度减弱.(C)干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.[]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0 的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I0 / 8.(D) 3 I 0 / 4 .[]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) I0/ 4 2 .(B) I0 / 4.(C) I 0 / 2.(D) 2 I0/ 2.[]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I 0 / 8.(D) 3 I 0 / 4.[]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A)在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[]二、填空题:(每题 4 分)41、若一双缝装置的两个缝分别被折射率为n 1和 n2 的两块厚度均为 e 的透明介质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差=_____________________________ .42、波长为的单色光垂直照射如图所示的透明薄膜.膜厚度为 e,两束反射光的光程差=n1 = 1.00__________________________ .n2 = 1.30 en3 = 1.5043、用波长为的单色光垂直照射置于空气中的厚度为 e 折射率为 1.5 的透明薄膜,两束反射光的光程差= ________________________ .44、波长为的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为 e,折射率为 n,透明薄膜放在折射率为n1的媒质中, n1< n,则上下两表面反射的两束反射光在相遇处的相位差= __________________ .45、单色平行光垂直入射到双缝上.观察屏上 P 点到两缝的距离分别为 r1和 r 2.设双缝和屏之间充满折射率为n 的媒质,则 P 点处二相干光线的光程差为________________ .n1ne n1S1r1pdr 2S246、在双缝干涉实验中,两缝分别被折射率为 1 2 的透明nn 和 n薄膜遮盖,二者的厚度均为e.波长为的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差= _______________________ .47、如图所示,波长为的平行单色光斜入射到S1距离为 d 的双缝上,入射角为.在图中的屏中央 O 处( S1O S2 O ),两束相干光的相位差为 dO ________________ .S248、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49 、一双缝干涉装置,在空气中观察时干涉条纹间距为 1.0 mm .若整个装置放在水中,干涉条纹的间距将为____________________ mm. ( 设水的折射率为4/3 )屏的距离 D =1.2 m ,若测得屏上相邻明条纹间距为 x = 1.5 mm ,则双缝的间距 d = __________________________ .51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ___________ ;若使单色光波长减小,则干涉条纹间距_________________ .52、把双缝干涉实验装置放在折射率为 n 的媒质中,双缝到观察屏的距离为 D ,两缝之间的距离为 d (d<<D ),入射光在真空中的波长为 ,则屏上干涉条纹中相 邻明纹的间距是 _______________________ .53、在双缝干涉实验中,双缝间距为 d ,双缝到屏的距离为 D (D >>d),测得中央零级明纹与第五级明之间的距离为 x ,则入射光的波长为 _________________ . 54 、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为 D ,则屏上相邻明纹的间距为 _______________ .55、用 = 600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个 (不计中央暗斑 )暗环对应的空气膜厚度为_______________________ m . (1 nm=10 - 9 m)56、在空气中有一劈形透明膜,其劈尖角 = 1.0×10 -4nm 的单色 rad ,在波长 = 700 光垂直照射下,测得两相邻干涉明条纹间距 l = 0.25 cm ,由此可知此透明材料的折射率n= ______________________ . (1 nm=10 - 9 m)57、用波长为 的单色光垂直照射折射率为 n 2 的劈形膜 (如图 )图中各部分折射率的关系是n 1< n 2< n 3 .观察反射光的干涉条纹, n 1n 2 从劈形膜顶开始向右数第 5 条暗条纹中心所对n 3应的厚度 e = ____________________ .58、用波长为 的单色光垂直照射如图所示的、折射率为n的n 12劈形膜 (n 1 > n 2 , n 3> n 2 ),观察反射光干涉.从劈形膜顶n 2n 3开始,第 2 条明条纹对应的膜厚度e = ___________________ .59、用波长为 的单色光垂直照射折射率为 n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为 l ,则劈尖角 = _______________ .60、用波长为 的单色光垂直照射如图示的劈形膜(n > n > n ),观n 1123察反射光干涉.从劈形膜尖顶开始算起,第 2 条明条纹中心所对应的膜n 2 厚度 e = ___________________________ .n 361 、已知在迈克耳孙干涉仪中使用波长为 的单色光.在干涉仪的可动反射镜移 动距离 d 的过程中,干涉条纹将移动 ________________ 条.62、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为 d 的透明薄片.插入这块薄片使这条光路的光程改变了_______________ .63 、在迈克耳孙干涉仪的可动反射镜移动了距离 d 的过程中,若观察到干涉条纹移动了 N 条,则所用光波的波长=______________ .64、波长为 600 nm 的单色平行光,垂直入射到缝宽为a= 0.60 mm 的单缝上,缝后有一焦距 f = 60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为 __________ ,两个第三级暗纹之间的距离为____________ . (1 nm= 10﹣9 m)65、 He -Ne 激光器发出=632.8 nm (1nm=10 -9 m)的平行光束,垂直照射到一单缝上,在距单缝 3 m 远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是 10 cm,则单缝的宽度 a=________ .66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________ 纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半, P 点处将是 ______________ 级 __________________ 纹.68、波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30 °,单缝处的波面可划分为 ______________ 个半波带.69、惠更斯引入__________________ 的概念提出了惠更斯原理,菲涅耳再用______________ 的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的 _________________ ,决定了 P 点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长500 nm (1 nm = 10 9 m),则单缝宽度为 _____________________m .72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的 2 倍,则中央明条纹边缘对应的衍射角=______________________ .73、在单缝夫琅禾费衍射实验中波长为的单色光垂直入射在宽度为a=2 的单缝上,对应于衍射角为 30 方向,单缝处的波面可分成的半波带数目为________ 个.74、如图所示在单缝的夫琅禾费衍射中波1.5长为 的单色光垂直入射在单缝上.若对应于 A会聚在 P 点的衍射光线在缝宽 a 处的波阵面恰1C 好分成 3 个半波带,图中 AC CD DB ,a2D 则光线 1 和 2 在 P 点的B3 4P相位差为 ______________ .75、在单缝夫琅禾费衍射实验中, 波长为 的单色光垂直入射在宽度 a=5 的单缝上.对应于衍射角 的方向上若单缝处波面恰好可分成 5 个半波带,则衍射角 =______________________________ .76、在如图所示的单缝夫琅禾费衍射装置示意图LC中,用波长为 的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则 A由单缝边缘的 A 、 B 两点分别到Pa达 P 点的衍射光线光程差是__________ .Bf77、测量未知单缝宽度 a 的一种方法是:用已知波长 的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为 l ( 实验上应保证 D ≈ 103a ,或 D 为几米 ),则由单缝衍射的原理可标出 a 与 ,D ,l 的关系为a =______________________ .78、某单色光垂直入射到一个每毫米有 800 条刻线的光栅上,如果第一级谱线的 衍射角为 30°,则入射光的波长应为 _________________ .79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的 ____________ 相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称 为 ______________ 晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是__________ 波.三、计算题: (每题 10 分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为 1.2 mm 双缝与屏相距 500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离 D = 1.2 m ,双缝间距 d = 0.45 mm ,若测 得屏上干涉条纹相邻明条纹间距为 1.5 mm ,求光源发出的单色光的波长 .83、用波长为 500 nm (1 nm=10 - 9 m) 的单色光垂直照射到由两块光学平玻璃构成的空气 劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边 l = 1.56 cm 的 A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角 ;(2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R= 400 cm.用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm .A(1) 求入射光的波长.O(2) 设图中 OA= 1.00 cm ,求在半径为 OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为 0.50 m 的玻璃片.玻璃片的折射率为 1.50.在可见光范围内 (400 nm ~ 760 nm) 哪些波长的反射光有最大限度的增强?(1 nm=10 -9 m)86、两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10 -9 m)87、一平面衍射光栅宽 2 cm,共有8000 条缝,用钠黄光可能出现的各个主极大对应的衍射角.(1nm=10 -9m)88、如图,P1、P2为偏振化方向相互平行的两个偏振片.光强为 I 0的平行自然光垂直入射在P1上.(1) 求通过 P 后的光强 I .2 (589.3 nm) 垂直入射,试求出II0P 1P3P 2(2) 如果在 P1、P2之间插入第三个偏振片P3,(如图中虚线所示)并测得最后光强I= I 0 / 32 ,求: P3的偏振化方向与P1的偏振化方向之间的夹角(设为锐角).89、三个偏振片P 、 P 、 P 顺序叠在一起,P 、 P3 的偏振化方向保持相互垂直,P11 2 3 1与 P2的偏振化方向的夹角为,P2可以入射光线为轴转动.今以强度为I0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与角的函数关系式;(2) 试定性画出在P2转动一周的过程中透射光强I 随角变化的函数曲线.90、两个偏振片P1、 P2叠在一起,一束单色线偏振光垂直入射到P1上,其光矢量振动方向与 P1 的偏振化方向之间的夹角固定为30°.当连续穿过 P1、 P2 后的出射光强为最大出射光强的 1 / 4 时, P1 、P2的偏振化方向夹角是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为60 o,一束光强为 I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成 30°角.(1)求透过每个偏振片后的光束强度;(2)若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成 45 和 90 角.(1)强度为 I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2)如果将第二个偏振片抽走,情况又如何?93、如图所示,媒质Ⅰ为空气(n1= 1.00) ,Ⅱ为玻璃 (n2= 1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以ii角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光,Ⅰ(1) 入射角 i 是多大?r(2) 图中玻璃上表面处折射角是多大?Ⅱ(3) 在图中玻璃板下表面处的反射光是否也是线偏振I光?94、在水 (折射率 n1= 1.33) 和一种玻璃 ( 折射率 n2= 1.56 的交界面上,自然光从水中射向玻璃,求起偏角 i 0.若自然光从玻璃中射向水,再求此时的起偏角i0.95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水 (折射率为 1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角 i0= 48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为 1.56 ,求:(1)该液体的折射率.(2)折射角.97、一束自然光自空气入射到水(折射率为 1.33)表面上,若反射光是线偏振光,(1)此入射光的入射角为多大?(2)折射角为多大?98、一束自然光自水(折射率为 1.33) 中入射到玻璃表面上(如图 ). 水当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.玻璃99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为 1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33 ,求布儒斯特角.大学物理 ------波动光学参考答案一、选择题01-05 ACBCA06-10 ABABB11-15 BBDAB16-20 BADBB21-25 DCBCC26-30 ABD DD31-35 BDBDB36-40 BABAC二、填空题41. ( n 1 n 2 )e or (n 2 n 1 )e ; 42. 2.60e ; 43. 3.0e+λ/2 or 3.0e-λ/2;44. (4ne1) or(4ne 1) ; 45. n( r 2r 1 ) ; 46. 2 (n 2n 1 ) e;47. 2 d sin / ; 48. (1) 使两缝间距变小,(2)使屏与两缝间距变大;49. 0.75 ; 50. 0.45mm ; 51. 变小, 变小; 52.D ; 53.dx; 54. D ;dn 5D N55. 1.2 m ; 56. 1.40 ; 57.9; 58. 3; 59.rad ; 60. ;4n 24n 22nl2n 261. 2d / ; 62. 2(n 1)d ; 63. 2d / N ; 64. 1.2mm , 3.6mm ;65. 7.60 10 2 mm ;66. 6,第一级明纹; 67. 4,第一, 暗; 68. 4 ;69. 子波, 子波相干叠加; 70. 相干叠加; 71. 10 6 m ; 72.30 0 ; 73.2 ; 74.;75. 300 ; 76. 2 ; 77. 2D / l ; 78. 625nm ;79. 传播速度, 单轴; 80. 波动, 横波。
波动光学案例习题(含答案)
x (2k 1) d
d2
11/5 条纹间距
x
xk 1
xk
d
d
4
2.薄膜干涉 (分振幅法)
光程差
2d
n22
n12
s in 2
i
2
i
①
② n1 n2 d
n1 n2 n3 n1 n2 n3 n1 n2 n3
n1 n2 n3
11/5
n3
光程差不附加
2
光程差附加
2
5
光程差
2d
答: (C)
11/5
21
例: 在牛顿环实验装置中,曲率半径为R的平 凸透镜与平玻璃板在中心恰好接触,它们之间 充满折射率为n的透明介质,垂直入射到牛顿 环装置上的平行单色光在真空中的波长为λ, 则反射光形成的干涉条纹中暗环半径的表达式 为:
( A)r kR (C)r knR
(B)r kR / n (D)r k /(nR)
解: 条纹间距 x d D
dd
中央明纹两侧的第10级明纹中心间距
210x 210 D 0.11m
d
11/5
32
(2)将此装置用一厚度为 e 6.6106 m ,折射率
解: 据明环半径公式 rk
( k 1 )R
2
充液前: r120 19R / 2 充液后: r102 19R /( 2n )
n r120 1.36
11/5
r102
20
例,在相同的时间内,一束波长为λ的单色光在 空气中和在玻璃中:
(A)传播的路程相等,走过的光程相等 (B)传播的路程相等,走过的光程不相等 (C)传播的路程不相等,走过的光程相等 (D)传播的路程不相等,走过的光程不相等
推荐学习 精品-清华大学《大学物理》分类经典练习题及解析 波动光学偏振下答案
1分
9. (本题 8分)(3772)
解:设二偏振片以 P1、P2 表示,以θ表示入射光中线偏振光的光矢量振动方向与
P1 的偏振化方向之间的夹角,则透过 P1 后的光强度 I1 为
I1
=
1 2
⎜⎛ ⎝
1 2
I0
⎟⎞ ⎠
+
1 2
I0
cos2 θ
2分
连续透过 P1、P2 后的光强 I2
( ) I1
= I1 cos2 45o
(2) 原入射光束换为自然光,则
I1=I0 / 2
1分
I2=I1cos260°=I0 / 8
2分
第 1页
5. (本题10分)(3767)
解:(1) 透过 P1 的光强
I1=I0/ 2
1分
设 P2 与 P1 的偏振化方向之间的夹角为θ,则透过 P2 后的光强为
I2=I1 cos2θ = (I0 cos2θ ) / 2
2分
P2 转过的角度为(45°-22.5°)=22.5° .
1分
6. (本题 5分)(3768)
解:透过第一个偏振片后的光强为
I1
=
1 2
⎜⎛ ⎝
1 2
I0
⎟⎞ ⎠
+
⎜⎛ ⎝
1 2
I0
⎟⎞ cos2 ⎠
30°
2分
=5I0 / 8
1分
透过第二个偏振片后的光强 I2=( 5I0 / 8 )cos260°
振光部分强度变为 I0 cos2θ,其中θ为入射线偏振光振动方向与偏振片偏振化方向 P1 的夹角.以上两部分透射光的振动方向都与 P1 一致.如果二者相等,则以后 不论再穿过几个偏振片,都维持强度相等(如果二者强度不相等,则以后出射强
高中物理波动与光学练习题及答案
高中物理波动与光学练习题及答案1. 波的特性问题:简述波的特性。
回答:波是一种能量传播的方式,具有以下特性:1) 传播:波可以在媒介中传播,如机械波在媒介中的颤动和声波在空气中的传播。
2) 振动:波是由粒子或媒介的振动引起的,具有起始点和终止点。
3) 能量传递:波能将能量从一个地方传递到另一个地方,而不需要物质的传输。
例如,光波将能量从太阳传输到地球上。
4) 反射和折射:波在遇到边界时发生反射和折射。
反射是波从一个介质到另一个介质的反射,而折射是波传播到另一个介质时的偏折。
5) 干涉和衍射:当两个或多个波在同一地方相遇时,它们会相互干涉,形成干涉图样。
波通过小孔或绕过障碍物时,会产生衍射现象。
2. 光的折射问题:什么是光的折射?请描述光在折射过程中的行为。
回答:光的折射是指光波从一种介质传播到另一种介质时的偏折现象。
光在折射过程中遵循斯涅尔定律,即入射角和折射角的正弦比等于两种介质的折射率之比。
具体行为如下:1) 入射角:光线射向介质边界时与法线的夹角称为入射角。
2) 折射角:光线从介质边界进入另一介质后与法线的夹角称为折射角。
3) 折射率:介质折射率是指光在介质中传播的速度与真空中传播的速度之比。
不同介质具有不同的折射率。
4) 斯涅尔定律:根据斯涅尔定律,入射角和折射角的正弦比等于两种介质的折射率之比。
即sin(入射角)/sin(折射角) = n1/n2。
3. 光的色散问题:什么是光的色散?为什么光在经过三棱镜时产生色散?回答:光的色散是指不同波长的光在经过光学介质时发生偏折的现象。
光在经过三棱镜时产生色散是由于不同波长的光被介质折射时速度的差异导致的。
1) 折射率和波长:不同波长的光在介质中的折射率不同。
根据光的色散定律,折射率与波长呈反比关系。
即短波长的光折射率较大,长波长的光折射率较小。
2) 三棱镜的作用:当白光经过三棱镜时,由于不同波长的光被三棱镜折射的程度不同,导致光的分散现象。
结果是,白光被分解成七种不同颜色的光谱,即红橙黄绿青蓝紫。
波动光学习题分析
n3
令其为波长的整数倍,得到:
2n2d k 对k取不同的值加以讨论。 当k取2时,有: n2d 560nm
当k取其他值时,波长均超出可见光范围。
17-6若膜的厚度为d=350nm,且n1>n2<n3,问: (1)、反射光中那几种波长的光得到加强? (2)、透射光中那几种波长的光会消失?
S2
点干涉加强;
4.0m
根据干涉加强的条件,能使两
S1
x/m
波的波程差为δ(x)=kλ的那些
O
点为信号加强点。
解答:两波源到x 轴上任一点的波程为:
1( x ) x( SI ) 2 ( x ) 42 x2 ( SI )
两者的光程差为:
2 ( x ) 42 x2 x( SI )
令其为波长的整数倍,解方程得:
d' k d k / 2
17-11 如图(a )所示的干涉膨胀仪 ,已
知样品的平均高度为3·0×10-2 m ,用 λ = 589·3nm 的单色光垂直照射 ,当温度由 170C上升到300C 时,看到有20条条纹移 过,问样品的热膨胀系数 α 为多少?
Δl l
(a)
分析:劈尖干涉问题,移过某一固定观察点的条 纹数目 N 与Δl 的关系为Δl = N λ / 2 ,
明纹,假定 =480nm,且两玻璃片厚度均为d,求d.
分析:由于放置了玻璃片,两 狭缝到O点的光程不再相同, 其差值为:
d( 1.70 1.40 )
2
1
o
根据题Hale Waihona Puke ,此光程差为入射波长 d 的5倍!
解答:两缝所发光到O点的光程差为:
d( n2 n1 ) 5
可得: d 5 / n2 n1 8.0m
高中物理常见波动光学题解析
高中物理常见波动光学题解析波动光学是物理学中重要的一部分,涉及到光的传播、衍射、干涉等现象。
在高中物理中,常常会遇到一些与波动光学相关的题目。
本文将对高中物理常见的波动光学题目进行解析,帮助同学们更好地理解和掌握波动光学知识。
一、光的传播和反射1.某人站在一面平镜前,他看到迎面一辆汽车。
则下列哪个说法正确?A.他和迎面汽车的距离等于镜与汽车的之和。
B.他和迎面汽车的距离等于镜与汽车的距离之差。
C.只要他离开镜子超过10米,就看不到迎面汽车。
D.他和汽车的距离等于镜子与汽车距离的两倍。
解析:根据光的反射原理,光线从物体上反射,经过镜面后进入眼睛。
由此可知,光线从汽车反射到镜面上,再从镜面反射到某人的眼睛中,即某人看到的位置是光线反射的虚像位置。
因此,选项A是正确的选项。
二、光的折射和透镜1.一光束从空气中垂直射入折射率为1.5的介质,入射光束与法线夹角为45°,则折射光束与法线夹角为多少度?A.30°B.45°C.60°D.75°解析:根据折射定律,入射角和折射角的正弦比等于两种介质的折射率之比。
由此可知,sin45°/sinx = 1/1.5,解得x≈30°,因此选项A是正确的选项。
三、光的干涉与衍射1.两个单缝干涉实验,光波长为λ,第m级暗纹与中央主光垂直距离为y,缝宽为d,则下列哪个公式正确?A.λ = (m + 1/2)d/ yB.λ = (m + 1/2) y/ dC.λ = (m + 1) d/ yD.λ = (m + 1) y/ d解析:根据单缝干涉公式,干涉条纹的位置满足公式mλ = d*sinθ,其中θ为干涉条纹的倾角。
在垂直方向上,sinθ≈y/L(L为观察屏与单缝之间的距离)。
代入公式中得到mλ = d * y/L,即λ = (mL * y)/d。
因此,选项B是正确的选项。
2.一束波长为500nm的可见光正入射到一个孔径为0.2mm的圆孔上,观察屏与孔的距离为2m,中央主光与第一级暗纹的间距为多少?A.0.5mmB.1mmC.1.5mmD.2mm解析:根据双缝干涉公式,中央主光与第一级暗纹的间距为λL/d,其中λ为波长,L为孔到观察屏的距离,d为圆孔的直径。
波动光学练习题及答案
波动光学练习题及答案一、选择题1、对于普通光源,下列说法正确的是:[ C ](A)普通光源同一点发出的光是相干光(B)两个独立的普通光源发出的光是相干光(C)利用普通光源可以获得相干光(D)普通光源发出的光频率相等2、杨氏双缝干涉实验是:[ A ](A) 分波阵面法双光束干涉(B) 分振幅法双光束干涉(C) 分波阵面法多光束干涉(D) 分振幅法多光束干涉3、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中[ C ](A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等4、光在真空中和介质中传播时,正确的描述是: [ C ](A)波长不变,介质中的波速减小(B) 介质中的波长变短,波速不变(C) 频率不变,介质中的波速减小(D) 介质中的频率减小,波速不变5、用单色光做双缝干涉实验,下述说法中正确的是[ A C ](A)相邻干涉条纹之间的距离相等(B)中央明条纹最宽,两边明条纹宽度变窄(C)屏与缝之间的距离减小,则屏上条纹宽度变窄(D)在实验装置不变的情况下,红光的条纹间距小于蓝光的条纹间距6、用单色光垂直照射杨氏双缝时,下列说法正确的是:[ C ](A) 减小缝屏距离,干涉条纹间距不变(B) 减小双缝间距,干涉条纹间距变小(C) 减小入射光强度, 则条纹间距不变(D) 减小入射波长, 则条纹间距不变7、如图所示, 薄膜的折射率为n 2,入射介质的折射率为n 1,透射介质为n 3,且n 1<n 2<n 3,入射光线在两介质交界面的反射光线分别为(1)和(2),则产生半波损失的情况是:(A) (1)光产生半波损失, (2)光不产生半波损失 [ B ] (B) (1)光 (2)光都产生半波损失 (C) (1)光 (2)光都不产生半波损失(D) (1)光不产生半波损失,(2)光产生半波损失8、在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长λ 的透射光能量。
第17章 部分习题解答-普通班分析
第17章
波动光学基础 部分习题
第17章 波动光学基础
1
大学物理
教程 P620题17.1.5
已知:如图所示,在杨氏双缝干涉实验中SS1=SS2 ,
用波长为 的单色光照在双缝S1和S2上,通过空气
后在屏幕E上形成干涉条纹,如果已知P点处为第三
级明条纹,则S1和S2到P点的光程差为___,如
0.101:1 解:(1)设入射的自然光强为I0.由马吕斯定律,出射 光强为
(2)起偏器和检偏器分别吸收10%的光能,则出射光强为
I
(
I0 2
cos2
60o
) 90%90%
0.101I0
第17章 波动光学基础
8
大学物理 P622题17.2.1
教程 在双缝干涉实验中,在屏E上的P点处是明条纹。
如果将缝S2盖住,并在S1S2连线的垂直平分面处放
能减少反射光, MgF2薄膜的最小厚度应该是:
(E ) A 125nm;
B 181.1nm;
C 250nm;
D 78nm;
E 90.6nm;
解:
2n2e
(2k
1)
2
,
k
0,1,2...
emin 4n2 ... 90.6nm
第17章 波动光学基础
应选 E
11
大学物理 教程
P623题17.2.9
单缝夫琅和费衍射实验装置如图所示,L为凸
透镜,EF为屏幕,当把单缝S稍微上移时,衍
射图样将: ( D) L
A 向下平移; B 向上平移; S O'
E
O
C 消失;
D 不动.
fF
解: 当把单缝S稍微上移时,平行光入射,衍射角为
[答案解析1]波动光学习题
波动光学习题光程、光程差1.在真空中波长为的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B两点相位差为3,则此路径AB 的光程为(A) 1.5. (B) 1.5 n . (C) 1.5 n . (D) 3. [ A ]2.在相同的时间内,一束波长为的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ C ]3.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ B ]4.如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为 (A) 2n 2e / ( n 1 1). (B)[4n 1e / ( n 2 1)] + . (C) [4n 2e / ( n 1 1) ]+.(D) 4n 2e / ( n 1 1). [ C ]5.真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B点,路径的长度为l .A 、B 两点光振动相位差记为,则(A) l =3 / 2,=3. (B) l =3 / (2n ),=3n .(C) l =3 / (2n ),=3. (D) l =3n / 2,=3n . [ ]6.如图所示,波长为的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4n 2 e / . (B) 2n 2 e / .(C) (4n 2 e / . (D) (2n 2 e / . [ A ] P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1n 1 n 2n 3 e λ1 n 1 n 2 n 3e λ7.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是 [ A ] (A) 2n 2 e . (B) 2n 2 e - / 2 . (C) 2n 2 e -. (D) 2n 2 e - / (2n 2).8.若一双缝装置的两个缝分别被折射率为n 1和n 2的两块厚度均为e 的透明介质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差=_____(n 1-n 2)e 或(n 2-n 1)e 均可__.9.如图所示,假设有两个同相的相干点光源S 1和S 2,发出波长为的光.A 是它们连线的中垂线上的一点.若在S 1与A 之间插入厚度为e 、折射率为n 的薄玻璃片,则两光源发出的光在A 点的相位差=___2 (n -1) e / _____.若已知=500 nm ,n =1.5,A 点恰为第四级明纹中心,则e =_ 4×103__nm .10.如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向___上__移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为___(n -1)e _. 11.波长为的单色光垂直照射如图所示的透明薄膜.膜厚度为e ,两束反射光的光程差=___2.60 e _.12.用波长为的单色光垂直照射置于空气中的厚度为e折射率为1.5的透明薄膜,两束反射光的光程差=__ 3e +2/λ 或 3e 2/λ _.双缝干涉1.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则(A) 干涉条纹的宽度将发生改变.(B) 产生红光和蓝光的两套彩色干涉条纹.(C) 干涉条纹的亮度将发生改变.(D) 不产生干涉条纹. [ D ]2. 在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则(A) 干涉条纹的间距变宽.(B) 干涉条纹的间距变窄.(C) 干涉条纹的间距不变,但原极小处的强度不再为零.(D) 不再发生干涉现象. [ C ]3.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝. (B) 使两缝的间距变小. n 2n 1n 3 e ①② S 1S 2 n e SS 1S 2 e 21SS SS = n 1 = 1.00 n 2 = 1.30 n 3 = 1.50 λ e(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ B ]4.在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时 (A) P 点处仍为明条纹. (B) P 点处为暗条纹.(C) 不能确定P 点处是明条纹还是暗条纹. (D) 无干涉条纹. [ B ]5.在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm . [ B ]6.在双缝干涉实验中,入射光的波长为,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹. [ B ]7.在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变. (B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D)中央明条纹向上移动,且条纹间距增大。
大学物理波动光学习题答案
第七章波动光学习题答案1.从一光源发出的光线,通过两平行的狭缝而射在距双缝100 cm的屏上,如两狭缝中心的距离为0.2 mm,屏上相邻两条暗条纹之间的距离为3 mm,求光的波长(Å为单位)。
已知 D=100cm a=0.2mm δx=3mm 求λ[解]λ=aδx/D=3×10-3×0.2×10-3/100×10-2=0.6×10-6m=6000 Å2.用波长为7000 Å的红光照射在双缝上,距缝1 m处置一光屏,如果21个明条纹(谱线以中央亮条为中心而对称分布)共宽2.3 cm,求两缝间距离。
[解]明条纹间距cm a=6.084.用波长为4800 Å的蓝光照射在缝距为0.1 mm的双缝上,求在离双缝50 cm处光屏上干涉条纹间距的大小。
[解]=2.4mm5.什么是光程?在不同的均匀媒质中,单色光通过相等光程时,其几何路程是否相同? 需要时间是否相同?[解]光程=nx。
在不同的均匀媒质中,单色光通过相等光程时,其几何路程是不同。
需要时间相同6.在两相干光的一条光路上,放入一块玻璃片,其折射率为1.6,结果中央明条纹移到原是第六级明条纹处,设光线垂直射入玻璃片,入射光波长为6.6×103 Å。
求玻璃片厚度。
已知 n=1.6 λ=6.6×103Å求 d[解]光程差MP-d+nd-NP=0∵ NP-MP=6λ∴(n-1)d=6λd=6λ/(n-1)=6.6×10-6m7.在双缝干涉实验中,用钠光灯作光源(λ=5893 Å),屏幕离双缝距离D=500mm,双缝间距a=1.2mm,并将干涉实验装置整个地浸在折射率1.33的水中,相邻干涉条纹间的距离为多大?若把实验装置放在空气中,干涉条纹变密还是变疏?(通过计算回答)已知n水=1.33 λ=5893 Å D=500 mm a=1.2mm 比较δx水和δx空气[解]δx水=Dλ/na=500×5893×10-10×10-3/(1.2×10-3×1.33)=1.85×10-4mδx空气=Dλ/a=500×5893×10-10×10-3/(1.2×10-3)=2.46×10-4m∴干涉条纹变疏8.用白光垂直照射到厚度为4×10-5 cm的薄膜上,薄膜的折射率为1.5。
普通物理学第五版第17章节光学答案
学习目标和要求
01
掌握光的波动性、干涉 和衍射的基本原理。
02
理解光的偏振现象及其 应用。
03
能够运用光学知识解释 生活中的现象和科技应 用。
04
通过实验观察和操作, 培养实验技能和实践能 力。
02
光的干涉
光的波动性
光的波动性描述了光 在空间中传播时表现 出的振动和传播特性。
光波的振动幅度和相 位决定了光波的强度 和传播规律。
光的衍射在光学仪器设计中具有重要应用,如望远镜 、显微镜等。
光的衍射在生物学领域也有应用,如X射线晶体学、 DNA测序等。
04
光的偏振
光的偏振现象
光的偏振现象是指光波在传播过程中,其电矢量或磁矢量在某一固定方 向上的振动状态。
自然光和部分偏振光都可以产生光的偏振现象,而完全偏振光则不会产 生偏振现象。
光波的振动方向与传 播方向垂直,具有横 波特性。
干涉现象
干涉是光波相遇时相互叠加产 生明暗相间的现象。
当两束或多束相干光波相遇时, 它们的振动幅度和相位会相互 影响,形成干涉条纹。
干涉现象是光的波动性的重要 表现之一,也是光学研究的重 要内容。
干涉公式与条件
干涉公式描述了光波干涉时明暗 条纹的分布和强度变化。
普通物理学第五版第17章 节光学答案
• 引言 • 光的干涉 • 光的衍射 • 光的偏振 • 光的吸收、反射和折射 • 光学实验与现象 • 总结与思考
01
引言
章节概述
本章主要介绍光学的基本概念、 原理和应用。
涉及光的波动性、干涉、衍射、 偏振等现象及其在日常生活和科
技领域中的应用。
通过本章学习,学生将掌握光学 的基本知识,为后续学习奠定基
波动光学习题参考答案课件
=4062
(nm)
8、在空气中垂直入射的白光从肥皂膜 上反射,在可见光谱中630nm处有一干涉极 大,而在525nm处有一干涉极小,在这极大 与极小之间没有另外的极小。假定膜的厚度
是均匀的,求这膜的厚度。肥皂水的折射率
看作与水相同,为1.33。
解:
2ne
+
l1
2
= kl1
2ne
+
l2
2
=
(2k+1)
l2
2
由上两式得到:
k
=
l1 l1 l2
=
630 2(630-525)
=3
将 k =3 代入
e=
kl2 2n
=
32××51.2353=5.921×10-4 (mm)
9、 一平面单色光波垂直照射在厚度 均匀的薄油膜上,油 膜 覆盖在玻璃板上,
所用 单色光的波长可以连续变化,观察到
500nm与7000nm这两个波长的光在反射 中消失,油的折射率为 1.30,玻璃的折射 率为1.50。试求油膜的厚度 。
=4
明纹条件:
2e
+
l
2
=kl
明纹最高级数
k=1,2,...
k
2e + =l
l
2
2× 2l + =l
l
2
=4.5
取k=4 4级
暗纹9条 明纹8条
(2)设第k级明纹到中心的距离为rk
r
2 k
=R
2
R (d-e) 2=2R(d-e)
=2Rd R (k 12)l
rk =
2Rd
R (k
1 2
)l
(3)若将玻璃片B向下平移,条纹将向外移动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x d
K+1 K
c
第十七章 波动光学
部分习题分析与解答
钢珠c和 、 的直径不同 的直径不同, 钢珠 和a、b的直径不同,则两平板玻璃形成 空气劈尖,由分析得,钢珠c的直径与标准件 空气劈尖,由分析得,钢珠 的直径与标准件 直径相差: 直径相差:
x = N
λ
2
= 1 . 81 × 10
6
m
改变钢珠间的距离d,将钢珠c移至 c′ 处,如图 改变钢珠间的距离 ,将钢珠 移至 所示, 与 之间条纹数目未改变, 所示,a与 c′之间条纹数目未改变,故不影响检 验结果。但由于相邻条纹间距变小, 验结果。但由于相邻条纹间距变小,从而影响观 测。
d = (2k + 1)
λ
4n2
= 2n2 d = (2k + 1)
当k = 0时,d =
λ
4n2
2 = 99.3nm.
17第十七章 波动光学 17-7另解 -
部分习题分析与解答
在折射率n3=1.52的照相机镜头表面涂有一层折射率n2= 1.38的MgF2增透膜,若此膜仅适用于波长 λ =550nm的 光,则此膜的最小厚度为多少? 解:如图示,光线1直接透射,光 2 1 线2经过两次反射后透射,有半波 n1=1.0 2 损失,故两透射光的光程差为 n2=1.38 d
第十七章 波动光学
部分习题分析与解答
解法2 解法 因双缝干涉是等间距的,故也可用以下的条纹间距 公式求入射光波长
x =
d ′ λ d
x
第5条暗纹
应注意两个第5条暗纹之间所包含的相 9 邻条纹间隔数为9,因为中央明纹是中 心(被分在两侧,如右图所示)。故 △x=22.78/9mm,把有关数据代入可得
1 Rλ ′ d k = 2 rk′ = 2 ( k ) 2 n2
dk 2 解上述两式得: 解上述两式得: n2 = ( ) = 1.22 ′ dk
第十七章 波动光学
部分习题分析与解答
17-18如图17-18所示,迈克耳孙干涉仪中的反射镜M 17-18如图17-18所示,迈克耳孙干涉仪中的反射镜M1 如图17 所示 以匀速v平移,用透镜将干涉条纹会聚到光电元件上, 以匀速v平移,用透镜将干涉条纹会聚到光电元件上, 把光强的变化转换为电讯号,若测得电讯号的变化 把光强的变化转换为电讯号, 频率为ν 求入射光的波长λ 频率为ν,求入射光的波长λ。 由于干涉仪中一臂的平移,使得从迈克耳孙干涉 由于干涉仪中一臂的平移 使得从迈克耳孙干涉 仪中射出的两相干光之间的光程差发生变化,从 仪中射出的两相干光之间的光程差发生变化 从 时刻t到时刻 到时刻t+t,其变化量为 2-1=2V t, 其变化量为 时刻 到时刻 其变化量为 可得2V 由干涉相长条件 由干涉相长条件 2=k2 λ和1=k1 λ, 可得 t=(k2- k1) λ,式中 2- k1可理解为在 时间内 λ,式中 式中k 可理解为在t时间内 光电元件上感受的干涉相长的变化次数,转变为 光电元件上感受的干涉相长的变化次数 转变为 电讯号后, 即为电讯号的变化频率ν, 电讯号后 (k2- k1)/ t即为电讯号的变化频率 即为电讯号的变化频率 由以上关系可求得入射光的波长λ. 由以上关系可求得入射光的波长λ.
0
中央明纹
d λ = λ = 632 . 8 nm d′
所用光为红光。 所用光为红光。
第5条暗纹
第十七章 波动光学
部分习题分析与解答
17-2 在劳埃德镜实验中,将屏 紧靠平面镜 右边缘 点放置, 在劳埃德镜实验中,将屏P紧靠平面镜 右边缘L点放置 紧靠平面镜M右边缘 点放置, 如图17-2所示,已知单色光源 的波长为 所示, 的波长为720nm,求平面镜右 如图 所示 已知单色光源S的波长为 , 边缘L到屏上第一条明纹间的距离 到屏上第一条明纹间的距离。 边缘 到屏上第一条明纹间的距离。
5
m
第十七章 波动光学
部分习题分析与解答
17-4 一双缝装置的一个缝被折射率为 一双缝装置的一个缝被折射率为1.40的薄玻璃片所遮盖, 的薄玻璃片所遮盖, 的薄玻璃片所遮盖 另一个缝被折射率为1.70的薄玻璃片所遮盖。在玻璃片插入以 的薄玻璃片所遮盖。 另一个缝被折射率为 的薄玻璃片所遮盖 屏上原来中央极大的所在点,现变为第五级明纹。 后,屏上原来中央极大的所在点,现变为第五级明纹。假定 λ=480nm,且两玻璃片厚度均为 ,求d值。 ,且两玻璃片厚度均为d, 值 分析 在不加介质之前,两相干 光均在空气中传播,它们到达屏 上任一点P的光程差由其几何路 程差决定,对于点O,光程差为 零,故点O处为中央明纹,其余 条纹相对点O对称分布。 而在插入介质片后,对于点O, 光程差不为零,故点O不再是中 央明纹,整个条纹发生平移。 r2
部分习题分析与解答
在折射率n3=1.52的照相机镜头表面涂有一层折射率n2= 1.38的MgF2增透膜,若此膜仅适用于波长 λ =550nm的 光,则此膜的最小厚度为多少? 解:如图所示,知光线1、2在 2 2 1 1 介质表面反射时都有半波损失, n1=1.0 故光程差: = 2n2d n2=1.38 d 由于干涉的互补性,波长为 n3=1.52 550nm的光在透射中得到加强, 则在反射中一定削弱,故由光 的相消条件,得: λ
1 Rλ (k ) 2 n2
第十七章 波动光学
部分习题分析与解答
当透镜与玻璃之间为空气时, 级明纹的直径为 级明纹的直径为: 当透镜与玻璃之间为空气时,k级明纹的直径为:
1 d k = 2 rk = 2 ( k ) R λ 2
当透镜与玻璃之间为液体时, 级明纹的直径为 级明纹的直径为: 当透镜与玻璃之间为液体时,k级明纹的直径为:
λ
n1 n2 n3 d
= 2n2 d 干涉加强,则 = 2n2 d = kλ , 代入数据,知当k=2时, λ = 2n2d / k = 560nm (黄光), 可见光范围内。
k为其它值时,波长均在可见光的范围之外。由于它仅 对560nm的黄光反射加强,故此薄膜从正面看呈黄色。
17第十七章 波动光学 17-7 -
插入介质前、后的光程差的变化量为:
2 1 = (n2 n1 )d = (k2 k1 )λ
S 式中 (k2-k1) 可理解为移过点P的条纹数 P λ 1 (本题为5)。对原中央明纹所在点O有
r2 n2 n1 r1
p
o
2 1 = (n2 n1 )d = 5λ
将有关数据代入得
S
2
d
5λ d = = 8 .0 m n 2 n1
第十七章 波动光学
S 2.0mm
部分习题分析与解答
x 0 PLeabharlann L S’ 20cm 30cm
解: 设△x为双缝干涉中相邻明纹(或暗纹)之间的 间距,L到屏上第一条明纹间距离为
1 1 d ′ x = x = λ 2 2 d
把d=4.0mm,d’=500mm,λ=720nm,代入上式得
x = 4 . 5 × 10
E
s
第十七章 波动光学 部分习题分析与解答 17.19 如图所示,狭缝的宽度b=0.60mm,透镜焦距f=0.40m, 有一与狭缝平行的屏放置在透镜焦平面处。若以单色平 行光垂直照射狭缝,则在屏上离点O为x=1.4mm处的点P, 看到的是衍射明条纹。求: (1)该入射光的波长; P (2)点P条纹的级数; φ (3)从点P看来对该光波而言,狭 x φ 缝处的波阵面可作半波带的数目。 b O 解:(1)单缝衍射的明纹条件为 λ b sin = (2k + 1) (k = ±1,2,3) f
第十七章 波动光学
部分习题分析与解答
2νt = (k 2 k1 )λ 电讯号的变化频率为: k 2 k1 电讯号的变化频率为 =v t 则入射光波长: 则入射光波长 λ = 2νt = 2ν ( k 2 k1 ) 1 = 2ν k 2 k1 t v
由分析知, 由分析知
M2
′ M2 M 1
(2) (2) (1) (1) d1 d2 G1 (2) d2 (1)
第十七章 波动光学
部分习题分析与解答
17-1在双缝干涉实验中,两缝间距为0.3mm,用单色光垂直照 在双缝干涉实验中,两缝间距为 在双缝干涉实验中 , 射双缝,在离缝1.20m的屏上测得中央明纹一侧第 条暗纹与 的屏上测得中央明纹一侧第5条暗纹与 射双缝,在离缝 的屏上测得中央明纹一侧第 另一侧第5条暗纹间的距离为 条暗纹间的距离为22.78mm。问所用光的波长为多 另一侧第 条暗纹间的距离为 。 是什么颜色的光? 少?是什么颜色的光? 解法1 解法 在双缝干涉中,屏上暗纹位置由以下公式决定:
17第十七章 波动光学 17-5 -
部分习题分析与解答
如图所示,用白光垂直照射厚度 的薄膜, 如图所示,用白光垂直照射厚度d=400nm的薄膜,若 的薄膜 薄膜的折射率n , 薄膜的折射率 2=1.40,且n1 >n2 > n3,问反射光中哪 种波长的可见光得到了加强? 种波长的可见光得到了加强? 解:由于n1 >n2 > n3,所以两相干光 在薄膜的上、下两个表面均无半波 损失,故光程差为:
S 2.0mm 图17-2 S’ 20cm 30cm L P
分析: 分析: 劳埃德镜实验中的反射光可看成由虚光源S’所发出, 光源S与S’是相干光源,在屏P上,由它们形成的干涉结果 与缝距d=4.0mm,缝与屏的间距d’=50cm的双缝干涉相似, 不同之处在于劳埃德镜中的反射光,由于存在半波损失, 故屏上明暗纹位置正好互换,L处为暗纹而不是明纹。
a(b)
x d
K+1 K
c′
c
第十七章 波动光学
部分习题分析与解答
17在牛顿环实验中, 17-14 在牛顿环实验中,当透镜与玻璃之间充以某 种液体时, 10个亮环的直径由1.40× 个亮环的直径由1.40 种液体时,第10个亮环的直径由1.40×10-2m变为 1.27×10-2m,试求这种液体的折射率。 1.27× 试求这种液体的折射率。 当透镜与平板玻璃间充满某种液体( 当透镜与平板玻璃间充满某种液体(n2>1),且 且 满足n 在厚度为d的地方 的地方, 满足 1>n2<n3或n1<n2>n3时,在厚度为 的地方, 两相干光的光程差为=2n2d+λ/2,由此可推导 两相干光的光程差为 由此可推导 kR λ 出牛顿环暗环半径为: 出牛顿环暗环半径为: r = n2 明暗环半径为: 明暗环半径为: r =