解集在数轴上表示

合集下载

初中数学浙教版八年级上册第3章 一元一次不等式3.4 一元一次不等式组-章节测试习题(2)

初中数学浙教版八年级上册第3章 一元一次不等式3.4 一元一次不等式组-章节测试习题(2)

章节测试题1.【答题】把不等式组的解集表示在数轴上,正确的是()A. B.C. D.【答案】B【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:选B.【点评】本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.2.【答题】不等式组的最小整数解为()A. -1B. 0C. 1D. 2【答案】B【分析】先求出不等式组的解集,再求其最小整数解即可.【解答】不等式组解集为-1<x≤2,其中整数解为0,1,2.故最小整数解是0.选B.【点评】本题考查了一元一次不等式组的整数解,属于基础题,正确解出不等式的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.【答题】不等式组的解集是()A. -2≤x≤1B. -2<x<1C. x≤-1D. x≥2【答案】A【分析】分别解出每个不等式的解集,再求其公共部分.【解答】解:,由①得,x≥-2;由②得,x≤1;故不等式组的解集为-2≤x≤1.选A.【点评】本题考查了解一元一次不等式,会找其公共部分是解题的关键.4.【答题】不等式组的解集是()A. x≥2B. x>-2C. x≤2D. -2<x≤2【答案】A【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>-2,解不等式②得,x≥2,所以,不等式组的解集是x≥2.选A.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.【答题】不等式组的解集是()A. B.C. D.【答案】B【分析】分别解出不等式的解集,再求出其公共部分,然后在数轴上表示出来.【解答】解:,由①得,x≤2,由②得,x>-2,故不等式得解集为-2<x≤2,在数轴上表示为:,选B.【点评】本题考查了不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答题】把不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由②得:x≤3,则不等式组的解集为1<x≤3,表示在数轴上,如图所示:.故选C.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【答题】不等式组的解集在数轴上表示为()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,解不等式①得,x≥2,解不等式②得,x<3,故不等式的解集为:2≤x<3,在数轴上表示为:.选C.【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,关键是能根据不等式的解集找出不等式组的解集.8.【答题】使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在【答案】A【分析】先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x 的整数解即可.【解答】解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;选A.【点评】此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.【答题】不等式组的整数解是()A. -1,0,1B. 0,1C. -2,0,1D. -1,1【答案】A【分析】首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.【解答】解:,由不等式①,得x>-2,由不等式②,得x≤1.5,所以不等组的解集为-2<x≤1.5,因而不等式组的整数解是-1,0,1.选A.【点评】此题考查的是一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.【答题】若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是()A. x≤2B. x>1C. 1≤x<2D. 1<x≤2【答案】D【分析】根据数轴表示出解集即可.【解答】根据题意得:不等式组的解集为1<x≤2.故选D.【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.【答题】一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A. B.C. D.【答案】C【分析】由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x<2,从而得出正确选项.【解答】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x <2,即:.选C.【点评】考查了不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.12.【答题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B【分析】先求出不等式的解集,然后在数轴上表示出来,结合选项即可得出答案.【解答】解:由题意可得,不等式的解集为:-2<x≤2,在数轴上表示为:.选B.【点评】此题考查了在数轴上表示不等式的解集,属于基础题,注意空心点和实心点在数轴上表示的含义.13.【答题】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】A【分析】先解不等式组得到-1<x≤2,然后根据在数轴上表示不等式的解集的方法即可得到正确答案.【解答】解:解不等式①得,x≤2,解不等式②得x>-1,所以不等式组的解集为-1<x≤2.选A.【点评】本题考查了在数轴上表示不等式的解集:在数轴上,一个数的左边部分表示大于这个数,这个数用空心圈上,当含有等于这个数时,用实心圈上.也考查了解一元一次不等式组.14.【答题】下列说法中,错误的是()A. 不等式x<2的正整数解有一个B. -2是不等式2x-1<0的一个解C. 不等式-3x>9的解集是x>-3D. 不等式x<10的整数解有无数个【答案】C【分析】解不等式求得B,C选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案.【解答】解:A、不等式x<2的正整数解只有1,故本选项正确,不符合题意;B、2x-1<0的解集为x<,所以-2是不等式2x-1<0的一个解,故本选项正确,不符合题意;C、不等式-3x>9的解集是x<-3,故本选项错误,符合题意;D、不等式x<10的整数解有无数个,故本选项正确,不符合题意.选C.【点评】此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变.15.【答题】不等式组的整数解为()A. 3,4,5B. 4,5C. 3,4D. 5,6【答案】C【分析】首先解不等式组确定不等式的解集,即可求得不等式组的整数解.【解答】解:,解①得:x≤4,解②得:x≥3,则不等式组的解是:3≤x≤4.则整数解是:3,4.选C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.【答题】不等式x-5>4x-1的最大整数解是()A. -2B. -1C. 0D. 1【答案】A【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x-5>4x-1的解集为x<- ;所以其最大整数解是-2.选A.【点评】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.17.【答题】关于x的不等式组只有5个整数解,则a的取值范围是()A. -6<a<-B. -6≤a<-C. -6<a≤-D. -6≤a≤-【答案】C【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:不等式组,解得:,∵不等式组只有5个整数解,即解只能是x=15,16,17,18,19,∴a的取值范围是:,解得:-6<a≤-.选C.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.18.【答题】若关于x的不等式组有3个整数解,则a的值最大可以是()A. -2B. -1C. 0D. 1【答案】C【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:解不等式组得,所以解集为a≤x<3;又因为不等式组有3个整数解,只能是2,1,0,故a的值最大可以是0.选C.【点评】解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【答题】不等式组无解,则a的取值范围是()A. a<1B. a≤1C. a>1D. a≥1【答案】B【分析】先求不等式组的解集,再逆向思维,要不等式组无解,x的取值正好在不等式组的解集之外,从而求出a的取值范围.【解答】解:原不等式组可化为,即,故要使不等式组无解,则a≤1.选B.【点评】解答此题的关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.20.【答题】不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0【答案】D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D.【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.。

不等式的解集的定义

不等式的解集的定义

不等式的解集的定义不等式的解集是指使不等式成立的数的集合。

在数学中,不等式是指两个数之间的关系,它们可以是大于、小于、大于等于或小于等于。

解集则是不等式中使其成立的数的集合,也就是符合不等式要求的数的范围。

首先我们来看一下简单的不等式解集,比如x > 3。

此时解集为x ∈ (3, +∞),也就是大于3的所有实数。

这个解集表示的是在数轴上以3为分界点,从3开始一直到正无穷的所有实数。

接下来,我们来看一下更复杂的不等式解集。

比如 2x + 5 < 7x - 3,此时我们需要通过一系列的计算和化简来求出解集。

首先我们将所有的x项移到一边,常数项移到另一边,得到 8 < 5x,然后将不等式两边同时除以5,得到 8/5 < x。

因此解集为x ∈ (8/5, +∞)。

这个解集表示的是在数轴上以8/5为分界点,从8/5开始一直到正无穷的所有实数。

还有一类常见的不等式是绝对值不等式。

比如|x - 3| ≤ 2。

对于这种不等式,我们可以将其拆分为两个不等式:x - 3 ≤ 2 和 x - 3 ≥ -2。

解得x ∈ [1, 5]。

这个解集表示的是在数轴上以3为中心点,向左右延伸2个单位的所有实数。

除了线性不等式和绝对值不等式之外,还有其他种类的不等式,比如二次不等式、指数不等式等等。

对于这些不等式,我们需要运用不同的方法和技巧来求解其解集。

不等式的解集是不等式中使其成立的数的集合,它反映了不等式的数学关系及其在数轴上的范围。

求解不等式的解集需要掌握一定的数学知识和运算技巧,对于不同类型的不等式需要采用不同的方法来求解。

第九章 不等式与不等式组(提升评测)(解析版)

第九章 不等式与不等式组(提升评测)(解析版)

第九章 不等式与不等式组【提升评测】一、单选题1.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】B【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可.【详解】 111x x -<⎧⎨-⎩①②由不等式①组得,x<2①不等式组的解集为:21x x ⎧⎨≥-⎩< 其解集表示在数轴上为, 故选B .【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a①1B .a≤2C .1①a≤2D .1≤a≤2【答案】C【解析】①x=2是不等式(x−5)(ax−3a+2)①0的解,①(2−5)(2a−3a+2)①0,解得:a①2①①x=1不是这个不等式的解,①(1−5)(a−3a+2)>0,解得:a>1①①1<a①2①故选C.3.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5B .m≥5C .m <5D .m≤8 【答案】C【解析】①不等式组有解, ①m①5①故选C①①方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.4.已知关于不等式2<(1-a )x 的解集为x <21a -,则a 的取值范围是( ) A .1a >B .0a >C .0a <D .1a < 【答案】A【解析】由题意可得1−a<0①移项得−a<−1①化系数为1得a>1①故选A①5.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的取值范围是( )A .1<x≤11B .7<x≤8C .8<x≤9D .7<x <8 【答案】B【详解】解:已知从甲地到乙地共需支付车费19元,从甲地到乙地经过的路程为x千米,从而根据题意列出不等式2.43)7192.4(3)719 2.4xx-+≤⎧⎨-+-⎩(>,从而得出7<x≤8.故选B.【点睛】此题主要考查了不等式组应用,解题关键是理解不足1千米按1千米计这句话的含义.6.对于不等式组1561333(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是()A.此不等式组的正整数解为1①2①3B.此不等式组的解集为7 16x-<≤C.此不等式组有5个整数解D.此不等式组无解【答案】A【解析】解:1561333(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩①②,解①得x≤72,解①得x①①1,所以不等式组的解集为﹣1①x≤72,所以不等式组的整数解为1①2①3①故选A①点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.7.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.8【答案】C【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x )≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.8.若不等式2463x a x -≥+ 的解集是x≤-4,则a 的值是( ) A .34B .22C .-3D .0【答案】B【解析】 解不等式2463x a x -≥+得:x≤1810a -- ① 又不等式的解集为x≤-4,所以:1810a --= - 4,所以x=22;故选B. 9.已知关于x 的不等式(1)2a x ->的解集为21x a <-,则a 的取值范围是( ) A .0a >B .1a >C .0a <D .1a < 【答案】B【分析】化系数为1时,不等号方向改变了,利用不等式基本性质可知1-a <0,所以可解得a 的取值范围.【详解】①不等式(1-a )x >2的解集为21x a<-, 又①不等号方向改变了,①1-a <0,①a >1;故选:B .【点睛】此题考查解一元一次不等式,解题关键在于掌握在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.10.已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )A .2332a B .4332a C .4332a < D .4332a < 【答案】B【分析】 根据题意先求出不等式组的解集,因为不等式组有3个整数解,进而可以逆推出a 的取值范围.【详解】解:①230320a x a x +>⎧⎨-≥⎩, ①解得不等式组的解集为:2332a x a -<≤, ①不等式组恰有3个整数解,必定有整数解0,且3|||2|23a a ->, ①三个整数解不可能是-2,-1,0,若三个整数解为-1,0,1,则不等式组22133122⎧⎪⎪⎨⎪⎪-≤-≤⎩-a <a <无解,若三个整数解为0,1,2,则有不等式组22323310a a ⎧⎪⎪⎨⎪⎪≤-≤-⎩<<解得4332a ≤≤. ①a 的取值范围是4332a ≤≤. 故选:B.【点睛】本题考查不等式组的解法及整数解的确定.掌握求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.且解答本题要根据整数解的取值情况分情况进行讨论.11.关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解,则a 的取值范围是( ) A .11542a -<≤- B .11542a -≤<- C .11542a -≤≤- D .11542a -<<- 【答案】B【分析】解不等式组求出不等式组的解集,再根据解集求a 的取值范围【详解】解238x x <-得:8x >,解24x a ->得:24x a <-,①不等式组的解集是:824x a <<-,①不等式组有四个整数解,即:9、10、11、12,①24122413a a ->⎧⎨-≤⎩解2412a ->得:52a <-解2413a -≤得:114a ≥- ①解集为:11542a -≤<- 故选:B【点睛】本题考查的是一元一次不等式组的解法,正确解出不等式组的解集,确定a 的范围,是解决本题的关键. 12.关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4-【答案】A【解析】【分析】本题是关于x 的不等式,应先只把x 看成未知数,求得x 的解集,再根据数轴上的解集,来求得a 的值.【详解】解:解不等式22x a -+≥,得22a x- ,①由数轴得到解集为x≤-1, ①212a -=- ,解得:a=0. 故选:A.【点睛】 本题考查解不等式和不等式解集的数轴表示,解题关键是根据数轴上的表示准确确定不等式的解集.13.不等式组3(2)423x x a x x --≤⎧⎪+⎨>⎪⎩无解,则a 的取值范围是( ) A .a<1B .a≤1C .a>1D .a≥1【答案】B【解析】【分析】先求不等式组的解集,再逆向思维,要不等式组无解,x 的取值正好在不等式组的解集之外,从而求出a 的取值范围.【详解】 解:原不等式组可化为22023x a x x-+≤⎧⎨+⎩> 即1x x a ≥⎧⎨⎩,<故要使不等式组无解,则a≤1.故选B .【点睛】 本题考查解不等式组,解题关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.14.若不等式组x 24255x x a -⎧+>-⎪⎨⎪>⎩的解集为空集,则a 的取值范围是( )A .a >3B .a≥3C .a <3D .a≤3【答案】B【解析】【分析】根据不等式组的解集为空集时的条件列出不等式,即可求出a 的取值范围.【详解】24255x x x a -⎧-⎪⎨⎪⎩+>①>②, 由①得:x <3,①不等式组24255x x x a +>>-⎧-⎪⎨⎪⎩的解集为空集,①a 的取值范围是:a ≥3;①①B.【点睛】①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①.15.若方程组32223x y k y x +=⎧⎨-=⎩的解满足x <1,且y >1,则整数k 的个数是( ) A .4B .3C .2D .1【答案】A【解析】【分析】本题可运用加减消元法①将x ①y 用含k 的代数式表示①然后根据x ①1①y ①1得出k 的范围①再根据k 为整数可得出k 的值①【详解】 32223x y k y x +=⎧⎨-=⎩①②①①①①①得①4x =2k ①3①①x 234k -=① ①x ①1①①234k -<1①解得①k 72<① 将x 234k -=代入①①得①2y 234k --=3①①y 298k +=①①y①1①①298k+>1①解得①k12->①①1722k-<<①①k为整数①①k可取0①1①2①3①①k的个数为4个①故选A①【点睛】本题考查了二元一次方程和不等式的综合问题①通过把x①y的值用k的代数式表示①再根据x①y的取值判断k的值①16.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<【答案】A【解析】【分析】求出两个关于x的不等式的解集,再根据不等式组恰有3个整数解,即可得a的范围.【详解】解不等式x①2①x①a),得:x①2a,解不等式x①123≤x,得:x≤3①①不等式组恰有3个整数解,①0≤2a①1,解得:0≤a12<①故选A①【点睛】本题考查了不等式组的整数解,求出两个不等式的解集,根据不等式组的解集确定a的范围是关键.二、填空题17.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________①【答案】0【详解】解:34012412xx+≥⎧⎪⎨-≤⎪⎩①②,解不等式①得:43x ≥-, 解不等式①得:50x ≤,①不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为0.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.18.关于x 的不等式30x a -≤只有两个正整数解,则a 的取值范围是_______【答案】6≤a <9.【分析】解不等式得x≤3a ,由于只有两个正整数解,即1,2,故可判断3a 的取值范围,求出a 的取值范围. 【详解】原不等式解得x≤3a , ①解集中只有两个正整数解,则这两个正整数解是1,2, ①2≤3a <3, 解得6≤a <9.故答案为6≤a <9.【点睛】本题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.19.把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为________.【答案】41或42【分析】不足5本说明最后一个人分的本数应在0和5之间,但不包括5.【详解】由题意可得m=3n+80,0<m -5(n -1)<5,解得40<n<42.5,因为n为整数,所以n值为41或42,故答案为:41或42.【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式组.20.有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元.要使总收入不低于15.6万元,则最多只能安排_______人种茄子.【答案】4【分析】设安排x人种茄子,则由题意知:0.5×3x+0.8×2(10-x)≥15.6,解不等式即可.【详解】设安排x人种茄子,则种辣椒的人数为10−x.由每人可种茄子3亩或辣椒2亩可得:茄子有3x亩, 辣椒有2(10−x)亩.由茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元得:0.5×3x+0.8×2(10−x)①15.6,解得x①4.故最多只能安排4人种茄子故答案为:4.【点睛】此题考查一元一次不等式的应用,解题关键在于掌握运算法则列出方程三、解答题21.解不等式组20 {5121123xx x->+-+≥①②,并把解集在数轴上表示出来.【答案】﹣1≤x<2.求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x <2,解不等式①,得x≥﹣1,①不等式组的解集是﹣1≤x <2.不等式组的解集在数轴上表示如下:22.解不等式组2151232513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩ 并将解集在数轴上表示出来. 【答案】不等式组的解集为:17211x -≤<,在数轴上表示见解析. 【解析】试题分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 试题解析:()21512325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①②① 由①得,x①−1711① 由①得,x<2① 故此不等式组的解集为:17 2.11x -≤< 23.已知:关于x ①y 的方程组52,25 4.x y a x y a +=-⎧⎨-=+⎩的解满足0x y >>. ①1)求a 的取值范围;①2)化简8232a a +--.【答案】①1①-14<a<23①①2①11a【分析】 ①1)将a 看作常数解方程组,根据x①y>0得关于a 的不等式组,解不等式组可得a 的取值范围;①2)根据(1)中a 的范围结合绝对值性质去绝对值符号化简即可.【详解】(1①52254x y a x y a +=-⎧⎨-=+⎩① 解方程组得323x a y a =+⎧⎨=-⎩① ①x y 0>>①①a+3>2-3a>0①①-1423① (2)①-1423① ①8a+2>0①3a -2<0① ①8a 23a 2+--=8a+2+3a -2=11a.【点睛】本题考查了二元一次方程组的解①解一元一次不等式组,绝对值的化简等,熟练掌握二元一次方程组的解法、一元一次不等式组的解法是关键.24.解不等式组()262311x x x x ⎧-≤⎪>-⎨⎪-<+⎩①②③,请结合题意,完成本题的解答.(1)解不等式①,得 ,依据是: .(2)解不等式①,得 .(3)把不等式①、①和①的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .【答案】(1)x≥﹣3、不等式的性质3;(2)x <2;(3)作图见解析;(4)﹣2<x <2.【解析】试题分析:分别求出每一个不等式的解集,根据各不等式解集在数轴上的表示,确定不等式组的解集. 试题解析:(1)解不等式①,得x ≥﹣3,依据是:不等式的性质3,故答案为x≥﹣3、不等式的性质3;(2)解不等式①,得x<2,故答案为x<2;(3)把不等式①,①和①的解集在数轴上表示出来,如图所示:(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为:﹣2<x<2,故答案为﹣2<x<2.【点睛】本题考查了解一元一次不等式组、在数轴上表示不等式的解集,关键是先求出每个不等式的解集,分别在数轴上表示每一个不等式的解集,然后再确定出不等式组的解集.25.如果点P(x,y)的坐标满足2325, 210. x y m nx y m n+=--⎧⎨-=+-⎩(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.【答案】(1)点P的坐标(m-5,m-n);(2)2≤n<3;(3)-2≤n<-1.【解析】【分析】(1)把m、n当作已知条件,求出x,y的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.【详解】(1)①解方程组2325,210,x y m nx y m n+=--⎧⎨-=+-⎩得5,,x my m n=-⎧⎨=-⎩①点P的坐标(m-5,m-n);(2)①点P在第二象限,且符合要求的整数只有两个,由50,0,mm n-<⎧⎨->⎩得n<m<5,①2≤n<3(3)①点P在第二象限,且符合要求的整数之和为9,由50,0,mm n-<⎧⎨->⎩得n<m<5,①m的整数值为-1,0,1,2,3,4,①-2≤n<-1.【点睛】考查解一元一次不等式组, 二元一次方程组的解, 点的坐标,综合性比较强,熟练掌握一元一次不等式组的解法是解题的关键.26.(1)已知不等式组3()4213x x ba xx--≤⎧⎪+⎨>-⎪⎩的解集为1≤x<2,求a、b的值.(2)已知关于x的不等式组3155x ax a≥-⎧⎨≤-⎩无解,试化简|a+1|﹣|3﹣a|.【答案】(1)a=﹣1,b=2;(2)4.【分析】(1)先解出含参数的不等式的解集,再根据已知的解集求出a、b的值;(2)根据不等式无解得a﹣3>15﹣5a,即可求出a的取值,再根据绝对值的运算法则进行化简.【详解】(1)由①,得x≥32b﹣2,由①,得x<3+a,所以不等式组的解集为32b﹣2≤x<3+a,因为已知不等式组的解集委1≤x<2,所以32b﹣2=1,3+a=2,所以a=﹣1,b=2.(2)①关于x 的不等式组3155x a x a≥-⎧⎨≤-⎩无解, ①a ﹣3>15﹣5a①a >3, 原式=a +1﹣(a ﹣3)=4.【点睛】此题主要考查不等式组的解集,解题的关键是熟知不等式的解法.27.随着某市教育改革的不断深入,素质教育的全面推进,中学生利用假期参加社会实践的调查越来越多,一位同学在A 公司实习调查时,计划部给了他一份实习作业;在下述条件下,规划下个月的产量,若公司生产部有工人200名,每个工人的月劳动时间不超过196h ,每个工人生产一件产品需用2h ;本月将剩余原料60吨,下个月准备购进300吨,每件产品需原料20kg ;经市场调查,预计下个月市场对这种产品的需求量不少于16000件,公司准备充分保证市场要求,你能和这位同学一同规划出下个月的产量范围吗?(设下个月产量为x 件)【答案】下个月的产量不少于16000件,不高于18000件.【解析】【分析】此题关键在于分析包含题意的三个不等关系:(1)产品件数大于等于16000;(2)生产x 件产品所用时间不超过200个工人劳动时间;(3)生产x 件产品所用原料不超过360t ;从而建立不等式组.【详解】解:设下个月产量为x 件,依题意可得:()21962002060300100016000x x x ≤⨯⎧⎪≤+⨯⎨⎪≥⎩解得:16000≤x≤18000,即下个月的产量不少于16000件,不高于18000件.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解,解题关键是找出包含题意的三个不等关系.28.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.①1)求甲、乙两种内存卡每个各多少元?①2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?①3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【答案】(1) 甲内存卡每个20元,乙内存卡每个50元;(2) 有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件,其中方案二费用最低;(3) 共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【解析】【分析】(1)设甲内存卡每个x 元,乙内存卡每个y 元,依据“买2个甲内存卡和1个乙内存卡共用了90元,买了3个甲内存卡和2个乙内存卡用了160元”列出方程组并解答;(2)设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10-a )个,根据关系式列出一元一次不等式方程组.求解再比较两种方案.(3)设老板一上午卖了c 个甲内存卡,d 个乙内存卡,根据“甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元”列出方程组,并解答.【详解】①1)解:设甲内存卡每个x 元,乙内存卡每个y 元,则29032160x y x y +⎧⎨+⎩=,=① 解得2050x y ⎧⎨⎩== ① 答:甲内存卡每个20元,乙内存卡每个50元①2)解:设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10①a①个,则()()205010300205010350a a a a ⎧+-≥⎪⎨+-≤⎪⎩, 解得5≤a≤623① 根据题意,a 的值应为整数,所以a=5或a=6①方案一:当a=5时,购买费用为20×5+50×①10①5①=350元;方案二:当a=6时,购买费用为20×6+50×①10①6①=320元;①350①320①购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件,其中方案二费用最低①3)解:设老板一上午卖了c 个甲内存卡,d 个乙内存卡,则10c+15d=100①整理,得2c+3d=20①①c①d 都是正整数,①当c=10时,d=0①当c=7时,d=2①当c=4时,d=4①当c=1时,d=6①综上所述,共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【点睛】此题考查二元一次方程组及一元一次不等式方程组的应用,解题关键是读懂题意,找到关键描述语,找到所求的量的大小关系.29.自学下面材料后,解答问题 分母中含有未知数的不等式叫做分式不等式,如:201x x ->+;2301x x -<-等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:()1若0a >,0b >,则0a b >;若0a <,0b <,则0a b> ()2若0a >,0b <,则0a b <;若0a <,0b >,则0a b < 反之:()1若0a b >,则{00a b >>或{00a b << ()2若0a b<,则______或______. 根据上述规律 ()1求不等式201x x -<+的解集. ()2直接写出一个解集为3x >或1x <的最简分式不等式.【答案】(2){00a b ><,{00a b <>;(1)12x -<<;(2)30(1x x -->不唯一). 【分析】根据有理数除法法则①两数相除①同号得正①异号得负①解决问题.【详解】(2①①两数相除①同号得正①异号得负①a b<0① ①00a b ⎧⎨⎩><或 00a b ⎧⎨⎩<>① 故答案为0000a ab b ⎧⎧⎨⎨⎩⎩><,<>① ①1)由题意得①2010x x -⎧⎨+⎩><或 2010x x -⎧⎨+⎩<>① 第一个不等式组无解①第二个的解集为﹣1<x <2①则原分式不等式的解集为﹣1<x <2① ①2①①解集为x >3或x <1①①31x x -->0(不唯一). 【点睛】本题主要考查了利用理数除法法则解决分母中含有未知数的不等式.30.已知方程组3,31x y a x y a +=+⎧⎨-=-⎩的解是一对正数.(1)求a 的取值范围;(2)化简:21a ++2a. 【答案】(1)-12<a <2(2)a +3 【分析】(1)解含有字母参数a 的方程组,然后根据解是一对正数得到不等式,解不等式即可; (2)根据(1)中a 的取值范围,判断出2a+1和a -2的符号,再根据绝对值的意义求解即可.【详解】 (1)解方程组,得21,2.x a y a =+⎧⎨=-+⎩由题意,得210,20.a a +>⎧⎨-+>⎩解得-12<a <2. (2)由(1),得2-a >0,所以21a ++2a=2a +1+2-a =a +3.。

人教版七年级数学第九章第3节《一元一次不等式组》单元提高训练 (18)(含答案解析)

人教版七年级数学第九章第3节《一元一次不等式组》单元提高训练 (18)(含答案解析)
12.解不等式组 ,并求其负整数的解.
13.为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共 吨,甲物资单价为 万元/吨,乙物资单价为 万元/吨,采购两种物资共花费 万元.
(1)求甲、乙两种物资各采购了多少吨?
(2)现在计划安排 两种不同规格的卡车共 辆来运输这批物资.甲物资 吨和乙物资 吨可装满一辆 型卡车;甲物资 吨和乙物资 吨可装满一辆 型卡车.按此要求安排 两型卡车的数量,请问有哪几种运输方案?
12. ,负整数解: , , .
【解析】
分别解出两个一元一次不等式的解即可;
解: ,
解①得: ,
解②得: ,
∴ ,
负整数解为: , , .
本题主要考查了一元一次不等式组的求解,准确计算是解题的关键.
13.(1)甲物资采购了300吨,乙物质采购了240吨;(2)共有3种运输方案,方案1:安排25辆A型卡车,25辆B型卡车;方案2:安排26辆A型卡车,24辆B型卡车;方案3:安排27辆A型卡车,23辆B型卡车.
11.(1)a≥﹣1;(2)1,2,3
【解析】
(1)分别取出求出不等式①②的解集,再根据题意得到7﹣a≥5﹣3a,最后解不等式即可求出a的取值范围.
(2)两个方程相加,即可得出关于m的不等式,求出m的范围,即可得出答案.
解:(1)解不等式①x+a>7得:x>7﹣a,
解不等式② >1﹣a得:x>5﹣3a,
A. B. C. D. 或
8.不等式组 的解集在数轴上表示为().
A. B.
C. D.
二、解答题
9.解不等式组 ,并写出满足条件的正整数解.
10.解不等式组,并把解集在数轴上表示出来.
11.(1)已知关于x的不等式①x+a>7的解都能使不等式② >1﹣a成立,求a的取值范围.

在数轴上表示不等式的解

在数轴上表示不等式的解

索罗学院
在数轴上表示不等式的解
疑惑:不等式的解在数轴上的表示方法
解析:不等式的解集指的是一个范围,题目经常要求我们在数轴上表示不等式的解集,在数轴上表示时需要注意:如果带有等号,也就是取到了端点,此时在端点处需标上实心圆,反之不带等号则在端点处标记空心圆。

几种常见情况如下:1、不等式解集表示单方向时,在数轴上的表示方法(1)x>3 (2)x≤-1 2、不等式解集表示一个公共区域或多个区域时,在数轴上表示方法 (1)-1≤x<3 (2)x>2 且x≤-2
结论:当不等式的解集取到端点时,需要在端点处标记实心圆,反之没有取到端点,则标记空心圆。

本文由索罗学院整理索罗学院是一个免费的中小学生学习网,上面有大量免费学习视频,欢迎大家前往观看!。

29 在数轴上表示不等式的解集(解析版)初中数学

29 在数轴上表示不等式的解集(解析版)初中数学

专题29 在数轴上表示不等式的解集一、单选题1.一个不等式组的解集在数轴上的表示如图,则这个不等式组的解集是()A.-1≤x<3B.-1<x≤3C.-1<x<3D.-1≤x≤3【答案】A【分析】根据在数轴上表示不等式解集的方法进行解答即可.【详解】解:∵-1处是实心圆点且折线向右,3处是空心圆点且折线向左,∵-1≤x<3.故选:A.【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.2.不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式∵,得2x,解不等式∵,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.3.不等式组5031xx+⎧⎨->⎩的解集在数轴上表示为()A.B.C.D.【答案】C【分析】先将每一个不等式解出来,然后根据求解的口诀即可解答.【详解】解:50,1xx+≥⎧⎨⎩3-②>,①,解不等式∵得:x≥﹣5,解不等式∵得:x<2,由大于向右画,小于向左画,有等号画实点,无等号画空心,∵不等式50,1xx+≥⎧⎨⎩3->,的解集在数轴上表示为:故选:C.【点睛】本题考查了不等式组的解集在数轴上表示,不等式组解集的表示方法:大小小大中间找,大大小小无处找,同大取大,同小取小.4.不等式3x﹣1>5的解集在数轴上表示正确的是()A.B.C.D.【答案】A【分析】依次移项、合并同类项、系数化为1即可得.【详解】解:3x ﹣1>5,3x >5+1,3x >6,x >2,故选A .【点睛】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.5.不等式3x -2>4的解集在数轴上表示正确的是∵ ∵A .B .C .D .【答案】B【解析】不等式移项得:3x >6∵解得:x >2∵表示在数轴上得:∵故选B∵6.把不等式组12239x x +≥⎧⎨--≥-⎩的解用数轴上的点表示出来,则其解集构成的图形为( )A .射线B .线段C .直线D .长方形【答案】B【分析】先求出不等式组的解集,并在数轴上表示出来,观察数轴即可得出结论【详解】解:12239x x +≥⎧⎨--≥-⎩①②解不等式∵得:1≥x解不等式∵得:3x ≤不等式组的解集是:13x ≤≤其解集构成的图形为:线段故选:B【点睛】本题考查了不等式组的解法,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.7.如图,是关于x 的不等式2x -m< -1的解集,则m 的值为( )A .2m ≤-B .1m ≤-C .2m =-D .1m =- 【答案】D【分析】根据不等式的解集,可得关于m 的方程,根据解方程,可得答案.【详解】解不等式2x -m< -1得:12m x -< , 因为由图可得不等式的解集为1x <-, 所以112m -=-, 所以m=-1.故选:D .【点睛】考查了不等式的解集,解题关键是当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.8.把不等式2x ﹣1>﹣5的解集在数轴上表示,正确的是( )A .B .C .D .【答案】C【分析】 按照移项,合并,系数化为1的方法计算即可.【详解】移项得:2x >1﹣5,合并得:2x >﹣4,解得:x >﹣2,故选:C .【点睛】本题考查解不等式,熟练掌握解不等式的一般步骤是解决本题的关键.9.如图,数轴上表示一个不等式的解集是( )A .2x ≥-B .2x -≤C .2x >-D .2x <-【答案】C【分析】根据在数轴上表示不等式解集的方法解答即可.【详解】∵-2处是空心圆圈,且折线向右,∵这个不等式的解集是x >-2.故选C .【点睛】考查的是在数轴上表示不等式的解集.在数轴上实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.10.不等式213x +≥的解集在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】 解不等式求得不等式的解集,然后根据数轴上表示出的不等式的解集,再对各选项进行逐一分析即可.【详解】解:不等式213x +≥的解集为:1≥x ,故选:D .【点睛】本题考查的解一元一次不等式以及在数轴上表示不等式解集,熟知实心圆点与空心圆点的区别是解答此题的关键.11.用不等式表示如图所示的解集正确的是( )A .x >2B .x ≥2C .x <2D .x ≤2【答案】C【分析】根据不等式组解集在数轴上的表示方法可知不等式的解集.【详解】解:观察数轴可知:向左画又是空心圆,即表示小于2的数.故选:C .【点睛】本题考查了不等式解集的数轴表示法,明确“>”、“<”、“实心圆点”、“空心圆”的含义是解答本题的关键. 12.不等式组21512x x ->⎧⎪⎨+⎪⎩①②中,不等式∵和∵的解集在数轴上表示正确的是( ) A . B .C .D . 【答案】C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解,确定不等式组的解集.【详解】解:解不等式∵,得:1x <,解不等式∵,得:3x -,则不等式组的解集为31x -<≦,将两不等式解集表示在数轴上如下:故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.不等式x +2≥3的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【详解】解:∵23x +≥,∵32x ≥-,∵1x ≥,故选:C .【点睛】本题主要考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14.不等式组()2160.510.5x x ⎧+<⎨+≥⎩的解集在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】准确求解不等式组,在进行判断即可.【详解】()2160.510.5x x ⎧+<⎨+≥⎩①②解不等式∵得:x <2,解不等式∵得:x≥﹣1,则不等式组的解集为﹣1≤x <2,在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式组,熟练掌握一元一次不等式组的解法是解题的关键.15.在数轴上表示不等式240x -的解集,正确的是( )A .B .C .D .【答案】B【分析】先根据不等式的解法求出解,然后在数轴上表示,选出正确答案即可.【详解】x-,解:240x,24x2x,∵不等式的解集为:2在数轴上表示为:,故选:B.【点睛】本题考查求一元一次不等式解集及在数轴上表示不等式的解集,熟练掌握不等式的解法及在数轴上表示解集是解题关键.x-≤的解集在数轴上表示正确的是()16.不等式2A.B.C.D.【答案】C【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】把x的系数化为1得,x≥−2.在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.17.不等式x-1>0的解集在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】 先求出不等式的解集,然后在数轴上表示即可.【详解】∵x -1>0,∵x>1,在数轴上表示为:故选A.【点睛】此题主要考查了在数轴上表示不等式的解集,关键是用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.18.在数轴上表示不等式组20260x x +>⎧⎨-⎩的解集,正确的是( ) A .B .C .D .【答案】A【解析】 20260x x +>⎧⎨-≤⎩①② 解∵得,2x >- ;解∵得,3x ≤ ;∵不等式组的解集是:23x -<≤ .故选A.点睛:不等式组的解法是,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.在数轴上的表示时注意, 空心圈表示不包含该点,实心点表示包含该点.19.若关于x 的不等式(1)1a x a -+>-的解集如图所示,则a 必满足( )A .0a <B .1a >C .1a <-D .1a <【答案】B【分析】由不等式的解集可知1-a <0,由此得a 的范围.【详解】解:由图可知:不等式(1)1a x a -+>-的解集为:x <-1,即()11a x a ->-,则1-a <0,∵a >1,故选B .【点睛】本题考查了运用数轴表示不等式的解集.关键是由不等式解集的结果得出不等式,求字母a 的值. 20.不等式组1021x x +≥⎧⎨-≤⎩的解集在数轴上表示正确的( )A .B .C .D .【答案】D【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】解:1021x x +≥⎧⎨-≤⎩①②由∵得x ≥﹣1,由∵得x ≤3,根据“小大大小中间找”的原则可知不等式组的解集为﹣1≤x ≤3.故选:D .【点睛】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.21.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1020x x ->⎧⎨+≤⎩B .1020x x +>⎧⎨+≤⎩C .1020x x +>⎧⎨-≤⎩D .1020x x -≤⎧⎨+<⎩ 【答案】C【分析】由数轴可得表示的解集为12x -<≤,把各个选项求出解集,即可解答.【详解】数轴表示的解集为12x -<≤.解不等式组1020x x ->⎧⎨+≤⎩,得:12x x >⎧⎨≤-⎩,解集为空集,故A 不符合题意. 解不等式组1020x x +>⎧⎨+≤⎩,得:12x x >-⎧⎨≤-⎩,解集为空集,故B 不符合题意.解不等式组1020xx+>⎧⎨-≤⎩,得:12xx>-⎧⎨≤⎩,解集为12x-<≤,故C符合题意.解不等式组1020xx-≤⎧⎨+<⎩,得:12xx≤⎧⎨<-⎩,解集为2x<-,故D不符合题意.故选C.【点睛】本题考查在数轴上表示不等式的解集以及解不等式组,解决本题的关键是求出不等式组的解集.22.不等式组10840xx-⎧⎨-≤⎩>的解集在数轴上表示为().A.B.C.D.【答案】A【分析】解不等式组,看解集表示是否正确即可.【详解】解:10 840 xx-⎧⎨-≤⎩>①②解不等式∵得,1x>,解不等式∵得,2x≥,不等式组的解集为:2x≥.故选:A.【点睛】本题考查了一元一次不等式组的解法及在数轴上表示解集,解题关键是熟练的运用解不等式组的方法进行计算.23.不等式325132x x++≤-的解集表示在数轴上是()A.B.C.D.【答案】B【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x+2)≤3(x+5)﹣6,去括号,得6x+4≤3x+15﹣6,移项、合并同类项,得3x≤5,系数化为1,得,x≤53,在数轴上表示为:故选:B.【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.24.不等式-3<a≤1的解集在数轴上表示正确的是()A.B.C.D.【答案】A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∵1处是实心原点,且折线向左.故选:A .【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.25.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A .B .C .D . 【答案】B【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可.【详解】111x x -<⎧⎨-⎩①② 由不等式∵组得,x<2∵不等式组的解集为:21x x ⎧⎨≥-⎩< 其解集表示在数轴上为, 故选B .【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.26.不等式x <2的解集在数轴上表示为( )A.B.C.D.【答案】B【分析】根据不等式组解集在数轴上的表示方法就可得到.【详解】解:x<2的解集表示在数轴上2左边的数构成的集合,在数轴上表示为:故选:B【点睛】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.27.不等式2x+1≤5的解集,在数轴上表示正确的是()A.B.C.D.【答案】C【分析】先移项得到2x≤4,再把系数化为1得到不等式的解集,然后利用数轴表示出解集即可得答案.【详解】2x+1≤5移项得:2x≤5﹣1,系数化为1得:x≤2.故选:C.【点睛】本题考查了一元一次不等式的解法和在数轴上表示不等式的解集,熟知“小于向左,大于向右,在表示解集时≥、≤要用实心圆点表示;<,>要用空心圆点表示”是解答此题的关键.28.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A .≥-1B .>1C .-3<≤-1D .>-3【答案】A【解析】>-3 ,≥-1,大大取大,所以选A29.在平面直角坐标系中,点P (2x+4,x ﹣3)在第四象限,则x 的取值范围表示在数轴上,正确的是( ) A . B .C .D .【答案】A【解析】根据题意,得:24030x x +>⎧⎨-<⎩①②∵解不等式∵,得:x>−2∵解不等式∵,得:x<3∵则不等式组的解集为−2<x<3∵故选A.二、填空题30.不等式0ax b +>的解集在数轴上表示如图所示,则该不等式的解集为 ___________________.【答案】x >-3【分析】根据不等式解集的数轴表示法可以得到解答.【详解】解:阅读数轴,折线向右且表示3的点为空心,所以不等式的解集为x>-3.故答案为x>-3.【点睛】本题考查不等式的解集,熟练掌握解集的数轴表示法是解题关键.31.一个一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是_______.【答案】13x -≤<【分析】根据一元一次不等式的解集在数轴上的表示方法即可得.【详解】由数轴图可知,该不等式组的解集是13x -≤<,故答案为:13x -≤<.【点睛】本题考查了一元一次不等式的解集在数轴上的表示,掌握理解不等式的解集在数轴上的表示方法是解题关键.32.某个关于x 的不等式的解集在数轴上的表示如图所示,这个不等式的解集是_____.【答案】x ≥﹣2【分析】根据不等式的解集在数轴上的表示方法解答即可.【详解】解:∵﹣2处是实心圆点,且折线向右,∵x ≥﹣2.故答案为:x ≥﹣2.【点睛】本题考查了不等式的解集在数轴上的表示方法,一般的,不等式的解集在数轴上遵循“小于向左,大于向右;边界含于解集为实心点,不含于解集为空心点”.33.若关于x 的不等式的解集在数轴上表示如图,请写出此解集为______.【答案】21x -<≤【分析】根据不等式的解集与数轴的关系即可解答.【详解】由数轴知,此不等式的解集为21x -<,故答案为:21x -<.【点睛】本题考查了在数轴上表示不等式的解集,熟练掌握不等式的解集与数轴的关系是解答的关键.34.如图,张小雨把不等式3x >2x -3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【分析】先求出不等式的解,即可求出答案.【详解】由3x >2x -3∵解得:x∵-3∵∵阴影部分盖住的数字是:-3.故答案是:-3.【点睛】本题主要考查解一元一次不等式以及不等式的解在数轴上的表示,掌握一元一次不等式的解在数轴上的表示方法,是解题的关键.35.关于x 的某个不等式组的解集在数轴上表示如图所示,则这个不等式组的解集为______________.【答案】﹣1≤x ≤4【解析】【分析】∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵【详解】∵∵∵−1∵∵∵∵∵∵∵∵∵∵∵∵∵∵x1≥﹣∵∵4∵∵∵∵∵∵∵∵∵∵∵∵x4≤∵∵∵∵∵∵∵∵∵∵1x4-≤≤∵∵∵∵∵∵1x4-≤≤∵∵【点睛】∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵36.如图∵∵,表示的不等式的解集是________.【答案】x∵2【解析】由数轴得不等式的解集是x∵2∵故答案为x∵2.37.关于x的不等式﹣2x+a≥4的解集如图所示,则a的值是__.【答案】2.【分析】由不等式﹣2x+a≥4可得x≤42a-,然后由数轴可得x≤﹣1,进而问题可求解.【详解】解:∵﹣2x+a≥4,∵x≤42a-,∵x≤﹣1,∵41 2a-=-,∵a=2,故答案为2.【点睛】本题主要考查含参数的不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.38.根据如图所示,用不等式表示公共部分x 的范围______.【答案】32x -≤<【分析】根据实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左,公共部分即是解集;【详解】由图示可以看出,从-3出发向右画出的折线且表示-3的点是实心圆,表示3x ≥-;从2出发向左画出的折线且表示2的点是空心圆,表示2x <,∵这个不等式组的解集为:32x -≤<.故答案是32x -≤<.【点睛】本题主要考查了数轴上不等式的解集,准确分析判断是解题的关键.39.一个关于 x 的一元一次不等式组的解在数轴上的表示如图所示,则该不等式组的解是__________.【答案】3x >【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【详解】解:由图示可看出,从1出发向右画出的线且1处是实心圆,表示x ≥1;从3出发向右画出的线且3处是空心圆,表示x >3,不等式组的解集是指它们的公共部分,所以这个不等式组的解为:3x >,故答案为: 3x >.【点睛】等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.40.不等式3x+2>2(x-1)的解集为_____,在数轴上表示为.【答案】x>-4,数轴上表示见解析【解析】【分析】利用不等式的基本性质,把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【详解】3x+2>2(x-1),3x-2x>-2-2,x>-4,把解集表示在数轴上为.故答案是:x>-4,数轴上表示见解析.【点睛】考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.41.如果关于x的不等式x≥12a-的解集在数轴上表示如图所示,那么a的值为_____.【答案】-3【分析】根据不等式的解集及其在数轴上的表示得出关于a的方程,解之可得答案.【详解】解:根据题意知:12a-=﹣2,∵a﹣1=﹣4,则a=﹣3,故答案为:﹣3.【点睛】本题主要考查解一元一次不等式及不等式解集在数轴上的表示,解题的关键是根据解集在数轴上的表示得出关于a的方程.42.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的值是_____.【答案】-1【分析】首先解不等式2x﹣a≤﹣1可得x≤12a-,根据数轴可得x≤﹣1,进而得到12a-=﹣1,再解方程即可.【详解】∵2x﹣a≤﹣1,∵x≤1 2a-,∵x≤﹣1,∵12a-=﹣1,解得:a=﹣1,故答案为:﹣1.【点睛】此题主要考查了在数轴上表示不等式的解集,关键是正确解出不等式的解集.43.将数轴上x的范围用不等式表示:__________.【答案】x>2【解析】【分析】根据在数轴上表示不等式解集的方法得出该不等式的解集即可.【详解】解:数轴上表示不等式解集的方法可知,该不等式的解集为:x>2.故答案为:x>2.【点睛】本题考查了在数轴上表示不等式的解集,熟知实心圆点与空心原点的区别是解题的关键.44.若不等式(a -3)x <3-a 的解集在数轴上表示如图所示,则a 的取值范围是______.【答案】a <3【解析】【分析】由图示可知:不等式的解集为:x >-1,根据不等式的性质可知:a -3<0,解之即可.【详解】解:由图示可知:不等式的解集为:x >-1,根据题意得:a -3<0,解得:a <3,故答案为:a <3.【点睛】本题考查解一元一次不等式和在数轴上表示不等式的解集,正确掌握不等式的性质是解题的关键.三、解答题45.解不等式,并把解集表示在数轴上:23x->72x+.【答案】x <-33,数轴表示见解析【分析】先根据不等式的解法求解不等式,然后在数轴上表示出解集.【详解】 解:23x->72x+,去分母得:2x -12>21+3x ,移项得:2x -3x >12+21,合并同类项得:-x >33系数化为1得:x <-33,在数轴上表示为:【点睛】本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.46.解不等式并把不等式的解集在数轴上表示出来.5(x-2)+8<6(x-1)+7【答案】3x>-【分析】利用不等式的基本性质,把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【详解】解:5(x−2)+8<6(x−1)+7,5x−10+8<6x−6+7,整理得:−x<3,解得:x>−3,画图如下:【点睛】此题考查了解一元一次不等式,掌握不等式的性质是本题的关键,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.47.解不等式:11126x x-+<-,并把它的解集表示在数轴上.【答案】2x<,表示在数轴上见解析【分析】先去分母,再去括号,移项、合并同类项,把x 的系数化为1即可.【详解】去分母,得:()()3161x x -<-+,去括号,得:3361x x -<--,移项,得:3613x x +<-+,合并同类项,得:48x <,系数化为1,得:2x <,将不等式的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.48.解不等式,并把解集表示在数轴上21132x x -+-< 【答案】x >-1,图详见解析【分析】先根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1得解集,再将解集表示在数轴上.【详解】 解:21132x x -+-< 6-2(2-x)<3(x+1)6-4+2x<3x+32x -3x<3+4-6-x<1x>-1故不等式的解集为x>-1表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.49.解不等式,并在数轴上表示解集:231232x x --≥-. 【答案】117x ≤,图详见解析 【分析】先去分母、移项合并,然后把系数化为1得到不等式的解集,然后用数轴表示其解集.【详解】去分母,得:()()2233112x x -≥--去括号,得:249312x x -≥--,移项,得:293124x x -≥--+,合并同类项,得:711x -≥-,系数化为1,得:117x ≤, 将解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.50.解不等式3185315x x +-->,并把解集在数轴上表示出来.【答案】3x <,见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解: 3185315x x +--> ()()33518x x +-->.39558x x +-+>3 5895x x ->--26x ->-.3x <.它在数轴上的表示如图所示:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.51.解不等式组()453142? 3x x x x ⎧-<-⎪⎨+-≥⎪⎩,并将解集在数轴上表示出来. 【答案】12x ≤,数轴上表示见解析 【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集,最后在数轴上表示出来即可.【详解】 ()453142?3x x x x ⎧-<-⎪⎨+-≥⎪⎩①②, 解不等式∵得:2x <,解∵得:12x ≤, ∵不等式组的解集为1 2x ≤在数轴上表示不等式组的解集为:【点睛】本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.52.(1)解方程:(x +1)2=214; (2)解不等式:3136x x ->-,并把不等式的解集在数轴上表示出来. 【答案】(1)1215,22x x ==-;(2)3x >,数轴见解析. 【分析】(1)利用平方根定义进行求解可得答案;(2)根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【详解】解:(1)∵(x +1)2=94, ∵x +1=±32, 则x =﹣1±32, ∵x 1=12,x 2=﹣52; (2)∵3136x x ->-, ∵2x >6﹣x +3,2x +x >6+3,3x >9,∵x >3,将解集表示在数轴上如下:【点睛】本题考查了利用平方根解方程、解一元一次不等式等知识,是重要考点,难度较易,掌握相关知识是解题关键.53.解不等式组:2(21)3(1)1132x x x x x -+⎧⎪+-⎨<-⎪⎩,并把不等式组的解集表示在数轴上.【答案】不等式组的的解集为15x -<,数轴见解析【分析】先分别求解不等式,再根据数轴表示不等式解集的方法准确画出图形即可.【详解】解:()()221311122x x x x x ⎧-+⎪⎨+-<-⎪⎩①②, 由∵得:5x ,由∵得:1x >-,∴不等式组的的解集为15x -<.【点睛】本题考查解不等式组及在数轴上表示不等式组的解集,准确求解不等式组并理解数轴表示解集的细节是解题关键.54.解不等式,并把不等式(2)的解集在数轴上表示出来.(1)46715x x -≥-;(2)235324x x +≥⎧⎨-≤⎩【答案】(1)3x ≤;(2)1≤x≤2,数轴表示见解析【分析】。

第8讲用数轴表示不等式的解集及一元一次不等式组(教师版)

第8讲用数轴表示不等式的解集及一元一次不等式组(教师版)

第8讲用数轴表示不等式的解集及一元一次不等式组知识精要一、不等式的解集1、不等式解的全体叫做不等式的解集。

(注:一般情况下一元一次方程的解只有一个,一元一次不等式的解可以有无数个。

)2、不等式的解集可以再数轴上直观的表示出来。

如:在数轴上表示大于3的数的点应该数3所对应点的左边还是右边?(右边)因此我们可以在数轴上把x>3直观地表示出来.画图时要注意方向(向右)和端点(不包括数3,在对应点画空心圆圈).如图所示:同样,如果某个不等式的解集为x≤-2,那么它表示x取那些数?此时在作x≤-2的数轴表示时,要包括-2的对应点,因而在该点处应画实心圆点.如图所示:引导学生总结出在数轴上表示不等式解集的要点:小于向左画,大于向右画;无等号画空心圆圈,有等号画实心圆点。

2、一元一次不等式组1、有几个含有同一个未知数的一次不等式组成的不等式组,叫做一元一次不等式组。

2、不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。

3、求不等式组的解集的过程叫做解不等式组。

4、解一元一次不等式组的一般步骤是:(1)求出不等式组中各个不等式的解集;(2)在数轴上表示各个不等式的解集;(3)确定各个不等式解集的公共部分,就得到这个不等式组的解集。

【典型例题】例1. 解不等式3(1)5182x x x +-+>-【思路点拨】不等式中含有分母,应先根据不等式的基本性质2去掉分母,再作其他变形.去分母时,不要忘记给分子加括号.【答案与解析】解:去分母,得8x+3(x+1)>8-4(x -5), 去括号,得8x+3x+3>8-4x+20, 移项,得8x+3x+4x >8+20-3,合并同类项,得15x >25,系数化为1.得.53x >∴不等式的解集为.53x >【总结升华】解一元一次不等式与解一元一次方程的步骤异同见下表:ax =bax >bax <b解:当a ≠0时,;b x a=当a =0,b ≠0时,无解;当a =0,b =0时,x为任意有理数.解:当a >0时,;b x a>当a <0时,;b x a<当a =0,b ≥0时,无解;当a =0,b <0时,x 为任意有理数.解:当a >0时,;b x a<当a <0时,;b xa>当a =0,b ≤0时,无解;当a =0,b >0时,x 为任意有理数.【变式】(湖南益阳)解不等式,并把解集在数轴上表示出来.5113x x -->解:去分母得5x -1-3x >3,移项、合并同类项,得2x >4, 系数化为1,得x >2,解集在数轴上的表示如图所示.例2.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x (单位:度)电费价格(单位:元/度)0<x≤200a 200<x≤400b x >4000.92(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a ,b 的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?【思路点拨】(1)根据题意即可得到方程组,然后解此方程组即可求得答案;(2)根据题意列不等式,解不等式.【答案与解析】解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x 度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.【总结升华】考查了一元一次方程组与一元一次不等式的应用.注意根据题意得到等量关系是关键.例3. 解不等式组: ,并求出正整数解。

不等式的解集数轴表示

不等式的解集数轴表示
初中数学资源网
小贴士:
不等式的解集:一个不等式的所有解,组成这个 不等式的集合,简称为这个不等式的解集。
不等式的解集必须满足两个条件:1解集中的任何一个数值都使不等式成立; 2解集外的任何一个数值都不能使不等式成立.
研究不等式的一个重要任务,就是求出不等式 的解集。
求不等式的解集的过程,叫做解不等式。
2 x 2
-5 -4 -3 -2
-5
-4
-3
-2
-1
2定边界点
含等号用实心圈,不含等 号用空心圈
-1 0 1 2 3 4 5
1 3 1 x 3 2
-5 -4 -3 -2 -1 0 1 2 3 4 5
3.定方向.
大于向右画,小于向左画
初中数学资源网
一个不等式的所有解,组成这个不等式的 解的集合,简称为这个不等式的解集 不等式x+1<4的解集,可以表示成x<3 也可以在数轴上这样表示x<3
-5
-4
-3
-2
-1
0
1
2
3
4
5
初中数学资源网
将下列不等式的解集在数轴上表示出来。
1 1 x 2 2
1.画数轴.
0 1 2 3 4 5
画一画: 利用数轴来表示下列不等式的解集.
(1)x>-1
(5)1≤x≤4
-1 0 1
(2)x<
1 2
(3)
2 x<3; X>50 3
0 1 2
(4)x≥2;
变 式: 已知x的取值范围如图所示,你能写出x的取值范围吗?
-2 -1 0
空心圆圈“°”表示“>”或“<” 实心圆点“·”表示“≥”或 “≤” 即:若解集中含有等号则以实点圆点表示,若 解集中不含等号的空心圆圈表示。

初中数学第2课时 在数轴上表示不等式的解集

初中数学第2课时  在数轴上表示不等式的解集

第2课时在数轴上表示不等式的解集要点感知一个不等式的解集可以借助直观地表示出来.大于向画线,小于向画线;不等式中的“等于”画心圆圈,不等式中没有等于画心圆圈.预习练习1-1 不等式的解集x≤2在数轴上表示为( )1-2 (2013·福州)不等式1+x<0的解集在数轴上表示正确的是( )知识点1 在数轴上表示不等式的解集1.(2013·玉林防城港)在数轴上表示不等式x+5≥1的解集,正确的是( )2.用不等式表示如图所示的解集正确的是( )A.x>2B.x≥2C.x<2D.x≤23.(2013·随州)不等式2x+3≥1的解集在数轴上表示为( )4.解下列不等式,并把解集在数轴上表示出来:(1)x-1>2x; (2)≤; (3)-x>1.知识点2 利用数轴确定不等式的整数解5.不等式2x-7<5-2x的正整数解有( )A.1个B.2个C.3个D.4个6.不等式x-5>4x-1的最大整数解是( )A.-2B.-1C.0D.17.不等式2x-1≥5的最小整数解为.8.解不等式2(x―2)≤6―3x,并写出它的正整数解.9.(2013·广东)不等式5x-1>2x+5的解集在数轴上表示正确的是( )10.若关于x的不等式(a+1)x>2的解集如图所示,则( )A.a=-3B.a=3C.a≤-3D.a>311.不等式4-3x≥2x-6的非负整数解有( )A.1个B.2个C.3个D.4个12.如图所示,数轴所表示的不等式的解集中,正整数解是.13.请你写出一个满足不等式2x-1<6的正整数x的值:.14.关于不等式-2x+a≥2的解集是x≤-1,a的值是.15.(2013·荆州)在实数范围内规定新运算“△”,其规则是:a△b=2a-b.已知不等式x△k≥1的解集在数轴上如图表示,则k的值是.16.(1)解不等式x-1≤1+x3,并把解集在数轴上表示出来;(2)求不等式+1>的最小整数解.17.当x为何值时,代数式-的值比代数式-3的值大?并求出它的最大整数解.18.已知关于x的方程4(x+2)-2=5+3a的解不小于方程=的解,求a的取值范围,并求出a的最大整数解.。

不等式的解集与区间的概念

不等式的解集与区间的概念

因式分解得
(x + 1)(x - 1)(x + 2)(x - 2) < 0
解集表示为
{ x | -2 < x < -1 或 1 < x < 2 }
利用数轴穿根法,解得解集为
-2 < x < -1 或 1 < x < 2
拓展应用:不等式组与区间综合问题
单击此处添加文本具体内容
PART.01
不等式组定义及性质
(a, b) - (c, d) = (a-d, b-c)
区间表示方法及运算规则
区间表示方法
减法运算
乘法运算
除法运算
加法运算
区间运算规则
除了使用圆括号和方括号表示开区间和闭区间外,还可以使用无穷大符号表示包含正无穷大或负无穷大的区间,如(a, +∞)、(-∞, b)等。
对于任意两个实数a、b(a < b)以及实数c、d(c < d),有以下运算规则
根据判别式确定解的情况,将解集在数轴上表示为开区间、闭区间或半开半闭区间。
解集与区间对应关系分析
解集与区间的区别
03
解集是具体的数值集合,而区间是数轴上的连续区域,两者在表现形式和性质上有所不同。
不等式的解集可以表示为区间,而区间也可以用来描述不等式的解集。
解集与区间的定义
01
解集是满足不等式的所有解的集合,而区间是数轴上的一段连续区域。
一元二次不等式案例解析
案例一
解析不等式 x^2 - 4x + 3 < 0
因式分解得
(x - 1)(x - 3) < 0
根据一元二次不等式的解法,解集为
1 < x < 3

在数轴上表示不等式的解集_

在数轴上表示不等式的解集_

在数轴上表示不等式的解集一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 如图所示的不等式的解集是()A.a>1B.a<1C.a≥1D.a≤12. 关于x的不等式x−a≥−2的解集如图所示,则a的值等于( )A.0B.1C.−1D.−23. 不等式组{x<2x≥12的解集在数轴上应表示为()A. B. C. D.4. 下列不等式组的解集,在数轴上表示为如图所示的是()A.x>−1B.−1<x≤2C.−1≤x<2D.x≤25. 不等式8−4x≥0的解集在数轴上表示为()A. B.C. D.6. 不等式组{x −1>0,−3x +6≥0的解集在数轴上表示为( ) A. B.C.D.7. 不等式组{3x −1>2,8−4x ≤0的解集在数轴上表示为( ) A.B.C.D.8. 如图,在数轴上表示的是下列哪个不等式( )A.x >−2B.x <−2C.x ≥−2D.x ≤−29. 不等式组{x −2≤0−x +1>0的解集为( ) A.x <1B.x ≤2C.1<x ≤2D.无解10. 把不等式x ≥−2的解集在数轴上表示正确的是( ) A. B.C. D.二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 如图,张小雨把不等式3x>2x−3的解集表示在数轴上,则阴影部分盖住的数字是________.12. 已知两个不等式的解集在数轴上的表示如图所示,则这两个不等式组成的不等式组的解集是________.13. 写出如图所表示的某不等式组的解集________.14. 已知一个关于x的一元一次不等式组的解集在数轴上表示如图所示,则此不等式组的解集为________.15. 下图表示的不等式组的解集为________.16. 如图所示,数轴上所表示的不等式的解集分别是________.17. 关于x的不等式3x−2a≥−1的解集如图所示,则a=________.18. 关于x的不等式x−2a≤−3的解集如图所示,则a的值是________.19. 关于x 的不等式x −a ≥−2的解集如图所示,那么a =________.20. 在数轴上表示不等式组{x >3x >−1的解集如图,则不等式组{x <−1x ≤3的解集为________. 三、 解答题 (本题共计 10 小题 ,每题 10 分 ,共计100分 , )21. 解不等式(组):(1),并把它的解集在数轴上表示出来.(2)22. 解不等式组并把它的解集在数轴上表示出来.23. 将不等式x >−2的解集表示在如图的数轴上.24. 解不等式组{x −1<1,x −5≥4x +1,并把解集在数轴上表示出来.25. 在数轴上表示下列不等式的解集.(1)x >2.5(2)x <−2.5(3)x ≥3.26. 解不等式组{3x +3≤2x +7①5(x −1)>3x −1②,并把它的解集在数轴上表示出来.27. (1)解不等式,并把解集在数轴上表示出来. 27.(2)解不等式组28. 解下列不等式(组),并在数轴上表示解集.(1)(2)29. 解不等式组,请结合题意填空,完成本题的解答:(1)解不等式①,得(2)解不等式②,得(3)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为 .30. 写出下列各数轴所表示的不等式的解集:(1)(2)参考答案与试题解析在数轴上表示不等式的解集一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】在数轴上表示不等式的解集【解析】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.【解答】解::数轴上1处是空心原点,且折线向右,∴不等式的解集是a>1.故选A.2.【答案】A【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:x−a≥−2,x≥a−2.a−2=−2,得a=0.故选A.3.【答案】B【考点】在数轴上表示不等式的解集【解析】根据不等式画出数轴,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】≤x<2,在数轴上可表示为:解:不等式组的解集是12故选:B.4.【答案】B【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:由数轴可看出,从−1出发向右画出的线且−1处是空心圆,表示x>−1;从2出发向左画出的线且2处是实心圆,表示x≤2,所以表示的解集为−1<x≤2.故选B.5.【答案】B【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:不等式8−4x≥0得,x≤2,所以不等式的解集在数轴上表示为选项B.故选B.6.【答案】C【考点】在数轴上表示不等式的解集【解析】先在数轴上表示不等式组的解集,再选出即可.【解答】解:由{x−1>0,−3x+6≥0,解得1<x≤2,在数轴上可表示为:故选C.7.【答案】A【考点】在数轴上表示不等式的解集【解析】先求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:{3x−1>2①,8−4x≤0②,由①得,x>1,由②得,x≥2,故此不等式组的解集为x≥2,在数轴上表示为:故选A.8.【答案】C【考点】在数轴上表示不等式的解集【解析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可得到|x≥−2故选C.本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键,注意实点和虚点的区别.【解答】此题暂无解答9.【答案】A【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:{x−2≤0①−x+1>0②由①,得:x≤2,由②,得:x<1,则不等式组的解集为:x<1,故选A.10.【答案】B【考点】在数轴上表示不等式的解集【解析】将已知解集表示在数轴上即可.【解答】解:不等式x≥−2的解集在数轴上表示为:.故选B.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−3【考点】在数轴上表示不等式的解集【解析】先求出不等式的解,即可求出答案.【解答】由3x>2x−3,解得:x>−3…阴影部分盖住的数字是:−3.故答案是:−3.12.【答案】x>4【考点】在数轴上表示不等式的解集【解析】根据在数轴表示不等式组解集的方法得出不等式组的解集即可.【解答】解:由图可知,两不等式解集的公共部分是x>4.故答案为:x>4.13.【答案】x>2【考点】在数轴上表示不等式的解集【解析】两个不等式的公共部分就是不等式组的解集,据此即可确定.【解答】解:不等式组的解集是:x>2.故答案是:x>2.14.【答案】−2≤x<3【考点】在数轴上表示不等式的解集【解析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.解:由图示可看出,从−2出发向右画出的线且−2处是实心圆,表示x≥−2;从3出发向左画出的线且3处是空心圆,表示x<3,不等式组的解集是指它们的公共部分.所以这个不等式组为−2≤x<3.15.【答案】−4≤x<1【考点】在数轴上表示不等式的解集【解析】数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.【解答】解:由图示可看出,从−4出发向右画出的线且−4处是实心圆,表示x≥−4;从1出发向左画出的线且1处是空心圆,表示x<1,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是−4≤x<116.【答案】x≥−2,x≥−1,x<1【考点】在数轴上表示不等式的解集【解析】根据利用数轴表示不等式的解集的方法,向右表示大于,向左表示小于,有等号用实心圆点,没有等号用空心圆圈表示,写出不等式的解集即可.【解答】解:观察图形可知,所表示的不等式的解集分别是,x≥−2,x≥−1,x<1.故答案为:x≥−2,x≥−1,x<1.17.【答案】−1【考点】在数轴上表示不等式的解集【解析】先把a当作已知条件表示出不等式的解集,再根据数轴上不等式的解集即可得出a的值.【解答】解:解不等式3x−2a≥−1得,x≥2a−1,3∵由数轴上不等式的解集可知x≥−1,∴2a−1=−1,3解得a=−1.故答案为:−1.18.1【考点】在数轴上表示不等式的解集【解析】先把a当作已知条件表示出x的取值范围,再与数轴上不等式的解集相比较即可得出结论.【解答】解:解不等式x−2a≤−3得,x≤−3+2a.∵数轴上不等式的解集为x≤−1,∴−3+2a=−1,解得a=1.故答案为:1.19.【答案】1【考点】在数轴上表示不等式的解集【解析】不等式x−a≥−2的解集是x≥a−2,数轴表示的解集是x≥−1.则a−2=−1,a=1.【解答】解:∵不等式x−a≥−2的解集为:x≥a−2,又不等式x−a≥−2的在数轴上的解集为x≥−1,∴a−2=−1,故a=1.20.【答案】x<−1【考点】在数轴上表示不等式的解集【解析】根据不等式的解集在数轴上表示方法画出图示求解即可.【解答】解:在数轴上表示如下:不等式组的解集是x<−1.故答案为:x<−1.三、解答题(本题共计 10 小题,每题 10 分,共计100分)21.【答案】(1)【答5(11>3,在数轴上表示见解析;(2)2≤x<4【考点】在数轴上表示不等式的解集(1)去括号、移项、合并同类项、系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】(1)2x −11≤4(x −5)+32x −11<4x −20+32x −4x <−20+3+1−2x <−6x >3在数轴上表示为:−2−1012345(2{3x −(x −2)≥6①x +1>4x −13…解不等式①得:x ≥2解不等式②得:x <4…不等式组的解集是2≤x <422.【答案】加加1−2≤x ≤3【考点】在数轴上表示不等式的解集【解析】分别解两个一元一次不等式,再取解得公共部分,即为一元一次不等式组的解集,将其解集在数轴上表示出来【解答】 原式:{3(x −1)<5x +1①x−12≥2x −42 由①可得,3x −3<5x +1移项得−2x <4,解得x >−2由②可得,x +1≥4x −8移项得3x ≤9,解得x ≤3故原不等式组的解集为−2<x ≤3,在数轴上表示如图所示:23.【答案】解:不等式x >−2的解集表示在数轴上,如图所示:【考点】在数轴上表示不等式的解集【解析】根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:不等式x>−2的解集表示在数轴上,如图所示:24.【答案】解:x−1<1,解得x<2;x−5≥4x+1,解得x≤−2.则不等式组的解集为:x≤−2.作图如下:【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:x−1<1,解得x<2;x−5≥4x+1,解得x≤−2.则不等式组的解集为:x≤−2.作图如下:25.【答案】解:(1);(2);(3)【考点】在数轴上表示不等式的解集【解析】将各自的解集表示在数轴上即可.【解答】解:(1);(2);(3)26.【答案】解:不等式组的解集为2<x≤4.解集在数轴上表示略.【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:不等式组的解集为2<x≤4.解集在数轴上表示略.27.【答案】(1)x\gt\dfrac{1}{4}}$ ,数轴表示见解析;(2))−1≤x<3【考点】在数轴上表示不等式的解集【解析】(1)根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解;(2)先求出两个不等式的解集,再求其公共解.【解答】(1)去分母得,6−(2x−1)<2(5x+2)去括号得,7−2x<10x+4移项得,−2x−10x<4−7合并同类项得,−12x<−3系数化为1得,x>14解集在数轴上表示如下:01 4①(2){2x+5≤3(x+2) x−12≤x3(2)解不等式①得x≥−1解不等式②得,x<3所以,不等式组的解集为−1≤x<328.【答案】(1)x≤4,数轴表示见解析;(2)x≥−1;数轴表示见解析【考点】在数轴上表示不等式的解集【解析】(1)先去分母、去括号,再移项,合并同类项,把x的系数化为1即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】(1)3x−25≥2x+13−13(3x−2)≥5(2x+1)−159x−6≥10x+5−15−x≥−4x≤4在数轴表示不等式的解集:(2)解⑩得:x≥−1解①得:x>−2不等式组的解集为:x≥−1在数轴上表示为:29.【答案】(1)x≥−1(2)x<2(2)图形见解析(3)−1≤x<2【考点】在数轴上表示不等式的解集【解析】(1)试题分析:根据不等式的解法,分别求解两个不等式,然后把它们表示在同一数轴上,最后写出解集即可.①【解答】(1)解不等式①,得x≥−1(2)解不等式②,得x<2(3)把不等式①和②的解集在数轴上表示出来−3−21012345(Ⅳ)原不等式的解集为−1≤x<230.【答案】解:(1)∵−2处是实心原点且折线向右,∴不等式的解集为:x≥−2;(2)∵4处是空心原点且折线向左,∴x<4.【考点】在数轴上表示不等式的解集【解析】(1)根据−2处是实心原点且折线向右即可得出结论;(2)根据4处是空心原点且折线向左即可得出结论.【解答】解:(1)∵−2处是实心原点且折线向右,∴不等式的解集为:x≥−2;(2)∵4处是空心原点且折线向左,∴x<4.。

人教版七年级数学下册《不等式及其解集》拓展练习

人教版七年级数学下册《不等式及其解集》拓展练习
(1)在方程①3x﹣1=0,② x+1=0,③x﹣(3x+1)=﹣5中,不等式组 的关联方程是③;(填序号)
(2)若不等式组 的一个关联方程的根是整数,则这个关联方程可以是x﹣1=0(答案不唯一);(写出一个即可)
(3)若方程3﹣x=2x,3+x=2(x+ )都是关于x的不等式组 的关联方程,直接写出m的取值范围.
【解答】解:∵不等式组 ,在同一条数轴上表示不等式①,②的解集如图所示,
则﹣a﹣1≤x≤b,
∴﹣a﹣1=﹣2,b=3,
解得:a=1,b=3,
故b﹣a=3﹣1=2.
故答案为:2.
【点评】此题主要考查了在数轴上表示不等本大题共5小题,共50.0分)
11.(10分)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.
(2)若有解,则与(1)的情形相反,a应取≤1以外的数,所以a的取值范围为a>1,数轴如下:
【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
15.(10分)对于任意实数m,n定义一种新运算m※n=mn﹣m+3,等式的右边是通常的加减法和乘法运算,例如:3※5=3×5﹣3+3=15.请根据上述定义解决问题:若a<2※x<7,且解集中恰有两个整数解,求a的取值范围.
A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣2
5.(5分)若关于x的不等式组 有解,且关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,则符合条件的所有整数k的和为( )
A.﹣5B.﹣9C.﹣12D.﹣16
二、填空题(本大题共5小题,共25.0分)

八年级数学上第4章一元一次不等式4.3一元一次不等式的解法第2课时不等式的解集在数轴上的表示课湘教

八年级数学上第4章一元一次不等式4.3一元一次不等式的解法第2课时不等式的解集在数轴上的表示课湘教

16 见习题 17 见习题
1.一个不等式的解集常常可以借助__数__轴____直观地表示出来. 2.若 x>a 或 x<a,把表示 a 的点 A 画成__空__心__圆__圈___,表示解
集不包括 a. 3.若 x≥b 或 x≤b,把表示 b 的点 B 画成__实__心__圆__点___,表示解
集包括 b.
6.) A.1 个 B.2 个 C.3 个 D.4 个
7.若实数 3 是不等式 2x-a-2<0 的一个解,则 a 可取的最小 正整数为( D ) A.2 B.4 C.3 D.5
8.【中考·湘西州】对于任意实数 a,b,定义一种运算:a※b= ab-a+b-2.例如,2※5=2×5-2+5-2=11.请根据上述的 定义解决问题:若有不等式 3※x<2,则该不等式的正整数 解是___1_____. 【点拨】∵3※x=3x-3+x-2<2,∴x<74, ∴正整数解为 x=1.
15.求不等式x3≤1+x-2 1的负整数解. 解:去分母,得 2x≤6+3(x-1), 去括号,得 2x≤6+3x-3, 移项,得 2x-3x≤6-3, 合并同类项,得-x≤3, 系数化为 1,得 x≥-3, ∴不等式的负整数解为-3,-2,-1.
16.已知关于 x 的不等式 2(x+1)-m≤2 至少有 5 个正整数解, 求 m 的取值范围. 解:解不等式 2(x+1)-m≤2,得 x≤m2 , ∵不等式至少有 5 个正整数解, ∴不等式的正整数解至少包括 1,2,3,4,5, ∴m2 ≥5,解得 m≥10.
【点拨】解关于 x 的不等式 3x-m≤0,得 x≤m3 . ∵不等式有三个正整数解,∴正整数解为 1,2,3.
∴3≤m3 <4,解得 9≤m<12.本题易错点是不能准确写出m3 的取 值范围,常见错误有m3 <4 或 3<m3 <4 等.

人教版初一数学下册9.1.1不等式及其解集在数轴上的表示

人教版初一数学下册9.1.1不等式及其解集在数轴上的表示

9.1.1 不等式及其解集[ 教学目标]知识与技能:感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;能力与方法:经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;情感、态度与价值观:通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

[教学重点与难点]重点: 正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。

.难点:不等式解集的确定,不等式的解集正确地表示到数轴上。

.[教学设计]一.问题探知展示多媒体图片,让学生从中发现不等式。

以及生活中的不等关系,引导同学们感受不等式和不等关系。

二、探究新知(一)不等式的概念1、用数学式子表示出来,由学生充分发表自己意见的基础上,师生共同归纳得出:用或表示大小关系的式子叫做不等式;用“看表示不等关系的式子也是不等式。

2、师生一起归纳出五种常见的不等号,注意书写和读法。

(1)坠”读作不等号”(2)读作大于号”(3)读作小于号”(4)读作大于或等于”即不小于”(5)迂”读作小于或等于”即不大于”总结:N”、 \”、鼻”、“w”、 都是不等号3、巩固练习,下列式子中哪些是不等式?①一1 < 3②一x+2=4 上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元 次方程,含有一个未知数且未知数的次数是 1 的不等式,叫做一元一次不等式.4、用不等式表示 :⑴a 是正数;⑵a 与5的和不超过7;⑶y 的4倍不小于8⑷a+2不等于b-2.(二) 不等式的解、不等式的解集 能使不等式成立的未知数的值叫不等式的解(1) x=-2, -1, 0能使不等式X +1 V 2成立吗?(2) 你还能找出一些使不等式 X+1 V 2成立的值吗?(3) 使不等式 X +1V 2 成立的未知数的值有多少个 ? 你能找出这个不等 式其他的解吗?它到底有多少个解?你从中发现了什么规律?由不等式的所有解组成的集合,我们把它叫做不等式的解集 . 注:(1)解集中包括了每一个解 (2)解集是一个范围(三) 不等式解集的表示方法 在数轴上表示不等式的解集 你能用什么办 法把不等式x > 1的解集表示在数轴上?注:大于向右,小于向左; 有等实心,无等空心 .画一画: 利用数轴来表示下列不等式的解集 .(1) x >-1 (2)x <2一元一次不等式的解集一般来说有以下四种情况:(1) X > a (2) X < a (3) X > a ⑷ X < a2、直接想出不等式的解集,并在数轴上表示出来:⑴ x>3;⑵ x < — 2四、总结归纳③ 3x 工4y⑤ 2x -3④ 6 > 2 ⑥ 2m < n收获和体会(1)不等式的定义(2)一元一次不等式(3)不等式的解(4)不等式的解集(5)不等式解集的表示方法五、布置作业1、完成蓝色作业本9.1.1不等式及其解集2、完成数学书P11A 116练习1.2.3。

中考数学不等式与不等式祖专题训练50题含答案

中考数学不等式与不等式祖专题训练50题含答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.一个不等式的解集在数轴上表示如图,则这个不等式可能是( )A .10x -≤B .10x ->C .10x -≥D .10x -<2.已知不等式组3010x x -<⎧⎨+≥⎩,则两个不等式的解集在同一数轴上表示正确的是( )A .B .C .D .3.若a b >,则下列不等式中正确的是( ) A .33a b >B .22a b ->-C .11+<+a bD .0a b -<4.已知点A (x +3,2﹣x )在第四象限,则x 的取值范围是( ) A .x >2 B .x >﹣3C .﹣3<x <2D .x <25.把不等式组的解集在数轴上表示,正确的是( )A .B .C .D .6.如果不等式组5x x a >⎧⎨>⎩的解集是5x >,则a 的取值范围是( )A .5a ≥B .5a ≤C .5a =D .5a <7.已知关于x 的一次函数y =mx+2m ﹣3在﹣1≤x≤1上的函数值总是正的,则m 的取值范围在数轴上表示正确的是( ) A . B . C .D .吉祥物礼品,借价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是( )A .()1008010900x x +->B .()1008010900x x +-<C .()1008010900x x +-≥D .()1008010900x x +-≤9.已知直线31y x 经过点2,3A m ⎛⎫⎪⎝⎭,则关于x 的不等式31x m 的解集为( )A .32x <B .23x <C .32x >-D .23x >-10.不等式组2{5x x >-≤的解集在数轴上可表示为( )A .B .C .D .11.若关于x 的不等式组214333x x x m x--⎧<⎪⎨⎪-≤-⎩恰有2个整数解,且关于x 、y 的方程组430mx y x y +=⎧⎨-=⎩也有整数解,则所有符合条件的整数m 的和为( ) A .-18B .-6C .-3D .012.平面直角坐标系中,过点32-(, )的直线l 经过第一、二、三象限,若点()0a ,,1b -(,),1c -(,)都在直线l 上,则下列判断正确的是() A .a b <B .2a <C .2b <D .3c -<13.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( ) A .10B .11C .12D .1314.不等式组38023x x -<⎧⎨-<⎩的非负整数解有( ).15.当x =﹣2时,下列不等式成立的是( ) A .x ﹣5>﹣7B .x ﹣2<0C .2(x ﹣2)>﹣2D .3x >2x16.若a b >,则下列四个不等式中正确的是( ) A .33a b >B .55a b +<+C .55a b ->-D .22a b -<-17.不等式组2≤3x-7<9的所有整数解为( ) A .3,4B .4,5C .3,4,5D .3,4,5,618.已知a<b ,则下列不等式中不正确的是( ) A .a 44b < B .a+4<b+4 C .-4a>-4b D .a 2<b 219.(2017届河南安阳滑县中考二模数学试卷)若不等式组2123x a x b -⎧⎨-⎩<>的解集为−1<x<1,则(a −3)(b+3)的值为 A .1B .−1C .2D .−220.如图,正比例函数y x =的图象与反比例函数()0ky k x=≠的图象交于A ,B 两点,90CAD ∠=︒,两边分别交x 轴,y 轴于点D ,C ,四边形OCAD 的面积为1,AE x ⊥轴于点E .有下列结论:①OA OB =;①三角形OAE 的面积为12;①线段AB 的;①不等式kx x>的解集是1x >或1x <-.其中正确结论的个数是( ).A .1B .2C .3D .4二、填空题 21.不等式1-2x≥-1的解集是____. 22﹣3<2x 的解集是 ___.23.“a 的3倍与12的差是一个非负数”用不等式表示为______24在实数范围内有意义,则实数x 的取值范围是______.25.不等式的解是______.26.已知关于x 的不等式20(0)kx k ->≠的解集是3x >,则直线2y kx =-+与x 轴的交点坐标是________.27.已知m 是整数,且一次函数y =(m +3)x +m +2的图象不过第二象限,则m =______. 28.已知关于x 的不等式(a-2)x >1的解集为x <12a -,则a 的取值范围____________. 29.如果ab <,要使ac bc >,则___0c ;30.如果m <n ,则关于x 的一元一次不等式组x mx n ≤⎧⎨<⎩的解集为______.31.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.32.先化简,再求值:211933x x x -⎛⎫-⋅ ⎪+⎝⎭,其中x 为偶数且满足不等式组23213x x -<⎧⎨-≤⎩. 33.不等式350x -≤的正整数解是_________.34.某班数学兴趣小组对不等式组2x x m >⎧⎨≤⎩的解集进行讨论,得到以下结论:①若 m = 4,则不等式组的解集为 2<x ≤ 4; ①若 m = 1,则不等式组无解;①若原不等式组无解,则 m 的取值范围为 m <2;①若 7 ≤ m <8,则原不等式组有 5 个整数解.其中,结论正确的有______. 35.不等式组583(1)131722{x x x x ++-≤-的最大整数解为________.36.不等式1132x x +-<的解集是_____. 37.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么a b +的值为 . 38.抛物线2222y x bx b b =++-+与x 轴没有交点,则b 的取值范围为 _____. 39.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______.三、解答题 40.解不等式4312163x x++≤+,并写出它的非正整数解. 41.(1)计算:2﹣2﹣2cos60°+|(π﹣3.14)0(2)解不等式数()295131x xx x --⎧⎨->+⎩,并把它的解集在数轴上表示出来.42.把下列不等式的解集在数轴上表示出来. (1)x≥-3;(2)x >-1;(3)x≤3;(4)x<-32.43.先化简,再求值2222221211x x x x x x x x x ⎛⎫+--+⎪--++⎝⎭,且x 是不等式2192136x x -+-≤的最小整数解.44.解不等式3(3)24->-x x ,并将解集在数轴上表示出来.45.解不等式组1211123x x x -≤⎧⎪+-⎨+<⎪⎩,并把解集在数轴上表示出来.46.在疫情期间,学校购买甲、乙两种消毒液,已知购买3桶甲种消毒液和4桶乙种消毒液共需170元,购买2桶乙种消毒液比购买3桶甲种消毒液少用50元. (1)求购买甲、乙两种消毒液每桶各需多少元?(2)若要购买甲、乙两种消毒液共21桶,且总费用不超过540元,求至多可购进甲种消毒液多少桶?47.某班到毕业时有经费1800元,决定拿出不少于270元但不超过300元的资金为老师买纪念品,其余资金用于给50名同学每人买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多少元? (2)有几种购买文化衫和相册的方案?48.解不等式组4713112x x x -<⎧⎪⎨+≥-⎪⎩49.国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,求符合此规定的行李箱的高的最大值.参考答案:1.B【分析】分别得出每个选项的解集,继而得出答案.【详解】解:由数轴可得:1x >, A.10x -≤的解集是1x ≤,故不符合题意; B.10x ->的解集是1x >,故符合题意; C.10x -≥的解集是1x ≥,故不符合题意; D.10x -<的解集是1x <,故不符合题意; 故选:B .【点睛】本题主要考查解一元一 次不等式的基本能力, 严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 2.C【分析】分别解出不等式的解集,再根据找不等式组的解集的规律即可求解. 【详解】解:不等式30x -<,解得3x >, 不等式10x +≥,解得1x ≥-, ①原不等式组的解集为:3x >, 故选:C .【点睛】本题考查了解不等式组并把解集在数轴上表示出来,熟练掌握找不等式组的解集的规律是解题的关键. 3.A【分析】不等式加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;乘或除以一个负数,不等号的方向改变.【详解】A. 不等式两边都乘以3,不等号的方向不变,故本选项正确; B. 不等式两边都乘以−2,不等号的方向改变,故本选项错误; C. 不等式两边都减1,不等号的方向不变,故本选项错误; D. 不等式两边同时减去b ,不等号的方向不变,故本选项错误; 故选A.【点睛】本题考查不等式的性质,解题的关键是掌握不等式的性质. 4.A【分析】根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.【详解】解:①点A(x+3,2﹣x)在第四象限,①30 20xx+>⎧⎨-<⎩,解得x>2.故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【详解】试题分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:解得,故选B.考点:在数轴上表示不等式的解集;解一元一次不等式组.6.B【分析】根据求解规律是:大大取大,小小取小,大小小大中间找,大大小小无解可得a≥5.【详解】①不等式组5xx a>⎧⎨>⎩的解集是x>5,①a≤5,故选:B.【点睛】此题主要考查了不等式的解集,关键是正确理解不等式组确定公共解集的方法.7.A【分析】由题意可知x取最小和最大值时函数的值总是正的,所以只要将x=﹣1和x=1代入函数式即可求m的取值范围,进而在数轴上表示即可.【详解】解:根据题意得:当x=﹣1时,y=﹣m+2m﹣3=m﹣3>0,①m >3;当x =1时,y =m+2m ﹣3=3m ﹣3>0, ①m >1,①m 的取值范围是m >3. ①m 的取值范围在数轴上表示为:故选:A .【点睛】本题考查了一次函数图象与系数的关系,在数轴上表示不等式的解集,一次函数的图象是直线,只要保证两个端点的函数值恒大于0,即可求得m 的取值范围. 8.D【分析】设购买冰墩墩礼品x 件,则购买雪容融()10x -件,再根据总共花费不超过900元,列出不等式即可.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融()10x -件, 由题意得()1008010900x x +-≤, 故选D .【点睛】本题主要考查了列不等式,正确理解题意找到不等关系是解题的关键. 9.B【分析】利用函数的解析式求得m =3,然后解不等式即可. 【详解】解:①直线y =3x +1经过点2,3A m ⎛⎫⎪⎝⎭,①m =3×23+1=3,①关于x 的不等式为3x +1<3, 解得:23x <, 故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,解一元一次不等式,根据函数的解析式求得m 的值是解题的关键. 10.D【分析】本题考查不等式组的解集在数轴上表示方法.【详解】不等式组的解集为-2<5x≤,在数轴上表示为.故选D.11.C【分析】先解不等式组求出m的取值范围,再解方程组,结合m的取值范围求出m满足不等式组恰有2个整数解,方程组也有整数解的值,然后再求出所有符合条件的整数m的和即可.【详解】解:不等式组214333x xx m x--⎧<⎪⎨⎪-≤-⎩①②,解不等式①得:x>−2,解不等式①得:34mx+≤,①不等式组的解集为324mx+-<≤.①不等式组恰有2个整数解,①3014m+≤<,解得:31m-≤<,解方程组4 30 mx yx y+=⎧⎨-=⎩,得:43123xmym ⎧=⎪⎪+⎨⎪=⎪+⎩①关于x、y的方程组430mx yx y+=⎧⎨-=⎩也有整数解,①m+3为4的因数,即m+3=±1或±2或±4,①−3≤m<1,①m的值为:−2、−1,①所有符合条件的整数m的和为(−2)+(−1)=−3.故选:C.【点睛】本题考查了一元一次不等式组的解法、二元一次方程组的解法,理解相关知识是解答关键.12.D【分析】设出一次函数解析式为y mx n +=,根据图象经过的象限确定0m >,把32-(, )代入解析式,得到用m 表示的函数关系式,把三个点代入解析式,判断各个选项是否正确.【详解】解:设直线l 的解析式为y =mx +n ,由于直线l 经过第一、二、三象限,所以0m >.由于点32-(, )在直线l 上,所以23m n -+=,即32n m +=,所以一次函数解析式为:32y mx m ++=,当0x =时,32a m +=,∵0m >,∴322a m +=>,故选项B 不合题意;当1x -=时,22b m +=,∵0m >,∴222b m +=>,故选项C 不合题意,∴3222m m ++>,即a b >,故选项A 不合题意,当1y -=时,321cm m ++-=,即33c m +-()=, 因为0m >.所以30c +<,即3c -<,故选项D 符合题意,故选:D .【点睛】本题考查了一次函数图象和性质以及不等式的性质,利用不等式的性质是解决本题的关键.13.C【分析】设预定每组分配的人数为x 人,若按每组人数比预定人数多分配1人,总人数为()81x +,若按每组人数比预定人数少分配1人,总人数为()81x -,根据题意列出不等式组,即可得解集,再根据实际情况得出预定每组分配的人数.【详解】解:设预定每组分配的人数为x 人,根据题意得()()81100,8190,x x ⎧+>⎪⎨-<⎪⎩解得232<x <494, 而x 为整数,所以x =12,即预定每组分配的人数为12人.故选:C.【点睛】此题主要考查不等式组的应用.14.C【详解】分析:求不等式组的解,再判断其中非负整数解.详解:38023x x -<⎧⎨-<⎩,解得32-<x <83,非负整数解有0,1,2,故选C. 点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:①若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:①若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x 表示不等式的解集,此时一般表示为a<x<b ,或a≤x≤b .此乃“相交取中”,如图所示:①若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空” 如图所示:15.B【分析】将x=-2代入计算得到结果,即可做出判断.【详解】A 、将x =﹣2代入得:﹣2﹣5=﹣7,故此选项错误;B 、将x =﹣2代入得:﹣2﹣2=﹣4<0,故此选项正确;C 、将x =﹣2代入得:2×(﹣2﹣2)=﹣8<﹣2,故此选项错误;D 、将x =﹣2代入得:﹣6<﹣4,故此选项错误,故选:B .【点睛】此题考查一元一次不等式的解集.解题的关键是掌握不等式的解集的定义,要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.16.A【分析】本题可通过不等式两边同时乘或除一个数不等号方向是否变化,判断A 、C 选项;不等式两边同时加或减一个数,不等式大小不变与题意矛盾以判断B 、D 选项.【详解】A 选项:不等式两边同时乘一个正数,不等号方向不变,故A 选项正确; B 选项:由55a b +<+可推出a <b ,与题干a b >矛盾,故排除B 选项;C 选项:不等式两边同时乘一个负数,不等号方向改变,故正确表达应为5a -<5b -,故排除C 选项;D 选项:由22a b -<-可推出a <b ,与题干a b >矛盾,故排除D 选项;故选:A .【点睛】本题考查不等式相关性质,易错点在于不等式两边若乘或除一个负数,不等号方向必须改变.17.C【详解】试题解析:可以化为237{379x x ≤--①<②①解不等式①得:x ≥3,解不等式①得:x <163, ①不等式组的解集是3≤x <163, ①不等式组的整数解是3,4,5.故选C .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出不等式组的解集.18.D【分析】根据不等式的性质逐个判断即可.【详解】A 、①a <b , ①a 44b <,正确,故本选项不符合题意; B 、①a <b ,①a +4<b +4,正确,故本选项不符合题意;C 、①a <b ,①−4a >−4b ,正确,故本选项不符合题意;D 、由-3<2,得(-3)2>22,故本选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 19.D【详解】解不等式2x −a <1,得:x <12a +,解不等式x −2b >3,得:x >2b+3,①不等式组的解集为−1<x <1,①112231a b +⎧=⎪⎨⎪+=-⎩,解得:a=1,b=−2,当a=1,b=−2时,(a −3)(b+3)=−2×1=−2,故选D .20.B【分析】根据正比例函数y x =的图象与反比例函数()0k y k x=≠的图象的性质,结合题意,可计算得OA OB =;根据90CAD ∠=︒和四边形OCAD 的面积为1,设点C 坐标为()0,m ,设点D 坐标为(),0n ,通过勾股定理和四边形面积解方程,即可得到k 的值,从而计算得AB 和三角形OAE 的面积,以及不等式k x x>的解集.【详解】①正比例函数y x =的图象与反比例函数()0k y k x=≠的图象交于A ,B 两点 ①0k > ①y x k y x =⎧⎪⎨=⎪⎩①x =结合题意,得A,(B①OAOB =①OA OB =,故①正确;设点C 坐标为()0,m ,设点D 坐标为(),0n ,结合题意,0m >且0n >①OC m =,OD n =①四边形OCAD 的面积为1①四边形OCAD的面积)11=122OAC OAD S S OC OD m n +=+=△△①m n +=结合题意,(22AC m =+,(22AD n =+ 又①90CAD ∠=︒,且90COD ∠=︒①22222AC AD OC OD CD +=+=①((2222+m n m n =+①m n =+①=①1k =①()1,1A ,()1,1B --,AB ==,故①错误;①AE x ⊥①()1,0E ,1AE =①1OE = ①1122OAE S OE AE =⨯=△,故①正确;当0x >时,k x x>即1x x > ①21x > ①1x >或1x <-(舍去)当0x <时,k x x >即1x x > ①21x <①10x -<<①不等式k x x >的解集是1x >或10x -<<,故①错误; 故选:B .【点睛】本题考查了正比例函数、反比例函数、勾股定理、分式、不等式的知识;解题的关键是熟练掌握正比例函数、反比例函数、勾股定理、分式、不等式的性质,从而完成求解.21.x ≤3【分析】由题意先去分母,再移项合并,进而化系数为1即可得出,注意化系数为1时改变符号方向. 【详解】解:1-2x ≥-1 去分母:12x -≥-,移项合并:3x -≥-,化系数为1:3x ≤. 所以不等式1-2x ≥-1的解集是3x ≤. 故答案为:3x ≤.【点睛】本题考查解一元一次不等式,熟练掌握解一元一次不等式运算法则是解答本题的关键.22.6x >-.【分析】先移项,然后系数化为1,即可求出不等式的解集.32x -<,23x -<,①2)3x <,①x >①2)x >-,①6x >-.故答案为:6x >-.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键. 23.3a ﹣12≥0.【详解】试题分析:理解:差是一个非负数,即是最后算的差应大于或等于0. 解:根据题意,得3a ﹣12≥0.故答案为3a ﹣12≥0.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.24.13x ≥且3x ≠【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组得到答案.【详解】解:由题意得:310x -≥且30x -≠, 解得:13x ≥且3x ≠, 故答案为:13x ≥且3x ≠.【点睛】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.25. 【详解】试题分析:把x 的系数化为1即可;注意系数化为一(不等式性质—不等式左右两边同时乘或除以同一个正数,不等号的方向不变/不等式左右两边同时乘或除以同一个负数,不等号的方向改变).化x 的系数化为1得,.①原不等式的解为. 考点:解一元一次不等式.26.(3,0)【分析】解不等式,并结合不等式的解,即可求出k 的值,然后将k 的值代入直线解析式中,再将y=0代入直线解析式中,即可求出结论.【详解】解:()200kx k ->≠当k >0时,解得x >2k; 当k <0时,解得x <2k; ①关于x 的不等式20(0)kx k ->≠的解集是3x >,①k >0,且23k = 解得:23k =将23k =代入直线2y kx =-+中,得223y x =-+ 当y=0时,解得:x=3①直线2y kx =-+与x 轴的交点坐标是(3,0)故答案为(3,0).【点睛】此题考查的是解不等式和求直线与x 轴的交点坐标,掌握不等式的基本性质和坐标轴上点的坐标规律是解决此题的关键.27.﹣2.【分析】根据一次函数的图象不过第二象限可得到一个关于m 的不等式组,解不等式组确定出m 的取值范围,再根据m 是整数,即可确定m 的值.【详解】①一次函数y =(m +3)x +m +2的图象不过第二象限,①3020m m +>⎧⎨+⎩, 解得:﹣3<m ≤﹣2,而m 是整数,则m =﹣2.故答案为:﹣2.【点睛】本题主要考查一次函数的图象及不等式组的整数解,掌握一次函数的图象是解题的关键.28.a <2【分析】根据不等式的基本性质,由不等式(a-2)x >1的解集为x <12a -,可得:a-2<0,据此求出a 的取值范围即可.【详解】①不等式(a-2)x >1的解集为x <12a -, ①a-2<0,①a 的取值范围为:a <2.故答案为a <2. 【点睛】此题主要考查了不等式的解集,要熟练掌握,注意不等式的基本性质的应用. 29.<【分析】根据不等式的基本性质即可解答.【详解】如果a <b ,ac >bc,则c <0.【点睛】本题主要考查不等式的基本性质,熟记不等式的性质并应用是关键. 30.x ≤m【分析】根据同小取小,即可得到不等式的解集,从而可以解答本题.【详解】解:①不等式组x m x n≤⎧⎨<⎩,且m <n , ①x ≤m ,故答案为x ≤m .【点睛】此题考查不等式组的解集,根据不等式的解集求出即可,难度一般. 31.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.32.3x x-,12-. 【分析】先化简211933x x x -⎛⎫-⋅ ⎪+⎝⎭,再求出不等式组的解集,代值计算即可. 【详解】解:211933x x x -⎛⎫-⋅ ⎪+⎝⎭ ()()3(3)(3)=333x x x x x x x x ⎡⎤++--⋅⎢⎥++⎣⎦()3(3)(3)=33x x x x x x +-+-⋅+ =3x x-, 又23213x x -<⎧⎨-⎩①② 解不等式①得x >-1,解不等式①得x ≤2,①-1<x ≤2,①x 为偶数且x ≠0,①x =2, 原式231==22--. 【点睛】此题考查的是分式的化简和求不等式组解集的综合题,掌握找分式的最简公分母的方法和不等式的性质是解题的关键.33.1【分析】先求出不等式的解集,然后求出其正整数解即可.【详解】解:①350x -≤, ①53x ≤, ①正整数解是1,故答案为:1.【点睛】本题主要考查了解一元一次不等式和解不等式的正整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.34.①①①【分析】将m =4和m =1代入不等式组,再根据口诀可得出不等式解集情况,从而判断①①;由不等式组无解,并结合大大小小的口诀可得a 的取值范围,此时注意临界值;由7≤m <8,可得不等式组3、4、5、6、7共5个整数解,从而判断①.【详解】解:①若m =4,则不等式组为24x x >⎧⎨≤⎩,此不等式组的解集为2<x ≤4,此结论正确;①若m=1,则不等式组为21xx>⎧⎨≤⎩,此不等式组无解,此结论正确;①若不等式组无解,则m的取值范围为m≤2,此结论错误;①若7≤m<8,则原不等式组有3、4、5、6、7共5个整数解,此结论正确;故答案为:①①①.【点睛】本题主要考查一元一次不等式组的整数解,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.35.4【详解】解①得,x>-2.5;解①得,x≤4;①-2.5<x≤4,①最大整数解为4.36.x>5【分析】先去分母,然后通过移项、化未知数系数为1来解不等式.【详解】解:在不等式的两边同时乘以6,得2x+2<3x﹣3,移项,得﹣x<﹣5,化系数为1,得x>5.故答案是:x>5.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.37.1【分析】先解不等式组,再根据条件得到a,b的值,然后可求出a+b的值.【详解】解2223x a x b ⎧+≥⎪⎨⎪-<⎩得3422b a x +-≤<, 因为01x ≤<,所以4202a a -==,,3112b b +==-,, 1a b +=.考点:不等式组.38.2b <【分析】根据抛物线2222y x bx b b =++-+与x 轴没有交点,可知当22220x bx b b ++-+=时,()()22241+20,b b b --⨯⨯<从而可以求得b 的取值范围. 【详解】解:①抛物线2222y x bx b b =++-+与x 轴没有交点,①22220x bx b b ++-+=无解,①()()22241+20,b b b --⨯⨯<解得:2,b <故答案为: 2.b <【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用一元二次方程根的判别式解答.39.01a <<或203a <<- 【分析】分当a<0时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当a<0时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值,此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键.40.4x ≥-,-4,-3,-2,-1,0.【分析】通过去分母,去括号,移项,合并同类项,未知数系数化为1,即可求解. 【详解】解:4312163x x ++≤+, 去分母得:()432126x x +≤++,去括号,移项得:34264x x -≤+-,合并同类项得:4x -≤,解得:4x ≥-,①它的非正整数解为:-4,-3,-2,-1,0.【点睛】本题主要考查解一元一次不等式,熟练掌握去分母,去括号,移项,合并同类项,未知数系数化为1,是解题的关键.41.(1)14+(2)x >2,见解析. 【分析】根据负整数指数幂的性质、特殊角的三角函数值、二次根式化简以及零指数幂的性质依次计算后,再根据实数的运算法则求得计算结果即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集即可.【详解】(1)原式=14﹣2×12+1=14﹣ =14 (2)()295131x x x x --⎧⎪⎨->+⎪⎩①② 解不等式①得:x≥﹣3,解不等式①得:x >2,则不等式组的解集为x >2,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.42.(1)(2)(3)(4)【详解】试题分析:将上述不等式的解集规范的表示在数轴上即可.试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点睛:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”.43.11x x +-,13【分析】先利用分式的加减乘除混合运算法则进行化简,然后把不等式2192136x x -+-≤的最小整数解代入求值即可.【详解】解:2222221211x x x x x x x x x ⎛⎫+--÷ ⎪--++⎝⎭ =()()()()()22111111x x x x x x x x x ⎡⎤+-+-⋅⎢⎥+--⎢⎥⎣⎦=2111x x x x x x+⎛⎫-⋅ ⎪--⎝⎭ =11x x x x+⋅-=11x x +-, 由不等式219236x x -+-≤1,得4x -2-9x -2≤6, ①x ≥-2,①使分式有意义的x 值是1x ≠±,0x ≠,且x 是不等式219236x x -+-≤1的最小整数解, ①x =-2,当x =-2时,原式=211213-+=--. 【点睛】此题主要考查分式的化简求值和解一元一次不等式,熟练掌握分式的混合运算法则和解一元一次不等式的步骤是解题关键.44.7x >-.在数轴上表示见解析【分析】先去括号,再移项,合并同类项,系数化为1,最后在数轴上表示出解集即可.【详解】解:去括号得:9324->-x x ,移项得:4329->-x x ,解得:7x >-.在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,以及在数轴上表示不等式的解集,解题关键是掌握不等式的性质.45.﹣1≤x <1【详解】试题分析:先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.试题解析:解:1211123x x x -≤⎧⎪⎨+-+⎪⎩①<② 解①得:x ≥﹣1,解①得:x <1.在数轴上表示如下:则不等式组的解集是:﹣1≤x <1.46.(1)购买甲种消毒液每桶需30元,乙种消毒液每桶需20元(2)12【分析】(1) 设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,列方程组求解即可.(2) 设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,列出不等式求解即可.(1)设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,得341703250x y x y +=⎧⎨-=⎩, 解得3020x y =⎧⎨=⎩, 故购买甲种消毒液每桶需30元,乙种消毒液每桶需20元.(2)设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,得30x +20(21-x )≤540,解得x ≤12,①x 是正整数,①至多可购进甲种消毒液12桶.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,熟练掌握方程组的求解,不等式整数解的求解是解题的关键.47.(1)每件文化衫和每本相册的价格分别为35元,26元(2)共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【分析】(1)设每件文化衫和每本相册的价格分别为x 元,y 元,然后根据每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册列出方程求解即可; (2)设购买文化衫m 件,购买相册(50)m -本,然后根据拿出不少于270元但不超过300元的资金为老师买纪念品列出不等式组求解即可.(1)解:设每件文化衫和每本相册的价格分别为x 元,y 元,由题意得:925200x y x y -=⎧⎨+=⎩, 解得3526x y =⎧⎨=⎩, 答:每件文化衫和每本相册的价格分别为35元,26元;(2)解:设购买文化衫m 件,购买相册(50)m -本,由题意得,180********(50)1800270m m -≤+-≤-, 解得25222599m ≤≤,且m 为整数, ①共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.答:共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【点睛】本题主要考查了二元一次方程组和一元一次不等式组的应用,解题的关键在于正确理解题意.48.32x -≤<【分析】先求出每个不等式的解集,再求出不等式组的解集即可. 【详解】4713112x x x -<⎧⎪⎨+≥-⎪⎩①② 由①得2x <,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时不等式的解集在数轴上的表示
1.不等式的解集x≤2在数轴上表示为()
图4-3-4
2.[2012·泉州]把不等式x+1≥0的解集在数轴上表示出来,则正确的是()
图4-3-5
3.[2012·盘锦]把不等式3x-6>0的解集表示在数轴上,正确的是()
图4-3-6
4.[2012·南昌]不等式8-2x>0的解集在数轴上表示正确的是()
图4-3-7
5.如图4-3-8所示的不等式的解集是()
图4-3-8
A.-3<x<2B.-3<x≤2
C.-3≤x≤2 D.-3≤x<2
6.一个不等式的解集在数轴上表示如图4-3-9所示,则它的解集为________.
图4-3-9
7.不等式的解集在数轴上表示如图4-3-10所示,则该不等式可能是________________________.
图4-3-10
8.已知如图4-3-11是关于x的不等式2x-a>-3的解集,则a的值为________.
图4-3-11
9.[2012·广安] 不等式2x+9≥3(x+2)的正整数解是____________.
10.[2012·肇庆]解不等式2(x+3)-4>0,并把解集在数轴(如图4-3-12)上表示出来.
图4-3-12
11.解不等式x+4
3-
3x-1
2>1,并将它的解集在数轴上表示出来.
12.求不等式3(x+1)≥5(x-2)+1的非负整数解.
答案解析
1.B
2.B【解析】不等式x+1≥0的解集为x≥-1.
3.C【解析】不等式3x-6>0的解集为x>2.
4.C【解析】不等式8-2x>0的解集为x<4.
5.D
6.x>-4【解析】界点是-4,是空心,方向向右,因此,不等式的解集为x>-4.
7.答案不唯一,如x≤1,x+2≤3,5-x≥4等
8.1【解析】解不等式2x-a>-3,得x>a-3
2.由数轴,可得x>-1,所以
a-3
2
=-1,解得a=1.
9.1,2,3
10.解:去括号得:2x+6-4>0,
合并同类项得:2x+2>0,
移项得:2x>-2,
把x的系数化为1得:x>-1,
原不等式的解集在数轴上表示为:
第10题答图11.解:去分母,得2(x+4)-3(3x-1)>6,
去括号,得2x+8-9x+3>6,
移项,合并同类项,得-7x+11>6,
解得x<5 7.
原不等式解集在数轴上表示为:
第11题答图12.解:去括号,得3x+3≥5x-10+1,移项,合并同类项,得-2x≥-12,
两边除以-2,得x≤6.
这个不等式的解集在数轴上表示如图所示.
第12题答图
原不等式的非负整数解为0,1,2,3,4,5,6.。

相关文档
最新文档