考研数学三大公式
考研数学三公式大全
考研数学三公式大全高等数学公式导数公式: 基本积分表:三角函数的有理式积分:ax x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x Cx dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππA.积化和差公式:B.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+④2sin2sin 2cos cos βαβαβα-+-=- 1.正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)2..余弦定理:a2=b2+c2-2bc A cos b2=a2+c2-2ac B cosc 2=a 2+b 2-2ab C cos bca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C BA c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限①βαβαβαsin cos cos sin )sin(±=±②βαβαβαsin sin cos cos )cos( =±③βαβαβαtg tg tg tg tg ⋅±=± 1)(④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -=④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定)①2cos 12sinθθ-±=②2cos 12sin 2θθ-=③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=-⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 多元函数微分法及应用将D 主副角线翻转后,所得行列式为4D ,则4D D =;1. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:AO A C A BCB O B==、(1)m n CA OA A BBO B C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;2. 对于n 阶行列式A ,恒有:1(1)nnk n kk k E A S λλλ-=-=+-∑,其中kS 为k 阶主子式; 3. 证明0A =的方法: ①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n=(是满秩矩阵)⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是nR 的一组基; ⇔A是nR 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;4. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12sA A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭;②、111A O A O O B OB ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A CB O B O B-----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B-,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,iλ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质: ①、0()min(,)m nr A m n ⨯≤≤;②、()()Tr A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论); Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-; 6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律; ②、型如101001a c b ⎛⎫⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C ab C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()na b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n nn n n n n m n CC C m m n mⅢ、组合的性质:11112---+-===+==∑nmn mm m m r nr r nnn nnnn n r CCCC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵: ①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A AA X X λλλ- == ⇒ =;③、*1AA A -=、1*n AA-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程: ①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m个方程,n 个未知数)③、()1212n n x xaa a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,mααα构成n m ⨯矩阵12(,,,)m A =ααα;m个n 维行向量所组成的向量组B :12,,,T T T mβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应; 2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组) ②、向量的线性表出 Ax b⇔=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m nA ⨯与l nB ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()Tr A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行); ③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,sααα线性相关,则121,,,,ss αααα+必线性相关;若12,,,sααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定; 7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示AX B⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,lP P P ,使12lA P PP =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m nA ⨯与l nB ⨯:①、若A 与B 行等价,则A 与B 的行秩相等; ②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m ss n m nAB C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12. 设向量组12:,,,n rrBb b b ⨯可由向量组12:,,,n ssAa a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K=(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用; 13. ①、对矩阵m nA ⨯,存在n mQ ⨯,mAQ E=()r A m⇔=、Q 的列向量线性无关;(87P )②、对矩阵m nA ⨯,存在n mP ⨯,nPA E=()r A n⇔=、P 的行向量线性无关; 14.12,,,sααα线性相关⇔存在一组不全为0的数12,,,sk k k ,使得1122s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r sααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n rξξξ-为0Ax =的一个基础解系,则*12,,,,n rηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵TA A E ⇔=或1TAA -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1TAA -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=TCAC B,其中可逆; ⇔T x Ax与Tx Bx 有相同的正、负惯性指数;③、A 与B 相似 1-⇔=PAP B;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则TC AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型Tx Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E =;A ⇔的所有特征值均为正数; A⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)考研概率论公式汇总1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)(AB A A A A A =⋃⋂∅=∅⋂=Ω⋂)(反演律:B A B A =⋃BA AB ⋃= ni ini i A A 11=== ni i ni iA A11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂)()()(A P B P A B P -=-⇒对任意两个事件A , B , 有)()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有 3.条件概率乘法公式())0)(()()(>=A P A B P A P AB P全概率公式∑==ni i AB P A P 1)()()()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==ni i i k k B A P B P B A P B P 1)()()()( 4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λnn np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U (2) 指数分布 )(λE (3) 正态分布 N (μ , σ2 ) *N (0,1) — 标准正态分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G ) (2)二维正态分布9.二维随机变量的条件分布 10.随机变量的数字特征 数学期望随机变量函数的数学期望X 的k 阶原点矩)(k X E X 的k 阶绝对原点矩)|(|k X EX 的k 阶中心矩)))(((k X E X E -X 的方差)()))(((2X D X E X E =-X ,Y 的k + l 阶混合原点矩)(l k Y X E X ,Y 的k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())(((X 的方差D (X ) = E ((X - E (X ))2) )()()(22X E X E X D -= 方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ。
2024考研数学常必背公式汇总
2024考研数学常必背公式汇总在准备2024考研数学的过程中,掌握一些常用的公式是非常重要的。
这些公式不仅可以帮助我们更快地解题,还能提高我们的答题准确性。
下面是2024考研数学一、数学二、数学三需要背诵的常用公式的汇总:一、基本数学公式:1.平方差公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab+ b^22.二次方程的求根公式:若ax^2+bx+c=0(a≠0),则x = (-b ± √(b^2-4ac))/2a3.数列的通项公式:递推公式:a(n+1)=a(n)+d通项公式:a(n)=a(1)+(n-1)d二、高等数学公式:1.常用三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ2.常用反三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ3.常用指数函数公式:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)a^(-m)=1/a^m4.常用对数函数公式:log_a(m * n) = log_a(m) + log_a(n)log_a(m^n) = n * log_a(m)log_a(m/n) = log_a(m) - log_a(n)log_a(1) = 05.常用复数公式:i²=-1复数的共轭:若z = a + bi,则z的共轭为a - bi三、线性代数公式:1.行列式的加减法:A±B,=,A,±,B2.行列式的乘法:A*B,=,A,*,B3.矩阵的逆:若,A,≠0,则A存在逆矩阵A^(-1),且AA^(-1)=A^(-1)A=I4.特征值与特征向量:设A是n阶矩阵,若存在数λ和非零向量x,使得Ax=λx,则λ称为矩阵A的特征值,x称为λ对应的特征向量5.向量的内积:a ·b = ,a,,b,cosθ其中,a、b分别为向量,θ为a、b之间的夹角四、概率与统计公式:1.事件的概率公式:对于一个随机事件A,其概率满足0≤P(A)≤12.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)3.乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)4.全概率公式:P(A)=P(An)P(A,An)+P(A2)P(A,A2)+...+P(Am)P(A,Am)其中,A1,A2,...,Am为一组互斥且全体之并为样本空间Ω的事件5.贝叶斯公式:P(A,B)=P(AnB)/P(B)=P(An)P(B,An)/[P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)]其中,A1,A2,...,An与前述全概率公式的条件相同。
考研数学常用公式整理
考研数学常用公式整理数学是考研的一门重要科目,公式的掌握对于解题很关键。
在考研数学中,有一些常用的公式是我们必须掌握的。
下面,我将对一些常用公式进行整理,以帮助大家更好地准备考研数学。
一、微积分1. 导数公式导数公式是微积分中最基本的公式之一,常见的导数公式有:- 常数函数的导数为零:\[ \frac{{d(c)}}{{dx}} = 0 \]- 幂函数的导数公式:\[ \frac{{d(x^n)}}{{dx}} = nx^{n-1}\]- 三角函数的导数公式:\[ \frac{{d(\sin x)}}{{dx}} = \cos x, \frac{{d(\cos x)}}{{dx}} = -\sin x \]- 对数函数的导数公式:\[ \frac{{d(\log_x a)}}{{dx}} = \frac{1}{{x \ln a}} \]2. 积分公式积分是微积分中的另一个重要概念,以下是一些常见的积分公式:- 幂函数的积分公式:\[ \int x^n dx = \frac{1}{{n+1}}x^{n+1} + C \]- 三角函数的积分公式:\[ \int \sin x dx = -\cos x + C, \int \cos x dx = \sin x + C \] - 对数函数的积分公式:\[ \int \frac{1}{x} dx = \ln |x| + C \]二、线性代数1. 行列式公式行列式是线性代数中的重要概念,以下是一些常见的行列式公式:- 二阶行列式:\[ \det(A) = \begin{vmatrix}a & b \\ c & d \end{vmatrix} = ad - bc \]- 三阶行列式:\[ \det(A) = \begin{vmatrix}a & b & c \\ d & e & f \\ g & h & i\end{vmatrix} = aei + bfg + cdh - ceg - afh - bdi \]2. 矩阵转置公式矩阵的转置是指将行与列互换得到的新矩阵,以下是一些常见的矩阵转置公式:- 矩阵的转置:\[ (A^T)_{ij} = A_{ji} \]三、概率与统计1. 概率公式概率是数学中的一个重要分支,以下是一些常见的概率公式:- 事件的概率定义:\[ P(A) = \frac{{n(A)}}{{n(S)}} \]- 互斥事件的概率公式:\[ P(A \cup B) = P(A) + P(B) \]- 独立事件的概率公式:\[ P(A \cap B) = P(A) \cdot P(B) \]2. 统计学公式统计学是研究如何收集、整理、分析和解释数据的科学,以下是一些常见的统计学公式:- 平均数公式:\[ \text{平均数} = \frac{{\text{总和}}}{{\text{个数}}} \]- 方差公式:\[ \text{方差} = \frac{{\sum(X_i-\bar{X})^2}}{{n}} \]- 标准差公式:\[ \text{标准差} = \sqrt{\text{方差}} \]通过掌握以上的常用公式,我们可以更好地应对考研数学中的各种问题。
考研数学三大公式
考研数学三大公式考研数学中的三大公式是指其中的三个最重要和最常用的公式。
这些公式在解题过程中起到了关键作用,掌握了这些公式对于考生来说至关重要。
下面我就为大家详细介绍一下考研数学中的三大公式。
首先是微分中的导数求法公式。
导数是微分学中的重要概念,它描述了函数在其中一点上的变化率。
对于任意一个函数,其导数可通过求取极限的方式获得。
根据函数的定义和性质,我们可以得到一系列常用的导数求法公式,如常数函数的导数等于零、幂函数的导数等于其指数乘以自身降幂一次、常见初等函数(如指数函数、对数函数、三角函数)的导数等等。
这些求导公式在解决函数的极值、曲线图的形状等问题时非常有用。
其次是积分中的求积公式。
积分是微积分学中的一个重要概念,它描述了函数在其中一区间上的累积效应。
在求解积分问题时,需要利用一系列求积公式。
常见的求积公式有:基本初等函数的积分公式(如多项式函数的积分、指数函数的积分、三角函数的积分),以及一些特殊的积分公式(如换元法、分部积分法、定积分的换限积分等)。
这些求积公式在计算面积、弧长、体积等问题时发挥了重要作用。
最后是线性代数中的矩阵运算公式。
在线性代数中,矩阵是一个重要的数学工具,它在解决线性方程组、向量空间等问题时起到了关键作用。
考研数学中的矩阵公式主要包括:矩阵的加、减、乘法公式、矩阵的转置和逆的求法公式、矩阵的行列式公式等。
这些公式在解决线性方程组的求解、矩阵的特征值和特征向量等问题时非常有用。
以上就是考研数学中的三大公式的详细介绍。
这些公式作为考研数学的基础知识,需要考生们掌握才能在考试中取得好的成绩。
掌握了这些公式之后,考生们在解题过程中可以更加得心应手,提高解题效率。
因此,建议考生们在备考过程中要加强对这些公式的理解和记忆,通过大量的题目练习来熟练掌握这些公式的运用。
只有真正掌握了这些公式,考生们才能在考试中处于一个更有优势的位置,取得更好的成绩。
考研数学三公式大全
高等数学公式导数公式:基本积分表:ax x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x Cx dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222Ca x x a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , A.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin B.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- 1.正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)2..余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径) 4.诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=±②βαβαβαsin sin cos cos )cos(μ=± ③βαβαβαtg tg tg tg tg ⋅±=±μ1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±μ6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定)①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
考研数学三公式0204192257
考研数学三公式020*******1.定积分的换元法:换元法是定积分中常用的一种方法,通过变量代换来简化积分表达式。
其具体步骤如下:设有定积分∫f(x)dx,其中f(x)是一个连续函数,即要求对f(x)进行积分求解。
首先,设u=g(x)是一个可导、单调且在区间[a,b]内具有连续导数的函数,且u=g(x)的导函数g'(x)在区间[a,b]内不为零。
我们将x表示为u的函数,即x=h(u),则可得到以下公式:∫f(x)dx = ∫f[h(u)]h'(u)du其中dx表示在x变量上的微元,du表示在u变量上的微元。
通过这个公式,我们可以将原来的积分转变为新的变量u的积分,从而简化计算。
换元法在求解一些复杂的定积分问题时非常有用,能够简化计算过程,提高计算效率。
2.二重积分的极坐标法:极坐标法是求解二重积分问题中常用的方法,特别适用于涉及到圆形、对称形等几何图形的计算。
对于二重积分,我们通常使用的是直角坐标系,即以x轴和y轴为基准进行计算。
而在极坐标系中,我们以原点O为基准,以极径r为横坐标,以极角θ为纵坐标进行计算。
利用极坐标系与直角坐标系之间的变换关系,我们可以将二重积分的计算转换为在极坐标下的计算。
具体而言,设有二重积分∬f(x,y)dxdy,其中f(x,y)是一个连续函数。
我们可以通过极坐标变换,将x表示为r和θ的函数,即x=r*cosθ,y=r*sinθ。
则可得以下公式:∬f(x,y)dxdy = ∬f(r*cosθ, r*sinθ)rdrdθ其中dxdy表示在直角坐标系下的微元面积,rdrdθ表示在极坐标系下的微元面积。
通过这个公式,我们可以将原来的二重积分转变为在极坐标下的二重积分,从而简化计算。
极坐标法在求解涉及到极坐标的几何图形的面积、质量等问题时非常有用,能够提高计算效率。
3.多重积分的重积分守恒法:重积分守恒法是求解多重积分问题中常用的一种方法,通过将多重积分拆分成多个一重积分的相乘形式,从而简化计算。
考研常用数学公式
考研常用数学公式2.积分公式:$int_a^bf(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。
3. 泰勒级数公式:$f(x)=sumlimits_{n=0}^inftyfrac{f^{(n)}(a)}{n!}(x-a)^n$,其中$f^{(n)}(a)$表示$f(x)$在$a$处的$n$阶导数。
4. 极限公式:$limlimits_{x to a}f(x)=L$表示$f(x)$当$x$接近$a$时趋近于$L$。
5. 矩阵公式:$AcdotB=begin{bmatrix}a_{11}&a_{12}&cdots&a_{1n}a_{21}&a_{22}&cdo ts&a_{2n}vdots&vdots&ddots&vdotsa_{m1}&a_{m2}&cdots&a_{mn}e nd{bmatrix}cdotbegin{bmatrix}b_{11}&b_{12}&cdots&b_{1k}b_{2 1}&b_{22}&cdots&b_{2k}vdots&vdots&ddots&vdotsb_{n1}&b_{n2}& cdots&b_{nk}end{bmatrix}$。
6. 微积分基本定理:$int_a^b f'(x)dx=f(b)-f(a)$。
7. 高斯-约旦消元法则:通过矩阵变形把线性方程组化为阶梯形式,进一步求解方程组。
8. 傅里叶级数公式:$f(x)=frac{a_0}{2}+sumlimits_{n=1}^infty(a_ncos nx+b_nsin nx)$。
9. 三角函数公式:$sin^2x+cos^2x=1$,$sin(xpm y)=sin xcos ypmcos xsin y$,$cos(xpm y)=cos xcos ympsin xsin y$。
考研数学常用公式总结
考研数学常用公式总结考研数学是考研中的一门重要科目,它的题目种类繁多,考察内容广泛。
在备考过程中,熟练掌握和灵活运用常用公式是非常关键的。
本文将就考研数学中常用的公式进行总结与归纳,以帮助考生更好地备考。
1、微积分公式微积分是考研数学中的重点内容,以下是一些常用的微积分公式:(1)导数公式:- 基本导数公式:a. 常数函数:$[k]'=0$;b. 幂函数:$[x^n]'=nx^{n-1}$;c. 指数函数:$[a^x]'=a^x\ln a$;d. 对数函数:$[\log_a x]'=\frac{1}{x\ln a}$;e. 三角函数:$[\sin x]'=\cos x$,$[\cos x]'=-\sin x$,$[\tan x]'=\sec^2 x$。
- 运算法则:a. 基本运算:$[u \pm v]'=u' \pm v'$;b. 乘法法则:$[uv]'=u'v+uv'$;c. 除法法则:$\left[\frac{u}{v}\right]'=\frac{u'v-uv'}{v^2}$;d. 复合函数:$[f(g(x))]'=f'(g(x))g'(x)$。
(2)积分公式:- 基本积分公式:a. 幂函数:$\int x^n\mathrm{d}x=\frac{x^{n+1}}{n+1}+C$;b. 指数函数:$\int a^x\mathrm{d}x=\frac{a^x}{\ln a}+C$;c. 对数函数:$\int \frac{1}{x\ln a}\mathrm{d}x=\log_a(\ln a)+C$;d. 三角函数:$\int \sin x\mathrm{d}x=-\cos x+C$,$\int \cosx\mathrm{d}x=\sin x+C$。
考研数学考前公式
考研数学考前公式
考研数学考试的内容主要涉及高等数学、线性代数和概率论与数理统计三大部分,每个部分包含的内容和公式如下:
高等数学部分:
1. 极限公式:
对数函数极限:lim(log(1+x)/x)=1,当x趋于0时
三角函数极限:lim(sin(x)/x)=1,当x趋于0时;lim((1-cos(x))/x)=0,当x趋于0时
2. 牛顿-莱布尼茨公式:∫abf(x)dx=F(b)-F(a),其中F(x)是f(x)的一个原函数
3. 泰勒公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-
a)^n/n!+Rn(x),其中,Rn(x)是余项,有Lagrange余项和Cauchy余项两种形式。
线性代数部分:
1. 向量公式:
向量的模:a=√(x1^2+x2^2+...+xn^2)
向量的点积:a·b=x1y1+x2y2+...+xnyn
向量的叉积:a×b=(y1z2-y2z1)i-(x1z2-x2z1)j+(x1y2-x2y1)k
2. 矩阵公式:
矩阵的乘积:C=AB,其中Cij=∑(k=1到n)AikBkj
矩阵的逆:若A是可逆矩阵,则A的逆矩阵A^-1满足AA^-1=A^-
1A=E
矩阵的秩:矩阵的秩是指它的行与列的最大线性无关组数,也就是矩阵中含有的一个最大的非零子式的阶数。
概率论与数理统计部分:
这部分的公式涉及的内容较多,可以查阅考研数学大纲或者相关教辅书来获取更全面的信息。
以上信息仅供参考,如有需要,建议查阅考研数学大纲或咨询专业教师。
考研数学必背公式
考研数学必背公式数学是考研的一门重要科目,无论是理工科还是文科,数学都是考研必考科目之一、在备考期间,掌握并背诵一些重要的数学公式是非常重要的,因为公式是解题的基础,可以帮助我们快速解决问题。
下面是一些考研数学中常见的重要公式,供大家背诵和复习使用:1.三角函数公式:sin(x ± y) = sinxcosy ± cosxsinycos(x ± y) = cosxcosy ∓ sinxsinytan(x ± y) = (tanx ± tany) / (1 ∓ tanxtany)sin²x +cos²x = 11 + tan²x = sec²x1 + cot²x = csc²x2.指数和对数公式:ab × ac = ab+c(ab)c = abca⁰=1,a¹=aaⁿ×aⁿ=aⁿ⁺ⁿ(a/b)ⁿ=aⁿ/bⁿalogba = alogba + logbc = logba*clogba - logbc = logba/c3.三角函数的基本关系:sin(π/2 - x) = cosxcos(π/2 - x) = sinxtan(π/2 - x) = cotxcot(π/2 - x) = tanxsin²x + cos²x = 1secx = 1/cosxcscx = 1/sinxcotx = 1/tanx4.高中数学知识:三角函数的定义:sinx = y/r, cosx = x/r, tanx = y/x, cotx = x/y, secx = r/x, cscx = r/ysin(-x) = -sinx, cos(-x) = cosx, tan(-x) = -tanxsin(π + x) = -sinx, cos(π + x) = -cosx, tan(π + x) = tanx sin(2π - x) = sinx, cos(2π - x) = cosx, tan(2π - x) = tanxsin(π/2 + x) = cosx, cos(π/2 + x) = -sinx, tan(π/2 + x) = -cotxsin(3π/2 - x) = -cosx, cos(3π/2 - x) = sinx, tan(3π/2 - x) = -cotx5.极限公式:lim(x→0) (sinx / x) = 1lim(x→0) (1 - cosx) / x = 0lim(x→∞) (1 + 1/x)^x = elim(x→0) (a^x - 1) / x = ln(a)6.求导公式:(d/dx) (c) = 0(d/dx) (x^n) = nx^(n-1)(d/dx) (sinx) = cosx(d/dx) (cosx) = -sinx(d/dx) (tanx) = sec²x(d/dx) (cotx) = -csc²x(d/dx) (secx) = secxtanx(d/dx) (cscx) = -cscxcotx(d/dx) (e^x) = e^x(d/dx) (lnx) = 1/x7.积分公式:∫(k)dx = kx + C∫(x^n)dx = (x^(n+1)) / (n+1) + C (n ≠ -1)∫(cosx)dx = sinx + C∫(sinx)dx = -cosx + C∫(sec²x)dx = tanx + C∫(csc²x)dx = -cotx + C∫(secx * tanx)dx = secx + C∫(cscx * cotx)dx = -cscx + C∫(e^x)dx = e^x + C∫(1/x)dx = ln,x, + C。
考研数学公式大全
考研数学公式大全数学是考研的核心科目之一,而掌握必要的数学公式则是取得好成绩的关键。
以下是一份考研数学公式大全,涵盖了高等数学、线性代数和概率论与数理统计中的重要公式,希望能对备考研究生入学考试的同学有所帮助。
一、高等数学1、求导法则本文1)链式法则:f(u)f'(u)=f'(u)du本文2)乘积法则:f(u)g(u)=f'(u)g(u)+f(u)g'(u)本文3)指数法则:f(u)^n=nu'f(u)/(n-1)!2、求极值本文1)极值条件:f'(x)=0本文2)极值定理:f(x)在x=a处取得极值,则f'(a)=03、积分公式本文1)牛顿-莱布尼茨公式:∫f(x)dx=F(b)-F(a),其中F'(x)=f(x)本文2)微分定理:d/dx∫f(x)dx=f(x)本文3)积分中值定理:若f(x)在[a,b]上连续,则至少存在一点c∈[a,b],使得∫f(x)dx=f(c)(b-a)4、不定积分公式本文1)幂函数积分:∫x^n dx=(n+1)/n+1 x^(n+1)/n+1+C本文2)三角函数积分:∫sinx dx=cosx+C,∫cosx dx=-sinx+C 5、定积分公式本文1)矩形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+y^2)/2本文2)梯形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+[by]+[ax])/3二、线性代数6、行列式公式本文1)行列式展开式:D=a11A11+a12A12+...+an1An1,其中Aij为行列式中第i行第j列的代数余子式本文2)范德蒙行列式:V=(∏i=1n[(x-a)(i-1)]^(n-i)) / (∏i=1n[(x-a)(i-1)]),其中ai为行列式中第i行第i列的元素7、矩阵公式本文1)矩阵乘法:C=AB,其中Cij=∑AikBkj,k为矩阵乘法的维数本文2)逆矩阵:A^-1=(1/∣A∣)A,其中∣A∣为矩阵A的行列式值,A为矩阵A的伴随矩阵8、向量公式本文1)向量内积:〈a,b〉=a1b1+a2b2+...1、求导法则本文1)链式法则:若f是一个包含x和函数u=u(x),则f' = f'[u(x)] * u'(x)。
考研数学公式总结
考研数学公式总结考研数学是考研数学专业课中的重要一科,掌握好数学公式是考研数学的关键。
下面是考研数学常用的一些公式总结。
1.代数与数论1.1二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 +...+ C(n,n-1)ab^(n-1) + C(n,n)b^n1.2二次方程求根公式:x = (-b ± sqrt(b^2 - 4ac)) / 2a1.3勾股定理:a^2+b^2=c^21.4平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^21.5一元二次不等式求解方法:ax^2 + bx + c > 0 或 < 0当a>0,则解集为(-∞,x1)∪(x2,+∞)当a<0,则解集为(x1,x2)1.6等差数列求和公式:S = n(a1 + an) / 21.7等比数列求和公式:S = (a1 - an*q) / (1 - q),当,q, < 12.数学分析2.1极限相关公式:x,<1时,1/(1-x)的幂级数展开为1+x+x^2+x^3+..sin(x) 的幂级数展开为 x - x^3/3! + x^5/5! - ...cos(x) 的幂级数展开为 1 - x^2/2! + x^4/4! - ...e^x的幂级数展开为1+x+x^2/2!+x^3/3!+...2.2微积分相关公式:微分公式:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)积分公式:∫(f(x) + g(x))dx = ∫f(x)dx + ∫g(x)dx 2.3泰勒展开公式:函数f(x)在x=a处的泰勒展开公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n3.概率论与数理统计3.1排列组合:排列公式:P(n,m)=n!/(n-m)!组合公式:C(n,m)=n!/[(n-m)!*m!]3.2二项分布:P(X=k)=C(n,k)*p^k*q^(n-k),其中q=1-p3.3正态分布:P(a < X < b) = ∫[a, b] (1/sqrt(2πσ^2)) * exp(-(x-μ)^2 / (2σ^2)) dx3.4样本均值:样本均值的期望:E(¯X)=μ样本均值的方差:Var(¯X) = σ^2 / n3.5方差:总体方差的估计量:s^2 = Σ(xi - x_bar)^2 / (n - 1)以上是考研数学中较为常见的一些公式总结,这些公式涵盖了代数与数论、数学分析、概率论与数理统计等知识点。
考研数学必备公式总结
考研数学必备公式总结随着考研大军的不断壮大,考研数学作为其中最重要的一门科目,备考的重要性不言而喻。
在备考数学的过程中,熟练掌握并运用各种数学公式无疑是提高解题效率和成绩的重要途径。
下面将对考研数学中的必备公式进行总结,以供同学们参考。
一、微积分公式1.导数运算法则:(uv)' = uv' + u'v,(u/v)' = (u'v - uv')/v²,(u^n)' = nu^(n-1)u',(e^u)' = u'e^u,(lnu)' = u'/u,带入法则等。
2.积分运算法则:∫udv = uv - ∫vdu,∫x^n dx = (x^(n+1)) / (n+1),∫du/u = ln|u| + C,∫e^u du = e^u + C,∫(1 / (a² + x²)) dx = (1/a)arctan(x/a) + C,等。
3.泰勒展开公式:f(x) = f(a) + f'(a)(x-a) + (f''(a))/2!(x-a)² + ... + (fⁿ(a))/n!(x-a)ⁿ +Rⁿ₊₁,其中Rⁿ₊₁是拉格朗日余项。
二、线性代数公式1.向量及矩阵:·向量点乘:A·B = |A||B|cosθ·向量叉乘:A×B = |A||B|sinθ·向量长度:|A| = √(x1² + x2² + ... + xn²)·平面向量:平移、旋转、缩放等基本变换·矩阵乘法:(AB)C = A(BC),(AB)⁻¹ = B⁻¹A⁻¹,(A⁻¹)⁻¹ = A·矩阵的行列式计算公式2.线性方程组:·克拉默法则·矩阵求逆法·高斯消元法三、概率统计公式1.概率公式:·全概率公式:P(A) = P(A|B₁)P(B₁) + P(A|B₂)P(B₂) + ... + P(A|Bn)P(Bn)·贝叶斯公式:P(Bi|A) = P(A|Bi)P(Bi) / (ΣP(A|Bj)P(Bj))2.数理统计公式:·样本均值:x = (x₁ + x₂ + ... + xn) / n·样本方差:s² = (Σ(xi - x)²) / (n-1)·样本标准差:s = √s²·样本协方差:sxy = (Σ(xi - x)(yi - ȳ)) / (n-1)·样本相关系数:r = sxy / (sx·sy)四、复变函数公式1.欧拉公式:e^(ix) = cosx + isinx2.柯西-黎曼方程:·设 f(z) = u(x,y) + iv(x,y) 是一个复变函数,则 u 和 v 的一阶偏导数存在且连续,且满足如下方程:∂u/∂x = ∂v/∂y,∂u/∂y = -∂v/∂x3.柯西积分公式:·设 f(z) 是闭区域 G 内的单值解析函数,C 是 G 内的一简单逐段光滑曲线,则有:∮C f(z) dz = 0综上所述,以上是考研数学中的一些必备公式的总结。
考研常考公式汇总
考研常考公式汇总一、数学分析1. 隐函数求导公式隐函数求导公式是数学分析中常用的公式之一,它用于求解含有隐函数的导数。
通过这个公式,我们可以将含有隐函数的方程转化为显函数的形式,从而更方便地进行求导操作。
2. 泰勒展开公式泰勒展开公式是数学分析中的重要工具,用于将一个函数在某一点附近进行多项式逼近,从而更好地研究函数的性质。
该公式可以通过对函数进行无限次求导来得到,进而得到函数在某一点的各阶导数和展开式。
二、线性代数1. 矩阵乘法公式矩阵乘法公式是线性代数中常用的公式之一,用于计算两个矩阵相乘的结果。
它是通过将第一个矩阵的每一行与第二个矩阵的每一列进行内积运算得到的。
2. 特征值与特征向量公式特征值与特征向量公式是研究矩阵性质的重要工具,用于求解矩阵的特征值和对应的特征向量。
通过这个公式,我们可以更好地理解矩阵的性质和变换。
三、概率论与数理统计1. 期望公式期望公式是概率论与数理统计中常用的公式之一,用于计算随机变量的期望值。
通过这个公式,我们可以将随机变量与其概率分布函数联系起来,从而进行期望值的计算。
2. 条件概率公式条件概率公式是概率论与数理统计中重要的公式,用于计算在给定条件下的概率。
通过这个公式,我们可以更好地理解事件之间的关系,并进行条件概率的计算和推断。
四、计算方法1. 数值积分公式数值积分公式是计算方法中常用的公式之一,用于将函数在某一区间上的积分转化为离散形式的求和。
通过这个公式,我们可以通过有限个离散点的函数值来近似计算积分结果。
2. 最小二乘法公式最小二乘法公式是一种常用的拟合方法,用于求解数据点与拟合曲线之间的最小误差。
通过这个公式,我们可以找到最佳拟合曲线的参数,从而更好地分析和预测数据。
以上是考研常考的一些公式汇总,它们在不同学科中起到了重要的作用。
掌握这些公式,有助于我们更好地理解和应用相关的知识,提高学习和研究的效率。
希望大家在备考过程中能够灵活运用这些公式,取得优异的成绩!。
考研数学公式总结
考研数学公式总结数学对大多数考研学生来说是一个重要的科目,尤其是在理工类专业中,数学更是至关重要。
在考研数学中,大量的公式需要我们掌握和熟练运用。
本文将对考研数学中常见的公式进行总结,希望对考生复习备考有所帮助。
一、初等数学公式在考研数学的复习过程中,我们首先需要掌握的是初等数学中的基本公式。
例如:1. 二项式定理:对于任意实数a、b和自然数n,有(a+b)^n的展开式等于C(n,0)a^n + C(n,1)a^(n-1)b + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n。
2. 三角函数的和差化积公式:sin(a±b) = sinacosb ± cosasinb,cos(a±b) = cosacosb ∓ sinasinb。
3. 对数运算:log(ab) = loga + logb,log(a/b) = loga - logb,其中a和b分别为a>0、b>0的实数。
二、高等数学公式除了初等数学的公式,考研数学中还涉及到大量的高等数学公式。
这些公式主要涵盖微积分、线性代数以及概率论等内容。
下面我们分别介绍其中的一些重要公式。
1. 微积分公式:(1) 无穷级数的求和公式:求和∑(n=1->∞)a^n = a/(1-a),其中|a|<1。
(2) 微分与积分的关系:若F(x)是f(x)的一个不定积分,则F(x) + C是f(x)的所有不定积分,其中C为常数。
(3) 泰勒展开式:函数f(x)在x=a处的泰勒级数展开式为f(x) = f(a) + f'(a)(x-a) +f''(a)/2!(x-a)^2 + ...。
2. 线性代数公式:(1) 矩阵的转置:若A是一个m行n列的矩阵,则A的转置记作A^T,其中(A^T)_(ij) = A_(ji)。
(2) 行列式的性质:若A是n阶方阵,则A的行列式记作det(A)或|A|,其中|A| = Σ(±)(a1j1)(a2j2)...(anjn)。
考研高数必背公式
对于考研高等数学,以下是一些常见的必背公式:1. 导数公式:- $(c)'=0$(常数的导数为零)- $(x^n)'=nx^{n-1}$(幂函数的导数)- $(e^x)'=e^x$(指数函数的导数)- $(\ln x)'=\frac{1}{x}$(自然对数函数的导数)- $(\sin x)'=\cos x$(正弦函数的导数)- $(\cos x)'=-\sin x$(余弦函数的导数)- $(\tan x)'=\sec^2 x$(正切函数的导数)2. 积分公式:- $\int k \,dx=kx+C$(常数的积分)- $\int x^n \,dx=\frac{1}{n+1}x^{n+1}+C$(幂函数的积分)- $\int e^x \,dx=e^x+C$(指数函数的积分)- $\int \frac{1}{x} \,dx=\ln |x|+C$(倒数函数的积分)- $\int \sin x \,dx=-\cos x+C$(正弦函数的积分)- $\int \cos x \,dx=\sin x+C$(余弦函数的积分)- $\int \sec^2 x \,dx=\tan x+C$(正切函数的积分)3. 三角函数关系:- $\sin^2 x + \cos^2 x = 1$(三角恒等式)- $\sin (2x) = 2\sin x \cos x$(双角正弦公式)- $\cos (2x) = \cos^2 x - \sin^2 x$(双角余弦公式)- $\tan x = \frac{\sin x}{\cos x}$(正切的定义)这些是考研高等数学中的一些常见公式,但并非全部。
在复习过程中,建议根据自己的教材和课程重点,对相关公式进行系统性的整理和复习。
不仅要记住公式,还要了解其推导和应用方法,以便在解题过程中能够熟练运用。
同时,还要注重理解概念和原理,培养灵活的思维和解题能力。
考研数学公式总结
考研数学公式总结考研数学是众多考生面临的一大挑战,而熟练掌握各种公式是取得好成绩的关键。
以下为大家总结了考研数学中一些重要的公式。
一、高等数学部分1、函数、极限与连续(1)极限的四则运算法则:若 lim f(x) = A,lim g(x) = B,则 lim f(x) ± g(x) = lim f(x) ± lim g(x) = A ± B;lim f(x) · g(x) = lim f(x) · lim g(x) = A · B;lim f(x) / g(x) = lim f(x) / lim g(x) = A / B (B ≠ 0)(2)两个重要极限:lim (sin x / x) = 1 (x → 0);lim (1 +1/x)^x = e (x → ∞)(3)无穷小量的性质:有限个无穷小量的和、差、积仍是无穷小量;无穷小量与有界量的乘积是无穷小量。
2、导数与微分(1)基本导数公式:(C)'= 0 (C 为常数);(x^n)'= nx^(n 1) ;(sin x)'= cos x ;(cos x)'= sin x ;(e^x)'= e^x ;(ln x)'= 1 / x ;(log_a x)'= 1 /(x ln a)(2)导数的四则运算法则:u(x) ± v(x)'= u'(x) ± v'(x) ;u(x) · v(x)'= u'(x) · v(x) + u(x) · v'(x) ;u(x) / v(x)'= u'(x) · v(x) u(x) · v'(x) / v(x)^2 (v(x) ≠ 0)(3)复合函数求导法则:设 y = fg(x),则 y' = f'g(x) · g'(x)(4)隐函数求导法则:方程 F(x, y) = 0 确定 y 是 x 的隐函数,两边对 x 求导,解出 y' 。
考研数学三公式大全
考研数学三公式大全1.二项式定理二项式定理是数学中常用的公式之一,它表达了两个数之和的n次幂的展开式。
二项式定理的公式如下:(a+b)^n=C(n,0)*a^n+C(n,1)*a^(n-1)*b+C(n,2)*a^(n-2)*b^2+...+C(n,n)*b^n其中C(n,k)表示组合数,可以通过以下公式计算:C(n,k)=n!/(k!*(n-k)!)2.三角函数的和差公式三角函数的和差公式是在三角函数的加减情况下,将两个三角函数用一个三角函数表示的公式。
常用的三角函数的和差公式如下:sin(A±B) = sinA*cosB ± cosA*sinBcos(A±B) = cosA*cosB ∓ sinA*sinBtan(A±B) = (tanA ± tanB) / (1 ∓ tanA*tanB)3.倍角公式和半角公式倍角公式和半角公式是将一个角的倍数或一半角表示为其他角的公式。
常用的倍角公式和半角公式如下:sin2A = 2*sinA*cosAcos2A = cos^2A - sin^2A = 2*cos^2A - 1 = 1 - 2*sin^2Atan2A = (2*tanA) / (1 - tan^2A)sin^2(A/2) = (1 - cosA) / 2cos^2(A/2) = (1 + cosA) / 24.位移公式位移公式是描述一个物体运动过程中的位移与时间、初速度、加速度之间的关系公式。
常用的位移公式如下:s = vt + (1/2)*a*t^2v=u+a*tv^2=u^2+2*a*s其中s表示位移,v表示末速度,u表示初速度,t表示时间,a表示加速度。
5.高中几何常用公式高中几何常用公式是在解决几何题目时经常用到的公式,包括三角形的面积公式、直角三角形的勾股定理等。
常用的高中几何常用公式如下:三角形面积公式:S = (1/2)*a*b*sinC直角三角形勾股定理:a^2+b^2=c^2正弦定理:a/sinA = b/sinB = c/sinC余弦定理:a^2 = b^2 + c^2 - 2bc*cosA6.概率公式概率公式用于计算事件发生的可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:ax x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x Cx dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 和差角公式: ·和差化积公式:倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±= ·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x arcc x x x tan 2arctan arccos 2arcsin -=-=ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ多元函数微分法及应用2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=± αααααααααα2333tan 31tan tan 33tan cos 3cos 43cos sin 4sin 33sin --=-=-=αααααααααααααα222222tan 1tan 22tan cot 21cot 2cot sin cos sin 211cos 22cos cos sin 22sin -=-=-=-=-==zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy yvdx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22多元函数的极值及其求法:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-<-⎩⎨⎧><>-===== 不确定时值时, 无极为极小值为极大值时,则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22000020000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x常数项级数:是发散的调和级数:等差数列:等比数列:nnn n q q q q q n n 1312112)1(32111112+++++=++++--=++++- 级数审敛法:散。
存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ。
的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。
收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p nn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n nn n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xx x x x x x n n m m m x m m mx x n n nm 欧拉公式:⎪⎪⎩⎪⎪⎨⎧-=+=+=--2sin 2cos sin cos ix ix ixix ix e e x e e x x i x e 或 微分方程的相关概念:即得齐次方程通解。
,代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。
得:的形式,解法:为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u xyy x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='⎰⎰)()(),(),()()()()()()(0),(),(),(ϕϕϕ 一阶线性微分方程:)1,0()()(2))((0)(,0)()()(1)()()(≠=+⎰+⎰=≠⎰===+⎰--n y x Q y x P dxdye C dx e x Q y x Q Ce y x Q x Q y x P dxdyn dxx P dxx P dxx P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:全微分方程:通解。