半导体器件物理习题与参考文献

合集下载

有关半导体的参考文献

有关半导体的参考文献

有关半导体的参考文献参考文献:1. 陶铸, 朱建新. 半导体物理学[M]. 清华大学出版社, 2017.2. 张宇. 半导体器件物理与模拟[M]. 电子工业出版社, 2018.3. 石磊, 朱建新. 半导体器件物理与工艺[M]. 机械工业出版社, 2019.4. 朱建新. 半导体物理与器件[M]. 清华大学出版社, 2020.半导体材料是一类具有特殊电学性质的材料,广泛应用于电子器件和集成电路中。

随着科技的不断进步,半导体物理学和器件工艺也得以迅速发展。

本文将对半导体物理学和器件工艺的一些重要内容进行介绍。

半导体物理学是研究半导体材料的电学性质和输运特性的学科。

《半导体物理学》一书详细介绍了半导体材料的基本性质、能带理论、载流子输运、PN结和二极管、MOS结和MOS场效应晶体管等内容。

通过学习半导体物理学,可以了解半导体材料的结构、能带结构以及载流子的产生、输运和复合过程,为后续学习半导体器件物理和工艺奠定基础。

半导体器件物理与模拟是研究半导体器件的电学特性和模拟方法的学科。

《半导体器件物理与模拟》一书详细介绍了半导体器件的物理效应、载流子输运、PN结和二极管、MOS场效应晶体管、BJT等内容。

通过学习半导体器件物理与模拟,可以了解各种半导体器件的工作原理、特性和模拟方法,为后续设计和优化半导体器件提供理论指导。

半导体器件物理与工艺是研究半导体器件制备工艺和性能改善方法的学科。

《半导体器件物理与工艺》一书详细介绍了半导体器件的制备工艺、薄膜技术、光刻技术、离子注入和扩散技术等内容。

通过学习半导体器件物理与工艺,可以了解各种半导体器件的制备过程和性能改善方法,为实际的半导体器件制造提供技术支持。

半导体物理与器件是综合了半导体物理学和半导体器件物理与工艺的学科。

《半导体物理与器件》一书全面介绍了半导体物理和器件的基本原理和应用。

通过学习半导体物理与器件,可以深入了解半导体材料的物理性质、器件的工作原理和制备工艺,为实际的半导体器件设计和制造提供理论指导和技术支持。

半导体器件物理课后习题(施敏)

半导体器件物理课后习题(施敏)

p N A N D 5 1015 1017 1017 5 1015 cm3
ni (9.65 109 ) 2 4 3 n 1 . 86 10 cm p 5 1015
1 1 8.33cm 19 15 qp p 1.6 10 5 10 150

因为霍耳电压为正的,所以该样品为p型半导体(空穴导电) 多子浓度:

霍耳系数:
IBZW 2.5 103 30 104 0.05 17 3 p 1 . 46 10 cm qVH A 1.6 1019 10 103 1.6 103
1 1 3 RH 42 . 8 cm /C 19 17 qp 1.6 10 1.46 10
因为热平衡时,样品内部没有载流子的净流动,所以有
J n漂移 J n扩散 J n 0
根据欧姆定律的微分形式
J n漂移 E ( x)
(a) q
E
J n扩散 ( x)


Dn N 0 exp( ax)
a q kT n N 0 exp( ax) q a kT n N 0 exp( ax) a kT n N D q n N D a kT q

1 1 2.78cm qp p 1.6 1019 5 1015 450
2

注意:双对数坐标! 注意:如何查图?NT?
(b) 21016硼原子/cm3及1.51016砷原子/cm3
p N A N D 2 1016 1.5 1016 5 1015 cm3
密度 = 每立方厘米中的原子数× 原子量/阿伏伽德罗常数
(69.72 74.92) 3 2.2 10 g / cm 23 6.02 10

《半导体物理学》试题与及答案

《半导体物理学》试题与及答案

练习1-课后习题7
第二章 半导体中杂质和缺陷能级
锑化铟的禁带宽度E g = 0.18 e V ,相对介电常数 εr = 17 ,电子的 有效质量mn∗ = 0.015 m0, m 0为电子的惯性质量,求 ⅰ)施主杂质的电离能, ⅱ)施主的弱束缚电子基态轨道半径。
解:
练习2
第二章 半导体中杂质和缺陷能级
所以样品的电导率为: q(n0 n p0 p )
代入数据得,电导率为2.62 ×1013S/cm 所以,电场强度 E J 1.996103 mA / cm

作业-课后习题2
第四章 半导体的导电性
试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1450cm2/V·S 和500cm2/V·S。当掺入百万分之一的As 后,设杂质全部电离,试计算其电 导率。比本征Si 的电导率增大了多少倍?(ni=1.5×1010cm-3; Si原子浓度为 =5.0×1022cm-3,假定掺杂后电子迁移率为900cm2/V·S)
m0为电子惯性质量,k1=1/2a; a=0.314nm。试求: (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化。
练习2-课后习题2
第一章 半导体中的电子状态
2.晶格常数为0.25nm的一维晶格,当外加102V/m和107V/m 的电 场时,试分别计算电子自能带底运动到能带顶所需的时间。
所以,300k时,
nT 300

(1.05 1019

5.7
1018 )
exp(
0.67 1.61019 21.381023 300)
1.961013cm3
77k时,

《半导体物理学》习题库共12页

《半导体物理学》习题库共12页

第 1 章思考题和习题1. 300K 时硅的晶格常数a=5.43 ?,求每个晶胞内所含的完整原子数和原子密度为多少?2. 综述半导体材料的基本特性及Si、GaAs的晶格结构和特征。

3. 画出绝缘体、半导体、导体的简化能带图,并对它们的导电性能作出定性解释。

4. 以硅为例,简述半导体能带的形成过程。

5. 证明本征半导体的本征费米能级E i 位于禁带中央。

6. 简述迁移率、扩散长度的物理意义。

7. 室温下硅的有效态密度Nc=2.8 X 1019cm3, K T=0.026eV,禁带宽度Eg=1.12eV,如果忽略禁带宽度随温度的变化,求:(a)计算77K、300K、473K 3 个温度下的本征载流子浓度。

(b)300K本征硅电子和空穴的迁移率分别为1450cm i/V • s和2500cm/V • s,计算本征硅的电阻率是多少?8. 某硅棒掺有浓度分别为1016/cm3和1018/cm3的磷,求室温下的载流子浓度及费米能级E FN的位置(分别从导带底和本征费米能级算起)。

9. 某硅棒掺有浓度分别为1015/cm3和1017/cm3的硼,求室温下的载流子浓度及费米能级E FP的位置(分别从价带顶和本征费米能级算起)。

10. 求室温下掺磷为1017/cm3的N+型硅的电阻率与电导率。

11. 掺有浓度为3X 1016cm-3的硼原子的硅,室温下计算:(a)光注入△ n=A p=3X 1012 cm-3的非平衡载流子,是否为小注入?为什么?(b)附加光电导率为多少?(c)画出光注入下的准费米能级 E FN和E FP(E i为参考)的位置示意图。

(d)画出平衡下的能带图,标出E C、E V、E FP、E i 能级的位置,在此基础上再画出光注入时,H P和E FN',并说明偏离E FP的程度是不同的。

12. 室温下施主杂质浓度N D=4X 1015 cm-3的N型半导体,测得载流子迁移率口n=1050cm2/V • s,口P=400 cm2/V • s, K T/q=0.026V,求相应的扩散系数和扩散长度为多少?第2章思考题和习题1 .简述PN结空间电荷区的形成过程和动态平衡过程。

施敏-半导体器件物理英文版-第一章习题

施敏-半导体器件物理英文版-第一章习题

施敏-半导体器件物理英文版-第一章习题施敏-半导体器件物理英文版-第一章习题施敏半导体器件物理英文版第一章习题1. (a )求用完全相同的硬球填满金刚石晶格常规单位元胞的最大体积分数。

(b )求硅中(111)平面内在300K 温度下的每平方厘米的原子数。

2. 计算四面体的键角,即,四个键的任意一对键对之间的夹角。

(提示:绘出四个等长度的向量作为键。

四个向量和必须等于多少?沿这些向量之一的方向取这些向量的合成。

)3. 对于面心立方,常规的晶胞体积是a 3,求具有三个基矢:(0,0,0→a/2,0,a/2),(0,0,0→a/2,a/2,0),和(0,0,0→0,a/2,a/2)的fcc 元胞的体积。

4. (a )推导金刚石晶格的键长d 以晶格常数a 的表达式。

(b )在硅晶体中,如果与某平面沿三个笛卡尔坐标的截距是10.86A ,16.29A ,和21.72A ,求该平面的密勒指数。

5. 指出(a )倒晶格的每一个矢量与正晶格的一组平面正交,以及(b )倒晶格的单位晶胞的体积反比于正晶格单位晶胞的体积。

6. 指出具有晶格常数a 的体心立方(bcc )的倒晶格是具有立方晶格边为4π/a 的面心立方(fcc )晶格。

[提示:用bcc 矢量组的对称性:)(2x z y a a -+=,)(2y x z a b -+=,)(2z y x a c -+= 这里a 是常规元胞的晶格常数,而x ,y ,z 是fcc 笛卡尔坐标的单位矢量:)(2z y a a ρρρ+=,)(2x z a b ρρρ+=,)(2y x a c ρρρ+=。

] 7. 靠近导带最小值处的能量可表达为.2*2*2*22++=z z y y xx m k m k m k E η 在Si 中沿[100]有6个雪茄形状的极小值。

如果能量椭球轴的比例为5:1是常数,求纵向有效质量m*l 与横向有效质量m*t 的比值。

8. 在半导体的导带中,有一个较低的能谷在布里渊区的中心,和6个较高的能谷在沿[100] 布里渊区的边界,如果对于较低能谷的有效质量是0.1m0而对于较高能谷的有效质量是1.0m0,求较高能谷对较低能谷态密度的比值。

半导体物理与器件习题

半导体物理与器件习题

半导体物理与器件习题目录半导体物理与器件习题 (1)一、第一章固体晶格结构 (2)二、第二章量子力学初步 (2)三、第三章固体量子理论初步 (2)四、第四章平衡半导体 (3)五、第五章载流子输运现象 (5)六、第六章半导体中的非平衡过剩载流子 (5)七、第七章pn结 (6)八、第八章pn结二极管 (6)九、第九章金属半导体和半导体异质结 (7)十、第十章双极晶体管 (7)十一、第十一章金属-氧化物-半导体场效应晶体管基础 (8)十二、第十二章MOSFET概念的深入 (9)十三、第十三章结型场效应晶体管 (9)一、第一章固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是。

2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。

3.半导体的电阻率为10-3~109Ωcm。

4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。

常用的掺杂方法有扩散和离子注入。

6.什么是替位杂质?什么是填隙杂质?7.什么是晶格?什么是原胞、晶胞?二、第二章量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。

2.什么是概率密度函数?3.描述原子中的电子的四个量子数是:、、、。

三、第三章固体量子理论初步1.能带的基本概念◼能带(energy band)包括允带和禁带。

◼允带(allowed band):允许电子能量存在的能量范围。

◼禁带(forbidden band):不允许电子存在的能量范围。

◼允带又分为空带、满带、导带、价带。

◼空带(empty band):不被电子占据的允带。

◼满带(filled band):允带中的能量状态(能级)均被电子占据。

导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。

价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。

半导体物理参考习题和解答

半导体物理参考习题和解答

半导体物理参考习题和解答第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。

答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。

当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。

组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。

2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。

答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。

4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k 随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。

5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。

半导体物理习题及解答-刘诺

半导体物理习题及解答-刘诺

第一篇习题 半导体中的电子状态1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。

1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。

1-3、 试指出空穴的主要特征。

1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。

1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。

求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。

第一篇题解 半导体中的电子状态 刘诺 编1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。

其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。

温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。

反之,温度降低,将导致禁带变宽。

因此,Ge、Si的禁带宽度具有负温度系数。

1-3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。

主要特征如下:A、荷正电:+q;B、空穴浓度表示为p(电子浓度表示为n);C、E P=-E nD、m P*=-m n*。

1-4、解:(1)Ge、Si:a)Eg (Si:0K) = 1.21eV;Eg (Ge:0K) = 1.170eV;b)间接能隙结构c)禁带宽度E g随温度增加而减小;(2)GaAs:a)E g(300K)第二篇习题-半导体中的杂质和缺陷能级刘诺编2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。

2-3、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p型半导体。

半导体物理学习题答案(有目录)

半导体物理学习题答案(有目录)

半导体物理学习题答案(有目录)半导体物理习题解答目录1-1.(P32)设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E v(k)分别为: (2)1-2.(P33)晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

(3)3-7.(P81)①在室温下,锗的有效状态密度Nc=1.05×1019cm-3,Nv=5.7×1018cm-3,试求锗的载流子有效质量mn*和mp*。

(3)3-8.(P82)利用题7所给的Nc和Nv数值及Eg=0.67eV,求温度为300k和500k时,含施主浓度ND=5×1015cm-3,受主浓度NA=2×109cm-3的锗中电子及空穴浓度为多少? (4)3-11.(P82)若锗中杂质电离能△ED=0.01eV,施主杂质浓度分别为ND=1014cm-3及1017cm-3,计算(1)99%电离,(2)90%电离,(3)50%电离时温度各为多少? (5)3-14.(P82)计算含有施主杂质浓度ND=9×1015cm-3及受主杂质浓度为1.1×1016cm-3的硅在300k 时的电子和空穴浓度以及费米能级的位置。

(6)3-18.(P82)掺磷的n型硅,已知磷的电离能为0.04eV,求室温下杂质一般电离时费米能级的位置和磷的浓度。

(7)3-19.(P82)求室温下掺锑的n型硅,使EF=(EC+ED)/2时的锑的浓度。

已知锑的电离能为0.039eV。

(7)3-20.(P82)制造晶体管一般是在高杂质浓度的n型衬底上外延一层n型的外延层,再在外延层中扩散硼、磷而成。

①设n型硅单晶衬底是掺锑的,锑的电离能为0.039eV,300k时的EF位于导带底下面0.026eV处,计算锑的浓度和导带中电子浓度。

(8)4-1.(P113)300K时,Ge的本征电阻率为47Ω.cm,如电子和空穴迁移率分别为3900cm2/V.S和1900cm2/V.S,试求本征Ge的载流子浓度。

(完整版)半导体器件物理试题库.docx

(完整版)半导体器件物理试题库.docx

西安邮电大学微电子学系商世广半导体器件试题库常用单位:在室温( T = 300K )时,硅本征载流子的浓度为n i = 1.510×10/cm3电荷的电量 q= 1.6 ×10-19Cn2/V sp2/V s μ=1350 cmμ=500 cmε0×10-12F/m=8.854一、半导体物理基础部分(一)名词解释题杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消的作用,通常称为杂质的补偿作用。

非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。

迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。

晶向:晶面:(二)填空题1.根据半导体材料内部原子排列的有序程度,可将固体材料分为、多晶和三种。

2.根据杂质原子在半导体晶格中所处位置,可分为杂质和杂质两种。

3.点缺陷主要分为、和反肖特基缺陷。

4.线缺陷,也称位错,包括、两种。

5.根据能带理论,当半导体获得电子时,能带向弯曲,获得空穴时,能带向弯曲。

6.能向半导体基体提供电子的杂质称为杂质;能向半导体基体提供空穴的杂质称为杂质。

7.对于 N 型半导体,根据导带低E C和 E F的相对位置,半导体可分为、弱简并和三种。

8.载流子产生定向运动形成电流的两大动力是、。

9.在 Si-SiO 2系统中,存在、固定电荷、和辐射电离缺陷 4 种基本形式的电荷或能态。

10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向移动;对于P 型半导体,当温度升高时,费米能级向移动。

(三)简答题1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么?2.说明元素半导体Si 、 Ge中主要掺杂杂质及其作用?3.说明费米分布函数和玻耳兹曼分布函数的实用范围?4.什么是杂质的补偿,补偿的意义是什么?(四)问答题1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同?要获得在较高温度下能够正常工作的半导体器件的主要途径是什么?(五)计算题1.金刚石结构晶胞的晶格常数为a,计算晶面( 100)、( 110)的面间距和原子面密度。

半导体物理与器件第四版课后习题答案(供参考).doc

半导体物理与器件第四版课后习题答案(供参考).doc

Chapter 44.1n i 2E gN c N expkTT 3E gexpN cO N O300kTwhere N cO and N Oare the values at 300 K.(a) SiliconT (K) kT (eV) n i (cm 3) 200 0.01727 7.68 104 400 0.03453 2.38 1210 6000.05189.74 1014(c) GaAs(b) GermaniumT (K)n i (cm 3 ) n i (cm 3 ) 200 2.16 10101.38 4008.60 1014 3.28 109 6003.82 10165.72 1012_______________________________________ 4.2Plot_______________________________________4.3(a) n i 2 N c NexpE gkT31121919T5 2.8 1.04 101010300exp1.120.0259 T 300T 32.5 10 232.912 10 38300exp1.12 3000.0259 TBy trial and error, T 367.5 K(b)n i25 10 1222.5 10 2532.912 10 38T exp 1.12 300300 0.0259 TBy trial and error,T 417.5 K _______________________________________4.4At T200 K, kT0.02592003000. 017267eVAt T400 K, kT0.02594003000. 034533eVn i 2400 7.70 101023.025 10 17n i 2 2001.40 10 2 23400expE g3000.0345333200Egexp300 0.017267E gE g8 exp0.0345330.0172673.025 10178 exp E g 57 .9139 28.9578orE g 28.9561ln 3.025 1017 38.17148 or E g 1.318 eVNow7.70 1010N co N o340023001.318 exp0.03453321N co N o 2.370 175.929 10 2.658 10so N co N o 9.41 10 37 cm 6_______________________________________4.5exp 1.10n i kT 0.20Bexpn i A 0.90 kTexp kTFor T 200 K, kT 0.017267 eVFor T 300 K, kT 0.0259 eVFor T 400 K, kT 0.034533 eV(a) For T 200K,n i B exp 0.20 9.325 10 6n i A 0.017267(b) For T 300K,n i Bexp 0.204.43 10 4n i A 0.0259 (c) For T 400K,n i Bexp 0.203.05 10 3n i A 0.034533_______________________________________ 4.6(a) g c f FE E FE E c expkTThen g c f F x expxkTTo find the maximum value:d g c f F 1 x1 / 2 exp xdx 2 kT1 x1 /2 exp x 0kT kTwhich yields1/ 21 x kT2x1/ 2 x 2kTThe maximum value occurs atEkTE c2(b)g 1 f FE F EE E expkTE EE E expkTexpE F EkTLet E E xThen g 1 f F x expxkTTo find the maximum valued g 1 f F d xdx dxx expkTSame as part (a). Maximum occurs atxkT2E E c exp E E ckTorkTE E2E c EF expkTLet E E c x _______________________________________ 4.7E1 E c exp E1 E cn E1 kTn E2E2 E c exp E2 E c kTwhereE1 E c 4kT and E 2 E c kT 2Thenn E1 4kTexp E1 E2n E2 kT kT22 2 exp 4 12 exp 3.522orn E10.0854n E 2_______________________________________ 4.8Plot_______________________________________4.9Plot_______________________________________ 4.10E Fi E midgap 3kT ln m*pm n* 4Silicon: m*p 0.56 m o , m n* 1.08m oE Fi E midgap 0.0128 eVGermanium: m*p 0. 37m o ,*0.55m om nE Fi E midgap 0 .0077 eVGallium Arsenide: m*p 0.48m o ,m n* 0.067m oE Fi E midgap 0 .0382 eV_______________________________________ 4.11E Fi E midgap 1 kT ln N2 N c1kT ln 1.04 1019 0.4952 kT2 2.8 1019T (K) kT (eV) ( E Fi E midgap )(eV) 200 0.01727 0.0086 400 0.03453 0.0171 600 0.0518 0.0257_______________________________________4.12(a) E Fi E midgapm*p3 kT ln4 m n*3 0.0259 ln0.704 1.2110.63 meV(b) E Fi E midgap 3 0.0259 ln0.754 0.08043.47 meV_______________________________________4.13Let g c E K constantThenn o g c E f F E dEE cK1dEE E FEc 1 expkTK expE E FdEkTE cLetE E cso that dE kT dkTWe can writeE EF E c E F E E cso thatE E Fexp E c E FexpexpkTkTThe integral can then be written asn o K kT exp E c E Fexp d kTwhich becomesn o K kTE c EF expkT_______________________________________4.14Let g c E C1E E c for E E cThenn o g c E f F E dEE cC1 E E cdEE c 1exp E EF kTC1 EE E FdE E C expE ckTLetE E cdE kT dso thatkTWe can writeE EF E E c E c E FThenE c E Fn o C1 expkTE E cE E cdE expE ckT orn oE c EF C1 expkTkT exp kT d 0We find thatexp d exp 1 1So2 E c E Fn o C1 kT expkT_______________________________________4.15r1 m oWe have rm*a oFor germanium, r 16 , m* 0.55m oThenr1 16 1 a o 29 0.530.55oror1 15.4 AThe ionization energy can be written asm*2E o 13.6 eVm o s0.552 13.6 E 0.029 eV16_______________________________________ 4.16We have r1 m orm*a oFor gallium arsenide, r 13.1 , *m0.067 m o1or1 13.1 104 A0.530.067The ionization energy ism*20.067E o 13.6 13.6m o s 13.1 2orE0.0053 eV_______________________________________4.17Nc(a) E c E F kT ln2.8 10190.0259 ln 157 100.2148 eV(b) E F E E g E c E F1.12 0.2148 0.90518eV(c) p o NE F E expkT1.04 19 0.9051810 exp0.02596.90 103cm 3(d) Holesn o(e) E F E Fi kT lnn i710 150.0259 ln1.5 10100.338 eV_______________________________________4.18N(a) E F E kT lnp o190.0259 ln 1.0410210160.162 eV(b) E c E F E g E F E1.12 0.162 0.958 eV(c) n o 2.8 19 0.95810 exp0.02592.41 103cm3p o(d) E Fi E F kT lnn i2 10 160.0259 ln 101.5 100.365eV_______________________________________4.19Nc(a) E c E F kT ln0.0259 ln 2.810192 1050.8436 eVE F E E g E c E F1.12 0.8436E F E 0.2764 eV(b) p o 1.04 1019 exp 0.276370.02592.414 1014cm3(c)p-type_______________________________________4.20(a) kT3750.032375 eV0.02593003 / 2n o 4.7 10 17 375 exp 0.28300 0.0323751.15 1014cm3E F E E g E c E F 1.42 0.281.14 eV375 3 / 2 1.14 p o 7 18 exp10300 0.0323754.99 103cm 3(b) E c E F 0.0259 ln 4.7 10171.15 10 140.2154 eVE F E E g E c E F 1.42 0.21541.2046 eVp o 7 10 18 exp 1.20460.02594.42 10 2cm 3_______________________________________ 4.21(a) kT 0.0259 3750.032375 eV 300375 3 / 2 0.28n o 2.8 19 exp10300 0.0323756.86 1015cm 3E F E E g E c E F 1.12 0.280.840 eV375 3 / 20.840p o 1.04 1019 exp300 0.0323757.84 107cm 3(b) E c E F kT ln N cn o0.0259 ln2.8 10196.862 10 150.2153 eVE F E 1.12 0.2153 0.9047 eVp o 1.04 10 19 exp 0.9046680.02597.04 103 cm 3_______________________________________4.22(a) p-typeE g(b) E F E1.124 0.28 eV4p o N exp E F EkT1.04 10 19 exp 0.280.02592.10 1014cm 3E c EF E g E F E1.12 0.28 0.84 eVn o N c exp E c E FkT2.8 1019exp0.840.02592.30 105cm 3_______________________________________4.23(a) n o n iE F E FiexpkT1.5 1010 exp 0.220.02597.3313cm310p oE Fi E Fn i expkT1.5 1010 exp 0.220.02593.07 106cm 3(b) n o n iE F E FiexpkT1.8 10 6 exp 0.220.02598.80 109cm 3p o n i expE Fi E FkT1.8 106 exp 0.220.02593.68 102cm 3_______________________________________4.24(a) E F ENkT lnp o0.0259 ln1.04 10 195 10 150.1979 eV(b) E c E F E g E F E1.12 0.19788 0.92212 eV(c) n o 2.8 1019 exp 0.922120.02599.66 103cm 3(d) Holesp o(e) E Fi E F kT lnn i510 150.0259 ln1.5 10100.3294 eV _______________________________________4.25kT 0.0259 4000.034533 eV 3003 / 2N 1.04 10 19400300 1.601 1019cm 33 / 2N c 2.8 1019400300 4.3109 1019cm 30.2642 eV _______________________________________4.26(a) p o 7 1018 exp 0.250.02594.50 1014cm 3E c EF 1.42 0.25 1.17 eVn o 4.7 10 17 exp 1.170.02591.13 10 2cm 3(b)kT 0.034533eV3 / 2N 7 10184003001.078 1019cm 33 / 217 400N c 4.7 103007.236 1017cm3expn i 2 4.3109 10 19 1.601 10191.12NE F E kT lnp o19 0.0345335.67022410n i 2.381 1012 cm 3(a) E F ENkT lnp o0.034533 ln 1.601 10195 1015 0.2787 eV(b) E c E F 1.12 0.27873 0.84127 eV(c) n o 4.3109 10 19 exp 0.841270.0345331.134 109cm3(d) Holes(e) E Fi E F kT ln p on i510150.034533 ln2.381 10120.034533 ln1.078104.50 10 140.3482 eVE c EF 1.42 0.3482 1.072 eVn o 7.236 1017 exp 1 .071770. 0345332.40 104cm 3_____________________________________4.27(a) p o 1.04 1019 exp 0.250.02596.68 1014cm 3E c EF 1.12 0.25 0.870 eVn o 2.8 10 19 exp 0.8700.0259n o7.2310 4 cm 3(b)kT0.034533 eV3 / 2N 1.04 10194003001.601 1019cm 33 / 2N c 2.8 1019 4003004.311 1019cm 3NE F E kT lnp o1.60110 190.034533ln6.6810140.3482 eVE c EF 1.12 0.34820.7718 eVn o 4.311 1019 exp 0.771750.0345338.49 109cm 3_______________________________________4.282(a) n o N c F1 / 2 FFor E F E c kT 2 ,E F E c kT 2 FkT 0.5kTThen F1/ 2 F 1.0n o 2 2.8 1019 1.03.16 1019cm 3(b) n o 2 N c F1 / 2 F24.7 1017 1.05.30 1017cm 3_______________________________________ 4.29p o 2 N F1/2 F5 1019 2 1.04 1019 F1/2 FSo F1/ 2 F 4.26We find F 3.0E E FkTE EF 3.0 0.0259 0.0777 eV_______________________________________4.30E F E c 4kT(a) F 4kT kTThen F1 / 2 F 6.02N c F1 / 2n o F2 2.8 1019 6.01.90 10 20 cm 3(b) n o 2 4.7 1017 6.03.18 1018cm 3_______________________________________ 4.31For the electron concentrationn E g c E f F EThe Boltzmann approximation applies, so4 * 3 / 22m nE E cn Eh3E E FexpkTor4 2m n* 3 / 2 E c E Fexpn E h3kTE E c E E ckT expkTkTDefinexEE ckTThenn E n x K x exp xTo find maximumn E n x , setdn x 0 K 1 x 1 / 2 exp xdx 2x 1 / 21 expxorKx 1 / 2 expx1 x2which yieldsx1 E E cE E c12kTkT2For the hole concentrationp Eg E 1f F EUsing the Boltzmann approximation4 2m p * 3 / 2p EEEh 3E F EexpkT or3 / 242m *p E F Ep Eh 3expkTE E E EkTexpkTkTDefinexE EkTThenp xK x exp xTo find maximum value ofp Ep x ,setdp xUsing the results from0 dxabove,we find the maximum at1E E kT2_______________________________________4.32 (a) Silicon:We haven oN c expE cE FkTWe can writeE c E FE c E d E d E FForE c E d 0.045 eV andE dE F3kT eVwe can writen o2.8 1019 exp 0.04530.02592.8 1019exp 4.737or10 17 cm3n o2.45 We also havep oN expE F EkTAgain, we can writeE FEE FE aE aEForE FE a3kTandE aE0.045eVThenp o1.04 1019 exp 3 0.0450.02591.04 1019 exp4.737orp o9.12 10 16 cm 3(b) GaAs: assume E c E d0.0058eVThenn o4.7 1017 exp0.0058 30.025917exp 3.2244.7 10orn o1.87 1016 cm3Assume E a E 0.0345 eVThenp o71018 exp0.0345 30.02597 1018 exp 4.332orp o9.20 1016 cm 3_______________________________________ 4.33Plot_______________________________________4.34 10 151015 cm 3(a)p o415 31.5 10 10 2n o7.5 10 4 cm33 10153(b) n oN d316cm1010 2p o1.5 107.5 10 3cm 33 1016 (c)n op on i 1.5 10 10cm33(d) n i 22.8 10 19 1.041019 375300 exp1.12 3000.0259 375n i7.334 1011 cm3p o N a4 10 15 cm 37.334 10 11 2n o1.34 10 8 cm34 10 153(e) n i 22.8 10 19 1.04 10 19 4503001.12 300exp0.0259 450133n i1.722 10 cm14142n o1.722 10 1310102221.029 1014 cm 31.722 1013 2p o2.88 1012 cm 31.029 1014_______________________________________(a) p oN aN d4 101510153 1015 cm 3n i 2 1.8 10 6 2n o1.08 10 3cm 3p o3 1015(b) n oN d 3 10 16 cm 3p o1.8 10 6 2 1.08 10 4 cm33 10163(c) n o p on i1.8 10 6cm375 3(d) n i 24.7 1017 7.0 10 18300 exp1.42 3000.0259 375n i 7.580 10 8 cm 3p o N a4 1015 cm 38 2n o7.580 10 1.44 10 2 cm 34 10 153 (e) 2 4.7 10 17 7.0 18450 n i 10 300 exp1.42 3000.0259 450n i 3.853 1010 cm3n oN d10 14 cm 33.853 1010 2p o1.48 10 7 cm 310 14_______________________________________4.3610 13 cm 3(a) Ge: n i2.42(i) n oN dN dn i 22 22 10152 210152.4 13 22210or2 1015 cm 3n oN d4.35n i 2 2.4 1013 2p o2 1015n o2.88 1011 cm 3(ii) p o N a N d 10167 10153 1015 cm 32n i22.4 10 13n op o310 151.92 1011cm3(b) GaAs: n i 1.8 10 6cm3(i) n o N d2 1015 cm62p o1.8 10 1.62 10 3cm32 10 15(ii) p oN aN d3 10 15 cm 362n o1.8 101.08 10 3cm 33 1015 (c) The result implies that there is only one 33minority carrier in a volume of 10 cm ._______________________________________4.37(a) For the donor leveln d 1N d1 1exp EdE F2kT11 1 exp 0.2020.0259orn d8.85 10 4N d (b) We havef F E1E E F1expkTNowE E FE E cE c E ForE EF kT 0.245Thenf F E10.2451 exp 1 0.0259orf F E 2.87 10 5_______________________________________4.38N aN d(a) p-type(b) Silicon:10131013p oN aN d 2.5 1 or1013 cm 3p o1.5Thenn i 21.5 10 10 210 7cm 3n o1.5p o 1.5 1013 Germanium:N aN d N a N d 2p o2n i 221.5131.5 10 1322.4 101310222or3.26 10 13 cm 3p oThen2n i 22.4 10 13n o1.76 10 13p o3.264 1013cm 3Gallium Arsenide:p oN a N d1.5 10 13 cm 3and2n i 21.8 10 6n o0.216 cm 3p o1.5 1013_______________________________________4.39 (a) N d N an-type(b) n oN d N a 2 10151.2 10158 1014 cm 3n i 21.5 101022.81 10 5cm 3p o8 14n o10(c)p o N aN a N d4 1015N a 1.2 10 152 1015N a 4.8 10 15 cm31.5 10 102n o5.625 10 4cm 3 4 1015_______________________________________4.40n i21.5 101021. 153n o2 10 5 125 10cmp on o p on-type_______________________________________4.413n i 21.04 10196.0 10 18 250300 exp0.660.0259250 3001.8936 102412n i 1.376cm310 n on i 2 n i 2n o 21n i 2p o4n o 4n o1n i2Son o 6.88 1011 cm 3 ,Then p o2.75 1012cm3N a N a 2p on i 222N a22.752 10122N a21.8936 10 24227.5735 10 242.752 10 12 N aN a2N a 21.8936 10 242so that N a 2.064 1012cm 3_______________________________________4.42Plot_______________________________________4.43Plot_______________________________________4.44Plot_______________________________________ 4.45N d N aN dN a 2n o2n i 2214141.1 1014 2 10 1.2 102 2 10141.2 1014 2n i 221.1 10144 10 1324 10132n i 24.9 10 271.6 10 27n i2so n i5.74 10 13 cm 3p on i 23.3 10 273 133n o 1.1 10 1410 cm_______________________________________4.46(a)N a N d p-typeMajority carriers are holesp o N a N d16163 101.5 101.5 1016 cm 3Minority carriers are electrons210 10 2n on i 1.5 1.5 10 4 cm 3p o 1.5 1016(b) Boron atoms must be addedp o N a N aN d5 1016N a 3 10161.5 1016So N a3.5 10 16 cm 31.5 10 102n o4.5 10 3cm 35 10 16_______________________________________4.47p on i (a)n-type(b) p on i 2 n on i 2n op o1.5 10 1021016 cm3n o4 1.125 2 10electrons are majoritycarriersp o2 10 4cm3holes are minority carriers(c) n oN d N a1.125 101615N d 7 10so N d1.825 1016 cm3_______________________________________4.48E Fi E FkT lnp on iFor GermaniumT (K)kT (eV)n i (cm 3)200 0.01727 2.16 1010400 0.03453 8.60 1410 6000.05183.82 1016N aN a 2p o n i 2and22N a10 15 cm 3T (K)p o (cm3)E Fi EF (eV)200 1.0 1015 0.1855 4001.49 1015 0.01898 6003.87 10160.000674_______________________________________4.49(a) E c E FkT lnN cN d0.0259 ln 2.8 1019N dFor 1014cm 3 , E cE F 0.3249eV15 cm 3 ,E cE F0.2652eV1016cm 3, E c E F 0.2056eV 101017 cm 3 , E c E F0.1459eV(b) E F E FikT lnN dn i0.0259 lnN d1.51010For 1014cm 3 , E FE Fi 0.2280 eV15cm 3, E F E Fi 0.2877 eV10 1016 cm 3 , E F E Fi 0.3473 eV 1017 cm 3 ,E F E Fi0.4070 eV_______________________________________ 4.50N d N d 2(a) n on i 222n o1.05N d1.05 10 15 cm 31.05 10150.5 10 1520.5 10152n i2son i 25.25 10 28Now3n i 22.8 1019 1.04 1019T300exp1.120.0259 T 30035.25 10 28 2.912 10 38 T300exp 12972.973TBy trial and error, T 536.5K(b) At T 300 K,E c EF kT ln N cn oE c EF 0.0259 ln 2.8 1019 1015T 536.5 K, 0.2652 eVAt536.5kT0.02590.046318 eV3003 / 2N c 2.8 1019 536.53006.696 1019cm 3E c E FN c kT lnn oE c E F6.696 10 19 0.046318 ln10151.050.5124 eVthen E c E F 0.2472 eV(c)Closer to the intrinsic energy level._______________________________________4.51p oE Fi EF kT lnn iAt T 200K, kT 0.017267 eVT 400 K, kT 0.034533 eVT 600 K, kT 0.0518 eV At T 200K,22.8 10191019 200n i 1.04300exp1.120.017267n i 7.638 10 4 cm 3At T 400 K,3n i 2 2.8 1019 1.04 10 19 4003001.12exp0.034533n i 2.381 1012 cm 3At T 600 K,322.8 1019 19 600n i 1.04 10300exp 1.120.0518n i 9.740 1014 cm 3At T 200 K and T 400 K,p o N a 3 1015 cm 3At T 600 K,N a N a2p o n i22 23 15 3 10 15 2 9.740 10 1410 22 23.288 1015cm3Then, T 200K, E Fi E F 0.4212eVT 400K,E Fi EF 0.2465 eVT600K,E Fi EF 0.0630 eV_______________________________________4.52(a)N a N aE Fi EF kT ln 0.0259 ln6n i 1.8 10For N a10 14 cm 3 ,E FiE F0.4619 eVN a 10 15 cm 3,E FiE F0.5215 eV163,N a 10 cmE FiE F0.5811 eVN a 10 17cm 3,E FiE F 0.6408 eV(b)E FEN7.0 1018kT ln0.0259 lnN aN aFor N a10 14 cm 3 ,E F E0.2889 eVN a 10 15 cm 3 ,E FE0.2293 eV163,N a 10 cmE F E0.1697 eVN a 10 17 cm3,E F E 0.1100 eV_______________________________________ 4.53(a) E Fi3 m *p E midgapkT ln4m n *3 0.0259 ln 104 orE Fi E midgap 0.0447 eV(b) Impurity atoms to be added soE midgap EF 0.45 eV(i) p-type, so add acceptor atoms(ii)E Fi EF 0.0447 0.45 0.4947 eVThenp oE FiE Fn i expkT10 5exp 0.49470.0259 or10 13 cm3p o N a1.97_______________________________________4.54n oN d N aN c expE c E FkTsoN d 5 10 15 2.8 10 19 exp0.2150.025951015 6.95 1015orcm 3N d 1.2 1016_______________________________________4.55(a) Silicon(i) E cE F N ckT lnN d0.0259 ln 2.8 10 190.2188 eV6 1015(ii) E cE F0.2188 0.0259 0.1929 eVN dN c expE c E FkT2.8 10 19 exp0.19290.0259N d1.631 1016 cm3N d 6 1015N d1.031 10 16 cm 3Additional donor atoms(b) GaAs(i) E c E F0.0259 ln4.7101710150.15936eV(ii) E cE F0.15936 0.0259 0.13346 eVN d4.7 1017 exp0.133460.02592.718 1015 cm 3N d 1015N d1.718 10 15 cm3Additionaldonor atoms_______________________________________ 4.56(a) E Fi E FN kT lnN a0.0259 ln 1.04 10190.1620 eV2 1016(b) E F E Fi kT ln N c N d0.0259 ln 2.8 1019 0.1876 eV2 10 16(c) For part (a);p o 2 1016 cm 3n i2 1.5 1010 2n op o 2 10161.125 104cm3For part (b):3n o 2 1016 cmn i 2 1.5 1010 2p on o 2 10 161.125 104cm3_______________________________________ 4.57n oE F E Fin i expkT1.8 10 6 exp 0.550.02593.0 1015cm 3Add additional acceptor impuritiesn o N d N a3 10 15 7 10 15 N aN a 4 10 15 cm 3_______________________________________(a) E Fi E F kT lnpon i0.02593 10 150.3161 eVln10 101.5(b) E F E Fin okT lnn i0.02593 10160.3758 eVln10 101.5(c) E F E Fi(d) E Fi E Fp okT lnn i0.0259 375 ln 4 1015300 7.334 10 110.2786 eV(e) E F E Fi kT lnnon i140.0259 450 ln 1.029 10300 1.722 10 130.06945eV_______________________________________4.59(a) E F ENkT lnp o0.0259 ln7.0 10180.2009 eV3 1015(b) E F E 0.0259 l n7.0 10 181.08 10 41.360 eV(c) E F E 0.0259 l n 7.0 10181.8 10 60.7508 eV4.58(d) E F E 0.0259 375300ln 7.0 10 18 375 300 3 / 24 10 150.2526 eV(e) E F E 0.0259 450 300ln 7.0 10 18 450 300 3/ 21.48 10 71.068 eV_______________________________________4.60n-typeE F E Fi kT ln n o n i0.02591.125 10 16ln100.3504 eV1.5 10______________________________________ 4.61N a N a 2 p o 22 2 n i5.08 1015 5 101525 10 15 2n i225.08 10 15 2.5 10 15 22.5 1015 2n i26.6564 10 30 6.25 10 30 n i2n i 2 4.064 10 29n i2 N c N expE gkTkT 0.02593500.030217 eV3003502N c 1.2 10 19 1.633 1019 cm 33003502N 1.8 1019 2.45 10 19 cm 3300Now4.064 10 29 1.633 1019 2.45 1019E gexp0.030217SoE g 0.030217 ln 1.633 10 19 2.45 10 194.064 10 29E g 0.6257 eV_______________________________________4.62(a) Replace Ga atoms Silicon acts as adonorN d0.05 7 1015 3.5 10 14 cm 3Replace As atoms Silicon acts asanacceptorN a 0.95 7 1015 6.65 10 15 cm 3(b) N a N d p-type(c) p o N a N d 6.65 1015 3.5 10146.3 1015cm 3n i 2 1. 810 6 2n o 5.14 10 4 cm 3 p o 6 .3 1015(d) E Fi E F kT ln p o n i0.0259 ln 6.3 10 150.5692 eV1.8 10 6_______________________________________。

半导体器件物理习题集

半导体器件物理习题集

= 1.05 × 10 − 4 cm
零偏压下的最大内建电场: ε m = −
qN d x n = −1.61 × 10 4 (V / cm) kε 0
九、平衡 PN 结是指没有外加电压、光照、辐射等并且在温度恒定条件下的 PN 结。设 想下图为 P 型和 N 型区分离时的能带图,请绘出它们构成 PN 结后在没有外加电 压的平衡情况下相应的能带图,图内应标出势垒高度、费米能级,并从费米能级 和载流子扩散与漂移的观点分析结空间电荷区的形成。
十一、 长 PN 结二极管处于正(反)偏压状态,列出求解其少子分布 p n ( x) 的扩散方程, 并参照下图给出相应的边界条件,画出少子分布示意图。令 P 侧外部接触坐标为 Wn 。
n p(x)
pn(x)
Pn0
np0
-xp
答:正偏
0
xn
x
在 N 型中性区,有 D p
d 2 p n p n − pn 0 − = 0 (1) τp dx 2
一、分别采用费米能级和载流子扩散与漂移的观点分析结空间电荷区的形成。 答:假设在形成结之前 N 型和 P 型材料在实体上是分离的。在 N 型材料中费米能级靠 近导带边缘,在 P 型材料中费米能级靠近价带边缘,当 P 型材料和 N 型材料被连接在 一起时,费米能级在热平衡时必定恒等,否则,就要流过电流。恒定费米能级的条件 是由电子从 N 型一边转移至 P 型一边,空穴则沿相反方向转移实现的。电子和空穴的 转移在 N 型和 P 型各边分别留下未被补偿的施主离子和受主离子 N d 立了两个电荷层即空间电荷区。 另一方面,也可以通过考虑载流子的扩散和漂移得到这种电荷分布。当把 N 型和 P 型材料放在一起时,由于在 P 型材料中有多得多的空穴,它们将向 N 型一边扩散。 与此同时,在 N 型一边的电子将沿着相反的方向扩散,即由 N 型区向 P 型区扩散。由 电子和空穴扩散留下的未被补偿的施主和受主离子建立了一个电场。这一电场是沿着 抵消载流子扩散趋势的方向在热平衡时,载流子的漂移运动正好和载流子的扩散运动 相平衡, 电子和空穴的扩散与漂移在 N 型和 P 型各边分别留下未被补偿的施主离子 N d 和受主离子 N a 。结果建立了两个电荷层即空间电荷区。 二、PN 结有哪些主要的击穿机制,并简述其击穿机理。 答:齐纳击穿:齐纳提出在高电场下耗尽区的共价键断裂产生电子和空穴,即有些价 电子通过量子力学的隧道效应从价带转移到导带,从而形成反向隧道电流。齐纳击穿 发生在低电压情况下,比如硅 PN 结低于 4 伏特情况下发生的击穿。 雪崩击穿:在高电压形成的高电强作用下,加速后的电子、空穴会与其它电子空 穴碰撞电离,从而不断产生更多的电子空穴对。对于高电压击穿的结,例如,在硅中 大于 6V 的击穿,雪崩机制是产生击穿的原因。 三、利用中性区电中性条件导出 PN 结空间电荷区内建电势差公式。

半导体物理学(第7版)第三章习题和答案

半导体物理学(第7版)第三章习题和答案

半导体物理学(第7版)第三章习题和答案第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E 之间单位体积中的量⼦态数。

解:2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22CL E m h E E E m V dE E E m V dE E g Vd dEE g d E E m V E g cn c C nlm h E C nlm E C nn c n c)()(单位体积内的量⼦态数)13''''''2'21'21'21'2222222C a a lt tz y x ac c z la z y t a y x t a xz t y x C C e E E m h k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si系中的态密度在等能⾯仍为球形等能⾯系中在则:令)(关系为)(半导体的、证明:3123221232'2123231'2'''')()2(4)()(111100)()(24)(4)()(~ltn c nc l t t z m m sm VE E hm E sg E g si V E E h m m m dE dz E g dkk k g Vk k g d k dE E E? ?空间所包含的空间的状态数等于在3. 当E-E F 为,4k 0T, 10k 0T 时,分别⽤费⽶分布函数和玻⽿兹曼分布函数计算电⼦占据各该能级的概率。

4. 画出-78o C 、室温(27 o C )、500 o C 三个温度下的费⽶分布函数曲线,并进⾏⽐较。

半导体物理学(第七版)完整答案详解

半导体物理学(第七版)完整答案详解

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体器件物理课后习题答案中文版(施敏)

半导体器件物理课后习题答案中文版(施敏)
1. (a)硅中两最邻近原子的距离是多少�
� 解答: � (a) � 硅的晶体结构是金刚石
晶格结构�这种结构也 属于面心立方晶体家族� 而且可被视为两个相互 套构的面心立方副晶格� 此两个副晶格偏移的距 离为立方体体对角线的 1/4�a /4的长3度�
硅在300K时的晶格常数为5.43Å�
所以硅中最相邻原子距离=
量出的霍耳电压为 +10 mV�求半导体样品的霍耳系数、导
体型态、多数载流子浓度、电阻率及迁移率。
� 因为霍耳电压为正的�所以该样品为p型半导体(空穴导电)
� 多子浓度�

p � IBZW
qV
霍耳系数�
H
A

2.5 �10 �3 � 30 �10 �4 � 0.05 1.6 �10 �19 �10 �10 �3 �1.6 �10 �3
解�在能量为dE范围内单位体积的电子数 N(E)F(E)dE, 而导带中每个电子的动能为E-Ec 所以导带中单位体积电子总动能为
��
� (E � Ec ) N (E )F (E )dE Ec
而导带单位体积总的电子数为
��
� N (E )F (E )dE Ec
导带中电子平均动能�
��
� ( E � Ec ) N ( E ) F ( E )dE Ec �� � N ( E ) F ( E )dE Ec
Dp

kT q
�p

Dn

kT q
�n

� n � Dn � 50 �p Dp
用ρn和ρp相除�最后得 NA=100ND
11. 一个本征硅晶样品从一端掺杂了施主�而使得
ND = Noexp (-ax)。(a)在ND >> ni的范围中�求在平 衡状态下内建电场E(x)的表示法。(b)计算出当a =

半导体器件物理习题与参考文献

半导体器件物理习题与参考文献

第一章习题1–1.设晶格常数为a 的一维晶体,导带极小值附近能量为)(k E c :mk k m k k E c 21222)(3)(-+= 价带极大值附近的能量为:mk m k k E v 222236)( -=式中m 为电子能量,A14.3,1 ==a ak π,试求: (1)禁带宽度;(2)导带底电子的有效质量; (3)价带顶空穴的有效质量。

1–2.在一维情况下:(1)利用周期性边界条件证明:表示独立状态的k 值数目等于晶体的原胞数;(2)设电子能量为*222nm k E =,并考虑到电子的自旋可以有两种不同的取向,试证明在单位长度的晶体中单位能量间隔的状态数为1*2)(-=E hm E N n。

1–3.设硅晶体电子中电子的纵向有效质量为L m ,横向有效质量为t m(1)如果外加电场沿[100]方向,试分别写出在[100]和[001]方向能谷中电子的加速度;(2)如果外加电场沿[110]方向,试求出[100]方向能谷中电子的加速度和电场之间的夹角。

1–4.设导带底在布里渊中心,导带底c E 附近的电子能量可以表示为*222)(nc m k E k E += 式中*n m 是电子的有效质量。

试在二维和三维两种情况下,分别求出导带附近的状态密度。

1–5.一块硅片掺磷1510原子3/cm 。

求室温下(300K )的载流子浓度和费米能级。

1–6.若n 型半导体中(a )ax N d =,式中a 为常数;(b )ax d e N N -=0推导出其中的电场。

1–7.(1)一块硅样品的31510-=cm N d ,s p μτ1=,1319105--⨯=s cm G L ,计算它的电导率和准费米能级。

(2)求产生1510个空穴3/-cm 的L G 值,它的电导率和费米能级为若干? 1–8. 一半导体31031610,10,10--===cm n s cm N i n a μτ,以及131810--=s cm G L ,计算300K 时(室温)的准费米能级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体器件物理习题与参考文献第一章习题1–1.设晶格常数为a的一维晶体,导带极小值附近能量为Ec(k):?2k2?2(k?k1)2 Ec(k)??3mm?2k23?2k2?价带极大值附近的能量为:Ev(k)?式中m为电子能量,6mmk1??a?,试求:,a?禁带宽度;导带底电子的有效质量;价带顶空穴的有效质量。

1–2.在一维情况下:利用周期性边界条件证明:表示独立状态的k值数目等于晶体的原胞数;?2k2设电子能量为E?,并考虑到电子的自旋可以有两种不同的取向,试*2mn*2mn证明在单位长度的晶体中单位能量间隔的状态数为N(E)?E?12。

h1–3.设硅晶体电子中电子的纵向有效质量为mL,横向有效质量为mt 如果外加电场沿[100]方向,试分别写出在[100]和[001]方向能谷中电子的加速度;如果外加电场沿[110]方向,试求出[100]方向能谷中电子的加速度和电场之间的夹角。

?2k21–4.设导带底在布里渊中心,导带底Ec附近的电子能量可以表示为E(k)?Ec? *2mn*式中mn是电子的有效质量。

试在二维和三维两种情况下,分别求出导带附近的状态密度。

1–5.一块硅片掺磷10原子/cm。

求室温下的载流子浓度和费米能级。

1–6.若n 型半导体中Nd?ax,式中a为常数;Nd?N0e?ax推导出其中的电场。

1–7.一块硅样品的Nd?1015cm?3,?p?1?s,GL?5?10cms,计算它的电导率和准费米能级。

求产生10个空穴/cm的GL值,它的电导率和费米能级为若干?1–8.一半导体Na?1016cm?3,?n?10?s,ni?1010cm?3,以及GL?10cms,计算300K 时的准费米能级。

1–9.一块半无限的n 型硅片受到产生率为GL的均匀光照,写出此条件下的空穴连续方程。

若在x?0处表面复合速度为S,解新的连续方程证明稳定态的空穴分布可用下式表示18?3?115?315319?3?1pn(x)?pn0??pGL(1? ?pSe?x/LpLp?S?p) 1–10.于在一般的半导体中电子和空穴的迁移率不同的,所以在电子和空穴数目恰好相等的本征半导体中不显示最高的电阻率。

在这种情况下,最高的电阻率是本征半导体电阻率的多少倍?如果?n??p,最高电阻率的半导体是N型还是P型?1–11.用光照射N型半导体样品,假设光被均匀的吸收,电子-空穴对的产生率为G,空穴的寿命为?,光照开始时,即t?0,?p?0,试求出:光照开始后任意时刻t的过剩空穴浓度?p(t);在光照下,达到稳定态时的过剩空穴浓度。

1–12.施主浓度Nd?10cm15?3的N型硅。

于光的照射产生了非平衡载流子?n??p?1014cm?3,试计算这种情况下准费米能级的位置,并与原来的费米能级做比较。

1–13.一个N 型硅样品,?p?430cm2/,空穴寿命为5?s。

在它的一个平面形的表面有稳定的空穴注入。

过剩空穴浓度?p?10cm,试计算从这个表面扩散进入半导体内部的空穴电流密度。

以及在离表面多远处过剩空穴浓度等于13?31012cm?3?第二章习题?2-1.PN结空间电荷区边界分别为?xp和xn,利用np?ni2eV/VT导出一般情况下的pn(xn)表达式。

给出N区空穴为小注入和大注入两种情况下的pn(xn)表达式。

2-2.根据热平衡时净电子电流或净空穴电流为零,推导方程?0??n??p?VTlnNdNa。

2ni2-3.根据修正欧姆定律和空穴扩散电流公式证明,在外加正向偏压V作用下,PN结N侧空穴扩散区准费米能级的改变量为?EFP?qV。

2-4.硅突变结二极管的掺杂浓度为:Nd?1015cm?3,Na?4?1020cm?3,在室温下计算:自建电势耗尽层宽度零偏压下的最大内建电场。

2–5.若突变结两边的掺杂浓度为同一数量级,则自建电势和耗尽层宽度可用下式表示?2K?0?0Na? xn???0??2K?0(Na?Nd)?qNa(Na?Nd)?试推导这些表示式。

qNaNd(xn?xp)2?2K?0?0Nd?xp??? ? qNa(Na?Nd)?122–6.推导出线性缓变PN 结的下列表示式:电场电势分布耗尽层宽度自建电势。

2-7.推导出N?N结内建电势表达式。

2-8.绘出图2-6a中NBC?1014cm?3的扩散结的杂质分布和耗尽层的草图。

解释为何耗尽层的宽度和VR的关系曲线与单边突变结的情况相符。

对于NBC?1018cm?3的情况,重复并证明这样的结在小VR的行为像线性结,在大VR时像突变结。

2-9.对于图2-6的情况,重复习题2-8。

2–10.PN结的空穴注射效率定义为在x?0处的Ip/I0,证明此效率可写成??IpI?1 1??nLp/?pLn在实际的二极管中怎样才能使?接近1;2-11.长PN结二极管处于反偏压状态:解扩散方程求少子分布np(x)和pn(x),并画出它们的分布示意图。

计算扩散区内少子贮存电荷。

证明反向电流I??I0为PN结扩散区内的载流子产生电流。

2-12.若PN结边界条件为x?wn处p?pn0,x??wp处n?npo。

其中wp和wn分别与Lp与Ln具有相同的数量级,求np(x)、pn(x)以及In(x)、Ip(x)的表达式。

?2–13.在PN结二极管中,N区的宽度wn远小于Lp,用Ipx?wn?qS?pnA作为N侧末端的少数载流子电流,并以此为边界条件之一,推导出载流子和电流分布。

絵出在S=0和S=?时N侧少数载流子的分布形状。

2-14.推导公式和。

2–15.把一个硅二极管用做变容二极管。

在结的两边掺杂浓度分别为Na?1019以及Nd?1015。

二极管的面积为100平方密尔。

求在VR?1和5V时的二极管的电容。

计算用此变容二极管及L?2mH的储能电路的共振频率。

为长度单位,1mil?10?3in??10?5m)2-16.用二极管恢复法测量P?N二极管空穴寿命。

对于If?1mA和Ir?2mA,在具有上升时间的示波器上测得ts?3ns,求?p。

若中快速示波器无法得到,只得采用一只具有10ns上升时间较慢的示波器,问怎样才能使测量精确?叙述你的结果。

2-17.P?N结杂质分布Na=常数,Nd?Nd0e?xL,导出C?V特性表达式。

2–18.若P?N二极管N区宽度wn是和扩散长度同一数量级,推导小信号交流空穴分布和二极管导纳,假设在x?wn处表面复合速度无限大。

??2–19.一个硅二极管工作在的正向电压下,当温度从25C上升到150C时,计算电流增加的倍数。

假设I?I0eV2VT,且Io每10?C增加一倍。

?2–20.采用电容测试仪在1MHZ测量GaAs PN结二极管的电容反偏压关系。

下面是从0—5V每次间隔1V测得的电容数据,以微法为单位:,,,,,,,,,,。

计算?0和Nd。

二极管的面积为4?10?4cm2。

2-21.在If?,Ir?条下测量PN长二极管恢复特性。

得到的结果是tS=350ns。

用严格解和近似公式两种方法计算?p。

62–22.在硅中当最大电场接近10V/cm时发生击穿。

假设在P 侧Na?1020cm?3,为?要得到2V的击穿电压,采用单边突变近似,求N侧的施主浓度。

2–23.对于下图中的P?v?N 二极管,假设P和N区不承受任何外加电压,证明2A?mqBNvWi?B?exp(?)?1?exp(?)??1 雪崩击穿的条件可表示为2qNvB??m?m?????P+ Nd?Na v N? ? w?wi ?m14. 15. 16. 17. 18. 19.20. 21. Singh, J.Semiconductor Devices: An Introduction.New York: McGraw-Hill, 1994 Sze, S.M.High-Speed Semiconductor Devices.New York: Wiley,1990.Sze, S.M.Physics of Semiconductor Devices.2nd ed.New York: Wiley, 1981.Tiwari, S., S.L.Wright, and A.W.Kleinsasser.“Transport and Related Properties of (Ga, Al)As/GaAs Double Heterojunction Bipolar Junction Transistors.” IEEE Transactions on Electron Devices, ED-34(February 1987), pp.185-87.Taur, Y., and T.H.Ning.Fundamentals of Modern VLSI Devices.New York: Cambridge University Press, 1998.Wang, S.Fundamentals of Semiconductor Theory and Device Physics.Englewood Cliffs, NJ: Prentice Hall, 1989.Warner, R.M., Jr., and B.L.Grung.Transistors: Fundamentals for the Integrated-Circuit Engineer.New York: Wiley, 1983.Yang, E.S.Microelectronic Devices.New York: McGraw-Hill, 1988.第四章习题4-1.一硅肖特基势垒二极管有cm的接触面积,半导体中施主浓度为10 162cm?3设?0?,VR?。

计算耗尽层厚度;势垒电容;在表面处的电场4-2.从示于图4-3的GaAs肖特基二极管电容-电压曲线求出它的施主浓度、自建电势势垒高度。

(2) 从图4-7计算势垒高度并与的结果作比较。

4-3.画出金属在P 型半导体上的肖特基势垒的能带结构图,忽略表面态。

指出?m??s 和?m??s 两种情形是整流节还是非整流结,并确定自建电势和势垒高度。

12?2?14-4.自硅表面的施主浓度为10cm,均匀分布的表面态密度为Dss?10cmeV,15?3电中性级为EV?,计算该表面的表面势。

4-5.已知肖特基二极管的下列参数:?m?,?s?,Nc?1019cm?3,Nd?1015cm?3,以及k=。

假设界面态密度是可以忽略的,在300K计算:零偏压时势垒高度,自建电势,以及耗尽层宽度;(2)在的正偏压时的热离子发射电流密度。

4-6.在一金属-硅的接触中,势垒高度为q?b?,有效理查逊常数为R*?102A/cm2?K2,Eg?,Nd?1016cm?3,以及Nc?Nv?1019cm?3。

计算在300K,零偏压时半导体的体电势Vn和自建电势;假设Dp?15cm/s和Lp?10um,计算多数载流子电流对少数载流子电流的注入比。

相关文档
最新文档