小学数学教学中的数学思维
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学教学中的数学思维
摘要:“帮助学生学会基本的数学思想方法”是新一轮数学课程改革所设定的一个基本目标。以国际上的相关研究为背景,对小学数学教学中如何突出数学思维进行具体分析表明,即使是十分初等的数学内容也同样体现了一些十分重要的数学思维形式及其特征性质。
关键词:数学思维;小学数学教学
对于数学思维的突出强调是国际范围内新一轮数学课程改革的一个重要特征,如由美国的《学校数学课程与评估的标准》和我国的《全日制义务教育数学课程标准(实验稿)》(以下简称《课程标准》)关于数学教育目标的论述中就可清楚地看出。然而,就小学数学教育的现实而言,上述的理念还不能说已经得到了很好的贯彻,而造成这一现象的一个重要原因就是以下的认识:小学数学的教学内容过于简单,因而不可能很好地体现数学思维的特点。以下将依据国际上的相关研究对这一观点作出具体分析,希望能促进这一方向上的深入研究,从而能够对于实际教学活动发挥积极的导向作用。
一、数学化:数学思维的基本形式
众所周知,强调与现实生活的联系正是新一轮数学课程改革的一个重要特征。“数学课程的内容一定要充分考虑数学发展进程中人类的活动轨迹,贴近学生熟悉的现实生活,不断沟通生活中的数
学与教科书上数学的联系,使生活和数学融为一体。”就努力改变传统数学教育严重脱离实际的弊病而言,这一做法是完全正确的;但是,从更为深入的角度去分析,我们在此则又面临着这样一个问题,即应当如何去处理“日常数学”与“学校数学”之间的关系。
事实上,即使就最为初等的数学内容而言,我们也可清楚地看到数学的抽象特点,而这就已包括了由“日常数学”向“学校数学”的重要过渡。
应当强调的是,以上所说的可说是一种“数学化”的过程,后者集中地体现了数学的本质特点:数学可被定义为”模式的科学”,也就是说,在数学中我们并非是就各个特殊的现实情景从事研究的,而是由附属于具体事物或现象的模型过渡到了更为普遍的“模式”。也正由于数学的直接研究对象是抽象的模式而非特殊的现实情景,这就为相应的“纯数学研究”提供了现实的可能性。例如,就以上所提及的加减法运算而言,由于其中涉及三个不同的量(两个加数与它们的和,或被减数、减数与它们的差),因此,从纯数学的角度去分析,我们完全可以提出这样的问题,即如何依据其中的任意两个量去求取第三个量。
综上可见,即使就正整数的加减法此类十分初等的题材而言,就已十分清楚地体现了数学思维的一些重要特点,特别是体现了在现实意义与纯数学研究这两者之间所存在的辩证关系。当然,从理论的角度看,我们在此又应考虑这样的问题,即应当如何去认识所
说的纯数学研究的意义。特别是,我们是否应当明确肯定由“日常数学”过渡到“学校数学”的必要性,或是应当唯一地坚持立足于现实生活。
二、凝聚:算术思维的基本形式
由以下关于算术思维基本形式的分析可以看出,思维的分析相对于具体知识内容的教学而言并非某种外加的成分,而是有着重要的指导意义。
具体地说,这正是现代关于数学思维研究的一项重要成果,即指明了所谓的“凝聚”,也即由“过程”向“对象”的转化构成了算术以及代数思维的基本形式,这也就是说,在数学特别是算术和代数中有不少概念在最初是作为一个过程得到引进的,但最终却又转化成了一个对象──对此我们不仅可以具体地研究它们的性质,也可以此为直接对象去施行进一步的运算。
例如,加减法在最初都是作为一种过程得到引进的,即代表了这样的“输入—输出”过程:由两个加数(被减数与减数)我们就可求得相应的和(差);然而,随着学习的深入,这些运算又逐渐获得了新的意义:它们已不再仅仅被看成一个过程,而且也被认为是一个特定的数学对象,我们可具体地去指明它们所具有的各种性质,如交换律、结合律等,从而,就其心理表征而言,就已经历了一个“凝聚”的过程,即由一个包含多个步骤的运作过程凝聚成了单一的数学对象。再如,有很多教师认为,分数应当定义为“两个
整数相除的值”而不是“两个整数的比”,这事实上也可被看成包括了由过程向对象的转变,这就是说,就分数的掌握而言我们不应停留于整数的除法这样一种运算,而应将其直接看成一种数,我们可以此为对象去实施加减乘除等运算。对于所说的“凝聚”可进一步分析如下:
第一,“凝聚”事实上可被看成“自反性抽象”的典型例子,而后者则又可以说集中地体现了数学的高度抽象性,即“是把已发现结构中抽象出来的东西射或反射到一个新的层面上,并对此进行重新建构”。这正如著名哲学家、心理学家皮亚杰所指出的:“全部数学都可以按照结构的建构来考虑,而这种建构始终是完全开放的……当数学实体从一个水平转移到另一个水平时,它们的功能会不断地改变;对这类‘实体’进行的运演,反过来,又成为理论研究的对象,这个过程在一直重复下去,直到我们达到了一种结构为止,这种结构或者正在形成‘更强’的结构,或者在由‘更强的’结构来予以结构化。”例如,由加法到乘法以及由乘法到乘方的发展显然也可被看成更高水平上的不断“建构”。
第二,以色列著名数学教育家斯法德(a.sfard)指出,“凝聚”主要包括以下三个阶段:(1)内化;(2)压缩;(3)客体化。其中,“内化”和“压缩”可视为必要的准备。前者是指用思维去把握原先的视觉性程序,后者则是指将相应的过程压缩成更小的单元,从而就可从整体上对所说的过程作出描述或进行反思──我们在此
不仅不需要实际地去实施相关的运作,还可从更高的抽象水平对整个过程的性质作出分析;另外,相对于前两个阶段而言,“客体化”则代表了质的变化,即用一种新的视角去看一件熟悉的事物:原先的过程现在变成了一个静止的对象。容易看出,上述的分析对于我们改进教学也具有重要的指导意义。例如,所说的“内化”就清楚地表明了这样一点:我们既应积极提倡学生的动手实践,但又不应停留于“实际操作”,而应十分重视“活动的内化”,因为,不然的话,就不可能形成任何真正的数学思维。另外,在不少学者看来,以上的分析在一定程度上表明了“熟能生巧”这一传统做法的合理性。