化工原理第四章传热及传热设备

合集下载

中山大学化工原理课件 第4章-传热习题课(2)

中山大学化工原理课件 第4章-传热习题课(2)

(2)操作一年后,由于水垢增加,换热器能力下降,当水的流量和进口温度不变,其它条件也没有
变化,此时水出口温度仅能预热至 70 0 C ,试求此时基于外表面积的传热系数 K′及垢层热阻 R′。 已知水在定性温度 50 0 C 时的物性数据如下: 988 .1kg m ; C p 4175 J kg K ;
„„„„ (a)
(134 20) (134 70) 114 ln ( ) 64
„„„„ (b)
' '
' 逆流: q m, h C p ,h 243 T2 q m , c C p ,C t 2 128 K A t m
解题过程 2:根据传热速率方程得: 并流: t m
q m, h C p ,h (243 167 ) KA q m, h C p ,h (243 T2 ' ) KA
【习题课例 4-1】蒸汽管道 104 mm 4mm 外包扎有两层隔热材料,内层为保温砖
(1 0.15W m 1 K 1 ) 外层为建筑砖 (2 0.69W m1 K 1 ) ,设两隔热层之厚度均为 50mm ,
且管壁热阻可忽略。若将两层材料互换位置,而其它条件不变,试问每米管长的热损失的改变为多少? 说明在本题条件下,哪种材料包扎在内层较为合适。若为平壁,隔热材料互换对热损失有影响吗? 解题思路:这是一个较为简单的圆筒壁导热问题,用下列公式计算两次并比较,即可。
3 1 1
0.549 cp ; 0.648 W m 1 K 1 。
解题思路: (! )先弄清条件,如图所示
d1 , d 2 , 2为已知, 基于外表面积的K,即K 2

化工原理_上下册_修订版_(夏清__陈常贵_着)_天津大学出版社 第四章 传热(新)

化工原理_上下册_修订版_(夏清__陈常贵_着)_天津大学出版社  第四章 传热(新)
28
一、对流传热速率方程和对流传热系数
(一)对流传热速率方程 若以流体和壁面间的对流传热为例,对流传热速率方程可以 表示为
式中
dQ:局部对流传热速率,W; dS: 微分传热面积,m2; T: 换热器的任一截面上热流体的平均温度,℃; Tw:换热器的任一截面上与热流体相接触一侧的壁面温度,℃; α : 比例系数,又称局部对流传热系数,W/(m2· ℃)。
第四章 传

1
4.1 概述
传热:由温差引起的能量传递。 自发过程:热量从高温传递到低温。
一、化工生产的传热问题
化工生产需要大规模地改变物质的化学性质和物理性质,而 这些性质的变化都涉及热能的传递。 化学反应:向反应器提供热量或从反应器移走热量; 蒸发、蒸馏、干燥:按一定的速率向这些设备输入热量;
高温或低温设备:隔热保温,减少热损失;
空气自然 气体强制 对流 对流 5~25 20~100 水自然 对流 20~ 1000 水强制 对流 1000~ 15000 水蒸汽 冷凝 5000~ 15000 有机蒸 汽冷凝 500~ 2000 水沸腾 2500~ 25000
34
§4-3-3 保温层的临界厚度
t1 t f 总推动力 Q ln r0 r1 1 总热阻 2L 2Lr0
7
三、间壁式换热和间壁式换热器
冷、热流体被固体壁面所隔开,分别在固体壁面两侧 流动。冷、热 流体通过间壁进行热量交换。 1、套管式换热器
8
2、列管式换热器
9
单程列管式换热器
1— 外壳 2—管束 3、4—接管 5—封头 6—管板 7—挡板
双程列管式换热器
1—壳体 2—管束 3—挡板 4—隔板
10
牛顿冷却定律。

管国峰第三版南京工业大学化工原理第四章传热及换热器习题解答

管国峰第三版南京工业大学化工原理第四章传热及换热器习题解答
19)设有A、B两平行固体平面,温度分别为TA和TB(TA>TB)。为减
少辐射散热,在这两平面间设置n片很薄的平行遮热板,设A所有平面的 表面积相同,黑度相等,平板间距很小,试证明设置遮热板后A平面的 散热速率为不装遮热板时的
倍。 20)用热电偶测量管内空气温度,测得热电偶温度为420℃,热电偶
黑度为0.6,空气对热电偶的给热系数为35 W/(m·℃),管内壁温度为 300℃,试求空气温度。
11)苯流过一套管换热器的环隙,自20℃升至80℃,该换热器的内 管规格为φ19×2.5mm,外管规格为φ38×3mm。苯的流量为1800kg/h。 试求苯对内管壁的给热系数。
12)冷冻盐水(25%的氯化钙溶液)从φ25×2.5mm、长度为3m的管 内流过,流速为0.3m/s,温度自-5℃升至15℃。假设管壁平均温度为 20℃,试计算管壁与流体之间的平均对流给热系数。已知定性温度下冷 冻盐水的物性数据如下:密度为1230kg/m3,粘度为4×10-3Pa·s,导热 系数为0.57 W/(m·℃),比热为2.85kJ/(kg·℃)。壁温下的粘度为 2.5×10-3Pa·s。 解:d = 0.025-0.0025×2 = 0.02 m
’ 36)在一单管程列管式换热器中,将2000kg/h的空气从20℃加热到 80℃,空气在钢质列管内作湍流流动,管外用饱和水蒸汽加热。列管总 数为200根,长度为6m,管子规格为φ38×3mm。现因生产要求需要设计 一台新换热器,其空气处理量保持不变,但管数改为400根,管子规格 改为φ19×1.5mm,操作条件不变,试求此新换热器的管子长度为多少 米? 37)在单程列管换热器内,用120℃的饱和水蒸汽将列管内的水从 30℃加热到60℃,水流经换热器允许的压降为3.5Pa。列管直径为 φ25×2.5mm,长为6m,换热器的热负荷为2500kW。试计算:①列管换 热器的列管数;②基于管子外表面积的传热系数K。 假设:列管为光滑管,摩擦系数可按柏拉修斯方程计算,

《化工原理》第4章 传热.ppt

《化工原理》第4章 传热.ppt

由于在热流方向上Q、、A均为常量,故分离变量后积分,

t2 dt Q
dx
t1
A 0
t2
t1
Q A
Q A(t1 t2 )
Q t1 t2 t
/ A R
通常式(4-8)也可以表示为
q Q t1 t2
A /
(4-7) (4-8)
(4-9)
12
第4章 传热
2.多层平壁稳定热传导
5
第4章 传热
1.内管 2.外管 图4-l 套管换热器中的换热
6
第4章 传热
在换热器中,热量传递的快慢可用以下指标来表示。 (1)传热速率Q(又称热流量):指单位时间内通过传热面的 热量,单位为W。传热速率是换热器本身在一定操作条件下 的换热能力,是换热器本身的特性。 (2)热负荷Q:指换热器中单位时间内冷、热流体间所交换 的热量,单位为W。热负荷是生产要求换热器应具有的换热 能力,设计换热器时通常将传热速率与热负荷在数值上视为 相等。 (3)热通量q(又称热流密度):指单位时间内通过单位传 热面积所传递的热量,即单位传热面积的传热速率,单位为 W/㎡。
Q A dt
(4-4)
dx
2.导热系数
导热系数在数值上等于单位温度梯度下
通过单位导热面积所传导的热量。故导
热系数是表示物质导热能力大小的一个
参数,是物质的物性。越大,导热越快。
图4-2通过壁面的热传导
10
第4章 传热
4.2.2平壁的稳定热传导
1.单层平壁导热
设有一高度和宽度很大的平壁,
厚度为。假设平壁材料均匀,导
7
第4章 传热
4.1.4 传热速率式
化工生产中经常遇到加热或冷却的传热过程。单位时间内通 过换热器传递的热量与换热面积成正比,且与冷热流体之间 的平均温度差成正比。即有

化工原理答案 第四章 传热

化工原理答案  第四章  传热

第四章 传 热热传导【4-1】有一加热器,为了减少热损失,在加热器的平壁外表面,包一层热导率为(m·℃)、厚度为300mm 的绝热材料。

已测得绝热层外表面温度为30℃,另测得距加热器平壁外表面250mm 处的温度为75℃,如习题4-1附图所示。

试求加热器平壁外表面温度。

解 2375℃, 30℃t t ==计算加热器平壁外表面温度1t ,./()W m λ=⋅016℃ (1757530025005016016)t --= ..145025********t =⨯+=℃【4-2】有一冷藏室,其保冷壁是由30mm 厚的软木做成的。

软木的热导率λ= W/(m·℃)。

若外表面温度为28℃,内表面温度为3℃,试计算单位表面积的冷量损失。

解 已知.(),.123℃, 28℃, =0043/℃ 003t t W m b m λ==⋅=, 则单位表面积的冷量损失为【4-3】用平板法测定材料的热导率,平板状材料的一侧用电热器加热,另一侧用冷水冷却,同时在板的两侧均用热电偶测量其表面温度。

若所测固体的表面积为0.02m 2,材料的厚度为0.02m 。

现测得电流表的读数为2.8A ,伏特计的读数为140V ,两侧温度分别为280℃和100℃,试计算该材料的热导率。

解 根据已知做图热传导的热量 .28140392Q I V W =⋅=⨯=.().()12392002002280100Qb A t t λ⨯==-- 【4-4】燃烧炉的平壁由下列三层材料构成:耐火砖层,热导率λ=(m·℃),厚度230b mm =;绝热砖层,热导率λ=(m·℃);普通砖层,热导率λ=(m·℃)。

耐火砖层内侧壁面温度为1000℃,绝热砖的耐热温度为940℃,普通砖的耐热温度为130℃。

(1) 根据砖的耐热温度确定砖与砖接触面的温度,然后计算绝热砖层厚度。

若每块绝热砖厚度为230mm ,试确定绝热砖层的厚度。

化工原理 第四章 传热资料

化工原理 第四章 传热资料
n
t n
→温度梯度标量,亦称温度梯度。
传热-热传导
2. 傅立叶(Fourier)定律 傅立叶定律→即导热的基本定律,指通过等温表面的导热速率与温 度梯度及传热面积成正比。
dQ
t n
dS
dQ
t n
dS
F u S y
① 傅立叶定律 与牛顿黏性定律类似。 ② 。 ③ 热量传递过程与动量传递过程类似。
注意→气体很小,有利于保温、绝热,如玻璃棉。
传热-热传导
3. 平壁导热 ① 单层平壁
Q
dt dx
S
x 0,t t1;
x b,t t2;
t1 t2
单层平壁导热
假设→①稳态、一维导热。 ②λ不随温度变化。 ③不计热损失。
Q
S b
t1
t2
Q t t1 t2 R b
Rb
S
S
q
Q S
q dQ dS
因S有三种形式,计算q时须 注明选择的基准面积。
传递速率
推动力 阻力
传热速率=传热推动力温度差
热阻
Q t ;q t
R
R'
R Q ;R Q
传热-基本概念
6. 稳态传热与非稳态传热 稳态传热→传热系统中不积累能量的传热过程,特点是温度分布不随 时间而变,Q Const 。非稳态传热→传热系统中温度分布随时间而变化 的传热过程。 连续生产中的传热多为稳态传热;间歇操作的换热和连续生产时设备 的开工和停工阶段为非稳态传热。
典型的导热方式→固体中的热传导
传热-基本概念
② 热对流 热对流→简称对流,指流体各部分之间发生相对位移引起的热传递。 对流仅发生在流体中,有自然对流和强制对流两种形式。 自然对流→流体各处温度不同而引起密度差异,轻者↑,重者↓,流体 质点发生相对位移。强制对流→因泵或搅拌所致的质点强制运动。 对流传热→亦称给热,指流体流过固体表面时发生热对流和热传导的 联合传热。特点是壁面处流体靠导热传热,主体区靠对流来传热。

化工原理天大版第四章-传热2..

化工原理天大版第四章-传热2..

图4-1 混合式冷凝器 (a)并流低位冷凝器 (b)干式逆流高位冷凝器
1一外壳 2一淋水板 3、8一气压管 4一蒸汽进口
5一进水口6-不凝气出口 7一分离罐
蓄热式换热是在 蓄热器中实现热交换 的一种换热方式。蓄 热器内装有固体填充 物(如耐火砖等),热 、冷流体交替地流过 蓄热器,利用固体填 充物来积蓄和释放热 量而达到换热的目的 。通常在生产中采用 二个并联的蓄热器交 替地使用,如图所示 。
氨蒸气
烟道气
~1000
适用温度,℃
0~80
>30
0~—15
<—15~—30
谢谢!
化工原理天大版第四章-传热2..
重点: ①单层、多层平壁,圆筒壁热传导速率方程 及应用; ②换热器能量衡算,总传热速率方程和总传 热系数的计算; ③对流传热系数的影响因素; 难点:
1. 对流传热机理;
2. 圆筒壁换热器的传热;
4.1 概 述
4.1.1 传热基本方式 4.1.2 冷热流体热交换的方式 4.1.3 典型的间壁式换热器 4.1.4 传热速率和热通量 4.1.5 稳态传热和非稳态传热
①热流体将热量传到壁面一侧②热量通过固体壁面的
热传导③壁面另一侧将热量传给冷流体
热对流---热传导---热对流
①结构简单,传热面积增减自如。因为它由标准构件组合而成, 安装时无需另外加工。
②传热效能高。它是一种纯逆流型换热器,同时还可以选取合 适的截面尺寸,以提高流体速度,增大两侧流体的传热系数,因此 它的传热效果好。液-液换热时,传热系数为 870~1750W/(m 2·℃)。这一点特别适合于高压、小流量、低传热系数流体的换热。 套管式换热器的缺点是占地面积大;单位传热面积金属耗量多,约 为 管壳式换热器 的5倍;管接头多,易泄漏;流阻大。

化工原理

化工原理

Q ──热冷流体放出或吸收的热量,W; cph,cpc ──热冷流体的比热容, J/(kg. ℃) ;
h1,h2 ──冷流体的进出口焓,J/kg;
H1,H2 ──热流体的进出口焓, J/kg 。
相变时
若热流体为饱和蒸汽,当冷凝时有相的变化,但是冷 凝液在饱和温度下离开换热器。冷流体无相变化。
Q Wh rh Wc c pc t 2 t1
A
2)较大温差记为t1,较小温差记为t2; 3)当t1/t2<2,则可用算术平均值代替
t m (t1 t 2 ) / 2
4)当t1=t2
t m t1=t 2
2、错流、折流时的 t m
t m t m
'
t ' m :逆流时的平均温度差
f ( P, R, 流型)
t 对流
(1)管外对流
dQo o dAo (T Tw )
(2)管壁热传导
dQ壁
(3)管内对流

b
dAm (Tw t w )
dQi i dAi (t w-t )
dQ dQo dQ壁 dQi
对于稳定传热
T Tw Tw t w t w t T t dQ 1 b 1 1 b 1 o dAo dAm i dAi o dAo dAm i dAi
T t dQ 1 KdA
1 1 b 1 KdA o dAo dAm i dAi
式中 K——总传热系数,W/(m2· K)。
讨论:
1.当传热面为平面时,dA=dAo=dAi=dAm
1 1 b 1 K o i
2.以外表面为基准(dA=dAo):

化工原理第四章 传热及传热设备..

化工原理第四章 传热及传热设备..

4.2 热传导
4.2.5 圆筒壁的稳定热传导 二、多层圆筒壁
第一层
第二层
盐城工学院
第三层
Q

2L(t1 tn1 ) in 1 ln ri1
i1 i
ri
-----通式
可写成与多层平壁计算公式相仿的形式:
Q
t1 t4
b1
b2
b3
1 Am1
2 Am 2
3 Am3
Am1、 Am2 、Am3分别为各层 圆筒壁的对数平均面积。
主要特点:冷热两种流体被一固体间壁所隔开,在 换热过程中,两种流体互不接触,热量由热流体通 过间壁传给冷流体。以达到换热的目的。
优点:传热速度较快,适用范围广,热量的综合利 用和回收便利。
缺点:造价高,流动阻力大,动力消耗大。
典型设备:列管式换热器、套管式换热器。
适用范围:不许直接混合的两种流体间的热交换。
解:(1)每米管长的热损失
r1=0.053/2=0.0265m r2=0.0265+0.0035=0.03m r3=0.03+0.04=0.07 m r4 =0.07+0.02=0.09 m
=191. 4 W/m
第四章 传热及传热设备
(2)保温层界面温度t3
盐城工学院
解得:t3=131.2℃
第四章 传热及传热设备
热导率
纯金属 金属合金 液态金属 非金属固体 非金属液体 绝热材料 气体
100~1400 50~500 30~300 0.05 ~50 0.5~5 0.05~1 0.005~0.5
可见,在数值上: 金属 非金属 液体 气体
第四章 传热及传热设备
盐城工学院
4.2 热传导

化工原理(管国锋主编_第三版)课后习题答案4_传热及换热器

化工原理(管国锋主编_第三版)课后习题答案4_传热及换热器

第4章 传热及换热器1)用平板法测定材料的导热系数,其主要部件为被测材料构成的平板,其一侧用电热器加热,另一侧用冷水将热量移走,同时板的两侧用热电偶测量其表面温度。

设平板的导热面积为0.03m 2,厚度为0.01m 。

测量数据如下:电热器材料的表面温度 ℃ 安培数 A 伏特数 V 高温面 低温面 2.8 2.3140 115300 200100 50试求:①该材料的平均导热系数。

②如该材料导热系数与温度的关系为线性:,则λ0和a 值为多少?001825.0)/(4786.0]2/)50200(1[5878.0]2/)100300(1[6533.0)/(6206.02/)()/(5878.01153.201.0/03.0)50200()/(6533.01408.201.0/03.0)200300(/)(1][000002102201121=⋅=++=++=∴⋅=+=⋅=⨯=⨯-⋅=⨯=⨯-∴=-=a C m w a a C m w C m w C m w VIL S t t Q m λλλλλλλλλλλ得)解2)通过三层平壁热传导中,若测得各面的温度t 1、t 2、t 3和t 4分别为500℃、400℃、200℃和100℃,试求合平壁层热阻之比,假定各层壁面间接触良好。

12112)100200()200400(21200400400500(/)(/)(/)(][3213221343232121::::::::)):(:解==--==--=-=-=-=R R R R R R R R T T R T T R T T Q3)某燃烧炉的平壁由耐火砖、绝热砖和普通砖三种砌成,它们的导热系数分别为1.2W/(m ·℃),0.16 W/(m ·℃)和0。

92 W/(m ·℃),耐火砖和绝热转厚度都是0.5m ,普通砖厚度为0.25m 。

已知炉内壁温为1000℃,外壁温度为55℃,设各层砖间接触良好,求每平方米炉壁散热速率。

化工原理课程课件PPT之第四章传热

化工原理课程课件PPT之第四章传热

第四章 传热
23
思考题:
气温下降,应添加衣服,应把保暖性好的衣服穿在 里面好,还是穿在外面好?
Q
Q
bb
1 2
1 2
bb
2 1
天津商业大学
本科生课程 化工原理
第四章 传热
24
Q ti to b b
1S1 2S2
Q' ti to bb
2S1 1S2
1 2
S1 S2
Q' Q (ti
to
天津商业大学
本科生课程 化工原理
第四章 传热
8
dQ dS t
n
——傅里叶定律
λ——比例系数,
称为导热系数,W/(m •℃)。
负号表示热流方向与
温度梯度方向相反。
du
dy
天津商业大学
本科生课程 化工原理
第四章 传热
9
§4.2.2 导热系数
1、导热系数的定义
dQ q
dS t
t
n
n
在数值上等于单位温度梯度下的热通量,λ越大导热性能
第四章 传热
§4.1 概述
化工生产中传热过程: 强化传热 削弱传热
一、传热的基本方式:
动 量 传 递 热 量 传 递
质 量 传 递
热 传 导 :发生在相互接触的物质之间或物质(静止或层流
(导 热 )
流动)内部,靠分子、原子、电子运(振)动。 无物质的宏观位移。
对 流 传 热 :
自然对流 强制对流
Q t1 t2 t3 t1 tn1
R1 R2 R3
n bi
i1 i Smi
t1 t4
t1 t4
b1 b2 b3
1Sm1 2Sm2 3Sm3

化工原理 第四章 传热教学内容

化工原理 第四章 传热教学内容

t R
i1 i A
例4-2 P125
多层平壁传热的推动力为总温度差。传热阻力由 各层热阻之和。并且有
t1:t2:t3:t = R1:R2:R3:Ri
25
四、圆筒壁的热传导
1.单层圆筒壁的热传导(稳态)
dr t2 t1
r2
Q
Hale Waihona Puke r1rL26
QAdt2rldt
dr
dr
上式积分可得:
Q
2lt1
ln r2
时的传热速率。
固体导热系数:
固体>液体 >气体
金属的导热系数最大,是热的良导体。
温度↗ ↘
纯度↗ ↗
非金属导热系数较小。
温度↗ ↗ 纯度↗ ↗
对大多数固体: = 0(1+at)= 0 +at
0C时的导热系数
温度系数
17
液体的导热系数: 液态金属(与固态金属性质差不多) 非金属液体:水的导热系数最大
第四章 传热
1
要求:
1.掌握热传导的基本原理、傅里叶定律、平壁与 圆筒壁的稳定热传导计算; 2.掌握对流传热的基本原理及牛顿冷却定律; 3.掌握运用传热速率方程式、热量衡算式、平均 温度差、总传热系数进行传热计算;
2
4.理解对流传热系数的影响因素、关联式及应用 条件; 5.了解间壁换热器的结构特点、应用及强化途径。
21
传热速率
传热推动力 传热阻力
22
2.多层平壁的热传导
Q
b1 b2 b3 t t1
t2 t3 t4 x
23
以三层平壁为例:
QQ 1Q2Q3
Qt1t2 t2 t3 t3t4
b1
b2
b3

化工原理课件--传热单元操作与设备

化工原理课件--传热单元操作与设备

对流传热:流体与固体壁面间的热量传递过程。
自然对流:由于温度不同导致密度差异 而引起的移动;
方式 强制对流:由于外力引起的移动;
3、热辐射 传热机理:通过发射电磁波的形式向外辐射能量; 特 点:传热过程不需要介质; 注:实际传热过程中三种方式结合进行。
三、工业换热器的类型
◆换热器:用于热量交换的设备。
2、对流传热膜系数总准数关联式 (1)无相变化时,对流传热系数的特征关联式
(2)通过 量纲分f 析的u 无, 量l 纲,数为, : ,,c p ,g t
努塞尔准数 雷诺数 普兰特准数 格拉斯霍夫准数
lAlu ac pfl3 2g 2th
3、流体无相变化时的对流传热系数关联式 (1)圆形直管内强制对流
(1)灰体:对各种波长具有相同吸收率的理想化物体。 A=ε
(2)辐射能: 二、两固体间的热辐射
EA E 0
总辐射系数,W/(m2.K4) 角系数 (见P165表4-11)
Q12 C12A1T10041T2004
三、辐射对流联合传热
1、对流传热:
Q Ca C A W T W T
辐射传热:
统一形式: 壁面散失的总热量为:
K
Q S
Ktm
第三节 传热速率与热负荷 一、热负荷:生产要求换热器单位时间
传递的热量。
二、热负荷与传热速率 传热速率:换热器单位时间传递的热量,是换
热器的生产能力。
热负荷:生产要求换热器单位时间传递的 热量,是生产任务。
生产上,为保证完成任务,要求换热器的传热速率大于或等于热负荷。
三、热量衡算与热负荷的确定
W/m2; σ0-辐射常数, σ0=5.67×10-8 W/(m2.K4)。

化工原理第四章对流传热

化工原理第四章对流传热
3/24/2020
【解】在确定各物理量时,先确定定性温度。
一般情况下,用进出设备流体的温度的平均值
(算术平均值),即:
t t进+t出 =20+40=30℃
2
2
查数据手册,30℃时水的物性数据为:
Cp=4183J/(K.kg) ρ=996kg/m3 μ=8.01×10-4Pa.s λ=0.618W/(m.K)
【注意事项】
(1)定性温度取流体进出温度的算术平均值tm; (2)特征尺寸为管内径d;
(3)流体被加热时,n=0.4;
流体被冷却时,n=0.3。
(4)若l/d<60 ,进行校正:
'
1
d
0.7
l
3/24/2020
(2)圆形直管内的湍流(高粘度流体)
0.027 ( du )0.8 ( c p )0.33 ( )0.14
(1)什么是定性温度 【定义】确定物性参数 数值的温度称为定性温 度。
Re du
T1
t2
Pr c p
T2
t1
3/24/2020
(2)定性温度的取法 ①流体进、出口温度的平均值
②膜温
tm
t1
t2 2
t tm tw 2
th T1
热Φ 流 体
th,w
t2
Φ
冷 流 tc,w 体
式中 tw——壁面上的温度;
bt
Q bt A(tw t) 当流体被冷却时:
Q
bt'
A(T
Tw )
bt’
3/24/2020
4、牛顿冷却定律
令:
bt
Q
bt
A(t w
t)
流体被加热: Q A(tw t)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个物性参数,越大,导热性能越好。导热性能的大小与物
质的组成、结构、温度及压强等有关。
物质的导热系数通常由实验测定。各种物质的导热系数数 值差别极大,一般而言,金属的导热系数最大,非金属次之, 而气体最小。工程上常见物质的导热系数可从有关手册中查 得,本教材附录亦有部分摘录。
气体的导热系数
与液体和固体相比,气体的导热系数最小,对 导热不利,但却有利于保温和绝热。
优点:结构简单,可耐高温。
缺点:设备体积庞大,传热效率低且两 流体有部分混合。
适用范围:常用于高温气体热量的回收 高温流体 或冷却。
蓄热体
4、中间载热体式换热器 又称热媒式换热器。 换热原理:将两个间壁式换 热器由在其中循环的载热体 (称为热媒)连接起来,载 热体在高温流体换热器中从 热流体吸收热量后,带至低 温流体换热器传给冷流体。 典型设备:空调的制冷循环、 太阳能供热设备、热管式换 热器等。 适用范围:核能工业、冷冻 技术及工厂余热利用中。
第四章 传热及传热设备
➢ 4.1 概述 ➢ 4.2 热传导 ➢ 4.3 对流传热 ➢ 4.4 流体无相变的对流传热系数 ➢ 4.5 流体有相变的对流传热系数 ➢ 4.6 辐射传热 ➢ 4.7 总传热速率和传热过程的计算 ➢ 4.8基本方式 热传导(导热) 物体内部或两个直接接触的物体之间,分子振动、碰撞
4.2 热传导
热传导又称导热,是物质借助分子和原子振动及自 由电子运动进行热量传递的过程。
导热过程的特点是:在传热过程中传热方向上无质 点的宏观迁移。
导热在固体、液体、气体中均可发生。但严格而言, 只有固体中传热才是纯粹的热传导。而流体即使处于静 止状态,也会有因温差而引起的自然对流。所以,在流 体中对流与传导是同时发生的。
缺点:造价高,流动阻力大,动力消耗大。
典型设备:列管式换热器、套管式换热器。
适用范围:不许直接混合的两种流体间的热交换。
单程列管式换热器
1 —外壳 2—管束 3、4—接管 5—封头 6—管板 7—挡板
套管式换热器 1—内管 2—外管
3、蓄热式换热器
低温流体
简称蓄热器。是借助蓄热体将热量 由热流体传给冷流体的。在此类换热器 中,热、冷流体交替进入,热流体将热 量储存在蓄热体中,然后由冷流体取走, 从而达到换热的目的。
气体的导热系数随着温度的升高而增大。而在 相当大的压强范围内,气体的导热系数随压强的 变化很小,可以忽略不计,只有当压强很高(大 于200MPa)或很低(小于2.7kPa)时,才应考虑 压强的影响,此时导热系数随压强的升高而增大。
液体的导热系数
液体可分为金属液体(液态金属)和非金属液体。 液态金属的导热系数比一般液体的高,大多数金 属液体的导热系数随温度的升高而降低。 在非金属液体中,水的导热系数最大。除水和甘 油外,大多数非金属液体的导热系数亦随温度的升 高而降低。通常纯液体的导热系数较其溶液的要大。 液体的导热系数基本上与压强无关。
的导热面积A成正比。
Q=-λAdt/dx
λ--导热系数,W/m·K 或W/m·℃ dt/dx—温度梯度,负值(温度降低的方向)
Q—热流量,热流方向与温度梯度的方向相反
4.2.3 导热系数
QAdt Q q
dx
Adt dt
dx dx
上式即为导热系数的定义式。其表明导热系数在数值上
等于单位温度梯度下的热流密度。它是表征物质导热性能的
4.2 热传导
4.2.1 温度场和温度梯度 温度场:在某一瞬间,空间或物体内所有各点温度分布的总和。 即: t = f (x,y,z,θ) t--温度; x,y,z--空间坐标; θ--时间
温度梯度 :
4.2.2 傅立叶定律( Fourier’s Law)
单位时间内传导的热量Q与温度梯度dt/dx及垂直于热量方向
4.1 概述
4.1.3 传热速率 传热速率(热流量) Q:单位时间内的传热量。单位:J/s,W。 热流密度(热通量) q :单位时间内通过单位传热面积的热量。
单位: W/m2。 关系:q=Q/A 4.1.4 稳态传热与非稳态传热 稳态传热:物体中各点温度不随时间变化的热量传递过程。 非稳态传热:物体中各点温度随时间变化的热量传递过程。
固体的导热系数
在所有固体中,金属的导热性能最好。大多数金 属的导热系数随着温度的升高而降低,随着纯度的 增加而增大,也即合金比纯金属的导热系数要低。
非金属固体的导热系数与其组成、结构的紧密程 度及温度有关。大多数非金属固体的导热系数随密 度增加而增大;随温度升高而增大。
应予指出,在导热过程中导热体内的温度沿传热 方向发生变化,其导热系数也在变化,但在工程计 算中,为简便起见通常使用平均导热系数。
例:温度升高,气体的粘度μ_____________,导热系数 λ____________(变大,变小,不变)。
物质热导率的大致范围
物质种类
热导率
纯金属 金属合金 液态金属 非金属固体 非金属液体 绝热材料 气体
100~1400 50~500 30~300 0.05 ~50 0.5~5 0.05~1 0.005~0.5
对流 辐射
流体质点的位移和混合 通过电磁波传递能量
4.1.2 冷热流体接触方式及设备 混合式传热(直接接触式)
间壁式传热
蓄热式传热
工业换热器
1、混合式换热器
主要特点:冷热两种流体间的热交
冷水
换,是依靠热流体和冷流体直接接
触和混合过程实现的。
优点:传热速度快、效率高,设备
简单,是工业换热器的首选类型。
可见,在数 金属 值 非上 金 属 : 液体 气体
4.2 热传导
4.2.4 平壁的稳定热传导
t
一、单层平壁
A
t1
Q
假定壁的材质均匀,导热系数λ不随温
t2
度变化,视为常数。一维稳定导热,即: O x x dx
典型设备:如凉水塔、喷洒式冷却
塔、混合式冷凝器
废蒸气
适用范围:无价值的蒸气冷凝,或
其冷凝液不要求是纯粹的物料等,
允许冷热两流体直接接触混合场合。
热水
2、间壁式换热器
主要特点:冷热两种流体被一固体间壁所隔开,在 换热过程中,两种流体互不接触,热量由热流体通 过间壁传给冷流体。以达到换热的目的。
优点:传热速度较快,适用范围广,热量的综合利 用和回收便利。
相关文档
最新文档