高中数学 解三角形最值或范围-含答案
高中数学。三角形中的最值、范围问题。练习题(含答案)
高中数学。
三角形中的最值、范围问题。
练习题(含答案)解三角形问题是高考高频考点。
主要利用三角形的内角和定理、正弦定理、余弦定理、三角形面积公式等知识解题。
在解题过程中,需要灵活利用三角形的边角关系进行“边转角”“角转边”。
另外,要注意a+c。
ac。
a+c三者的关系。
高考中经常将三角变换与解三角形知识综合起来命题。
如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到。
而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式。
正弦定理的主要作用是方程和分式中的边角互化。
其原则为关于边,或是角的正弦值是否具备齐次的特征。
如果齐次则可直接进行边化角或是角化边,否则不可行。
例如:(1)sinA+sinB-sinAsinB=sinC。
可化为a+b-ab=c;(2)bcosC+ccosB=a 可化为sinBcosC+sinCcosB=sinA(恒等式);(3) bcsinBsinC/2=asinA/2.余弦定理为a²=b²+c²-2bccosA。
变式为a=(b+c)-2bc(1+cosA)。
此公式在已知a,A的情况下,配合均值不等式可得到b+c和bc的最值。
在三角形中,任意两边之和大于第三边。
在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可。
在求最值时使用较少。
另外,在三角形中,边角以及角的三角函数值存在等价关系。
例如a>b则A>B,则sinA>sinB,cosAB 则cosAB则sinA>sinB仅在一个三角形内有效。
解三角形中处理不等关系的几种方法包括:(1)转变为一个变量的函数;(2)利用均值不等式求得最值。
例如,已知四边形面积为S1、S2、S3、S4,则S1+S2+S3+S4的最大值为多少?答案】1) $\frac{b}{a}=\frac{\sqrt{3}+1}{2}$;2) $a+b+c$ 的最大值为 $2\sqrt{3}+\sqrt{6}$。
专题3-2 解三角形最值范围与图形归类(讲+练)-2023年高考数学二轮复习讲练测(全国通用原卷版)
专题3-2解三角形最值、范围与图形归类目录讲高考................................................................................................................................................................................1题型全归纳......................................................................................................................................................................2【题型一】最值与范围1:角与对边....................................................................................................................2【题型二】最值与范围2:角与邻边....................................................................................................................2【题型三】范围与最值3:有角无边型................................................................................................................3【题型四】最值与范围4:边非对称型................................................................................................................4【题型五】最值:均值型...........................................................................................................................................4【题型六】图形1:内切圆与外接圆....................................................................................................................4【题型七】图形2:“补角”三角形....................................................................................................................6【题型八】图形3:四边形与多边形....................................................................................................................7【题型九】三大线1:角平分线应用....................................................................................................................8【题型十】三大线2:中线应用..............................................................................................................................8【题型十一】三大线3:高的应用.........................................................................................................................9【题型十二】证明题.................................................................................................................................................10专题训练. (10)讲高考1.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC(2)若sin sin A C =,求b .2.(2022·全国·统考高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.3.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B =++.(1)若23C π=,求B ;(2)求222a b c +的最小值.4.(2021·全国·统考高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.5.(2021·北京·统考高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ∠;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件②:ABC 的周长为4+条件③:ABC 题型全归纳【题型一】最值与范围1:角与对边【讲题型】例题1.已知ABC 的内角,,A B C 所对的边分别为()()22,,,sin sin sin sin sin a b c B C A B C -=-(1)求A ;(2)已知a =.例题2.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,已知22222202b c a ca b c b c+-+=+-+.(1)求角A 的值;1.在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且2sin 2cos )A A B C -+sin 30A -=.(1)求A 的大小;(2)若2a =,求ABC ∆的周长L 的取值范围.2.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a,b,c ,且()222πcos B b a c ac sinAcosA---=(1)求角A ;(2)若a =bc 的取值范围.【题型二】最值与范围2:角与邻边【讲题型】例题1..已知ABC 为锐角三角形,角,,A B C 所对边分别为,,a b c ,ABC 满足:222sin sin sin sin sin A B C B C +-≤.(1)求角A 的取值范围;1..在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知sinsin 2A Ca b A +=.(1)求角B ;(2)若△ABC 为锐角三角形,且2c =,求△ABC 面积的取值范围.2.在ABC 中,设A ,B ,C 所对的边长分别为a ,b ,c ,且()()()sin sin sin c b C a b A B -=-+.(1)求A ;(2)若2b =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.【题型三】范围与最值3:有角无边型【讲题型】例题1.三角形ABC 中,已知222sin sin +sin sin sin A B A B C +=,其中,角A B C 、、所对的边分别为a b c 、、.(Ⅰ)求角C 的大小;(Ⅱ)求a b c +的取值范围.例题2.在锐角三角形ABC,若ac c b a c b a 3))((=+++-(I)求角B(II)求A A cos sin 3+的取值范围【练题型】1.设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)若a =5c =,求b(Ⅱ)求cos sin A C +的取值范围.2.在锐角三角形ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,且2sin sin cos sin cos C B a BB b A-=.(1)求A ;(2)求bc 的取值范围.【题型四】最值与范围4:边非对称型【讲题型】例题1.在ABC ∆中,,,a b c 分别是角,,A B C 的对边()()3a b c a b c ab +++-=.(1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求2a b -的范围.【练题型】在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin A C B A C +=.(Ⅰ)求角B 的大小;(Ⅱ)若ABC 为锐角三角形,b =a -的取值范围.【题型五】最值:均值型【讲题型】例题1.已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ;(2)若24a S =,求c bb c+的最大值.【练题型】1.在△ABC 中,设AD 为BC 边上的高,且AD =BC BC ,b ,c 分别表示角B ,C 所对的边长,则b cc b+的取值范围是_.【题型六】图形1:内切圆与外接圆【讲题型】例题1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知4b =,2c =,且sin sin sin()C B A B =+-.(1)求角A 和边a 的大小;(2)求△ABC 的内切圆半径.例题2.ABC 中,已知1AB =,BC =D 为AC 上一点,2AD DC =,AB BD ⊥.(1)求BD 的长度;(2)若点P 为ABD △外接圆上任意一点,求2+PB PD 的最大值.【讲技巧】外接圆:1.外接圆的圆心到三角形的三个顶点的距离相等。
高中数学复习提升专题03 解三角形中的最值、范围问题(解析版)
专题03 解三角形中的最值、范围问题高考对正弦定理和余弦定理的考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换、不等式、导数等结合考查,试题难度控制在中等以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.本专题围绕解三角形中的最值、范围问题精选例题,并给出针对性练习,以期求得热点难点的突破.【热点难点突破】例1.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.例2.【2018年文北京卷】若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.【答案】【解析】分析:根据题干结合三角形面积公式及余弦定理可得,可求得;再利用,将问题转化为求函数的取值范围问题.详解:,,即,,则,为钝角,,,故.例3.锐角的内角,,的对边分别为,,,已知的外接圆半径为,且满足.(1)求角的大小; (2)若,求周长的最大值.【答案】(1);(2)当为正三角形时,周长的最大值为6.【解析】(1)由正弦定理,得,再结合,得,解得,由为锐角三角形,得.(2)由、及余弦定理,得,即,结合,得,解得(当且仅当时取等号),所以(当且仅当时取等号),故当为正三角形时,周长的最大值为6.例4. 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且2a =,242cos sin 25B C A ++=. (1)若满足条件的ABC ∆有且只有一个,求b 的取值范围; (2)当ABC ∆的周长取最大值时,求b 的值. 【答案】(1)10(0,2]{}3;(210【解析】 (1)2442cossin 1cos()sin 255B C A B C A ++=⇒+++=,即1sin cos 5A A -=-, 又∵0A π<<,且22sin cos 1A A +=,有3sin 54cos 5A A ⎧=⎪⎪⎨⎪=⎪⎩,若满足条件的ABC ∆有且只有一个,则有sin a b A =或a b ≥,则b 的取值范围为10(0,2]{}3;(2)设ABC ∆的周长为l ,由正弦定理得 10(sin sin )2[sin sin()]sin 3a l abc a B C B A B A =++=++=+++102(sin sin cos cos sin )22(3sin cos )2210)3B A B A B B B B θ=+++=++=++, 其中θ为锐角,且10sin 10310cos θθ⎧=⎪⎪⎨⎪=⎪⎩,max 2210l =+10cos B =,310sin B = 此时sin 10sin ab B A==例5. 【2016年北京卷】在∆ABC 中,2222+=a c b ac . (1)求B ∠ 的大小;(22cos cos A C + 的最大值. 【答案】(1)4π;(2)1. 【解析】(1)由余弦定理及题设得22222cos 222a cb ac B ac ac +-===,又∵0B π<∠<,∴4B π∠=;(2)由(1)知34A C π∠+∠=, 32cos 2cos()4A C A A π+=+-22222A A A =-+ 22cos()4A A A π==-,因为304A π<∠<,所以当4A π∠=2cos A C +取得最大值1.例6. 如图,有一码头P 和三个岛屿,,A B C , 303,90mi ,30PC mile PB n le AB n mile ===,0120PCB ∠=, 090ABC ∠=.(1)求,B C 两个岛屿间的距离;(2)某游船拟载游客从码头P 前往这三个岛屿游玩,然后返回码头P .问该游船应按何路线航行,才能使得总航程最短?求出最短航程.【答案】(1)3mile (2)(30603307n mile +【解析】(1)在PBC ∆中, 090,3,120PB PC PCB ==∠=,由正弦定理得,sin sin PB PCPCB PBC=∠∠,即0903sin120sin PBC =∠, 解得1sin 2PBC ∠=, 又因为在PBC ∆中, 00060PBC <∠<,所以030PBC ∠=, 所以030BPC ∠=,从而303BC PC == 即,B C 两个岛屿间的距离为3mile ;(2)因为090,30ABC PBC ∠=∠=,所以000903060PBA ABC PBC ∠=∠-∠=-=, 在PAB ∆中, 90,30PB AB ==,由余弦定理得,2202212?cos609030290303072PA PB AB PB AB =+-=+-⨯⨯⨯= 根据“两点之间线段最短”可知,最短航线是“P A B C P →→→→”或“P C B A P →→→→”,其航程为3073030330330603307S PA AB BC CP =+++=+=+所以应按航线“P A B C P →→→→”或“P C B A P →→→→”航行, 其航程为(30603307n mile +. 【方法总结】1.已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.2.已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.3.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形关系式a <b sin Aa =b sin Ab sin A <a <ba ≥ba >ba ≤b解的个数无解一解两解一解一解无解4.在△ABC 中有如下结论sin A >sin B ⇔a >b .5.已知三边(a b c 如、、),由余弦定理求A B 、,再由180A B C ++=求角C ,在有解时只有一解. 已知两边和夹角(a b C 如、、),余弦定理求出对对边.5.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形; 当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形; 当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形.【精选精练】1. ABC ∆各角的对应边分别为c b a ,,,满足1≥+++ba cc a b ,则角A 的范围是( ) A .(0,]3πB .(0,]6πC .[,)3ππD .[,)6ππ 【答案】A 【解析】由1≥+++ba cc a b ,得()()()()b a c a c a c b a b ++≥+++,整理得bc a c b ≥-+222,由余弦定理得2122cos 222≥≥-+=bc bc bc a c b A ,⎥⎦⎤⎝⎛∈∴3,0πA . 2.为了竖一块广告牌,要制造三角形支架,如图,要求60ACB ∠=︒, BC 的长度大于1米,且AC 比AB 长0.5米,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A. 312⎛⎫+⎪ ⎪⎝⎭米 B. 2米 C. (13米 D. (23+米 【答案】D【解析】由题意设(1)BC x x =>米, (0)AC t t =>米,依题设0.50.5AB AC t =-=-米,在ABC 中,由余弦定理得: 22202cos60AB AC BC ACBC =+-,即()2220.5t t x tx -=+-,化简并整理得:20.25(1)1x t x x -=>-,即0.75121t x x =-++-,因1x >,故0.7512231t x x =-++≥+-312x =+时取等号),此时t 取最小值23,应选答案D 3.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c 满足222b c a bc +-=,0AB BC >,3a = 则b+c 的取值范围是( ) A. 31,2⎛⎫ ⎪⎝⎭B.3322⎛⎫ ⎪ ⎪⎝⎭C.13,22⎛⎫ ⎪⎝⎭D.13,22⎛⎤⎥⎝⎦ 【答案】B【解析】由222b c a bc +-=得:2221cos 22b c a A bc +-==,则A=3π,由0AB BC >可知:B 为钝角, 21sin aR A==,则sin ,sin b B c C ==,sin sin sin b c B C B +=+=+2sin(3π)B -33=sin cos 3sin()226B B B π+=+,由于223B ππ<<,25366B πππ<+<,所以13sin()23B π<+<332b c <+<,选B 4.在ABC ∆中,三内角A ,B ,C 的对边分别为a ,b ,c 且222a b c bc =++,3a S 为ABC ∆的面积,则3cos S B C 的最大值为( )(A )1 (B 31+ (C 3 (D )3 【答案】C【解析】∵222a b c bc =++,∴2221cos 22b c a A bc +-==-,∴23A π=,设ABC ∆外接圆的半径为R ,则3222sin sin 3a R A π===,∴1R =, ∴133cos sin 3cos 3cos 2S B C bc A B C B C ==+ 3sin 3cos 3)B C B C B C =+=-,故3cos S B C 3C .5.已知,,a b c 分别为内角,,A B C 的对边,其面积满足214ABC S a ∆=,则cb的最大值为( ) A.21 B. 2 C. 21 D. 22+【答案】C【解析】根据题意,有211sin 42ABC S a bc A ∆==,应用余弦定理,可得222cos 2sin b c bc A bc A +-=,于是212cos 2sin t t A t A +-=,其中c t b =.于是22sin 2cos 1t A t A t +=+,所以122sin 4A t t π⎛⎫+=+ ⎪⎝⎭,从而122t t+≤,解得t 21.选C.6.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+,若ABC ∆的面积为32S =,则ab 的最小值为__________. 【答案】12【解析】由正弦定理可得()2sin cos 2sin sin 2sin sin C B A B B C B =+=++,即2sin cos 2sin cos 2sin cos sin C B B C C B B =++,∴2sin cos sin 0B C B +=,∴1cos 2C =-, 23C π=,由133sin 2S ab C =⋅==,∴12c ab =,再由余弦定理可得2222cos c a b ab C =+-⋅,整理可得2222134a b a b ab ab =++≥,当且仅当a b =时,取等号,∴12ab ≥故答案为12. 7.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】626+2)【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得sin sin BC BE E C =∠∠,即o o2sin 30sin 75BE=,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o2sin 30sin 75BF =,解得BF =62-,所以AB 的取值范围为(62-,6+2).8. 在中,内角的对边分别为,且满足,为锐角,则的取值范围为__________. 【答案】【解析】分 由结合正弦定理可得:,且,为锐角,则:,即,据此有:,,,,即,,据此可得:,则的取值范围为.9.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量()B A m cos ,cos =,()b c a n -=2,,且n m //.(1)求角A 的大小;(2)若4=a ,求ABC ∆面积的最大值. 【答案】(1)3π;(2)34. 【解析】 n m //,所以()0cos 2cos =--A b c B a ,由正弦定理得-B A cos sin ()0cos sin sin 2=-A B C ,A C AB B A cos sin 2cos sin cos sin =+∴()A C B A cos sin 2sin =+∴,由π=++C B A ,A C C cos sin 2sin =∴由于π<<C 0,因此0sin >C ,所以21cos =A ,由于π<<A 0,3π=∴A (2)由余弦定理得A bc c b a cos 2222-+=bc bc bc bc c b =-≥-+=∴21622,因此16≤bc ,当且仅当4==c b 时,等号成立;因此ABC ∆面积34sin 21≤=A bc S ,因此ABC ∆面积的最大值34. 10. 已知3x π=是函数()sin2cos2f x m x x =-的图象的一条对称轴.(1)求函数()f x 的单调递增区间;(2)设ABC ∆中角,,A B C 所对的边分别为,,a b c ,若()2f B =,且3b =2ca -的取值范围. 【答案】(1)(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)33⎛ ⎝ 【解析】试题分析: (1)3x π=是函数()f x 的一条对称轴213f m π⎛⎫⇒=+⎪⎝⎭21m -+3m ⇒=()2sin 26f x x π⎛⎫⇒=- ⎪⎝⎭,根据三角函数的性质,即可求出单调性;(2)()2f B = 可得3B π=,又3b =由正弦定理得: 2sin sin(+=3sin 236c a A A A ππ⎛⎫-=-- ⎪⎝⎭,由230,3sin 3362A A ππ⎛⎛⎫⎛⎫∈⇒-∈- ⎪ ⎪ ⎝⎭⎝⎭⎝,即可求出结果. 试题解析: (1)3x π=是函数()sin2cos2f x m x x =-的一条对称轴213f m π⎛⎫⇒=+ ⎪⎝⎭21m -+3m ⇒=()2sin 26f x x π⎛⎫⇒=- ⎪⎝⎭⇒增区间: (),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)()2f B = sin 2163B B ππ⎛⎫⇒-=⇒= ⎪⎝⎭ 又3b =2sin ,2sin 2sin 3a A c C A π⎛⎫===+ ⎪⎝⎭2sin sin(+=3sin 236c a A A A ππ⎛⎫⇒-=-- ⎪⎝⎭ 210,,sin ,1366262A A A πππππ⎛⎫⎛⎫⎛⎫⎛⎫∈⇒-∈-⇒-∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭33sin 36A π⎛⎛⎫⇒-∈ ⎪ ⎝⎭⎝,即332c a ⎛⇒-∈ ⎝ 11. 在锐角ABC ∆中,内角,,A B C 的对边分别是,,a b c ,满足cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭.(1)求角A 的值; (2)若3b =b a ≤,求a 的取值范围.【答案】(1) 3A π=;(2) )3,3a ∈.【解析】试题分析:(1)根据余弦的二倍角公式以及两角和与差的余弦公式化简cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,可得sin A 的值,从而求得A 的值;(2)3b a =≤,∴c a ≥,∴32C ππ≤<,63B ππ<≤,再由正弦定理可得结果.试题解析:(1)由已知cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+=⎪ ⎪⎝⎭⎝⎭得2222312sin 2sin 2cos sin 044B A B B ⎛⎫-+-=⎪⎝⎭化简得3sin 2A =,又三角形ABC 为锐角三角形,故原创精品资源学科网独家享有版权,侵权必究! 11 3A π=. (2)∵3b a =≤,∴c a ≥,∴32C ππ≤<, 63B ππ<≤由正弦定理得: sin sin a b A B =即: 3sin 32a B =,即32sin a B =由13sin ,22B ⎛⎤∈ ⎥ ⎝⎦知)3,3a ⎡∈⎣. 12. 如图,是两个小区所在地,到一条公路的垂直距离分别为,两端之间的距离为.(1)某移动公司将在之间找一点,在处建造一个信号塔,使得对的张角与对的张角相等,试确定点的位置;(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得对所张角最大,试确定点的位置.【答案】(1)4;(2). 【解析】试题分析:(1)利用张角相等的相似性即可确定点P 的位置;(2)由题意得到三角函数,换元之后结合对勾函数的性质可得当时满足题意. 试题解析:(1)张角相等,∴,∴ (2)设,∴, ∴,, ,设,,,, ∴,,当且仅当时,等号成立,此时,即。
三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)-高中数学
三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.83【答案】B【解析】因为y=3sinωx+cosωx=2sinωx+π6,又ω>0,由-π2+2kπ≤ωx+π6≤π2+2kπ,k∈Z,得到-2π3+2kπω≤x≤π3+2kπω,k∈Z,所以函数y=3sinωx+cosωx的单调增区间为-2π3+2kπω,π3+2kπω(k∈Z),依题有-π4,2π3⊆-2π3+2kπω,π3+2kπω(k∈Z),则2π3≤π3ω-2π3ω≤-π4,得到0<ω≤12,故选:B.2(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,83【答案】B【解析】因为0≤x≤π,所以-2π3≤ωx-2π3≤ωπ-2π3,因为函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,结合正弦函数的图象可知2π≤ωπ-2π3<3π,解得83≤ω<113,故选:B.3(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.4【答案】C【解析】①因为f7π12=-f3π4 且7π12+3π42=2π3,所以f2π3=0.①正确.②因为f5π6-x=f(x)所以f(x)的对称轴为x=5π62=5π12,2π3-5π12=π4=T4⇒T=π.②正确.③在一个周期内f x =1只有一个实数解,函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3.当T=2π3时,f x =sin3x,f x =1在区间0,2π上实数解最多为π6,5π6,3π2共3个.③正确.④函数f x 在区间2π3,13π6上恰有5个零点,2T<13π6-2π3≤5T2⇒2⋅2πω<13π6-2π3≤52⋅2πω,解得83<ω≤103;又因为函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3,即2πω≥2π3⇒ω≤3,所以ω∈83,3.④错误故选:C4(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞ B.32,73 ∪52,+∞ C.136,3 ∪196,+∞ D.12,+∞ 【答案】A【解析】令2sin ωx -π6 -1=0得sin ωx -π6 =12,因为ω>0,所以ωx -π6>-π6,令sin z =12,解得z =π6+2k π,k ∈Z 或z =5π6+2k 1π,k 1∈Z ,从小到大将sin z =12的正根写出如下:π6,5π6,13π6,17π6,25π6,29π6⋯⋯,因为x ∈π,2π ,所以ωx -π6∈ωπ-π6,2ωπ-π6,当ωπ-π6∈0,π6 ,即ω∈16,13 时,2ωπ-π6≥5π6,解得ω≥12,此时无解,当ωπ-π6∈π6,5π6 ,即ω∈13,1 时,2ωπ-π6≥13π6,解得ω≥76,此时无解,当ωπ-π6∈5π6,13π6 ,即ω∈1,73 时,2ωπ-π6≥17π6,解得ω≥32,故ω∈32,73,当ωπ-π6∈13π6,17π6 ,即ω∈73,3 时,2ωπ-π6≥25π6,解得ω≥136,故ω∈73,3,当ω≥3时,2ωπ-π6-ωπ-π6=ωπ≥3π,此时f x 在π,2π 上至少有两个不同零点,综上,ω的取值范围是32,+∞ .故选:A02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.【解析】(1)由正弦定理可得,2sin A cos 2B +2sin B cos A cos B =sin C ,所以2sin A cos 2B +2sin B cos A cos B =sin A cos B +cos A sin B ,所以sin A cos B (2cos B -1)+cos A sin B (2cos B -1)=0,即(2cos B -1)sin (A +B )=0,由0<A +B <π,可知sin (A +B )≠0,所以2cos B -1=0,即cos B =12,由0<B <π,知B =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B ,即16=a 2+c 2-ac ,所以16=a +c 2-3ac ,即ac =13a +c 2-16 ,因为S =12ac sin B =34ac ,L =a +b +c ,所以S L =3ac 4a +c +4=3a +c 2-1612a +c +4,所以S L=312a +c -4 ,又ac ≤a +c 24(当且仅当a =c 时取等号),所以16=a +c 2-3ac ≥a +c24(当且仅当a =c =4时取等号),所以a +c ≤8(当且仅当a =c =4时取等号),所以S L=312a +c -4 ≤312×8-4 =33(当且仅当a =c =4时取等号),即S L的最大值为33.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.【解析】(1)选条件①,由3AB ⋅AC =2S ,得3bc cos A =2×12bc sin A ,整理得tan A =3,而0<A <π,所以A =π3.选条件②,由a sin B =b cos A -π6 及正弦定理,得sin A sin B =sin B cos A -π6,而sin B >0,则sin A =cos A -π6 =32cos A +12sin A ,整理得tan A =3,而0<A <π,所以A =π3.(2)由(1)知A =π3,由正弦定理得b sin B =c sin C =a sin A =6sin π3=22,因此b +c =22sin B +22sin C =22sin B +sin π3+B =2232sin B +32cos B=26sin B +π6由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,解得π6<B <π2,因此π3<B +π6<2π3,则32<sin B +π6≤1,于是32<b +c ≤26,32+6<a +b +c ≤36,所以△ABC 周长的取值范围是(32+6,36].3(2024·宁夏银川·二模)已知平面四边形ABCD 中,∠A +∠C =180°,BC =3.(1)若AB =6,AD =3,CD =4,求BD ;(2)若∠ABC =120°,△ABC 的面积为932,求四边形ABCD 周长的取值范围.【解析】(1)在△ABD 中,由余弦定理得cos ∠A =32+62-BD 22×3×6,在△BCD 中,由余弦定理得cos ∠C =32+42-BD 22×3×4,因为∠A +∠C =180°,所以cos ∠A +cos ∠C =0,即32+62-BD 22×3×6+32+42-BD 22×3×4=0,解得BD =33.(2)由已知S △ABC =12×3×AB ×32=932,得AB =6,在△ABC 中,∠ABC =120°,由余弦定理得AC 2=32+62-2×3×6×cos120°=63,则AC =37,设AD=x,CD=y,(x,>0,y>0),在△ACD中,由余弦定理得372=x2+y2-2xy⋅cos60°=x+y2-3xy,则x+y2=63+3xy≤63+3×x+y22,得x+y24≤63,所以x+y≤67,当且仅当x=y=37时取等号,又x+y>AC=37,所以四边形ABCD周长的取值范围为37+9,67+9.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)因为△ABC中,sin B=23cos2A+C2,即2sinB2cos B2=23cos2π-B2=23sin2B2,而0<B<π,∴sin B2>0,故cos B2=3sin B2,故tan B2=33,又0<B<π,∴0<B2<π2,则B2=π6,∴B=π3;(2)由(1)以及题设可得S△ABC=12ac sin B=34a;由正弦定理得a=c sin Asin C=c sin2π3-Csin C=c sin2π3cos C-cos2π3sin Csin C=32cos C+12sin Csin C=32tan C+12,因为△ABC为锐角三角形,0<A<π2,0<C<π2,则0<2π3-C<π2,∴π6<C<π2,则tan C>33,∴0<1tan C<3,则12<32tan C+12<2,即12<a<2,则38<S△ABC<32,即△ABC面积的取值范围为38,32 .03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C= 3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.【解析】(1)在△ABC中,由3b-a sin C=3a cos C及正弦定理,得3sin B-sin A sin C=3sin A cos C,则3sin A cos C+sin A sin C=3sin(A+C)=3sin A cos C+3cos A sin C,即sin A sin C=3cos A sin C,而sin C>0,于是tan A=3,又0<A<π,所以A=π3.(2)由(1)知,A=π3,由正弦定理得b=c sin Bsin C=2sin2π3-Csin C=3cos C+sin Csin C=3tan C+1,由△ABC为锐角三角形,得0<C<π20<2π3-C<π2,解得π6<C<π2,则tan C>13,∴1tan C<3,则1<b<4,所以b的取值范围是1<b<4.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.【解析】(1)因为2sin B sin C+cos2C=1+cos2A-cos2B,所以2sin B sin C+1-2sin2C=1+1-2sin2A-1+2sin2B,则sin B sin C-sin2C=-sin2A+sin2B,由正弦定理可得bc-c2=-a2+b2,即bc=b2+c2-a2,所以cos A=b2+c2-a22bc=bc2bc=12,又A∈0,π2,故A=π3,由A+B+C=π,故B+C=π-A=2π3=2A;(2)由(1)得sin A=32,cos A=12,因为sin B=sin A+C=sin A cos C+cos A sin C=32cos C+12sin C,所以由正弦定理得c-ba=sin C-sin Bsin A=23sin C-32cos C-12sin C=2312sin C-32cos C=23sin C-π3,又锐角△ABC中,有0<C<π20<π-π3-B<π2,解得π6<C<π2,所以-π6<C-π3<π6,则-12<sin C-π3<12,所以-33<23sin C-π3<33,即-33<23sin C-π3<33,故c-ba的取值范围为-33,33.3(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.【解析】(1)∵a2=-233S+ab cos C,∴a2=-33ab sin C+ab cos C,即a=-33b sin C+b cos C,由正弦定理得,sin A=-33sin B sin C+sin B cos C,∴sin B+C=-33sin B sin C+sin B cos C,∴cos B sin C=-33sin B sin C,∵sin C≠0,∴tan B=-3,由0<B<π,得B=2π3.(2)由(1)知,B=2π3,因为AB⊥BD,所以∠ABD=π2,∠DBC=π6,在△BCD中,由正弦定理得DCsin∠DBC=BDsin C,即DC=2sinπ6sin C=1sin C,在Rt△ABD中,AD=BDsin A=2sin A,∴2 AD +1CD=22sin A+11sin C=sin A+sin C,∵∠ABC=2π3,∴A+C=π3,∴2 AD +1CD=sin A+sin C=sinπ3-C+sin C=sinπ3cos C-cosπ3sin C+sin C=sin C+π3,∵0<C<π3,∴C+π3∈π3,2π3,∴sin C+π3∈32,1,所以2AD+1CD的取值范围为32,1.4(2024·陕西安康·模拟预测)已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,其中a=8,ac=1+sin2A-sin2Csin2B,且a≠c.(1)求证:B=2C;(2)已知点M在线段AC上,且∠ABM=∠CBM,求BM的取值范围.【解析】(1)因为ac=1+sin2A-sin2Csin2B,即a-cc=sin2A-sin2Csin2B,由正弦定理可得a-cc=a2-c2b2=a+ca-cb2,又a≠c,即a-c≠0,所以1c=a+cb2,整理得b2=c2+ac,由余弦定理得b2=a2+c2-2ac cos B,整理得c=a-2c cos B,由正弦定理得sin C=sin A-2sin C cos B,故sin C=sin B+C-2sin C cos B,即sin C=sin B cos C+sin C cos B-2sin C cos B,整理得sin C=sin B-C,又因为△ABC为锐角三角形,则C∈0,π2,B∈0,π2,可得B-C∈-π2,π2,所以C=B-C,即B=2C.(2)因为点M在线段AC上,且∠ABM=∠CBM,即BM平分∠ABC,又B=2C,所以∠C=∠CBM,则∠BMC=π-C-∠CBM=π-2C,在△MCB中,由正弦定理得BCsin∠BMC=BMsin C,所以BM=BC sin Csin∠BMC=8sin Csin2C=8sin C2sin C cos C=4cos C,因为△ABC为锐角三角形,且B=2C,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4.故22<cos C<32,所以833<BM<42.因此线段BM 长度的取值范围833,42.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,6【答案】C【解析】由正弦定理得a sin A =b sin B ,即b =a sin B sin A =3sin B sin60°=23sin B ,又△ABC 为锐角三角形,C =180°-A -B =120°-B ,又0°<B ,C <90°,则0°<120°-B <90°,解得30°<B <90°,而当30°<x <90°时,y =sin x 单调递增,故sin B ∈12,1,所以b =23sin B ∈3,23 .故选:C2已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163;则正确的个数为()A.0 B.1C.2D.3【答案】C【解析】对于①,因为x =π6+π32=π4时,f x 有最小值,所以sin ωπ4+π3=-1,所以ωπ4+π3=2kπ+3π2k∈Z,得到ω=8k+143k∈Z,因为f x 在区间π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k=0,得ω=143,故①错误;对于②,根据题意,有ωπ4+φ=2k1π+π2k1∈Z5ωπ3+φ=k2πk2∈ZT2=πω≥5π6-π4=7π12,得出ω=-12(2k1-k2)+617,k1,k2∈Z0<ω≤127,即ω=-12k+617,k∈Z0<ω≤127,得到ω=617或1817,故②正确;对于③,令ωx+φ=2kπ+π6k∈Z或ωx+φ=2kπ+5π6k∈Z,则x=-φ+2kπω+π6ωk∈Z或x=-φ+2kπω+5π6ωk∈Z,故需要上述相邻三个根的距离不超过π2,相邻四个根(距离较小的四个)的距离超过π2,即2πω≤π2,8π3ω>π2,,解得ω∈4,16 3,故③正确,故选:C.3设函数f x =sin2ωx-cos2ωx+23sinωx cosωxω>0,当x∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,13 3B.73,133C.83,143D.83,143【答案】C【解析】由已知易知f x =3sin2ωx-cos2ωx=2sin2ωx-π6,当x∈0,π2时2ωx-π6∈-π6,πω-π6,所以要满足题意有5π2≤πω-π6<9π2⇒ω∈83,143.故选:C4将函数f x =sinωx-cosωx(ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.56【答案】C【解析】由题意可得f x =222sinωx-22cosωx=2sinωx-π4,所以将f x 的图象向左平移π4个单位长度后,得到函数h x =2sin ωx +π4 -π4=2sin ωx +ωπ4-π4的图象,再把所得图象上点的横坐标缩短为原来的一半,得到函数g x =2sin 2ωx +ωπ4-π4的图象,因为点π2,0 是g x 图象的一个对称中心,所以πω+ωπ4-π4=k π,k ∈Z ,解得ω=45k +15,k ∈Z ,又ω>0,所以ω的最小值为15.故选:C5已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为()A.23B.13C.1D.12【答案】A【解析】函数f (x )=sin ωx +π6 ,f (x )的图象向左平移π3个单位后所得函数g (x )=sin ωx +π3 +π6=sin ωx +πω3+π6,函数y =g (x )的图象与y =f (x )的图象关于直线x =π3对称,则f (x )=g 2π3-x ,于是sin ωx +π6=sin ω2π3-x +πω3+π6 对任意实数x 恒成立,即sin ωx +π6 =sin -ωx +πω+π6 =sin π-ωx -πω+5π6 =sin ωx -πω+5π6对任意实数x 恒成立,因此-πω+5π6=π6+2k π,k ∈Z ,解得ω=-2k +23,k ∈Z ,而ω>0,则k ∈Z ,k ≤0,所以当k =0时,ω取得最小值23.故选:A6(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+3【答案】ABD【解析】对于A ,因为AB ⋅AC =23S ,所以bc cos A =23×12bc sin A ,则tan A =33,因为A ∈0,π ,所以A =π6,故A 正确;对于B ,因为b =2=a ,则B =A =π6,C =2π3,故△ABC 只有一解,故B 正确;对于C ,若△ABC 为锐角三角形,则B ∈0,π2 ,C ∈0,π2,则0<B <π20<π-π6-B <π2,则π3<B <π2,即sin B ∈32,1,由正弦定理可知:b =a sin Bsin A=4sin B ∈23,4 ,故C 错误;对于D ,若D 为BC 边上的中点,则AD =12AB +AC,所以AD 2=14AB 2+2AB ⋅AC +AC 2=14b 2+c 2+3bc由余弦定理知a 2=b 2+c 2-2bc cos A =b 2+c 2-3bc =4,得b 2+c 2=3bc +4,又b 2+c 2=3bc +4≥2bc ,所以bc ≤42-3=43+8,当且仅当b =c =2+6时取得等号,所以AD 2=14b 2+c 2+3bc =144+23bc ≤144+23×43+8 =7+43,即AD ≤7+43=2+3,故D 正确.故选:ABD .7已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.【答案】56,43【解析】因为f x =12+3sin ωx cos ωx -cos 2ωx =32sin2ωx -12cos2ωx =sin 2ωx -π6,因为f x 的图象在0,π 上有且仅有两条对称轴,所以3π2≤2ωπ-π6<5π2,解得56≤ω<43,所以ω的取值范围是56,43 .故答案为:56,43.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.【答案】ω=32或ω≥52【解析】设θ=ωx,x∈π3,π,则θ∈π3ω,πω,所以问题转化为y=sinθ在θ∈π3ω,πω上存在最大值和最小值,由正弦函数图象可得,π3ω≤kπ+π2kπ+π2+π≤πω,解得k+32≤ω≤3k+32,所以k≥0,k∈Z,当k=0时,32≤ω≤32,∴ω=32;当k=1时,52≤k≤92,当k=2时,72≤ω≤152,当k=3时,92≤ω≤212,当k=n,n∈N*时,n+32≤ω≤3n+32,当k=n+1时,n+52≤ω≤3n+92,而n+52-3n+32=-2n+1<0,即n+52<3n+32,所以k∈N*时,所有情况的ω范围的并集为ω≥52;综上,实数ω的取值范围是ω=32或ω≥52.故答案为:ω=32或ω≥52.9已知函数f x =sinωx+φω>0满足f x ≥fπ12,且f x 在区间-π3,π3上恰有两个最值,则实数ω的取值范围为.【答案】125,4【解析】因为f x ≥fπ12,所以fπ12 =sinπ12ω+φ=-1,所以π12ω+φ=2kπ+3π2,k∈Z,即φ=2kπ-π12ω+3π2,k∈Z,所以f x =sinωx+2kπ-π12ω+3π2 =-cosωx-π12.当-π3≤x≤π3时,-5πω12≤ωx-π12≤πω4ω>0.因为f x 在区间-π3,π3上恰有两个最值,且-5πω12>πω4 ,所以ω>0-2π<-5πω12≤-π0<πω4<π,解得125≤ω<4.故答案为:125,4.10已知函数f (x )=-sin ωx -π4 (ω>0)在区间π3,π 上单调递减,则ω的取值范围是.【答案】0,34【解析】当x ∈π3,π时, ωπ3-π4<ωx -π4<ωπ-π4,又y =-sin x 的单调递减区间为2k π-π2,2k π+π2(k ∈Z ),所以ωπ3-π4≥2k π-π2ωπ-π4≤2k π+π2(k ∈Z ),解得6k -34≤ω≤2k +34(k ∈Z ),且2k +34≥6k -34(k ∈Z ),解得k ≤38,又ω>0,所以k =0,所以ω的取值范围为0,34.故答案为:0,3411若函数f x =cos ωx -π6ω>0 在区间π3,2π3内单调递减,则ω的最大值为.【答案】74【解析】由题得:12T ≥2π3-π3⇒0<ω≤3,令t =ωx -π6⇒t ∈πω3-π6,2πω3-π6,则y =cos t 在t ∈πω3-π6,2πω3-π6单调递减,故πω3-π6≥2k π2πω3-π6≤2k π+π⇒6k +12≤ω≤3k +74,由0<ω≤3,故ω∈12,74,所以ω的最大值为74,故答案为:74.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.【答案】0,2π8【解析】依题意,函数f (x )的值域为[-4,4],g (x )的值域为[b -4,b +4],由∀x 1,x 2∈R ,f (x 1)-g (x 2) ≤8,得|(b -4)-4|≤8,且|(b +4)-(-4)|≤8,解得b =0,g (x )=4cos ωx -π3 =4sin ωx +π6 ,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,得h (x )=4sin ωx -π3ω =4sin ωx -π3,在同一坐标系内作出函数y =g (x ),y =h (x )的图象,观察图象知,|AC |=2πω,取AC 中点D ,连接BD ,由对称性知|AB |=|BC |,BD ⊥AC ,由BA ⋅BC <0,得∠ABC >π2,即∠ABD >π4,|AD |>|BD |,由h (x )=g (x ),得sin ωx -π3 =sin ωx +π6 ,则ωx -π3+ωx+π6=π+2k π,k ∈Z ,解得ωx =712π+k π,k ∈Z ,于是y =4sin 712π+k π-π3=±22,则|BD |=42,因此πω>42,解得0<ω<2π8,所以ω的取值范围是0,2π8.故答案为:0,2π813在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.【答案】18【解析】如图所示,则△ABC 的面积为12ac sin 2π3=12a ⋅2sin π3+12c ⋅2sin π3,则ac =2a +2c ,所以1a +1c =12,显然a ,c >0,故a +4c =(a +4c )1a +1c ×2=2×5+4c a +a c ≥25+24c a ⋅a c=18,当且仅当4ca =a c 1a +1c =12,即a =6c =3时取等号.所以a +4c 的最小值为18.故答案为:18.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B;(2)求sin A+sin C的取值范围.【解析】(1)∵2b sin A-3a=0,∴2sin A sin B-3sin A=0,又∵A∈0,π2,∴sin A≠0,∴sin B=32,B∈0,π2,∴B=π3.(2)由(1)可知,B=π3,且△ABC为锐角三角形,所以0<A<π20<C=2π3-A<π2,∴A∈π6,π2,则sin A+sin C=sin A+sin2π3-A=32sin A+32cos A=3sin A+π6,因为π3<A+π6<2π3,∴sin A+sin C∈32,3.15在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【解析】(1)因为2b sin A-3a=0,由正弦定理边化角得:2sin B sin A-3sin A=0,所以2sin B-3sin A=0,由于在△ABC中,sin A≠0,所以2sin B-3=0,即sin B=32,又0<B<π2,所以B=π3.(2)由(1)可知B=π3,所以A+C=2π3,所以cos A+cos C=cos A+cos2π3-A=cos A+cos2π3cos A+sin2π3sin A=cos A-12cos A+32sin A=12cos A+32sin A=sin A+π6由于在锐角△ABC中,0<2π3-A<π2 0<A<π2,所以π6<A<π2,所以π3<A+π6<2π3,所以sinπ3<sin A+π6≤sinπ2,所以32<sin A+π6≤1,所以cos A+cos C的取值范围为32,1.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.【解析】(1)∵b2+c2-b cos C+c cos B2=bc,由余弦定理可得b2+c2-b⋅a2+b2-c22ab+c⋅a2+c2-b22ac2=bc,化简整理得b2+c2-a2=bc,又b2+c2-a2=2bc cos A,∴cos A=12,又0<A<π2,所以A=π3.(2)因为三角形外接圆半径为R=3,所以b=23sin B,c=23sin C,∴bc=12sin B sin C,由(1)得B+C=2π3,所以bc=12sin B sin C=12sin B sin2π3-B=12sin B32cos B+12sin B=63sin B cos B+6sin2B=33sin2B+31-cos2B=632sin2B-12cos2B+3 =6sin2B-π6+3,因为△ABC是锐角三角形,且B+C=2π3,所以π6<B<π2,∴π6<2B-π6<5π6,∴12<sin2B-π6≤1,∴6<6sin2B-π6+3≤9,即6<bc≤9.所以bc的取值范围为6,9.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.【解析】(1)由cos2B+sin2B=1cos2B-sin2B=-12,得cos2B=14,则cos B=±12,又0<B<π,所以B=π3或2π3.当B=π3时,sin B+π6=sinπ2=1;当B=2π3时,sin B+π6=sin5π6=12.(2)若△ABC为锐角三角形,则B=π3,有0<C<π20<A=2π3-C<π2,解得π6<C<π2.由正弦定理,得asin A=csin C=bsin B=332=2,则a=2sin A,c=2sin C,所以a+2c=2sin A+4sin C=2sin2π3-C+4sin C=232cos C+12sin C+4sin C=5sin C+3cos C=27sin(C+φ),其中tanφ=35,又tanφ=35<33=tanπ6,所以0<φ<π6,则π3<C+φ<2π3,故当C+φ=π2时,sin(C+φ)取到最大值1,所以a+2c的最大值为27.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.【解析】(1)设BC边上的高为AE,垂足为E,因为△ACD面积是△ABD面积的2倍,所以有S△ACDS△ABD=12CD⋅AE12BD⋅AE=2⇒BD=12⇒BC=32,设AB=2AD=x⇒AD=22x,由余弦定理可知:cos C=AC2+BC2-AB22AC⋅BC =AC2+DC2-AD22AC⋅DC⇒1+94-x22×1×32=1+1-12x22×1×1,解得x=1或x=-1舍去,即AB=1;(2)由(1)可知BD=12,BC=32,设∠ADC=θ,由DC=CA⇒∠DAC=∠ADC=θ⇒C=π-2θ且θ∈0,π2,由余弦定理可得:AD=12+12-2×1×1⋅cosπ-2θ=2+2cos2θ=2+22cos2θ-1=2cosθ,AB=12+32 2-2×1×32⋅cosπ-2θ=134+3cos2θ=134+32cos2θ-1=6cos2θ+1 4,在△ABD中,因为θ∈0,π2,所以由正弦定理可知:ABsin∠ADB =ADsin B⇒sin∠ADBsin B=ABAD=6cos2θ+142cosθ=14×24cos2θ+1cos2θ=14×24+1cos2θ,因为θ∈0,π2,所以cos θ∈0,1 ⇒cos 2θ∈0,1 ⇒1cos 2θ>1⇒24+1cos 2θ>25⇒24+1cos 2θ>5,于是有sin ∠ADB sin B >54,因此sin ∠ADB sin B 的取值范围为54,+∞ ..19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求c b的取值范围.【解析】(1)证明:由2sin B sin C +cos2C =1+cos2A -cos2B ,得2sin B sin C +1-2sin 2C =1+1-2sin 2A -1+2sin 2B ,即sin B sin C -sin 2C =-sin 2A +sin 2B ,由正弦定理可得bc -c 2=-a 2+b 2,即a 2=b 2+c 2-bc ,由余弦定理可得a 2=b 2+c 2-2bc cos A ,故cos A =12,又A ∈0,π2 ,故A =π3,由A +B +C =π,故B +C =π-A =2π3=2A ;(2)由正弦定理可得:c b=sin C sin B =sin π-A -B sin B =sin π3+B sin B =12sin B +32cos B sin B =12+32tan B ,又锐角△ABC 中,有0<B <π2,0<π-π3-B <π2,解得π6<B <π2,即tan B ∈33,+∞,即1tan B ∈0,3 ,故c b=12+32tan B ∈12,2 .20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.【解析】(1)∵a +b +c a +b -c =3,∴3=(a +b )2-c 2=a 2+b 2-c 2+2ab 结合余弦定理得3=2ab cos C +2ab =2ab 1+cos C ,∴ab =321+cos C ,∵S △ABC =12ab sin C =334,∴sin C 1+cos C =3,即2sin C 2cos C 2cos 2C 2=tan C 2=3,又∵C 2∈0,π2 ,∴C 2=π3,故C =2π3;(2)由(1)知:C =2π3,ab =321+cos C=3,∵AD =2DB ,∴CD =13CA +23CB ,∴CD 2=13CA +23CB 2=19b 2+49a 2+49ab cos C =19b 2+49a 2-23,又19b 2+49a 2-23≥219b 2⋅49a 2-23=2×23-23=23,当且仅当b =2a =6时,CD 长取最小值,此时CD =23=63,∴CD 长的最小值为63.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.【解析】(1)f x =12-sin 2ωx +32sin2ωx =12-1-cos2ωx 2+32sin2ωx =32sin2ωx +12cos2ωx =sin 2ωx +π6.因为T =2π2ω=4π,所以ω=14,故f x =sin 12x +π6.由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z ,解得4k π-4π3≤x ≤4k π+2π3,k ∈Z ,当k =0时,-4π3≤x ≤2π3,又x ∈0,π ,所以f x 在0,π 上的单调递增区间为0,2π3.(2)由2a -c cos B =b ⋅cos C ,得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin B cos C +cos B sin C =sin B +C =sin A .因为sin A ≠0,所以cos B =12,又B ∈0,π ,所以B =π3,又三角形为锐角三角形,则0<A <π20<2π3-A <π2,则π6<A <π2,所以π4<A 2+π6<5π12,又f A =sin A 2+π6,sin 5π12=sin π4+π6 =sin π4cos π6+cos π4sin π6=2+64,则22<sin A 2+π6 <2+64,所以f A 的取值范围为22,2+64.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.【解析】(1)因为1-cos A 2-sin A =0,所以sin 2A 2=sin A , 因为0<A 2<π2,sin A 2>0,则sin A 2=2sin A 2cos A 2,故cos A 2=12, 所以A 2=π3,A =2π3,(2)因为BD =2DC ,则BD =2DC ,所以AD -AB =2AC -AD ,故AD =13AB +23AC , 因为△ABC 的面积为3,所以12bc sin A =3,所以bc =4|AD |2=13AB +23AC 2=19c 2+49b 2+49AB ⋅AC =19c 2+49b 2-29bc ≥49bc -29bc =89上式当且仅当c =2b ,即c =22,b =2时取得“=”号,所以AD 的最小值是223.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.【解析】(1)由题意得2sin B cos A -sin C cos A =sin A cos C ,即2sin B cos A =sin A cos C +sin C cos A =sin B ,∵sin B ≠0,∴2cos A =1,∴cos A =12,又0<A <π,∴A =π3;(2)解法一:令DC =t ,则BD =3t ,∵cos ∠ADC =-cos ∠ADB ,∴AD 2+DC 2-AC 22AD ⋅DC =-AD 2+BD 2-AB 22AD ⋅BD ,即9+t 2-b 26t =-9+9t 2-c 218t ,∴12t 2=-36+3b 2+c 2①,又∵cos ∠BAC =12=b 2+c 2-16t 22bc ,∴16t 2=b 2+c 2-bc ②,∵联立①②,得144-3bc =9b 2+c 2≥6bc (当且仅当c =3b 时取等号),即bc ≤16,∴S △ABC =12bc sin ∠BAC =34bc ≤43,∴△ABC 面积的最大值为43.解法二:依题意AD =14AB+34AC,∴AD 2=14AB+34AC 2=116AB 2+9AC 2+6AB ⋅AC,即9=116AB 2+9AC 2+6AB AC cos π3=116AB 2+9AC 2+3AB AC,∵AB 2+9AC 2≥6AB AC (当且仅当AB =3AC 时取等号),∴AB AC ≤16,∴S △ABC =12AB ACsin ∠BAC ≤34×16=43,∴△ABC 面积的最大值为43.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c 2的最小值.【解析】(1)因为m ⎳n ,所以a +b sin A -sin B =c sin A -sin C ,由正弦定理可得a +b a -b =c a -c 即a 2-b 2=ac -c 2,故a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,而B 为三角形内角,故B =π3.(2)结合(1)可得:b2a2+c2=a2+c2-aca2+c2=1-aca2+c2,1-aca2+c2≥1-ac2ac=1-12=12,当且仅当a=c时等号成立,故b2a2+c2的最小值为12.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.【解析】(1)因为sin2C=sin2B+sinπ3+Bcosπ6+B=sin2B+12sinπ2+2B+sinπ6=sin2B+12cos2B+12=sin2B+121-2sin2B+14=34,因为sin C>0,所以sin C=3 2,由△ABC为钝角三角形且a<c,b<c知,C为钝角,所以cos C=-12,即tan C=-3,所以tan(A+B)=tanπ-C=-tan C=3.(2)因为S△ABC=12ab sin C=34ab=123,所以ab=48,由余弦定理,c2=a2+b2-2ab cos C=a2+b2+ab≥3ab=144,当且仅当a=b=43时,等号成立,此时c2的最小值为144,所以c的最小值为12.。
人教版高中数学必修二第十一章三角形的最值(范围)问题精品课程及练习讲解(大全必学!)
例 3 在△ABC 中,设角 A,B,C 的对边分别为 a,b,c,已知 C=23π, c= 3,求△ABC 周长的inb B=sinc C=2,
二、与三角形的角或角的三角函数有关的范围或最值问题
求三角函数式的范围一般是先确定角的范围,利用三角函数的单调 性及有界性求范围或最值.
例2
△ABC 的内角 A,B,C 所对的边分别为 a,b,c,向量 m=a,
3b
与 n=(cos A,sin B)平行.
(1)求角 A 的大小;
解 ∵m=(a, 3b)与 n=(cos A,sin B)平行, ∴asin B- 3bcos A=0,∴sin Asin B= 3sin Bcos A, ∵sin B≠0,∴tan A= 3, ∵0<A<π,∴A=π3.
π 3
=12×2×1×sin θ+ 43(OA2+OB2-2OA·OB·cos θ)
=sin θ-
3cos
θ+5 4 3=2sinθ-π3+5
4
3 .
∵0<θ<π,∴-π3<θ-π3<23π,
故当 θ-π3=π2,即 θ=56π时,sinθ-π3取得最大值 1,
故 S 四边形 OACB 的最大值为 2+543=8+45
4+5 3
B. 4
C. 3
D. 2
解析 如图,在△ABC中, ∵b=c,ssiinn BA=1-cocsoAs B,
∴sin Bcos A+cos Bsin A=sin A,
即sin(A+B)=sin(π-C)=sin C=sin A,
三角函数与解三角形中的最值(范围)问题
sin
2
2
(sin+cos)
sin
=
π
4
)
sin
2
1
(1+
),
2
tan
π
π
因为 B ∈[ , ),所以tan
6
4
因为函数 y =
sin(+
B ∈[
3
,1),
3
2
1
3
(1+ )在[ ,1)上单调递减,
2
3
所以 的取值范围为(
2,
6+ 2
].
2
=
高中总复习·数学
2. (2024·湖北三校联考)记△ ABC 的内角 A , B , C 的对边分别为
π
≤ )的图象离原点最近的对称轴为 x = x 0,若满足| x 0|≤
2
π
,则称 f ( x )为“近轴函数”.若函数 y =2
6
“近轴函数”,则φ的取值范围是(
)
sin (2 x -φ)是
高中总复习·数学
解析: y =2 sin
π
(2 x -φ),令2 x -φ= + k π, k ∈Z,∴图象
6
6
π
[0, ]上的值域为[-1,2].故选D.
2
高中总复习·数学
2.
4
3
sin+5
函数 y =
的最大值是
2−sin
6 ,最小值是
解析:法一
2−5
sin x =
,而-1≤
+1
原函数可化为
.
sin x ≤1,所以
2−5
4
-1≤
≤1,所以 ≤ y ≤6,因此原函数的最大值是6,最小值
三角形中的最值或范围问题
三角形中的最值或范围问题在解三角形时,往往会遇到求边、角、周长、面积等问题的最值或范围,我们只需综合运用正余弦定理、三角恒等变换、面积公式,结合基本不等式与三角函数等知识求解即可.一、角的范围或最值[解析]:因为2b ac =,又由余弦定理知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=,所以03B π<≤,又7sin cos )44412B B B B ππππ+=+<+<且,)4B π+∈,即sin cos B B +的取值范围是.[解析]:由BA BC ⋅=,得1cos sin 2ca B ac B =,即cos B B =, 又22cos sin 1B B +=,所以3cos 4B =. 221cos 21cos 2sin sin 22A C A C --+=+=1cos[()()]2A C A C -++-+1cos[()()]2A C A C -+--=cos()cos()1A C A C +-+=cos cos()1B A C -+=3cos()14A C -+.因为0A B π<<-,0C B π<<-,所以B A C B ππ-<-<-, 所以当A C =时,max cos()1A C -=,当A C B π-=-或A C B π-=-时,min 3cos()cos 4A CB -=-=-,所以737cos()11644A C <-+≤, 即22sin sin A C +的取值范围是77(,]164.点评:求角的范围问题一般是转化为利用三角函数的范围来求.二、边的范围或最值【例2】:在锐角△ABC 中,A=2B ,则cb的取值范围是 .[解析]:由0222A B C A B πππ<=<<=--<且0,得64B ππ<<,所以2sin sin 3sin 2cos cos 2sin 4cos 1sin sin sin c C B B B B B B b B B B+====-,又23cos (,)22B ∈所以24cos 1(1,2)cB b=-∈. 【变式】:在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且BC 边上的高为a 63,则cb bc + 的最大值是( )A.8B. 6C.23D.4[解析]:由已知得,在△ABC 中,A bc a a sin 216321=⋅, 即A bc a sin 322=,又由余弦定理得A bc c b a cos 2222-+=,即222cos 2c b A bc a +=+,所以4)6sin(4cos 2sin 32cos 2sin 3222≤+=+=+=+=+πA A A bc A bc A bc bc c b c b b c . 故选D.点评:把边的问题转化为角的问题,化多元为一元,体现了解题的通性通法.下面这道高考题只需运用正弦定理即可,能想到方法就很简单,想不到就太难了,不愧是高考题!【好题欣赏】:(2015·新课标I )在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .[解析]: 如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =, 由正弦定理可得o osin 30sin 75BC BE=,解得BE =6+2; 平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=, 由正弦定理知o osin 30sin 75BF BC=,解得62BF =-, 所以AB 的取值范围为(62,6+2)-.三、周长的范围或最值【例3】: 已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,cos 3sin 0a C a C b c +--=. (1)求A 的大小;(2)若a =7,求△ABC 的周长的取值范围.[解析]:(1)由已知及正弦定理得:C B C A C A sin sin sin sin 3cos sin +=+, 即C C A C A C A sin )sin(sin sin 3cos sin ++=-,化简得,1cos sin 3=-A A ,所以21)6sin(=-πA ,所以66ππ=-A ,解得3π=A ;(2)由已知:0b >,0c >,7b c a +>=,由余弦定理22222231492cos()3()()()344b c bc b c bc b c b c b c π=+-=+-≥+-+=+ 当且仅当b =c =7时等号成立,∴2()449b c +≤⨯,又∵b +c >7,∴7<b +c ≤14, 从而△ABC 的周长的取值范围是(14,21].【变式】: 在△ABC 中,角A,B,C 的对边分别为a,b,c ,且cos cos 2cos a C c A b B +=. (1)求B 的大小.(2)若b=5,求△ABC 周长的取值范围.[解析]:(1)因为cos cos 2cos a C c A b B +=,由正弦定理得sin cos sin cos 2sin cos A C C A B B +=,所以sin()2sin cos A C B B +=,于是1cos ,23B B π==.(2)由正弦定理10sin sin sin 3a b c A B C ===, 所以101010210sin 5sin 5sin()sin 510sin()363333a b c A C A A A ππ++=++=+-+=++又由02A π<<得2663A πππ<+<, 所以510sin()(10,15]6a b c A π++=++∈.点评:例4是运用余弦定理结合基本不等式求周长的范围,而变式是运用正弦定理结合三角函数求周长的范围,各有千秋,好好体会.四、面积的范围与最值【例4】:在△ABC 中,22223a b c ab +=+,若△ABC 的外接圆半径为322,则△ABC 的面积的最大值为 .[解析]:由22223a b c ab +=+及余弦定理得2221cos 23a b c C ab +-==,所以22sin 3C =,又由于2sin 4c R C ==,所以2222cos c a b ab C =+-,即2221623ab a b ab +=+≥,所以12ab ≤,又由于12sin 4223S ab C ab ==≤, 故当且仅当23a b ==时,ABC 的面积取最大值42.【变式】: 如图,在等腰直角三角形OPQ 中,∠POQ =90°,22=OP ,点M 在线段PQ 上. (1)若5OM =,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时, △OMN 的面积最小?并求出面积的最小值.[分析]:第(2)题求△OMN 的面积最小值,前面的要求也很明确:以∠POM 为自变量,因此,本题主要是如何将△OMN 的面积表示为∠POM 的函数关系式,进而利用函数最值求解.其中,利用正弦定理将OM 和ON 的长表示为∠POM 的函数是关键.[解析]:(1)在OMP ∆中,45OPM ∠=︒,OM =OP =, 由余弦定理得,2222cos 45OM OP MP OP MP =+-⨯⨯⨯︒, 得2430MP MP -+=, 解得1MP =或3MP =. (2)设POM α∠=,060α︒≤≤︒, 在OMP ∆中,由正弦定理,得sin sin OM OPOPM OMP=∠∠,所以()sin 45sin 45OP OM α︒=︒+, 同理()sin 45sin 75OP ON α︒=︒+故1sin 2OMNS OM ON MON ∆=⨯⨯⨯∠()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+ ()()1sin 45sin 4530αα=︒+︒++︒=⎣⎦====因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值. 即30POM ∠=︒时,△OMN 的面积的最小值为8-点评:面积问题是边长与角问题的综合,在例5中,知道角的具体值,就考虑边的变化,利用余弦定理结合基本不等式来求,而在变式中,不知道角的具体值,就考虑角的变化,利用三角函数范围求解.巩固训练:[解析]:设,,AB c AC b BC a ===,由余弦定理的推论222cos 2a c b B ac+-=,所以2223a c ac b +-==, 因为由正弦定理得2233sin sin sin ====BbC c A a ,所以C c sin 2=,A a sin 2=, 所以)sin 2(sin 2sin 22sin 22A C A R C R a c +=⨯+=+⎪⎭⎫ ⎝⎛-+=)32sin(2sin 2C C π ()α+=+=C C C sin 72)cos 3sin 2(272≤,(其中23tan =α), 另解:本题也可以用换元法设2c a m +=,代入上式得227530a am m -+-=,因为28430m =-≥,故m ≤当m =,此时a c ==符合题意,因此最大值为.[解析]:(1)由余弦定理知:2221cos 22b c a A bc +-==,∴3A π∠=; (2)由正弦定理得:2sin sin sin b c aB C A====,∴2sin b B =,2sin c C =, ∴22224(sin sin )b c B C +=+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---=-+-=B B C B 322cos 22cos 24)2cos 12cos 1(2π⎪⎭⎫⎝⎛---=B B 234cos 22cos 24π)62sin(242sin 32cos 4π-+=+-=B B B ,又∵203B π<<0,∴72666B πππ-<-<,∴12sin(2)26B π-<-≤, ∴2236b c <+≤.3.己知在锐角三角形中,角A ,B ,C 所对的边分别为a ,b ,c ,且222tan abC a b c =+-,(1)求角C 大小;(2)当c=1时,求ab 的取值范围.[解析]:(1)由已知及余弦定理,得sin 1,sin ,cos 2cos 2C ab C C ab C ==因为C 为锐角,所以 30=C , (2)由正弦定理,得121sin sin sin 2a b c A B C ====, 2sin ,2sin 2sin(30).a A b B A ∴===+︒4sin sin 4sin sin()6ab A B A A π==+2314sin (sin cos )23sin 2sin cos 22A A A A A A =+=+3sin 23cos2A A =+-32sin(2)3A π=+- 由090,015090A A ︒<<︒⎧⎨︒<︒-<︒⎩得6090.A ︒<<︒60260120,A ∴︒<-︒<︒3sin(2)123A π<-≤ 2332ab ∴<≤+.4.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且2sin (2)sin (2)sin a A b c B c b C =+++. (Ⅰ)求角A ;(Ⅱ)若a=2,求△ABC 周长的取值范围.[解析]:(1)由正弦定理sin sin sin a b cA B C==可将2sin (2)sin (2)sin a A b c B c b C =+++变形为22(2)(2)a b c b c b c =+++, 整理可得222a b c bc =++,222b c a bc ∴+-=-,2221cos 222b c a bc A bc bc +--∴===-,0180A <<,∴120A =;(2) 由正弦定理得334sin sin ==C c B b , ∴[])60sin(sin 334)sin (sin 334B B C B c b -+=+=+ )sin 60cos cos 60sin (sin 334B B B -+= )60sin(334cos 23sin 21334+=⎪⎪⎭⎫ ⎝⎛+=B B B ,∵ 120=A ,∴() 60,0∈B ,∴() 120,6060∈+B ,∴⎥⎦⎤ ⎝⎛∈+1,23)60sin( B ,∴⎥⎦⎤ ⎝⎛∈+334,2)60sin(334B ,即⎥⎦⎤ ⎝⎛∈+334,2c b , ∴周长⎥⎦⎤⎝⎛+∈++3342,4c b a[解析]:由2a =且 (2)(sin sin )()sin b A B c b C +-=-, 即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=, ∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤故答案为3.6. 在一个六角形体育馆的一角MAN 内,用长为a 的围栏设置一个运动器材存储区域(如图所示),已知0120A ∠=,B 是墙角线AM 上的一点,C 是墙角线AN 上的一点. (1)若BC=a=20,求存储区域面积的最大值;(2)若AB+AC=10,在折线MBCN 内选一点D,使BD+DC=20,求四边形存储区域DBAC 的最大面积.[解析]:(1)设AB x =,AC y =,0,0x y >>. 由22200202cos12022cos120x y xy xy xy =+-≥-,得22020202022cos1204sin 60xy ≤=-, ∴22020002000112020cos 60201003sin1202sin 60cos 60224sin 604sin 604tan 60S xy =≤⨯⨯===即四边形DBAC 面积的最大值为10033,当且仅当x y =时取到. (2)由20=+DC DB ,知点D 在以B,C 为焦点的椭圆上,∵32523101021=⨯⨯⨯=∆ABC S , ∴要使四边形DBAC 面积最大,只需△DBC 的面积最大,此时点D 到BC 的距离最大,即D 为椭圆短轴顶点,由310=BC ,得短半轴长5=b ,()325531021max =⨯⨯=∆BCD S ,因此,四边形ACDB 的面积的最大值为350.7.已知3()3f x x x m =-+,在区间[0,2]上任取三个数a,b,c,均存在以()()(),,f a f b f c 为边长的三角形,则m 的取值范围是( )出函数在区间[0,2]上的最小值与最大值,从而可得不等式,即可求解.[解析]:由0)1)(1(333)('2=-+=-=x x x x f 得到1,121-==x x (舍去), ∵函数的定义域为[0,2],∴函数在(0,1)上0)('<x f ,在(1,2)上0)('>x f , ∴函数)(x f 在区间(0,1)单调递减,在区间(1,2)单调递增, 则,)0(,2)2()(,2)1()(max min m f m f x f m f x f =+==-== 由题意知,02)1(>-=m f ①;)2()1()1(f f f >+,即m m +>+-224②;由①②得6>m 为所求,故选B.。
(完整版)高中数学解三角形最值
三角形中的最值(或范围)问题解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化,正弦余弦定理等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点.其实,这一部分的最值问题解决的方法一般有两种:一是建立目标函数后,利用三角函数的有界性来解决,二是也可以利用重要不等式来解决.类型一:建立目标函数后,利用三角函数有界性来解决例1.在△ABC 中, ,,a b c 分别是内角,,A B C 的对边,且2asinA =(2b+c )sinB+(2c+b)sinC 。
(1) 求角A 的大小;(2)求sin sin B C +的最大值.变式1:已知向量(,)m a c b =+,(,)n a c b a =--,且0m n ⋅=,其中,,A B C 是△ABC 的内角,,,a b c 分别是角,,A B C 的对边。
(1) 求角C 的大小;(2)求sin sin A B +的最大值。
解:由m n ⋅=()a c +()()0a c b b a -+-=,得a 2+b 2—c 2=ab=2abcosC所以cosC=21,从而C=60故sin sin sin sin(120)O A B A A +=+-=3sin(60 +A) 所以当A=30 时,sin sin A B +的最大值是3变式2.已知半径为R 的圆O 的内接⊿ABC 中,若有2R (sin 2A —sin 2C )=(2a —b )sinB 成立,试求⊿ABC 的面积S 的最大值。
解:根据题意得:2R(224R a —224R c )=(2a —b)*R b2化简可得 c 2=a 2+b 2—2ab , 由余弦定理可得: C=45 , A+B=135 S=21absinC=212RsinA *2RsinB*sinC =2sinAsin(135 —A) =22R (2sin (2A+45 )+1 ∵0<A<135 ∴45 <2A+45 <315∴ 当2A+45 =90 即A=15 时,S 取得最大值2212R +。
专题03 解三角形之最值、范围问题(解析版)
解三角形之最值、范围问题一、单选题1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =c sin B ,则tan A 的最大值为( ) A .1 B .54C .43D .32【答案】C2.在ABC ∆中,角,,A B C 的对边分别是,,,a b c 且,,A B C 成等差数列,2b =,则a c +的取值范围是( )A .(]2,3B .(]2,4C .(]0,4 D .(2,【答案】B3.锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2225a b c +=,则cos C 的取值范围是( ) A .(123,) B .(112,)C .[45D .[45,1) 【答案】C4.在ABC 内角A ,B ,C 的对边分别是a ,b ,c ,若()()3cos sin sin 1cos A B A B -=+,6a c +=,则ABC 的面积的最大值为( )A .BCD .【答案】D5.已知ABC 三内角,,A B C 的对边分别为,,a b c cos sin 0A a C +=,若角A 的平分线交BC 于D 点,且1AD =,则b c +的最小值为( )A .2B .C .4D .【答案】C6.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =,且()()()3sin sin sin c B C a A c -+=-⋅,则ABC 周长的最大值为( )A .8B .9C .12D .15【答案】B二、解答题7.已知函数()2cos 3cos 1f x x x x =-+.(1)求函数()f x 的单调递减区间;(2)在锐角ABC 中,角,,A B C 所对的边分别,,a b c .若()1,f C c ==D 为AB 的中点,求CD 的最大值. 【答案】(1)递减区间511[,]1212k k k Z ππππ++∈;(2)32. 8.现有三个条件①sin()sin ()sin c A B b B c a A +=+-,②tan 2sin b aB A=,③(1cos )sin a B A +,请任选一个,填在下面的横线上,并完成解答. 已知ABC 的内角,,A B C 所对的边分别是a ,b ,c ,若______.(1)求角B ;(2)若a c +=,求ABC 周长的最小值,并求周长取最小值时ABC 的面积.【答案】(1)3π;(2)4.9.如图,在四边形ABCD 中,CD =BC =cos 14CBD ∠=-.(1)求BDC ∠; (2)若3A π∠=,求ABD △周长的最大值. 【答案】(1)6π;(2)12 10.已知ABC 的内角、、A B C 所对的边分别是,,,a b c 在以下三个条件中任先一个:①22(sin sin )sin sin sin B C A B C -=-;②sin4A =;③sin sin 2B C b a B +=; 并解答以下问题:(1)若选___________(填序号),求A ∠的值;(2)在(1)的条件下,若(0)a b m m ==>,当ABC 有且只有一解时,求实数m 的范围及ABC 面积S 的最大值.【答案】(1)条件选择见解析;60A =;(2)({}2m ∈⋃,max S =. 11.已知函数()21sin cos cos 62f x x x x π⎛⎫=-+- ⎪⎝⎭. (1)当[],0x π∈-时,求出函数()f x 的最大值,并写出对应的x 的值; (2)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若()12f A =,4b c +=,求a 的最小值. 【答案】(1)当56x =-π时,函数()f x 取最大值34;(2)最小值为2.12.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知1cos 2a c Bb =+. (1)若1c =,求ABC 面积的最大值;(2)若D 为BC 边上一点,4DB =,5AB =,且12AB BD ⋅=-,求AC .【答案】(1(2.13.在ABC 中,设,,A B C 所对的边分别为,,a b c ,4A π=,1cos 3B =,a b += (1)求,a b 的值;(2)已知,D E 分别在边,BA BC 上,且AD CE +=,求BDE 面积的最大值.【答案】(1)a =b =(214.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知1cos 2b a Cc =+. (1)求角A ;(2)若1AB AC ⋅=,求a 的最小值.【答案】(1)3π;(2。
解三角形中的最值(范围)问题
解三角形中的最值(范围)问题1. 锐角三角形ABC 满足2B=A+C ,设最大边与最小边之比为m ,求m 的取值范围. 分析:不妨令则因为所以所以2. 锐角三角形ABC 的面积为S ,角C 既不是最大角,也不是最小角.若,求的取值范围.分析:又所以所以又在锐角三角形ABC 中,角C 既不是最大角,也不是最小角所以所以,即k 的取值范围.60B ︒=090A B C ︒<≤≤<sin sin()1sin sin 2tan 2c C A B ma A A A +====+3060A ︒︒<≤tan 3A <≤12m ≤<22()4c a b S k --=k 222222cos (1cos )442c a b ab ab ab C ab C S k k k --+--===1sin 2S ab C =1cos sin CC k -=1cos tan sin 2C C k C -==42C ππ<<1tan 12C <<3. 三角形ABC 满足B 是锐角,且,则的取值范围是_______. 分析:由正弦定理得 所以又所以又B 是锐角所以4. 锐角三角形ABC 满足,求的取值范围.分析:由正弦定理得所以所以又所以又所以所以28sin sin sin A C B =a cb +28ac b=a c b +===2222cos 8b a c ac B ac =+-=22cos 484a c B ac ++=()22a c b+∈)(sin sin )(sin sin )c b c C B a A B =+-=-22a b +()()()b c c b a a b +-=-222a b c ab +-=1cos 2C =0C π<<3C π=4sin sin sin a b c A B C ===4sin ,4sin a A b B ==22222241cos(2)21cos 2316(sin sin )16[sin sin ()]16[]168cos(2)3223A A a b A B A A A πππ---+=+=+-=+=-+又所以 所以所以5. 三角形ABC 满足BC 边上的高为,则的最大值是_____. 分析:又所以所以所以 又所以 的最大值是46. 三角形ABC 满足点D 在边BC 上,且,若,则的取值范围是______.分析: 62A ππ<<242333A πππ+∈(,)12)[1,)32A π+∈--cos(22(20,24]a b +∈6a c b b c+21122S BC h a =⋅==22c b b c b c bc ++=21sin 212S bc A a ==222sin 2cos a A b c bc A ==+-222cos 4sin()6b c A A A bcπ+=+=+0A π<<c b b c +2DC BD =::3::1AB AD AC k =k。
【2020高考数学】三角形中的最值问题解题指导(一) (含答案)
1 / 26【2020年高考数学】三角形中的最值问题解题指导(一)第一篇 三角函数与解三角形专题06 三角形中的最值问题【典例1】【湖南省益阳市、湘潭市2020届高三9月调研考试】已知锐角三角形ABC 中,内角,,A B C 的对边分别为,,a b c ,且2cos cos a b Bc C-= (1)求角C 的大小.(2)求函数sin sin y A B =+的值域. 【思路引导】 (1)由2cos cos a b Bc C-=利用正弦定理得2sin cos sin cos sin cos A C B C C B -=,根据两角和的正弦公式及诱导公式可得1cos 2C =,可求出C 的值;(2)对函数的关系式进行恒等变换,利用两角和与差的正弦公式及辅助角公式把函数的关系式变形成同一个角正弦型函数,进一步利用定义域求出函数的值域.2 / 26【典例2】【2020届海南省高三第二次联合考试】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且22cos a c b C -=. (1)求sin 2A C B +⎛⎫+⎪⎝⎭的值; (2)若b =c a -的取值范围.【思路引导】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得cos B ,进而求得B 和A C +,代入求得结果;(2)利用正弦定理可将c a -表示为2sin 2sin C A -,利用两角和差正弦公式、辅助角公式将其整理为2sin 3C π⎛⎫- ⎪⎝⎭,根据正弦型函数值域的求解方法,结合C 的范围可求得结果.3 / 26【典例3】【山西省平遥中学2020届高三上学期11月质检】 已知△ABC 的内角A ,B ,C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【思路引导】(1)利用正弦定理将角化为边可得222a b c bc =+-,再由余弦定理即可得A ; (2)由正弦定理2aR sinA=,可得a ,由基本不等式利用余弦定理可得222b c bc bc bc bc +-≥-=,从而由12S bscinA =可得解.4 / 26【典例4】【2020届河北省保定市高三上学期期末】已知ABC ∆的三个内角A ,B ,C 所对的边分别为,,a b c ,设(sin ,1cos )m B B =-,(2,0)n =. (1)若23B π=,求m 与n 的夹角θ; (2)若||1,m b ==,求ABC ∆周长的最大值.【思路引导】 (1)将23B π=代入可求得m .根据平面向量数量积的坐标运算求得m n ⋅,由数量积的定义即可求得cos θ,进而得夹角θ.(2)根据||1m =及向量模的坐标表示,可求得B .再由余弦定理可得22()4a cb +=.结合基本不等式即可求得a c +的最大值,即可求得周长的最大值;或由正弦定理,用角表示出a c +,结合辅助角公式及角的取值范围,即可求得a c +的取值范围,进而求得周长的最大值.5 / 26【典例5】【2020届吉林省长春市东北师大附中等六校高三联合模拟】 如图,在矩形ABCD 中,1AB =,BC =,点E 、F 分别在边BC 、CD 上,3FAE π∠=,06EAB πθθ⎛⎫∠=<< ⎪⎝⎭..(1)求AE ,AF (用θ表示); (2)求EAF ∆的面积S 的最小值. 【思路引导】(1)根据1AB =,BC =,分别在Rt ABE ∆和Rt ADF ∆中,利用锐角三角函数的定义求出AE 和AF即可;(2)由条件知13sin 232sin 23S AE AF ππθ=⋅⋅=⎛⎫+ ⎪⎝⎭,然后根据θ的范围,利用正弦函数的图象和性质求出S 的最小值.6 / 26【典例6】【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin ()(sin sin )a c C a b A B -=+-. (1)求B ; (2)设b =ABC 的面积为S ,求2sin 2S C -的最大值.【思路引导】(1)用正弦定理化角为边后,再用余弦定理可求得角B ;(2)用正弦定理把边用角表示,即2sin a A =,2sin c C =,这样2sin 2sin sin 2S C ac B C-=-2sin 2sin sin 2A C C =⋅,又sin sin()sin()3A B C C π=+=+,2sin 2S C -就表示为C 的三角函数,由三角函数恒等变换化为一个角的一个三角函数形式,结合正弦函数性质可得最大值.7 / 26【典例7】【福建省宁德市2019-2020学年高三上学期第一次质量检查(期末)】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,ccos c C -=⋅,c =(1)求A ;(2)若ABC ∆为锐角三角形,D 为BC 中点,求AD 的取值范围. 【思路引导】(1cos c C -⋅中的边化成角得到cos A =A 的值; (2)由(1)知4A π=,可得C 的范围,再将b 表示成关于tan C 的函数,从而求得b 的取值范围.8 / 261. 【陕西省2019年高三第三次教学质量检测】在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围.2. 【辽宁省葫芦岛市六校协作体2019-2020学年高三上学期11月月考】,,a b c 分别为ABC 的内角,,A B C 的对边.已知()sin 4sin 8sin a A B A +=.(1)若1,6b A π==,求sin B ; (2)已知3C π=,当ABC 的面积取得最大值时,求ABC 的周长.3. 【2019年云南省师范大学附属中学高三上学期第一次月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 4. 【2020届湖南省常德市高三上学期期末】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知cos cos 2cos +=ac B b C A.(1)求A ; (2)若a =b c +的最大值.5. 【2020届江西省吉安市高三上学期期末】在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =-,(1,cos cos )n a C c A =+,且//m n .(1)求角C 的大小;9 / 26(2)若c =ABC ∆的周长的取值范围.6. 【2020届重庆市康德卷高考模拟调研卷理科数学(二)】如图,在四边形ABCD 中,A为锐角,2cos sin()6A A C C π⎛⎫+=-⎪⎝⎭.(1)求A C +;(2)设ABD △、CBD 的外接圆半径分别为1,r 2r ,若1211m r r DB+≤恒成立,求实数m 的最小值. 7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值.8. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】 在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =,求a 的最小值.9. 【吉林省吉林市普通中学2019-2020学年度高三第二次调研测】 已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ; (2)若24a S =,求c bb c+的最大值. 10. 【湖南省长沙市浏阳市第一中学2019-2020学年高三上学期第六次月考】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan (sin 2cos )cos 2222A C A C a b a +=. (1)求角B 的值; (2)若△ABC的面积为D 为边AC 的中点,求线段BD 长的最小值.10 / 2611. ABC ∆中,60,2,B AB ABC ==∆的面积为 (1)求AC ;(2)若D 为BC 的中点,,E F 分别为边,AB AC 上的点(不包括端点),且120EDF ∠=,求DEF ∆面积的最小值.备战2020年高考数学大题精做之解答题题型全覆盖高端精品【参考答案部分】【典例1】【湖南省益阳市、湘潭市2020届高三9月调研考试】已知锐角三角形ABC 中,内角,,A B C 的对边分别为,,a b c ,且2cos cos a b Bc C-=(1)求角C 的大小.(2)求函数sin sin y A B =+的值域. 【思路引导】 (1)由2cos cos a b Bc C-=利用正弦定理得2sin cos sin cos sin cos A C B C C B -=,根据两角和的正弦公式及诱导公式可得1cos 2C =,可求出C 的值;(2)对函数的关系式进行恒等变换,利用两角和与差的正弦公式及辅助角公式把函数的关系式变形成同一个角正弦型函数,进一步利用定义域求出函数的值域. 解:(1)由2cos cos a b Bc C-=, 利用正弦定理可得2sin cos sin cos sin cos A C B C C B -=, 可化为()2sin cos sin A C sin C B A =+=,1sin 0,cos 2A C ≠∴=0,,23C C ππ⎛⎫∈∴= ⎪⎝⎭.(2)sin sin 3y A sinB A sin A ππ⎛⎫=+=+-- ⎪⎝⎭1sin sin 226A A A A π⎛⎫=++=+ ⎪⎝⎭,11 / 262,032A B A ππ+=<<,62A ππ∴<<,2,3636A sin A ππππ⎤⎛⎫∴<+<∴+∈⎥ ⎪⎝⎭⎝⎦,32y ⎛∴∈⎝. 【典例2】【2020届海南省高三第二次联合考试】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且22cos a c b C -=. (1)求sin 2A C B +⎛⎫+⎪⎝⎭的值; (2)若b =c a -的取值范围.【思路引导】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得cos B ,进而求得B 和A C +,代入求得结果;(2)利用正弦定理可将c a -表示为2sin 2sin C A -,利用两角和差正弦公式、辅助角公式将其整理为2sin 3C π⎛⎫- ⎪⎝⎭,根据正弦型函数值域的求解方法,结合C 的范围可求得结果.解:(1)由正弦定理可得:2sin sin 2sin cos A C B C -=A B C π++= ()sin sin A B C ∴=+()2sin sin 2sin cos 2cos sin sin 2sin cos B C C B C B C C B C ∴+-=+-=即2cos sin sin B C C =()0,C π∈ sin 0C ∴≠ 1cos 2B ∴=()0,B π∈ 3B π∴= 23AC π∴+=2sin sin 232A C B π+⎛⎫∴+==⎪⎝⎭(2)由(1)知:sin sin 3B π==2sin sin sin a c bA CB ∴==== 2sin cC ∴=,2sin a A =()2sin 2sin 2sin 2sin 2sin 2sin cos 2cos sin c a C A C B C C B C B C∴-=-=-+=--12 / 262sin sin sin 2sin 3C C C C C C π⎛⎫=-==- ⎪⎝⎭23A C π+=203C π∴<< ,333C πππ⎛⎫∴-∈- ⎪⎝⎭(2sin 3C π⎛⎫∴-∈ ⎪⎝⎭,即c a -的取值范围为(【典例3】【山西省平遥中学2020届高三上学期11月质检】 已知△ABC 的内角A ,B ,C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【思路引导】(1)利用正弦定理将角化为边可得222a b c bc =+-,再由余弦定理即可得A ; (2)由正弦定理2aR sinA=,可得a ,由基本不等式利用余弦定理可得222b c bc bc bc bc +-≥-=,从而由12S bscinA =可得解. 解:(1)设内角A ,B ,C 所对的边分别为a ,b ,c . 根据sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,可得222a b c ba b c bc c a b c-+=⇒=+-+-, 所以2221cos 222b c a bc A bc bc +-===,又因为0A π<<,所以3A π=.(2)22sin 2sin sin 3a R a R A A π=⇒=== 所以2232b c bc bc bc bc =+-≥-=,所以11sin 322S bc A =≤⨯=(b c =时取等号). 【典例4】【2020届河北省保定市高三上学期期末】已知ABC ∆的三个内角A ,B ,C 所对的边分别为,,a b c ,设(sin ,1cos )m B B =-,(2,0)n =.13 / 26(1)若23B π=,求m 与n 的夹角θ; (2)若||1,m b ==,求ABC ∆周长的最大值.【思路引导】 (1)将23B π=代入可求得m .根据平面向量数量积的坐标运算求得m n ⋅,由数量积的定义即可求得cos θ,进而得夹角θ.(2)根据||1m =及向量模的坐标表示,可求得B .再由余弦定理可得22()4a cb +=.结合基本不等式即可求得a c +的最大值,即可求得周长的最大值;或由正弦定理,用角表示出a c +,结合辅助角公式及角的取值范围,即可求得a c +的取值范围,进而求得周长的最大值.解:(1)23B π=,所以33,22m ⎛⎫= ⎪ ⎪⎝⎭,因为(2,0)n =, 202m n ⋅=⨯+=∴ ,又||22m ⎛== ⎝⎭⎭||2n =,31cos 2||||23m n m n θ⋅==⋅∴,3πθ∴=,(2)因为||1m =,即2||sin 1m B ===,所以3B π=,方法1.由余弦定理,得2222cos b a c ac B =+-.2222()()3()324a ca c a c ac a c ++⎛⎫=+-≥+-⋅=⎪⎝⎭,即2()34a c +≥,即a c +≤(当且仅当a c =时取等号) 所以ABC ∆周长的最大值为方法2.由正弦定理可知,2sin sin sin a c bA C B===,14 / 262sin ,2sin a A c C ==∴,23A C π+=,所以22sin 2sin 3sin 36a c A A A A A ππ⎛⎫⎛⎫+=+-==+⎪ ⎪⎝⎭⎝⎭,又203A π<<,5666A πππ<+<,1sin ,162A π⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦,a c +∈∴,所以当3A π=时,a c +取最大值所以ABC ∆周长的最大值为【典例5】【2020届吉林省长春市东北师大附中等六校高三联合模拟】 如图,在矩形ABCD 中,1AB =,BC =,点E 、F 分别在边BC 、CD 上,3FAE π∠=,06EAB πθθ⎛⎫∠=<< ⎪⎝⎭..(1)求AE ,AF (用θ表示); (2)求EAF ∆的面积S 的最小值. 【思路引导】(1)根据1AB =,BC =,分别在Rt ABE ∆和Rt ADF ∆中,利用锐角三角函数的定义求出AE 和AF即可;(2)由条件知13sin 232sin 23S AE AF ππθ=⋅⋅=⎛⎫+ ⎪⎝⎭,然后根据θ的范围,利用正弦函数的图象和性质求出S 的最小值.解:(1)在Rt ABE ∆中,1AB =,所以1cos cos AB AE EAB θ==∠,在Rt ADF ∆中,AD =236DAF EAB πππθ∠=--∠=-,15 / 260cos 6cos 6ADAF DAFπθθ⎫∴==<<⎪∠⎝⎭- ⎪⎝⎭; (2)13sin 234cos cos 6S AE AF ππθθ=⋅==⎛⎫- ⎪⎝⎭⎝⎭32sin 23πθ===⎛⎫++ ⎪⎝⎭,因为06πθ<<,所以22333πππθ<+<2sin 223πθ⎛⎫<+≤ ⎪⎝⎭,当232ππθ+=时,即当12πθ=时,S取最小值(32.【典例6】【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin ()(sin sin )a c C a b A B -=+-. (1)求B ; (2)设b =ABC 的面积为S ,求2sin 2S C -的最大值.【思路引导】(1)用正弦定理化角为边后,再用余弦定理可求得角B ;(2)用正弦定理把边用角表示,即2sin a A =,2sin c C =,这样2sin 2sin sin 2S C ac B C-=-2sin 2sin sin 2A C C=⋅,又sin sin()sin()3A B C C π=+=+,2sin 2S C -就表示为C 的三角函数,由三角函数恒等变换化为一个角的一个三角函数形式,结合正弦函数性质可得最大值. 解:(1)由正弦定理()()()a c c a b a b -=+-,222a c b ac +-=,由余弦定理2221cos 22a c b B ac +-==,3B π=;(2)由正弦定理2sin sin sin a c bA C B====,2sin a A =,2sin c C =, 2sin 2sin sin 2S C ac B C -=-16 / 262sin 2sin sin 2sin sin 2A C C A C C =⋅=-2)sin sin 23sin cos sin 2C B C C C C C C =+-=+-31cos 2sin 2sin 22sin 2222222C C C C C =-+-=-+sin 213C π⎛⎫=-≤ ⎪⎝⎭当且仅当512C π=时等号成立,故最大值为1. 【典例7】【福建省宁德市2019-2020学年高三上学期第一次质量检查(期末)】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,ccos c C -=⋅,c =(1)求A ;(2)若ABC ∆为锐角三角形,D 为BC 中点,求AD 的取值范围. 【思路引导】(1cos c C -⋅中的边化成角得到cos A =A 的值; (2)由(1)知4A π=,可得C 的范围,再将b 表示成关于tan C 的函数,从而求得b 的取值范围.解:(1cos c C -=⋅sin cos B C A C -=,又sin sin[()]sin()B A C A C =π-+=+,cos cos sin )sin cos A C A C C A C +-=sin sin 0A C C -=, 因为0C π<<,所以sin 0C ≠,所以cos A =0A π<<,所以4A π=. (2)由(1)知4A π=,根据题意得0242C C πππ⎧<<⎪⎪⎨⎪+>⎪⎩,,解得42C ππ<<. 在ABC ∆中,由正弦定理得sin sin c b C B=,所以)2sin 2cos 242sin sin tan C C C b CC Cπ++===+,因为()42C ππ∈,,所以tan (1,)C ∈+∞,所以(24)b ∈,.17 / 26因为D 为BC 中点,所以1()2AD AC AB =+, 所以221()4AD AC AB =+21(48)4b b =++21(2)14b =++,因为(24)b ∈,,所以AD的取值范围为.1. 【陕西省2019年高三第三次教学质量检测】在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围. 【思路引导】(1)根据题意,由余弦定理求得1cos 2C =,即可求解C 角的值; (2)由正弦定理和三角恒等变换的公式,化简得到4sin 6a b A π⎛⎫+=+ ⎪⎝⎭,再根据ABC ∆为锐角三角形,求得62A ππ<<,利用三角函数的图象与性质,即可求解.解:(1)由题意知()()3a b c a b c ab +++-=,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵(0,)C π∈,∴3C π=.(2)由正弦定理可知,2sin sin sin 3ab A Bπ===,a Ab B == ∴sin )a b A B +=+2sin sin 3A A π⎤⎛⎫=+-⎪⎥⎝⎭⎦ 2cos A A =+4sin 6A π⎛⎫=+ ⎪⎝⎭,18 / 26又∵ABC ∆为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,即,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上+a b的取值范围为.2. 【辽宁省葫芦岛市六校协作体2019-2020学年高三上学期11月月考】,,a b c 分别为ABC 的内角,,A B C 的对边.已知()sin 4sin 8sin a A B A +=.(1)若1,6b A π==,求sin B ; (2)已知3C π=,当ABC 的面积取得最大值时,求ABC 的周长.【思路引导】(1)根据正弦定理,将()sin 4sin 8sin a A B A +=,化角为边,即可求出a ,再利用正弦定理即可求出sin B ;(2)根据3C π=,选择in 12s S ab C =,所以当ABC 的面积取得最大值时,ab 最大,结合(1)中条件48a b +=,即可求出ab 最大时,对应的,a b 的值,再根据余弦定理求出边c ,进而得到ABC 的周长.解:(1)由()sin 4sin 8sin a A B A +=,得()48a a b a +=, 即48a b +=.因为1b =,所以4a =.由41sin sin6B=π,得1sin 8B =. (2)因为48a b +=≥=, 所以4ab ≤,当且仅当44a b ==时,等号成立. 因为ABC的面积11sin 4sin 223S ab C π=≤⨯⨯= 所以当44a b ==时,ABC 的面积取得最大值, 此时22241241cos 133c π=+-⨯⨯⨯=,则c =, 所以ABC的周长为519 / 263. 【2019年云南省师范大学附属中学高三上学期第一次月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 【思路引导】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=- ⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 解:(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >,则1sin cos sin 62B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin B B =,tan B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由1sin 2ABC S ac B ∆==,又D 为AC 的中点,则2BD BA BC =+, 等式两边平方得22242BD BC BC BA BA =+⋅+, 所以2222423a c BA BC a c ac ac =++⋅=++≥,20 / 26则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆43=4. 【2020届湖南省常德市高三上学期期末】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知cos cos 2cos +=ac B b C A.(1)求A ; (2)若a =b c +的最大值.【思路引导】(1)根据正弦定理即正弦的和角公式,将表达式化为角的表达式.即可求得A .(2)利用正弦定理,表示出b c +,结合三角函数的辅助角公式及角的取值范围,即可求得b c +的最大值. 解:(1)∵cos cos 2cos +=ac B b C A,由正弦定理得sin sin cos sin cos 2cos +=AC B B C A从而有()sin sin sin sin 2cos 2cos +=⇒=A AB C A A A , ∵sin 0A ≠,∴1cos 2A =,∵0A π<<,∴3A π=;(2)由正弦定理得:2sin sin sin a b cA B C===, ∴2sin ,2sin b B c C ==,则()22sin sin 2sin 2sin 3⎛⎫+=+=+-⎪⎝⎭b c B C B B π3sin 6B B B π⎛⎫==+ ⎪⎝⎭,∵203B π<<,∴5666B πππ<+<, ∴当3B π=时,b c +取得最大值5. 【2020届江西省吉安市高三上学期期末】在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =-,(1,cos cos )n a C c A =+,且//m n .(1)求角C 的大小; (2)若c =ABC ∆的周长的取值范围.21 / 26【思路引导】(1)根据向量平行列出方程,再利用正弦定理进行边角转化,然后求出角C 的大小; (2)根据余弦定理求出+a b 的取值范围,再根据三角形边的几何性质求出周长的取值范围. 解:(1)由//m n 得22cos 2cos cos a C c A C b +=-, 由正弦定理sin sin sin a b cA B C==, 得2cos (sin cos sin cos )sin C A C C A B +=-, 即2cos sin()sin C A C B +=-,因为在三角形中sin()sin 0A C B +=≠,则1cos 2C =-,又(0,)C π∠∈,故23C π∠=; (2)在ABC ∆中,因c =23C π∠=,由余弦定理得2223c a b ab =++=, 即22()332a b a b ab +⎛⎫+=+≤+ ⎪⎝⎭,当且仅当a b =时取等号,解得2a b +≤,又由三角形性质得a b c +>=2a b +≤,则2a b c <++≤,即ABC ∆的周长的取值范围为(+. 6. 【2020届重庆市康德卷高考模拟调研卷理科数学(二)】如图,在四边形ABCD 中,A为锐角,2cos sin()6A A C C π⎛⎫+=-⎪⎝⎭.(1)求A C +;(2)设ABD △、CBD 的外接圆半径分别为1,r 2r ,若1211mr r DB+≤恒成立,求实数m 的最小值. 【思路引导】(1)根据三角函数的和差角公式与三角函数值求解即可. (2)根据正弦定理参变分离,再利用A 的取值范围求解 解:(1)由题, 2cos sin()A A C +=22 / 263sin[()]sin[()]sin(2)sin sin 2A A C A A C A C C C C ++--+=++=-,即1sin(2)sin 22A C C C +=-sin(2)sin 3A C C π⎛⎫⇒+=- ⎪⎝⎭,因为23A C C π+>-.故23A C C π+≠-.所以2233A C C A C πππ++-=⇒+=. (2)122sin 2sin BD BD m A C r r ≥+=+22sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭12sin 2cos 2sin 22A A A ⎛⎫=+⨯-⨯- ⎪⎝⎭3sin A A =6A π⎛⎫=+ ⎪⎝⎭,因为0,2A π⎛⎫∈ ⎪⎝⎭,故当62A ππ+=时6A π⎛⎫+ ⎪⎝⎭有最大值所以m ≥即实数m的最小值为7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值. 【思路引导】(1)根据三角函数的基本关系式,可化简得2(sin cos sin cos )sin sin A B B A A B +=+,再根据A B C π++=,即可得到sin sin 2sin A B C +=,利用正弦定理,可作出证明;(2)由(1)2a bc +=,利用余弦定理列出方程,再利用基本不等式,可得cos C 的最小值. 解:(1)由题意知,sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+, 化简得:2(sin cos sin cos )sin sin A B B A A B +=+ 即2sin()sin sin A B A B +=+,因为A B C π++=, 所以sin()sin()sin A B C C π+=-=,从而sin sin 2sin A B C +=,由正弦定理得2a b c +=. (2)由(1)知,2a bc +=,23 / 26所以222222()3112cos ()22842a b a b a b c b a C ab ab a b ++-+-===+-≥, 当且仅当a b =时,等号成立,故cos C 的最小值为12.8. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】 在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =,求a 的最小值. 【思路引导】(Ⅰ)利用正弦定理、诱导公式、两角和差的三角公式求出cosA 的值,可得A 的值.解:(1) ∵ABC 中,cos 2cb a C -=, ∴由正弦定理知,1sin sin cos sin 2B AC C -=,∵πA B C ++=,∴()sin sin sin cos cos sin B A C A C A C =+=+, ∴1sin cos cos sin sin cos sin 2A C A C A C C +-=, ∴1cos sin sin 2A C C =, ∴1cos 2A =,∴π3A =.(2) 由 (1)及·3AB AC =得6bc =,所以222222cos 6266a b c bc A b c bc =+-=+--= 当且仅当b c =时取等号,所以a9. 【吉林省吉林市普通中学2019-2020学年度高三第二次调研测】 已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ; (2)若24a S =,求c bb c+的最大值. 【思路引导】24 / 26(1)由诱导公式和二倍角公式可得sin bc A ,从而得三角形面积;(2)由余弦定理得2222cos 2sin b c bc A a bc A +-==,从而可把22c b b c b c bc++=用角A 表示出来,由三角函数性质求得最大值.解:(1)在ABC ∆中,A B C π++=,∴B C A +=π-∵()sin 220cos 0bc A B C ++=∴2sin cos 20cos 0bc A A A ⋅-= ∵2A π≠,∴cos 0A ≠∴1sin 52S bc A == (2)∵24a S =∴222cos 2sin b c bc A bc A +-= ∴222sin 2cos b c bc A bc A +=+∴222sin 2cos 4c b b c A A A b c bc π+⎛⎫+==+=+ ⎪⎝⎭ ∴当4A π=时,c bb c+取最大值 10. 【湖南省长沙市浏阳市第一中学2019-2020学年高三上学期第六次月考】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan (sin 2cos )cos 2222A C A Ca b a +=. (1)求角B 的值; (2)若△ABC的面积为D 为边AC 的中点,求线段BD 长的最小值.【思路引导】 (1)根据tan(sin 2cos )cos 2222A C A C a b a +=,化简可得cos sin 2A C a b A +=,进一步得到1cos 22B =,然后求出B 的值;(2)由(1)的角B 及三角形面积公式可得ac 的值,因为D 为边AC 的中点,所以1()2BD BA BC =+,利用向量的模和基本不等式可求BD 的取值范围,即可得到BD 的最小值. 解:(1)由tan(sin 2cos )cos 2222A C A C a b a +=,得sin (sin 2cos )cos cos 22222A C A A Ca b a +=,25 / 26即(coscos sin sin )2sin cos 222222A C A C A A a b -=,即cos sin 2A Ca b A +=. 由正弦定理得sin cossin sin 2A C AB A +=,因0,sin 0,sin 02BA A π<<≠≠, 所以cossin 2A C A +=,则sin sin 2sin cos 222B B BB ==, 所以1cos (0)2222B B π=<<, 所以23B π=,即23B π=. (2)由△ABC的面积为1sin 2ac B =12ac =.因为D 为边AC 的中点,所以1()2BD BA BC =+,所以2221(2)4BD BA BC BA BC =++,即222111(2cos )(2)3444BD c a ac B ac ac ac =++≥-==,当且仅当a c ==“=”,所以3BD ≥,即线段BD. 11. ABC ∆中,60,2,B AB ABC ==∆的面积为 (1)求AC(2)若D 为BC 的中点,,E F 分别为边,AB AC 上的点(不包括端点),且120EDF ∠=,求DEF ∆面积的最小值. 【思路引导】 (1)利用1sin 2ABCAB B SBC =⋅⋅⋅求出BC ,再利用余弦定理求AC 即可; (2)设(),0,60BDE θθ︒︒∠=∈,在BDE 中,利用正弦定理表示出DE ,在CDF 中,利用正弦定理表示出DF ,再将DEF的面积表示出来,利用三角函数的性质求其最小值. 解:(1)因为60,2,B AB ==所以11sin 222ABCAB BC B BC B S C =⋅⋅⋅=⨯=, 又ABCS=4BC =,由余弦定理得:2222212cos 24224122ACAB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=, 所以AC =26 / 26(2)设(),0,60BDE θθ︒︒∠=∈,则60CDF θ︒∠=-,在BDE 中,由正弦定理得:sin sin BD DEBED B=∠,即()2sin 60θ︒=+,所以()sin 60DE θ︒=+, 在CDF 中,由正弦定理得:sin sin CD DFCFD C=∠,由(1)可得22260,,30B BC AC AB C ︒=∴=+=,则()21sin 902DFθ︒+=,所以1cos DF θ=,所以()13sin 24sin 60cos DEFSDE DF EDF θθ︒=⋅⋅⋅∠=+⋅==,当15θ︒=时,()()min sin 2601,6DEP S θ︒+===-故DEF 的面积的最小值为6-.。
与三角形有关的范围最值问题(解析版)
与三角形有关的范围最值问题模型1 已知三角形的一角及其对边如图,已知ABC ∆的三个内角为A ,B ,C ,及其对应边分别为,,a b c ,且60,2A a ==(即已知三角形的一角及其对边),则根据三角形的边角关系就可得到以下三个隐含的解题条件: ①23B C A ππ+=-=②正弦定理:2432sinB sinC sin sin 60b c a R A ︒=====R 为ABC ∆外接圆的半径)(实现了边角的相互转化)③余弦定理:2222cos a b c bc A =+-,即224b c bc =+-(可看作,b c 的方程) 变形:24()3b c bc =+-以上三个隐含的解题条件深刻揭示了解三角形中“已知一角及其对边”的本质:角的关系(内角和定理)、边角的关系(正余弦定理).掌握这个本质就可解决多种不同类型的问题,进而得到解决此类问题的系统方法. 例如,在上述条件下可求: (1)B C +;(2)ABC ∆外接圆的半径;(3)sin sin B C +的取值范围(拓展到求1212sin sin (0)t B t C t t +≠的最值); 类似还有:sin sin ,cos cos ,cos cos B C B C B C +(4)b c +的取值范围(拓展到求(0)b c λμλμ+≠的最值); (5)bc 的取值范围(6)ABC ∆周长的最大值(即求a b c ++的最大值); (7)ABC ∆面积的最大值 (8)22b c +已知三角形的一角及对边,求三角形面积、周长等的最值①已知条件为三角形的一边和对角,可以借助正弦定理,转化为角,求三角函数最值 (口诀:正弦定理化角,三角函数求最值) 基本步骤:(1)利用正弦定理化边为角,并将式子中的角都化为唯一角 (2)将所求式子化简为)sin(ϕω+=x A y 的形式或二次函数型(3)确定此唯一角的取值范围(利用三个内角都在0到π之间)注:如果ABC ∆是锐角三角形,则需要满足 20π<<A ,20π<<B ,20π<<C(4)根据角的范围求最值(范围)②问题涉及三角形的一边和对角,可以借助余弦定理,转化为边,利用基本不等式求值。
解三角形中的最值与范围问题(解析版)
专题5解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.【分析】设220CDBD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】[方法一]:余弦定理 设220CDBD m ==>, 则在ABD △中,2222cos 42AB BD AD BD AD ADB m m =+⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+−⋅∠=+−, 所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++−++−===−+++++++44≥=−当且仅当311m m +=+即1m =−时,等号成立,所以当ACAB取最小值时,1m =−.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系. 则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD −+−+∴===−≥−++++++++==当且仅当即时等号成立。
三角形周长最值问题典型例题
解三角形专题练:周长最值与范围问题(含答案解析)求周长的最值或取值范围的问题,通常有两种途径,其一是运用余弦定理结合基本不等式求解,其二是运用正弦定理、辅助角公式结合三角函数求解.一、知识点1.基本不等式:ab b a 2≥+;2.正弦定理:Cc B b A a sin sin sin ==,余弦定理:A bc c b a cos 2222-+=等;3.和差公式:()βαβαβα±=±sin sin cos cos sin ;()βαβαβα cos cos cos cos cos =±4.二倍角公式:αααcos sin 22sin =,ααα22sin cos 2cos -=,ααα2tan 1tan 22tan -=.5.辅助角公式:),sin(cos sin )(22ϕ++=+=x b a x b x a x f (其中ab =ϕtan ).二、典型例题【例1】:△ABC 的内角A,B,C 的对边分别为a,b,c 且满足a=2,cos (2)cos a B c b A =-.(1)求角A 的大小;(2)求△ABC 周长的范围.【解析】:(1)解法一:由已知,得cos cos 2cos a B b A c A +=.由正弦定理,得sin cos sin cos 2sin cos A B B A C A +=.即sin()2sin cos A B C A +=,因为sin()sin A B C +=.所以sin 2sin cos C C A =.因为sin 0C ≠,所以1cos 2A =,因为0A π<<,所以3A π=.解法二:结合余弦定理222222(2)22a c b b c a a c b ac bc +-+-⨯=-⨯,即222b c a bc +-=.所以2221cos 22b c a A bc +-==.因为0A π<<,所以3A π=.(2)解法一:由余弦定理2222cos a b c bc A =+-,得224bc b c +=+,即2()34b c bc +=+.因为22⎪⎭⎫⎝⎛+≤c b bc ,所以()()44322++≤+c b c b .即4≤+c b (当且仅当2b c ==时等号成立).又因为a c b >+,所以64≤++<c b a .解法二:sin sin sin a b c A B C ==,且2a =,3A π=,所以43sin 3b B =,433c C =,所以22sin )2[sin sin()]24sin()3336a b c B C B B B ππ++=++=++-=++,因为203B π<<,所以64≤++<c b a ,【例2】:已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,cos sin 0a C C b c +--=.(1)求A 的大小;(2)若a =7,求△ABC 的周长的取值范围.【解析】:(1)由已知及正弦定理得:C B C A C A sin sin sin sin 3cos sin +=+,即C C A C A C A sin )sin(sin sin 3cos sin ++=-,化简得1cos sin 3=-A A ,所以21)6sin(=-πA ,所以66ππ=-A ,解得3π=A ;(2)由已知:0b >,0c >,7b c a +>=,由余弦定理()()()()222222414333cos249c b c b c b bc c b bc c b +=+-+≥-+=-+=π,当且仅当b =c =7时等号成立,所以2()449b c +≤⨯,又因为b +c >a,所以7<b +c ≤14,从而△ABC 的周长的取值范围是(14,21].三、巩固练习1.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且2sin (2)sin (2)sin a A b c B c b C =+++.(Ⅰ)求角A ;(Ⅱ)若a=2,求△ABC 周长的取值范围.2.已知△ABC 中,角A,B,C 所对的边分别为a,b,c ,且满足sin (sin )A B B C +=.(1)求角A 的大小;(2)若a=3,求△ABC 周长的取值范围.3.锐角△ABC 中,角A,B,C 所对的边分别为a,b,c ,且(cos )0c a B B -+=.(1)求角A 的大小;(2)若a =ABC 周长的取值范围.4.在△ABC 中,角A,B,C 的对边分别为a,b,c ,b=4,()sin ()(sin sin )a c A b c B C -=-+.(1)求角B ;(2)求△ABC 周长的最大值.5.在△ABC 中,角A,B,C 的对边分别为a,b,c ,且2,3==a A π.(1)求△ABC 的周长的取值范围;(2)求22c b +的取值范围.6.如图,在四边形ABCD 中,CD =BC =,7cos14CBD ∠=-.(1)求BDC ∠;(2)若3A π∠=,求△ABD 周长的最大值.7.(2020·理2)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.8.已知a ,b ,c 分别为锐角△ABC 的三个内角A ,B ,C 的对边,若a =2,且)sin (sin sin 2sin C A A B +=,求△ABC 的周长的取值范围.9.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =- ,(1,cos cos )n a C c A =+,且//m n.(1)求角C 的大小;(2)若c =,求ABC ∆的周长的取值范围.10.在△ABC 中,角A,B,C 的对边分别为a,b,c ,请在①(2)cos cos 0a c B b A ++=;②22cos cos sin (sin sin )A B C C A -=+中选择一个作为已知条件,解答下列问题.我选择__________.(1)求角B 的大小;(2)若3b =,求△ABC 周长的取值范围.11.在△ABC 中,角A 、B 、C 所对的边分别为c b a 、、,且满足A b B a cos 3sin =.(1)求角A 的大小;(2)若4=a ,求△ABC 周长的最大值.12.已知在△ABC 2)12sin2C A B +=+.(1)求角C 的大小;(2)若BAC ∠与ABC ∠的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.13.(2021•上海浦东新区三模)已知函数f (x )=A sin (ωx +φ)(ω>0,20πϕ<<)的部分图象如图所示.(1)求函数f (x )的解析式;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若22=⎪⎭⎫⎝⎛A f ,a =2,求△ABC 周长的取值范围.四、答案与解析1.【解析】:(1)由正弦定理sin sin sin a b cA B C ==,由2sin (2)sin (2)sin a A b c B c b C =+++⇒22(2)(2)a b c b c b c =+++,整理得222a b c bc =++,即bc a c b -=-+222,所以2122cos 222-=-=-+=bc bc bc a c b A ,因为1800<<A ,所以120=A ;(2)由正弦定理得334sin sin ==C c B b ,所以[])60sin(sin 334)sin (sin 334B B C B c b -+=+=+ )sin 60cos cos 60sin (sin 334B B B-+=)60sin(334cos 23sin 21334 +=⎪⎪⎭⎫ ⎝⎛+=B B B ,因为120=A ,所以()60,0∈B ⇒()120,6060∈+B ,⇒⎥⎦⎤⎝⎛∈+1,23)60sin(B ⇒⎦⎤ ⎝⎛∈+334,2)60sin(334B ,即⎥⎦⎤ ⎝⎛∈+334,2c b ,所以周长⎥⎦⎤⎝⎛+∈++3342,4c b a .2.【解析】:(1)由A B C π++=,得sin sin()C A B =+,代入已知条件得:sin sin cos cos sin A B A B A B A B +=⇒sin sin sin A B A B =,因为0sin ≠B,由此得tan A =,因为π<<A 0,所以3π=A .(2)由上可知:23B C π+=,所以B C -=32π.由正弦定理得:32sin sin 3a R A π===所以232(sin sin )sin()]sin )6sin()326b c R B C B B B B B ππ+=+=+-=+=+,因为由203B π<<得:16sin 21≤⎪⎭⎫ ⎝⎛+<πB ,所以63≤+<c b ,且3a =,故△ABC 周长的取值范围为(6,9].3.【解析】:(1)因为锐角△ABC 中(cos )0c a B B -+=,所以由正弦定理可得sin sin (cos )0C A B B -+=,所以sin sin cos sin C A B A B ∴-=,所以sin()sin cos sin A B A B A B ∴+-=,所以3sin cos sin cos sin cos sin sin 3A B A B A B A B ∴+-=,即3sin cos sin 3A B A B =,约掉sin A 变形可得sin tan cos B B B ==,3A π=;(2)因为3=a ,3A π=,所以32π=+C B ,所以由正弦定理可得sin 2sin sin a B b B A ==,sin 2sin sin a Cc C A==,所以△ABC 周长为2sin 2sin a b c B C ++=++22sin 2sin()3B B π=++-312sin 2(sin )22B B B =++2sin sin B B B =+3sin B B =+1cos )22B B =+)6B π=++,因为320π<<B ⇒5666B πππ<+<⇒16sin 21≤⎪⎭⎫ ⎝⎛+<πB ⇒326sin 323≤⎪⎭⎫ ⎝⎛+<πB ,所以336sin 32332≤⎪⎭⎫ ⎝⎛++<πB ,所以△ABC 周长的取值范围为.4.【解析】:(1)由正弦定理知,sin sin sin a b cA B C==,因为()()()C B c b A c a sin sin sin +-=-,所以()()()c b c b a c a +-=-,整理得222a c b ac +-=,由余弦定理知,2221cos 222a cb ac B ac ac +-===,因为()π,0∈B ,所以3π=B .(2)由(1)知,3B π=,所以32π=+C A ,由正弦定理知,4sin sin sin sin 3a cb A C B π====A a sin 38=,c C =,所以()⎪⎪⎭⎫ ⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=+=+A A A A A C A c a sin 21cos 23sin 3832sin sin 38sin sin 38π3(sin ))8sin(266A A A A ππ=+=+=+,因为⎪⎭⎫ ⎝⎛∈32,0πA ,所以⎪⎭⎫ ⎝⎛∈+65,66πππA ,当62A ππ+=,即3A π=时,a c +取得最大值8,所以1248=+≤++c b a ,故△ABC 周长的最大值为12.5.【解析】:(1)由正弦定理得,k A a C c B b =====334232sin sin sin ,易得:C B C k c B k b -===π32,sin ,sin ,所以⎪⎭⎫ ⎝⎛+=+=+6sin 4)sin (sin πC C B k c b 由⎪⎭⎫ ⎝⎛∈π32,0C ,得⎪⎭⎫⎝⎛∈+65,66πππC ,则有:]4,2(∈+c b 又2=a ,则].6,4(∈++=∆c b a l ABC (2)()⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+-=+=+)62sin(211sin )32(sin sin sin 222222222ππC k C C k C B k c b 由⎪⎭⎫ ⎝⎛∈π32,0C ,得⎪⎭⎫ ⎝⎛-∈-67,662πππC ,则]21,41(62sin 21-∈⎪⎭⎫ ⎝⎛-πC ,所以23,43(62sin 211∈⎪⎭⎫ ⎝⎛-+πC 又3162=k ,则].8,4(22∈+c b 6.【解析】:(1)在BCD ∆中,7cos 14CBD ∠=-,所以321sin 14CBD ∠===,由正弦定理得sin sin CD BCCBD BDC=∠∠,所以321sin 114sin 2BC CBD BDC CD ⋅∠∠===,又因为CBD ∠为钝角,所以BDC ∠为锐角,故6BDC π∠=;(2)在BCD ∆中,由余弦定理得2222cos214BC BD CD CBD BC BD +-∠===-⋅,解得4BD =或5BD =-(舍去),在△ABD 中,3A π∠=,设AB x =,AD y =,由余弦定理得22222161cos 222AB AD BD x y A AB AD xy +-+-===⋅⇒2216x y xy +-=⇒2()163x y xy +-=,又0x >,0y >,利用基本不等式得()()4331622y x xy y x +≤=-+,即()642≤+y x ,当且仅当4x y ==时,等号成立,所以x y +的最大值为8,所以AB AD BD ++的最大值为8412+=,所以△ABD 周长的最大值为12.7.【解析】:(1)由正弦定理可得:222BC AC AB AC AB --=⋅,所以2221cos 22AC AB BC A AC AB +-∴==-⋅,因为()0,A π∈ ,所以23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.因为22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),所以()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),所以△ABC 周长3L AC AB BC =++≤+ABC 周长的最大值为3+.8.【解析】:因为a =2,且)sin (sin sin 2sin C A A B +=,所以由正弦定理可得b 2=a 2+ac ,由余弦定理可得bac bc ac c bc a b c A 222cos 2222+=+=-+=,同理可得:b ac B 2cos -=,即⎩⎨⎧=-=+Ba a c Ab ac cos 2cos 2,消去c ,可得B a A b a cos 2cos 22-=,由正弦定理可得B A A B A cos sin 2cos sin 2sin 2-=,即)sin(2sin 2A B A -=,可得B =2A ,由正弦定理B b A a sin sin =,可得AbA 2sin sin 2=,可得A b cos 4=,因为△ABC 为锐角三角形,且π=++C B A ,所以220π<<A ⇒46ππ<<A ⇒23cos 22<<A ⇒3222<<b .又因为a =2,即b 2=4+2c ,所以△ABC 的周长为b b b b c b a +=-++=++2221242,由二次函数性质可得,△ABC 的周长的取值范围为:(326,224++).9.【解析】:(1)由//m n得22cos 2cos cos a C c A C b +=-,由正弦定理sin sin sin a b cA B C==,得2cos (sin cos sin cos )sin C A C C A B +=-,即2cos sin()sin C A C B +=-,因为在三角形中sin()sin 0A C B +=≠,则1cos 2C =-,又(0,)C π∠∈,故23C π∠=;(2)解法一:在△ABC 中,因为c =,23C π∠=,由余弦定理得2223c a b ab =++=,即22()332a b a b ab +⎛⎫+=+≤+ ⎪⎝⎭,当且仅当a b =时取等号,解得2a b +≤,又由三角形性质得a b c +>=2a b <+≤,则2a b c <++≤+,即ABC ∆的周长的取值范围为(.解法二:由正弦定理知:2233sin sin sin ====CcB b A a ,则A a sin 2=,B b sin 2=3sin 2sin 2++=∆B A l ABC 332sin 2sin 23)sin(2sin 2+⎪⎭⎫ ⎝⎛++=+++=πA A C A A 33sin 23cos 3sin +⎪⎭⎫ ⎝⎛+=++=πA A A 因为0,3A π⎛⎫∈ ⎪⎝⎭,则2,333A πππ⎛⎫+∈ ⎪⎝⎭,故sin ,132A π⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭因此()32,32+=∆ABC l .10.【解析】:(1)若选①,已知(2)cos cos 0a c B b A ++=.则:(sin 2sin )cos sin cos 0A C B B A ++=,整理得:sin cos cos sin 2sin cos 0A B A B C B ++=,解得:1cos 2B =-,又0B π<<,所以23B π=.若选②,因为()A C C B A sin sin sin cos cos 22+=-.所以()C A C B A sin sin sin sin 1sin 1222+=---,所以C A B C A sin sin sin sin sin 222-=-+,所以ac b c a -=-+222,所以212cos 222-=-+=ac b c a B ,又0B π<<,所以32π=B .(2)解法一:因为23B π=,3b =,所以由余弦定理知,()()()2222222432cos 29c a c a c a ac c a B ac c a b +=⎪⎭⎫ ⎝⎛+-+≥-+=-+==,当且仅当3==c a 时,等号成立,所以32≤+c a ,又因为b c a >+,所以3326+≤++<c b a .解法二:因为sin sin sin a b c A B C ===,所以A a sin 32=,c C =,则△ABC 的周长()33sin sin 323sin sin 32+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=++=++=A A C A c b a lπ1sin )32A A A =+-+)33A π=++,因为30π<<A ,2333A πππ<+<,所以13sin 23≤⎪⎭⎫ ⎝⎛+<πA ,即33233sin 326+≤+⎪⎭⎫ ⎝⎛+<πA ,所以△ABC 周长的取值范围是(6,3]+.11.【解析】:(1)依正弦定理Bb A a sin sin =可将A b B a cos 3sin =化为A B B A cos sin 3sin sin =又因为在△ABC 中,0sin >B ,所以A A cos 3sin =,即3tan =A ,因为π<<A 0,所以3π=A .(2)因为△ABC 的周长c b c b a ++=++=4,所以当c b +最大时,△ABC 的周长最大.解法一:因为bc c b A bc c b a 3)(cos 2162222-+=-+==,所以316)(2-+=c b bc 4)(2c b bc +≤且,所以()()431622c b c b +≤-+,所以()642≤+c b ,所以8≤+c b (当且仅当4==c b 时等号成立)所以△ABC 周长的最大值12.解法二:因为sin sin sin 332a b c A B C ====,所以()83832sin sin sin sin 8sin 3336b c B C B B B ππ⎡⎤⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,20,3B π⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭故当且仅当3B π=时,b c +取到最大值8所以△ABC 周长的最大值1212.【解析】:(1)因为2)12sin 2C A B +=+,且A B C π++=,11cos 2cos C C C =+-=-cos 2C C +=⇒26sin 2=⎪⎭⎫ ⎝⎛+πC .因为()π,0∈C ⇒⎪⎭⎫ ⎝⎛∈+67,66πππC ⇒26ππ=+C ,即3C π=.(2)因为△ABC 的外接圆半径为2,所以由正弦定理知,4223sin sin =⨯==∠πAB ACB AB ,所以32=AB ,因为3π=∠ACB ,所以32π=∠+∠BAC ABC ,因为BAC ∠与ABC ∠的内角平分线交于点Ⅰ,所以3π=∠+∠BAI ABI ,所以32π=∠ABI ,设ABI θ∠=,则3BAI πθ∠=-,且03πθ<<,在△ABI中,由正弦定理得,42sin sin sin()sin 33BI AI AB AIB ππθθ====∠-,所以⎪⎭⎫ ⎝⎛-=θπ3sin 4BI ,θsin 4=AI ,所以△ABI的周长为314sin()4sin 4(cos sin )4sin 322πθθθθθ+-+=-+2sin 4sin(3πθθθ=+=++,因为30πθ<<,所以2333πππθ<+<,所以当32ππθ+=,即6πθ=时,△ABI的周长取得最大值为4+,故△ABI的周长的最大值为4+.13.【解析】:(1)根据函数的图象,函数的周期πππ=⎪⎭⎫ ⎝⎛-⨯=12512112T ,故ω=2.由于点⎪⎭⎫ ⎝⎛0,125π满足函数的图象,所以01252sin =⎪⎭⎫ ⎝⎛+⨯ϕπA ,由于20πϕ<<,所以6πϕ=.由于点(0,1)在函数的图象上,所以A =2.故函数⎪⎭⎫ ⎝⎛+=62sin 2)(πx x f .(2)由于26sin 2)2(=⎪⎭⎫ ⎝⎛+=πA A f ,所以3π=A .由正弦定理:34sin sin ==A a B b ,整理得B b sin 34=,同理⎪⎭⎫ ⎝⎛-==B C c 32sin 34sin 34π,由于⎪⎭⎫ ⎝⎛∈32,0πB ,所以⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛-++=++=∆6sin 4232sin 34sin 342ππB B B c b a l ABC ,由于⎪⎭⎫ ⎝⎛∈32,0πB ⇒⎪⎭⎫ ⎝⎛∈+65,66πππB ⇒⎥⎦⎤ ⎝⎛∈⎪⎭⎫ ⎝⎛+1,216sin πB .所以:l △ABC ∈(4,6].。
第09讲 拓展四:三角形中周长(定值,最值,取值范围)问题 (精讲)(解析版)-2024年高考数学一
第09讲拓展四:三角形中周长(定值,最值,取值范围)问题(精讲)目录第一部分:知识点精准记忆第二部分:典型例题剖析高频考点一:周长(边长)定值高频考点二:周长(边长)最值高频考点三:周长(边长)取值范围第三部分:高考真题感悟第一部分:知识点精准记忆1、基本不等式核心技巧:利用基本不等式2a b+≤,在结合余弦定理求周长取值范围;2、利用正弦定理化角核心技巧:利用正弦定理2sin a R A =,2sin b R B =,代入周长(边长)公式,再结合辅助角公式,根据角的取值范围,求周长(边长)的取值范围.第二部分:典型例题剖析高频考点一:周长(边长)定值1.(2022·河南洛阳·高二阶段练习(理))在ABC 中,角,,A B C 的对边分别为,,a b c ,22cos c b a B =+.(1)求角A ;(2)若2a =,ABC 面积)22212S a b c =++,求△ABC 的周长.【答案】(1)π3;(2)6(1)在ABC 中,∵22cos c b a B =+,∴由正弦定理可得2sin sin 2sin cos C B A B =+.又∵()πC A B =-+,()sin sin C A B =+,∴()2sin sin 2sin cos A B B A B +=+.整理得2cos sin sin A B B =.∵sin 0B >,∴1cos 2A =,()0,πA ∈.∴π3A =.(2)∵()22212S a b c =++,∴)2221sin 212bc A a b c =++,)224b c =++,亦即2234bc b c =++.又由余弦定理知224b c bc +-=,∴4bc =.∴()234b c bc +-=.∴4b c +=.∴ABC 的周长为6a b c ++=.2.(2022·江西·临川一中模拟预测(文))△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.已知2a b ==.(1)若π6A =,求sin 2B ;(2)当A 取得最大值时,求△ABC 的周长.【答案】(1)3±(2)3(1)由正弦定理得sin sin a b A B =,即πsin 62sin B =,解得sin 3B =,∵0πB <<,∴cos 3B =±,∴sin 22sin cos 3B B B ==±;(2)由余弦定理得22221cos 24b c a c A bc c +-+==,∴2121442c c c c +≥=,当且仅当1c =时,等号成立,此时,△ABC的周长为33.(2022·广东惠州·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,()sin A A b =+.(1)求B ;(2)若3b =,ABC ABC 周长.【答案】(1)3B π=(2)9(1)()sin A A b =+,由正弦定理:sin sin sin a b cA B C==,()sin sin os n B A A C =+,又∵A B C π++=()sin sin cos A B B A B A +=+,cos sin sin sin cos A B A B B A B A =+,cos sin sin A B A B =,∵0A π<<,∴sin 0A ≠sin B B =,又∵0B π<<,∴tan B =3B π=.(2)由题意知1sin 244ABC S ac B ac ===△,∴9ac =由余弦定理得2222cos a c b ac B =+-,又∵3b =,3B π=,∴2222cos 18a cb ac B +=+=∴()222236a c a c ac +=++=,故6a c +=,所以ABC 的周长9a b c ++=.4.(2022·河南·模拟预测(理))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知π3A =,4c =.(1)若sin cos 2B B -=,求ABC 外接圆的面积;(2)若a =,求ABC 的周长.【答案】(1)8π(2)答案见解析(1)因为π2sin cos42B B B ⎛⎫-=-= ⎪⎝⎭,所以π1sin 42B ⎛⎫-= ⎪⎝⎭,因为π3A =,所以203B π<<,所以54412B πππ-<-<则ππ46B -=,则5π12B =.因为π3A =,所以ππ4C A B =--=.设ABC 外接圆的半径为R,由正弦定理得42πsin sin 4c R C ===则R =ABC 外接圆的面积2π8πS R ==.(2)由余弦定理可得2222cos a b c bc A =+-,代入数据,得213164b b =+-,解得1b =或3.当1b =时,ABC的周长为53b =时,ABC的周长为7+.5.(2022·四川绵阳·高一期中)在ABC 中,内角A B C ,,的对边分别为a ,b ,c ,已知22232a cb +=+.(1)求cos B 的值;(2)若32BA BC →→⋅=,2b ac =,求ABC 的周长.【答案】(1)3cos 4B =;(2)3.(1)解:由已知得:22232a cb ac +-=由余弦定理得2223cos 24b ac B ac +-==.(2)解:BA BC →→⋅33cos 42ac B ac ===,解得2ac =,所以22b ac ==,b =由余弦定理知2222cos b a c ac B =+-,于是()()22222cos 7a c ac ac B a c =+--=+-,解得3a c +=,故ABC的周长为3+.6.(2022·辽宁·铁岭市清河高级中学高一期中)在ABC 中,()sin sin sin b B a A b c C =-+(1)求角A 的大小(2)若BC边上的中线AD =ABC S = ABC 的周长【答案】(1)23A π=;(2)8+.(1)由已知sin sin ()sin b B a A b c C =-+,由正弦定理得:222b a bc c =--,由余弦定理得:2221cos 22b c a A bc +-==-,在ABC 中,因为(0,)A π∈,所以23A π=;(2)由1sin 24ABC S bc A ===△8bc =①,由(1)知222b a bc c =--,即2228b c a +=-②,在ABD △中,由余弦定理得:222(2cos 22a a c ADB =+-⋅⋅∠,在ADC 中,由余弦定理得:222()2cos 22a ab ADC =+-⋅⋅∠,因为cos cos ADB ADC ∠=-∠,所以222242a b c +=+③,由①②③,得228,56,8a b c bc =+==,所以b c +====所以ABC 的周长8a b c ++=+7.(2022·河南省实验中学高一期中)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2C =sin 2A +cos 2B +sin A sin C .(1)求角B 的大小;(2)若b =B 的角平分线交AC 于D ,且BD =1,求ABC 的周长.【答案】(1)120°(2)4+(1)解:因为cos 2C =sin 2A +cos 2B +sin A sin C ,所以1﹣sin 2C =sin 2A +1﹣sin 2B +sin A sin C ,即sin 2B =sin 2A +sin 2C +sin A sin C ,由正弦定理得,b 2=a 2+c 2+ac ,由余弦定理得,cos B 222122a cb ac +-==-,由B 为三角形内角得B =120°;(2)由题意得:ABC ABD BCD S S S =+△△△,且∠ABD =∠CBD 12=∠B =60°,BD =1,所以111sin sin 60sin 60222ac B c BD a BD =⋅⋅+⋅⋅ ,=(a +c ),即ac =a +c ,因为b =b 2=12=a 2+c 2﹣2ac cos120°=a 2+c 2+ac ,因为()()22222a c a c ac ac +=++=,所以ac=a +c =4或ac =﹣3(舍),故ABC 的周长为4+8.(2022·江苏南通·高一期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b = ,(sin )n B A =,且.m n ⊥ (1)求A ;(2)若a =ABCABC 的周长.【答案】(1)23π;(2)3+.(1)由m n ⊥,则sin cos 0a B A +=,由正弦定理得:sin sin cos 0A B B A =,在ABC 中sin 0B >,故sin A A =,即tan A =因为0A π<<,所以23A π=;(2)由余弦定理得2222cos a b c bc A =+-,即227b c bc ++=,可得()27b c bc +=+,又1sin 2ABC S bc A ==2bc =,则()29b c +=,即3b c +=,所以ABC 的周长为3高频考点二:周长(边长)最值一、解答题1.(2022·山西·高一阶段练习)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,△ABC 的面积为S ,且满足4tan tan tan S B C bc B ⋅⋅=⋅+tan 4bc C S ⋅+.(1)求角A 的大小;(2)若4a =,求△ABC 周长的最大值.【答案】(1)π3(2)12(1)∵πA B C ++=,4tan tan tan tan 4S B C bc B bc C S =++,∴()()tan tan tan tan 4tan tan tan tan 11tan tan bc B C B CS bc bc B C bc A B C B C++==-⋅=-⋅+=⋅--⋅,即sin 2sin cos Abc A bc A=⋅,∵(0,π)sin 0A A ∈≠,∴1cos 2A =,∴π3A =;(2)∵4a =,π3A =,∴由余弦定理得2221cos 22b c a A bc +-==,2216b c bc +-=,()2163b c bc+=+()()2216334b c b c bc ++-=≤⨯(当且仅当4b c ==时取“=”),即()21164b c +≤,8b c +≤,∴b c +的最大值为8,a b c ++的最大值为12,∴△ABC 周长的最大值为12.2.(2022·宁夏·平罗中学三模(文))已知函数()f x m n =⋅,向量()sin cos ,n x x x =+ ,()cos sin ,2sin m x x x =-,在锐角ABC 中内角,,A B C 的对边分别为,,a b c ,(1)若()1f A =,求角A 的大小;(2)在(1)的条件下,a =cb +的最大值.【答案】(1)3A π=(2)(1)由题()22cos sin cos 2sin 26f x m n x x x x x π⎛⎫=⋅=-+=+ ⎪⎝⎭所以()2sin 216f A A π⎛⎫=+= ⎪⎝⎭,即1sin 262A π⎛⎫+=⎪⎝⎭又因为0,2A π⎛⎫∈ ⎪⎝⎭,所以5266A ππ+=,3A π=.(2)由余弦定理2222cos a b c bc A =+-,代入数据得:223b c bc =+-,整理得到()()()2222133324b cb c bc b c b c +=+-³+-´=+解得b c +≤b c ==.故c b +的最大值为3.(2022·山西运城·高一阶段练习)已知ABC 的内角,,A B C 所对的边分别为,,cos sin a b c B a B =+.(1)若8,a ABC = 的面积为D 为边BC 的中点,求中线AD 的长度;(2)若E 为边BC 上一点,且1,:2:AE BE EC c b ==,求2b c +的最小值.【答案】(1)(2)7(1)cos sin sin C A B A B +,()cos sin cos sin sin A B A B A B A B A B ++,sin sin sin A B A B =,(),0,π,sin 0,A B B ∈∴≠ tan A ∴,即π3A =.ABC 的面积为1sin 162bc A bc ∴=∴=.D Q 为边BC 的中点,()()222222111()216444AD AB AC AB AB AC AC c b ∴=+=+⋅+=++ ,又222,16,8b c a bc bc a +-===,222641680b c a bc ∴+=+=+=,()()222112880162444AD c b ∴=+⨯+=+= ,即AD = ,∴中线AD 的长度为(2)E 为边BC 上一点,:2:BE EC c b =,()22,22c c BE BC AE AB AC AB c b c b∴=∴-=-++,222c b AE AC AB c b c b ∴=+++,即()22c b AE cAC bAB +=+ ,222(2)(2)c b AE c AC b AB ∴+=+ ,又1AE =,2222222222(2)(2)427c b c AC b AB c b b c b c b c ∴+=+=++=,2c b ∴+=,即21b c+=)2148224427c b b c b c b c b c ⎛⎛⎫⎫∴+=++=++≥+=⎪⎪⎝⎭⎭,当且仅当4c b b c =,即2b c ==故2b c +4.(2022·湖南·模拟预测)在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,已知222a c ac b +-=.(1)求角B ;(2)若2b =,求2a c +的最大值.【答案】(1)π3B =(1)由222a c ac b +-=,得222a c b ac +-=,由余弦定理可得2221cos 22a cb B ac +-==,因为0πB <<,所以π3B =.(2)在ABC 中,由(1)及2b =,由正弦定理1sin sin sin ac b A C B ===,所以sin a A =,sin c C =,所以2sin 2sin sin 2sin 3a c A C A A π⎛⎫+=+=++ ⎪⎝⎭2sin )A A A ϕ==+,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,tan 2ϕ=,因为2π03A <<,π02ϕ<<,所以存在角A 使得π2A ϕ+=,所以2a c +.5.(2022·浙江·模拟预测)向量1,2m x ⎫=⎪⎭,3cos ,22x n ⎛⎫=- ⎪ ⎪⎝⎭,函数()()2f x m m n =⋅+ .(1)求函数()f x 的对称中心;(2)若函数1()()4g x f x =+在π,4a ⎡⎤-⎢⎥⎣⎦上有5个零点,求a 的取值范围;(3)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,ACB ∠的角平分线交AB 于点D ,且()f C 恰好为函数()f x 的最大值.若此时()CD f C =,求43a b +的最小值.【答案】(1)ππ1,1224k ⎛⎫+- ⎪⎝⎭(k ∈Z )(2)25π31π,1212⎡⎫⎪⎢⎣⎭(3)7+(1)∵1,2m x ⎫=⎪⎭,3,22x n ⎛⎫=- ⎪ ⎪⎝⎭,∴5,22m n x x ⎫=+-⎪⎭+ ,∴()25π12sin cos 2sin 24624()f x m m x x x n x ⎛⎫=+-=-- ⎪⎝⎭=⋅+ .令π2π6x k -=得ππ(Z)122k x k =+∈,∴()f x 的对称中心为ππ1,1224k ⎛⎫+- ⎝⎭(k ∈Z ).(2)当π4x =-时,π2π263x -=-,又()sin 26g x x π⎛⎫=- ⎪⎝⎭在π,4a ⎡⎤-⎢⎥⎣⎦上有5个零点,∴π4π25π6a ≤-<,∴a 的取值范围为25π31π,1212⎡⎫⎪⎢⎣⎭.(3)由()f C 恰好为函数()f x 的最大值可得17()2sin 2644f C C π⎛⎫=--= ⎪⎝⎭,即sin 216C π⎛⎫-= ⎪⎝⎭,∵0C π<<,则可解3C π=,则()74CD f C ==,在ACD △中,由1sin sin 2CD ADA C =,可得78sin AD A =,在BCD △中,由1sin sin 2CD BDB C =,可得78sin BD B =,∴778sin 8sin c A B=+,在ABC 中,sin sin sin a b cA B C==,则可得sin 1sin A a B ⎫=+⎪⎝⎭,sin 1sin B b A ⎫=+⎪⎝⎭,则sin sin 43113sin 4sin A B a b B A ⎫⎫+=+++⎪⎪⎝⎭⎝⎭sin sin sin sin A BB A=⋅⋅,∵sin 0A >,sin 0B >,∴4371212a b +≥=+,当且仅当2sin A B =等号成立,故43a b +的最小值为712+.6.(2022·广东东莞·高一期中)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc+=+(1)若8a =,8AB AC ⋅=,D 为边BC 上的中点,求AD ;(2)若E 为边BC 上一点,且1AE =,:2:BE EC c b =,求2b c +的最小值.【答案】(1)AD =7(1)依题意得:2221cos 22b c a A bc +-==,由1cos 82AB AC bc A bc ⋅=== ,得:16bc =∴222641680b c a bc +=+=+=∵D 为边BC 的中点,∴()12AD AB AC =+ ∴()()222211244AD AB AC AB AB AC AC =+=+⋅+()()22112880162444c b =+⨯+=+=即AD =(2)∵E 为边BC 上一点,:2:BE EC c b =,∴222c b AE AC c b c b =+++,即()22c b AE cAC bAB +=+,∴()()22222c b AE c AC bAB +=+ ,又1AE =,∴()()222222222222427c b c AC bAB c b b c b c b c +=+=++= ,∴2c b +,即21b c+=∴)212222415b c b c b c b c c b ⎛⎫⎛⎫⎛⎫+++++++⎪⎪ ⎪⎪⎝⎭⎝⎭⎭当且仅当22b c c b =,即7b c ==取等号,故2b c +的最小值为7.7.(2022·吉林·东北师大附中高一期中)在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且cos cos 2cos a C c A b B +=.(1)当12AC =时,求ABC 面积的最大值;(2)当ABC 的面积为ABC 周长的最小值.【答案】(1)(2)12(1)解:由cos cos 2cos a C c A b B +=及正弦定理可得()2sin cos sin cos cos sin sin sin B B A C A C A C B =+=+=,因为()0,B π∈,则sin 0B >,所以,1cos 2B =,故3B π=.因为12b AC ==,由余弦定理可得222221442cos 2b a c ac B a c ac ac ac ac ==+-=+-≥-=,当且仅当12a c ==时,等号成立,故1sin 24ABC S ac B ac ==≤△故ABC 面积的最大值为.(2)解:因为1sin 24ABC S ac B ac ===△16ac =,所以,b =所以,812a b c a c ++=+++,当且仅当4a c ==时,等号成立,故ABC 周长的最小值为12.8.(2022·全国·高三专题练习)在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且()()2sin 2sin 2sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判断ABC 的形状;(3)若2a =,求ABC 周长的最大值.【答案】(1)23A π=(2)等腰钝角三角形(3)最大值为23+(1)因为()()2sin 2sin 2sin a A b c B c b C =+++,根据正弦定理得()()2222a b c b c b c =+++,整理得222b c a bc+-=-由余弦定理可得2221cos 22b c a A bc +-==-又()0,A π∈,所以23A π=(2)由(1)知23A π=,又sin sin 1BC +=得sin sin 13B B π⎛⎫+-= ⎪⎝⎭,即11sin sin sin sin 1223B B B B B B π⎛⎫-=+=+= ⎪⎝⎭,因为0,3B π⎛⎫∈ ⎪⎝⎭,则2333B πππ<+<,23B ππ∴+=,即6B π=,6C π=,则ABC 为等腰钝角三角形;(3)由2a =,23A π=及余弦定理知()()()()222222232cos 44b c b c a b c bc A b c bc b c ++=+-=+-≥+-=则()2163b c +≤,知()max 3b c +=,当且仅当3b c ==时等号成立所以2a b c ++≤+因此ABC 周长的最大值为2+.高频考点三:周长(边长)取值范围1.(2022·河南·南阳中学高一阶段练习)已知函数()2cos 22sin f x x x x =-+.(1)求函数()f x 的单调递减区间;(2)当0,2x π⎛⎫∈ ⎪⎝⎭时,求函数()f x 的值域;(3)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()1f A =,a =2b c +的取值范围.【答案】(1)5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)(2,1]-(3)(1)解:依题意,()2cos 212sin(2)16f x x x x π--=--,由3222,Z 262k x k k πππππ+≤-≤+∈,解得5,Z 36k x k k ππππ+≤≤+∈,所以函数()f x 的单调递减区间是5[,](Z)36k k k ππππ++∈;(2)解:由(1)知,当(0,2x π∈时,52(,666x πππ-∈-,则1sin(2)126x π-<-≤,2()1f x -<≤,所以函数()f x 的值域是(2,1]-;(3)解:由(1)知,()2sin(2)116f A A π=--=,即sin(2)16A π-=,而0A π<<,则112(,666A πππ-∈-,因此,262A ππ-=,解得3A π=,由正弦定理得:2sin sin sin sin 3b c a B C A π====,即2sin ,2sin b B c C ==,且23C B π=-,则224sin 2sin()35sin )B b c B B B B πϕ==+-++=,sin tan ,0,52πϕϕϕϕ⎛⎫===∈⎪⎝⎭其中,tan 06πϕϕ=∴<<,221,sin sin()220,333B B ππϕϕϕϕπϕ<+<+=<+=⨯<∴,sin())22(,1B B b c ϕϕ<≤≤+++∈,所以b c +的取值范围是.2.(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin Bc a C b c a b-=+-,②23coscos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C所对的边,b =_______.(1)求角B ﹔(2)求2a c -的范围.【答案】(1)任选一条件,都有3B π=(2)(-(1)选择①:∵()()222sin 2sin Bc a C b c a b-=+-,∴由正弦定理可得:()22222cos c a c b c a bc A -=+-=,∴可得:22cos c a b A -=,可得:2c s 2o c A ab=-,∴由余弦定理可得:222222cos c a b c a b bcA -+-==,整理可得:222c a b ac +-=,∴2221cos 222c a b ac B ac ac +-===,∵()0,B π∈,可得:3B π=选择②:,因为()21cos cos cos cos cos cos 22A C A CA C A C +---=-()1cos 1cos cos sin sin 3224A C A C A C -+-+===,所以()()11cos ,cos cos 22A CB AC +=-=-+=,又因为()0,B π∈,所以3B π=;选择③:因为tan tan cos A B b A=+,由正弦定理可得cos sin cos Cb A B A=,又sin sin sin cos cos sin sin tan tan cos cos cos cos cos cos A B A B A B CA B A B A B A B++=+==tan tan A B =+sin cos cos CA B =,因为sin 0C >,所以tan B =0B π<<,所以3B π=.(2)在ABC 中,由(1)及4sin sin sin 2b ac b B A C ====,故4sin ,4sin a A c C ==,28sin 4sin 8sin 28sin 2si 4si n 3n a c A A A A A AC π⎛⎫-=---=-=- ⎪⎝⎭所以6sin 6A A A π⎛⎫=-=- ⎪⎝⎭因为203A π<<,则662A πππ-<-<1sin 1,266A A ππ⎛⎫⎛⎫-<-<-<-< ⎪ ⎪⎝⎭⎝⎭所以2a c -的范围为(-3.(2022·辽宁沈阳·三模)在①2sin cos cos 0a B b C c B --=,②222sin sin sin sin 0A B C A C -+-=,③sin sin sin cos cos 0A C B A C -=三个条件中任选一个,补充到下面问题中,并解答.已知锐角ABC 的内角A ,B ,C ,的对边分别为a ,b ,c 满足_______(填写序号即可)(1)求B ﹔(2)若1a =,求b c +的取值范围.【答案】(1)6B π=(2)12⎛+ ⎝(1)解:选①,因为2sin cos cos 0a B b C c B --=,所以2sin sin sin cos sin cos 0A B B C C B --=,即()2sin sin sin cos sin cos sin sin A B B C C B B C A =+=+=,又sin 0A ≠,所以1sin 2B =,因为0,2B π⎛⎫∈ ⎪⎝⎭,所以6B π=;选②,因为222sin sin sin sin 0A B C A C -+-=,所以2220a b c -+-=,即222222cos b a c a c ac B =+-=+-,所以cos 2B =,因为0,2B π⎛⎫∈ ⎪⎝⎭,所以6B π=;选③,因为sin sin sin cos cos 0A C B A C -=,所以sin sin cos cos sin A C A C B -,()sin sin cos cos cos cos B A C A C A C B =-=-+=,所以tan B =因为0,2B π⎛⎫∈ ⎪⎝⎭,所以6B π=;(2)解:由正弦定理sin sin sin a b cA B C==,得sin 1sin 2sin B b A A==,()sin sin cos sin sin 2sin A B C Ac A A A+===+,则22cos 1cos 122sin 4sin cos 2tan 222AA b c A A A A ++===,由锐角ABC 得025062A C A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,得32A ππ<<,则64A ππ<<,所以tan2A ⎫∈⎪⎪⎝⎭,从而(1tan A ∈,所以b c +的取值范围为12⎛ ⎝.4.(2022·四川成都·高一期中(文))已知向量()sin ,cos a x x ωω=,)(),cos 0b x x ωωω=> ,函数()12f x a b =⋅- 的最小正周期为π.(1)求函数()f x 的最大值;(2)已知ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,满足a =()12f A =,求ABC 周长的取值范围.【答案】(1)1(2)((1)()211cos cos 22f x a b x x x ωωω=⋅-=+-1π2cos 2sin 226x x x ωωω⎛⎫=+=+ ⎪⎝⎭.因为()f x 的最小正周期为π,所以2ππ2ω=.所以1ω=.所以()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.所以()f x 的最大值为1.(2)()π1sin 262f A A ⎛⎫=+= ⎪⎝⎭.因为()0,πA ∈,ππ13π2,666A ⎛⎫+∈ ⎪⎝⎭,所以π5π266A +=,π3A =.由正弦定理可得2sin sin sin a b c A B C ===,所以2sin b B =,2sin c C =.因为πA B C ++=,所以2π3C B =-,2π0,3B ⎛⎫∈ ⎪⎝⎭.所以2sin 2sin b c a B C ++=+2π2sin 2sin 3B B ⎛⎫=+-+ ⎪⎝⎭3sin B B =++π6B ⎛⎫=++ ⎪⎝⎭.因为2π0,3B ⎛⎫∈ ⎪⎝⎭,所以ππ5π,666B ⎛⎫+∈ ⎪⎝⎭.所以π1sin ,162B ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦.所以(π6B ⎛⎫+∈ ⎪⎝⎭.所以ABC周长的取值范围为(.5.(2022·四川成都·高一期中(理))已知向量())()sin ,cos ,,cos 0a x x b x x ωωωωω==>,函数()12f x a b =⋅-(1)求函数()f x 的最大值;(2)ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c,满足a =()12f A =,求ABC 周长的取值范围.【答案】(1)1;(2)(.(1)依题意,()21cos cos 2f x x x x ωωω=+-12cos 222x x ωω=+sin 26x πω⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最大值为1.(2)因函数()f x 与x 轴的三个连续交点的横坐标构成以2π为公差的等差数列,则()f x 的最小正周期为π,即22ππω=,解得1ω=,()sin 26f x x π⎛⎫+ ⎝=⎪⎭,有()1sin 262f A A π⎛⎫=+= ⎪⎝⎭,而()130,,2,666A A ππππ⎛⎫∈+∈ ⎪⎝⎭,因此,52,663A A πππ+==,在ABC中,由正弦定理得:2sin sin sin a b cA B C ===,即2sin ,2sin b B c C ==,而22,0,33C B B ππ⎛⎫=-∈ ⎪⎝⎭,则2sin 2sin a b c B C ++=++22sin 2sin 3B B π⎛⎫=+-+ ⎪⎝⎭3sin B B =++6B π⎛⎫=+ ⎪⎝⎭因20,3B π⎛⎫∈ ⎪⎝⎭,则5,666B πππ⎛⎫+∈ ⎪⎝⎭,有1sin ,162B π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,于是有(6B π⎛⎫+ ⎪⎝⎭,所以ABC周长的取值范围为(.6.(2022·河北·高一期中)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量()cos ,sin a B B =,()2cos cos ,2sin sin b A B A B =--- ,且a b ⊥ .(1)求C ;(2)若6c =,求ABC 周长的取值范围.【答案】(1)2π3C =(2)(12,6+(1)解:因为向量()cos ,sin a B B = ,()2cos cos ,2sin sin b A B A B =--- ,且a b ⊥,所以()()cos 2cos cos sin 2sin sin 0B A B B A B -+--=,即()222cos cos sin sin sin cos B A B A B B -=+,即()2cos 2cos 1A B C +=-=,即1cos 2C =-,因为()0,C π∈,所以2π3C =.(2)由余弦定理得()22222361cos 222a b ab a b c C ab ab +--+-===-,所以()22362a b ab a b +⎛⎫=+-≤ ⎪⎝⎭,当且仅当a b ==所以a b +≤又三角形的两边之和大于第三边,所以6a b +>,所以ABC 周长的取值范围为(12,6+.7.(2022·全国·高三专题练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足条件;4a =,222sin sin sin sin sin A B C B C +=+.(I )求角A 的值;(Ⅱ)求2b c -的范围.【答案】(I )3π;(Ⅱ)()4,8-.(I )由222sin sin sin sin sin A B C B C +=+,利用正弦定理可得222a bc b c +=+,即222bc b c a =+-故2221cos 222b c a bc A bc bc +-===,又(0,)A π∈,3A π∴=(Ⅱ)4a = ,3A π=,利用正弦定理sin sin sin 3a b c A B C===故3b B =,)3c C B π==168122sin()sin cos +sin 3333322b c B B B B B π⎫∴-=⨯-+=-⎪⎪⎝⎭4cos sin 44cos 8sin 336B B B B B B π⎛⎫=--=-=- ⎪⎝⎭在ABC 中,3A π=,故203B π<<662B πππ∴-<-<,1sin 126B π⎛⎫∴-<-< ⎪⎝⎭,48sin 86B π⎛⎫∴-<-< ⎪⎝⎭所以2b c -的范围是()4,8-8.(2022·全国·高三专题练习)已知向量1(sin ,1),,2m x n x ⎫==-⎪⎭ .令函数()()f x m n m =+⋅.(1)求函数()f x 的最小正周期和单调递增区间;(2)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,ACB ∠的角平分线交AB 于D .其中,函数()f C 恰好为函数()f x 的最大值,且此时()CD f C =,求3a b +的最小值.【答案】(1)()f x 的最小正周期为π,单调递增区间为,,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)43+【详解】(1)1(sin ,1),,2m x n x ⎫==-⎪⎭,1sin ,2m n x x ⎛⎫+=+ ⎪⎝⎭∴ ()()1sin sin 2f x x x x ∴=++21sin cos 2x x x =+1cos 21sin 2222x x -=+sin 216x π⎛⎫=-+ ⎪⎝⎭,则()f x 的最小正周期为22ππ=,令222,262k x k k Z πππππ-+≤-≤+∈,解得,63k x k k Z ππππ-+≤≤+∈,故()f x 的单调递增区间为,,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)由()f C 恰好为函数()f x 的最大值可得()sin 2126f C C π⎛⎫=-+= ⎪⎝⎭,即sin 216C π⎛⎫-= ⎪⎝⎭,0C π<< ,则可解得3C π=,则()2CD f C ==,在ACD △中,由1sin sin 2CD AD A C =,可得1sin AD A =,在BCD △中,由1sin sin 2CD BD B C =,可得1sin BD B =,11sin sin c A B∴=+,在ABC中,1111sin sin sin sin sin 3sin sin a b c A B A B C A B +⎛⎫===+ ⎪⎝⎭,则可得sin 13sin A a B ⎫=+⎪⎝⎭,sin 13sin B b A ⎛⎫=+ ⎪⎝⎭,则sin sin sin sin 311sin sin sin sin A B A B a b B A B A ⎫⎛⎫+=++=⋅⋅⎪ ⎪⎭⎝⎭sin 0,sin 0A B >>,83433a b ∴+≥=+,当且仅当sin sin A B =等号成立,故3a b +的最小值为43+.第三部分:高考真题感悟一、解答题1.(2020·全国·高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b c A B C ===,所以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+[方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c.令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=+6πθ⎛⎫+≤ ⎪⎝⎭,易知当6C π=时,max ()b c +=所以ABC周长的最大值为3+2.(2017·全国·高考真题(理))△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2)3.解析:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A=.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=.由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +=.故ABC 的周长为33.(2016·全国·高考真题(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =ABC S ∆=ABC ∆的周长.【答案】(1)3C π=(2)5解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C+=12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 622∆=⇒==ABC S ab C ab ab 又2222cos +-= a b ab C c 2213a b ∴+=,2()255∴+=⇒+=a b a b ABC ∆∴的周长为。
解三角形中的最值与范围问题-高考数学复习
∴f(x)=x+122-54∈(1,5), ∴bc22+bc-1∈(1,5), ∴a+b c的取值范围是(1,5).
课时精练
一、单项选择题 1.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 B=π3,a=4,且
三角形有两解,则 b 的取值范围是
A.(2 3,+∞)
√B.(2 3,4)
(2)求a+b c的取值范围.
由(1)知,c2=b2+ab, ∴a=c2-b b2,c>b, 由三角形三边关系可得ab+ +bc>>ac, ,
代入化简可得b<c<2b,
∴a+b c=c2-bb22+bc=bc22+bc-1, 令 x=bc,则 x∈(1,2),f(x)=x2+x-1,1<x<2,
以a12+b12的最大值为2156.
解决此类题目,一是利用正余弦定理,转化成边的函数,或转化成关于 正弦、余弦或正切的函数,根据函数的单调性求解;二是利用三角恒等 变换构造关于正弦、余弦或正切的函数,根据函数的单调性求解.
跟踪训练 3 (2023·浙江联考)已知△ABC 中,内角 A,B,C 所对的边分别
所以1b=sin A=sin 2C,
所以a12+b12=sin2C+sin22C=1-c2os 2C+(1-cos22C)=-cos22C-
1 2cos
2C+32,
因为△ABC为锐角三角形,且B=C,
则有π4<C<π2,得π2<2C<π,所以-1<cos 2C<0, 由二次函数的性质可得,当 cos 2C=-14时,a12+b12取得最大值1265,所
解三角形中的最值与范围问题
重点解读
解三角形中的最值或范围问题,通常涉及与边长、周长有关的 范围问题,与面积有关的范围问题,或与角度有关的范围问题, 一直是高考的热点与重点,主要是利用三角函数、正余弦定理、 三角形面积公式、基本不等式等工具研究三角形问题,解决此 类问题的关键是建立起角与边的数量关系.
高考数学热点必会题型第12讲-解三角形中的最值问题(原卷及答案)
高考数学热点必会题型第12讲解三角形中的最值问题——每天30分钟7天掌握一、重点题型目录【题型】一、求三角形中的边长有关的最值【题型】二、求三角形中的周长有关的最值【题型】三、求三角形中的面积有关的最值【题型】四、正余弦定理与三角函数性质结合最值【题型】五、化角为边判断三角形的形状【题型】六、化边为角判断三角形的形状【题型】七、利用不等式求范围问题【题型】八、利用三角函数值域求范围问题二、题型讲解总结第一天学习及训练【题型】一、求三角形中的边长有关的最值A B C所对的三边分别为例1.(2022·山东·日照一中高三阶段练习)ABC中,角,,,若ABC的面积为1,则BC的最小值是(),,,2a b c c bDA.2 B.3 C例2.(2022·全国·高三专题练习)在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( )A B .2 C 1 D .例3.(2022·全国·高三专题练习)在ABC 中,若3B π=,AC =2AB BC +的最大值为( )A .7B .C .D .5【题型】二、求三角形中的周长有关的最值例4.(2022·全国·高三专题练习)在锐角三角形ABC cos 2B B +=,且满足关系式cos cos sin sin 3sin B C A Bb c C⋅+=,则ABC 的周长最大值为( )AB .C .D .例5.(2022·全国·高三专题练习)在ABC 中,ABC ∠的平分线交AC 于点D ,23ABC π∠=,4BD =,则ABC 周长的最小值为( )A .8+B .8+C .16+D .16+例6.(2022·全国·高三专题练习)在ABC 中,已知60C =︒,4AB =,则ABC 周长的最大值为( ) A .8B .10C .12D .14第二天学习及训练【题型】三、求三角形中的面积有关的最值例7.(2023·全国·高三专题练习)在ABC 中,角,,A B C 所对的边分别为,,a b c ,2a =,2cos 2cos 24sin C A B =+,则ABC 面积的最大值是( ) A .23B .1C .43D .2例8.(2023·全国·高三专题练习)ABC 的内角,,A B C 所对的边分别为,,a b c .已知()sin sin sin ,cos cos 2b c B c C a A b C c B -+=+=,则ABC 的面积的最大值( )A .1BC .2D .例9.(2022·全国·高三专题练习)在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin()2sin cos 0B C A B ++=.若2b =,则ABC 面积的最大值为( )A B C D .例10.(2022·全国·高三专题练习)在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( )A .6B .C .12D .例11.(2022·全国·高三专题练习)在平面四边形ABCD 中,AB =1,AD =4,BC =CD =2,则四边形ABCD 面积的最大值为( )A B C .D .例12.(2022·全国·高三专题练习)已知边长为2的等边三角形ABC ,D 是平面ABC 内一点,且满足:2:1DB DC =,则三角形ABD 面积的最大值是( )A 43B C 43D 例13.(2022·全国·高三专题练习)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2a C b c =+,若6a =,则ABC ∆的面积的最大值为( ) A .6 B .3C .D .【题型】四、正余弦定理与三角函数性质结合最值例14.(2022·福建·三明一中高三阶段练习)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若sin c A =,λ=b a ,则实数λ的最大值是( )A B .32C .D .2+例15.(2020·全国·高三专题练习(文))已知平面四边形ABCD 由ACD 与等边ABC 拼接而成,其中22AD CD ==,则平面四边形ABCD 面积的最大值为______.例16.(2020·全国·高三阶段练习(理))在边长为ABC 中,G 是中心,直线l 经过点G 且与AB ,AC 两边分别交于P ,Q 两点,则11GP GQ+的最大值为__________. 第三天学习及训练【题型】五、化角为边判断三角形的形状例17.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()2cos cos a b c A B +=+,则角C 的大小为( )A .π2B .π3C .π4D .π6例18.(2023·全国·高三专题练习)设△ABC 的三边长为BC a =,=CA b ,AB c =,若tan2A a b c =+,tan 2B ba c=+,则△ABC 是( ). A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形例19.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos c B a =,则这个三角形的形状为( ) A .直角三角形B .等腰三角形C .锐角三角形D .等腰或直角三角形例20.(2022·江苏·高邮市第一中学高三阶段练习)在ABC ,下列说法正确的是( ) A .若cos cos a A b B =,则ABC 为等腰三角形 B .若40,20,25a b B ===︒,则ABC 必有两解 C .若ABC 是锐角三角形,则sin cos A B >D .若cos2cos2cos21A B C +-<,则ABC 为锐角三角形例21.(2022·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列命题正确的是( ) A .若a b >,则cos2cos2A B <B .若cos cos a B b A c -=,则ABC 一定为直角三角形C .若4a =,5b =,6c =,则ABCD .若()()()cos cos cos 1A B B C C A ---=,则ABC 一定是等边三角形 【题型】六、化边为角判断三角形的形状例22.(2023·全国·高三专题练习)在ABC 中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,2cos 22A b cc+=,则ABC 的形状一定是( ) A .正三角形 B .直角三角形 C .等腰三角形D .等腰直角三角形例23.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足cos cos a A b B =,则ABC 的形状为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形例24.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos sin cos b A c B a B =-,则ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形例25.(2022·江苏·海安市立发中学高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列的结论中正确的是( ) A .若cos cos A B >,则sin sin A B <B .若sin cos sin cos A A B B =,则ABC 一定是等腰三角形C .若ABC 是锐角三角形,则sin sin sin cos cos cos A B C A B C ++>++D .已知ABC 不是直角三角形,则tan tan tan tan tan tan A B C A B C =++第四天学习及训练【题型】七、利用不等式求范围问题例26.(2023·江苏·苏州中学高三阶段练习)已知△ABC 中,sin A =3sin C cos B ,且AB =2,则△ABC 的面积的最大值为( )A .3B .C .9D .例27.(2023·全国·高三专题练习)在等腰ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则ABC 的面积的最大值是( ) A .6B .12C .18D .24例28.(2023·全国·高三专题练习)设()2πsin cos cos 4f x x x x ⎛⎫=-+ ⎪⎝⎭,在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若02A f ⎛⎫= ⎪⎝⎭,1a =,则ABC 面积的最大值为( )A BC D 例29.(2023·全国·高三专题练习)如图,镇江金山的江天禅寺是历史悠久的佛教圣地,其周围的金山湖公园也成为市民休闲旅游的最佳选择.为了扩大对家乡旅游的宣传,现对江天禅寺进行无人机拍照.已知慈寿塔DE 的右侧是金山湖,我们选择了三个点,分别是宝塔左侧一点A 与湖对岸B ,F 点,设宝塔底部E 点和这三个点在同一直线上,无人机从A 点沿AD 直线飞行200米到达宝塔顶部D 点后,然后再飞到F 点的正上方,对山脚的江天禅寺EB 区域进行拍照.现测得从A 处看宝塔顶部D 的仰角为60°,sin ABD ∠=100BF =米.若无人机在C 点处获得最佳拍照角度时(即BCE ∠最大),该无人机离地面的高度为( )A .B .C .D .200米例30.(2023·全国·高三专题练习)ABC 的内角,,A B C 所对的边分别为,,a b c .已知222,cos cos 2b c a bc b C c B +-=+=,则ABC 的面积的最大值( )A .1B C .2D .例31.(2023·全国·高三专题练习)在△ABC 中,cos B =2AC =,AB k =,则( )A .△ABC 外接圆面积为定值,且定值为9πB .△ABC 的面积有最大值,最大值为3+C .若k =60C =︒D .当且仅当02k <≤或6k =时,△ABC 有一解例32.(2023·全国·高三专题练习)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则下列命题正确的是( )A .若A =30°,3a =,4b =,则△ABC 有两解B .若()3AB AC CB -⊥,则角A 最大值为30° C .若222a b c +>,则△ABC 为锐角三角形D .若AB AC AP AB AC λ⎛⎫⎪=+ ⎪⎝⎭,则直线AP 必过△ABC 内心 【题型】八、利用三角函数值域求范围问题例33.(2023·全国·高三专题练习)在ABC 中,若222a b c kab +-=,则实数k 的取值范围是( ) A .()2,2-B .()1,1-C .11,22⎛⎫- ⎪⎝⎭D .0,1例34.(2022·全国·高三专题练习)在锐角ABC 中,cos cos ()sin sin A CA B C a c+=,cos 2C C +=,则a b +的取值范围是( )A .(4⎤⎦B .(2,C .(]0,4D .(]2,4例35.(2022·全国·高三专题练习)已知在锐角ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且60B ︒=,ABC b 的取值范围为( )A .⎡⎣B .C .)D .[)2,6例36.(2022·全国·高三专题练习)已知正三棱柱111ABC A B C 的外接球的表面积为36π,球心为O ,则( ) A .1OA BC ⊥B .该三棱柱所有棱长之和的最大值为36C .该三棱柱侧面积的最大值为12D .三棱锥O ABC -的体积是该三棱柱的体积的16答案第一天学习及训练【题型】一、求三角形中的边长有关的最值例1.(2022·山东·日照一中高三阶段练习)ABC 中,角,,A B C 所对的三边分别为,,,2a b c c b =,若ABC 的面积为1,则BC 的最小值是( ) A .2 B .3 CD【答案】C【分析】由三角形面积公式得到21sin b A=,利用角A 的三角函数表达出254cos sin A BC A -=,利用数形结合及sin sin 055cos cos 44AA A A -=--的几何意义求出最值.【详解】因为△ABC 的面积为1,所211sin 2sin sin 122bc A b b A b A =⨯==,可得21sin b A=,由BC AC AB =-,可得222222||||||22cos BC AC AB AC AB b c bc A b =+-⋅=+-=+()22254cos 54cos 222cos 54cos sin sin sin A Ab b b A b b A A A A--⨯=-=-=, 设sin 1sin 54cos 54cos 4A A m A A ⎡⎤⎢⎥==-⨯⎢⎥-+⎢⎥-⎣⎦,其中(0,π)A ∈,因为sin sin 055cos cos 44AA A A -=--表示点5,04P ⎛⎫⎪⎝⎭与点(cos A ,sin A )连线的斜率,如图所示,当过点P 的直线与半圆相切时,此时斜率最小,在直角△OAP 中,51,4OA OP ==,可得34PA =,所以斜率的最小值为4tan 3PA k APO ∠=-=-,所以m 的最大值为141433⎛⎫-⨯-= ⎪⎝⎭,所以2||3BC ,所以||3BC ,即BC故选:C .【点睛】思路点睛:解三角形中最值问题,要结合基本不等式,导函数或者数形结合,利用代数式本身的几何意义求解.例2.(2022·全国·高三专题练习)在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( )A B .2 C 1 D .【答案】C【分析】在ABC 中,设角A 、B 、C 的对边分别为a 、b 、c ,利用正弦定理得出b B =,c C =,利用平面向量数量积的运算性质得出222924AD b bc c =++,利用三角恒等变换思想化简得出2224AD B =+,利用正弦型函数的有界性可得出线段AD 长的最大值.【详解】在ABC 中,设角A 、B 、C 的对边分别为a 、b 、c ,由正弦定理可得3sin sin sin 3b c B C π===b B =,c C =, ()()1112333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,即32AD AB AC =+,所以,()()22222229324444cos3AD ADAB ACAC AB AB AC b c cb π==+=++⋅=++22224212sin 48sin 24sin sin b c bc B C B C =++=++1cos 21cos 2124824sin sin 22B CB C --=⋅+⋅+ 224sin sin 6cos 224cos 23033BB B B ππ⎡⎤⎛⎫⎛⎫=+---+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1124sin sin 6cos 224cos 223022B B BB B B ⎛⎫⎛⎫=-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1cos 212cos 6cos 212cos 22302BB B B B B -=⋅+-+++ 236B =+,所以,2224AD B =+,203B π<<,则4023B π<<,当22B π=时,即当4B π=时,AD 取最大值,即max 1AD =. 故选:C.【点睛】思路点睛:求三角形有关代数式最值是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解. 例3.(2022·全国·高三专题练习)在ABC中,若3B π=,AC =2AB BC +的最大值为( ) A .7B .C .D .5【答案】B【分析】设A θ=,结合正弦定理得22sin ,3AB ⎛⎫=- ⎪⎝⎭πθ2sin BC θ=,然后结合化简整理得到关于θ的函数,进而结合函数的图象与性质即可求出结果.【详解】设A θ=,由正弦定理知22sin sin 3AB BC ===⎛⎫- ⎪⎝⎭θπθ,因此22sin ,3AB ⎛⎫=- ⎪⎝⎭πθ 2sin BC θ=,故222sin 4sin 3AB BC ⎛⎫+=-+ ⎪⎝⎭πθθ222sin cos cos sin 4sin 33⎛⎫=-+ ⎪⎝⎭πθπθθsin 4sin =++θθθ5sin =+θθ()=+θϕ,其中tan ϕ 所以当()sin 1θϕ+=时,,取得最大值,且最大值为 故选:B.【题型】二、求三角形中的周长有关的最值例4.(2022·全国·高三专题练习)在锐角三角形ABCcos 2B B +=,且满足关系式cos cos sin sin 3sin B C A Bb c C⋅+=,则ABC 的周长最大值为( ) AB.C.D.【答案】D【分析】cos 2B B +=,推导出3B π=,由cos cos sin sin 3sin B C A Bb c C+=,推导出b =再由正弦定理可得4sin a A =,24sin 4sin()3c C A π==-,由此能求出周长的取值范围.【详解】cos 2B B +=,∴112cos B B +=,sin()16B π∴+=,262B k πππ∴+=+,2B π<,3B π∴=,cos cos sin sin 3sin B C A B b c C +=,∴2222222223a c b a b c abc abc c+-+-+=,∴a bc,b ∴=4sin sin sin a c bA CB ===, 4sin a A ∴=,24sin 4sin()3c C A π==-,214sin 4sin()3(cos ))326a c A A A A A ππ∴+=+-==+, 三角形ABC 为锐角三角形,∴62A ππ<<,∴2363A πππ<+<,∴sin 16A π⎛⎫<+≤ ⎪⎝⎭66A π⎛⎫∴<+≤ ⎪⎝⎭6a c <+≤b =∴a b c ++≤ABC的周长最大值为故选:D例5.(2022·全国·高三专题练习)在ABC 中,ABC ∠的平分线交AC 于点D ,23ABC π∠=,4BD =,则ABC 周长的最小值为( )A.8+B.8+C.16+D.16+【答案】C【分析】根据等面积法得4aca c +=,进而结合基本不等式得16a c +≥,64ac ≥,当且仅当8a c ==时等号成立,再结合余弦定理得b ≥≥当且仅当8a c ==时等号成立,进而得周长最小值. 【详解】根据题意,设,,AB c BC a AC b ===, 因为ABCABDCBDSSS=+,243ABC BD π∠==,,ABD CBD ∠=∠, 所以111sin sin sin 222AB BC ABC AB BD ABD CB BD CBD ⋅⋅∠=⋅⋅∠+⋅⋅∠,=,所以4ac a c +=,因为根据基本不等式有22a c ac +⎛⎫≤ ⎪⎝⎭,a c +≥所以16a c +≥,64ac ≥,当且仅当8a c ==时等号成立, 由余弦定理得b ==当且仅当8ac ==时等号成立,所以16a b c ++≥+,当且仅当8a c ==时等号成立.所以ABC 周长的最小值为16+故选:C例6.(2022·全国·高三专题练习)在ABC 中,已知60C =︒,4AB =,则ABC 周长的最大值为( ) A .8 B .10C .12D .14【答案】C【分析】根据余弦定理算出2()163a b ab +=+,再利用基本不等式即可得8a b +,从而可得到ABC 周长的最大值.【详解】解:在ABC 中,60C =︒,4AB c ==, ∴由余弦定理,得2222cos c a b ab C =+-,即2222162cos 60a b ab a b ab =+-︒=+-2()3a b ab =+-,由基本不等式有22a b ab +⎛⎫≤ ⎪⎝⎭,所以222216()3()(3144)()a b ab a b a b a b -==+-≥+++,∴8a b +(当且仅当4a b ==时等号成立),ABC ∴周长8412a b c +++=(当且仅当4a b ==时等号成立),即当且仅当4a b ==时,ABC 周长的最大值为12, 故选:C .【点睛】关键点点睛:先用余弦定理得216()3a b ab =+-,再结合基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭即可求a b +的最大值,从而得ABC 周长的最大值.第二天学习及训练【题型】三、求三角形中的面积有关的最值例7.(2023·全国·高三专题练习)在ABC 中,角,,A B C 所对的边分别为,,a b c ,2a =,2cos 2cos 24sin C A B =+,则ABC 面积的最大值是( ) A .23B .1C .43D .2【答案】A【分析】利用二倍角公式和正弦定理化简已知等式可得22224a c b =+=;利用余弦定理可构造等量关系求得cos A ,进而得到sin A ;利用三角形面积公式,将ABCS表示为以2b 为自变量的二次函数的形式,利用二次函数最值的求法可求得所求最大值. 【详解】由2cos 2cos 24sin C A B =+得:22212sin 12sin 4sin C A B -=-+, 即222sin sin 2sin A C B =+,由正弦定理得:22224a c b =+=;由余弦定理得:2222cos 4a b c bc A =+-=,222222cos c b b c bc A ∴+=+-,即cos 2bA c=,()0,A π∈,sin A ∴1sin 2ABCSbc A ∴=== 2224c b +=,2242c b ∴=-,ABCS∴=则当289b =时,42max 996481644448199b b ⎛⎫-+=-⨯+⨯= ⎪⎝⎭,()max 142233ABC S∴=⨯=. 故选:A.例8.(2023·全国·高三专题练习)ABC 的内角,,A B C 所对的边分别为,,a b c .已知()sin sin sin ,cos cos 2b c B c C a A b C c B -+=+=,则ABC 的面积的最大值( )A .1 BC .2D .【答案】B【分析】根据()sin sin sin b c B c C a A -+=,利用正弦定理化角为边,结合余弦定理求得角A ,再根据cos cos 2b C c B +=,利用余弦定理化角为边求得边a ,再利用余弦定理结合基本不等式求得bc 的最大值,再根据三角形的面积公式即可得出答案. 【详解】解:因为()sin sin sin b c B c C a A -+=, 所以222b bc c a -+=, 所以1cos 2A =, 又()0,A π∈, 所以3A π=,因为cos cos 2b C c B +=,所以222222222a b c a c b bc ab ac+-+-+=, 所以2a =,由2222cos a b c bc A =+-,得224b c bc bc =+-≥, 所以4bc ≤,当且仅当2b c ==时,取等号,则1sin 2ABC S bc A ==≤△,所以ABC故选:B.例9.(2022·全国·高三专题练习)在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin()2sin cos 0B C A B ++=.若2b =,则ABC 面积的最大值为( )ABCD.【答案】A【分析】由已知条件,结合三角形内角性质得12cos 0B +=,进而可得角B ,应用正弦定理有033c A A ππ⎛⎫⎛⎫=-<< ⎪⎪⎝⎭⎝⎭,根据三角形面积公式、三角恒等变换得26ABCSA π⎛⎫+ ⎪⎝⎭ABC 面积的最大值. 【详解】由sin()2sin cos 0B C A B ++=,得sin 2sin cos 0A A B +=, ∴sin (12cos )0A B ⋅+=,又sin 0A ≠, ∴12cos 0B +=,即1cos 2B =-,又(0,)B π∈,∴2,33B C A B A πππ==--=-,又sin sin c bC B=,∴2sin sin 302sin 33sin3A b C c A A B ππππ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭===-<< ⎪⎪⎝⎭⎝⎭. 211sin sin sin sin 2sin cos sin 2232ABCSbc A A A A A A A A A A π⎫⎛⎫==-=-==⎪ ⎪⎪⎝⎭⎝⎭sin 2226A A A π⎛⎫+ ⎪⎝⎭ 由03A π<<,有52666A πππ<+<,则sin 2sin 162A ππ⎛⎫+≤= ⎪⎝⎭,26A π⎛⎫+ ⎪⎝⎭ABC故选:A.【点睛】关键点点睛:由已知等量关系求角,利用三角形内角性质、正弦定理及三角形面积公式得到ABC 面积关于内角A 的函数式,根据内角的范围求最值.例10.(2022·全国·高三专题练习)在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( )A .6B .C .12D .【答案】C【分析】设AC x =,BAC θ∠=,则2AB x =,结合正弦定理表示得1sin 2ABCSAB AC BAC =⋅⋅∠,由余弦定理可得x 与θ的关系式,联立前式由同角三角函数和二次函数性质化简即可求解【详解】如图,设设AC x =,BAC θ∠=,则由正弦定理可得sin sin BD ABBAD ADB=∠∠①,sin sin CD ACCAD ADC=∠∠②,又ADB ADC π∠+∠=,所以sin sin ADB ADC ∠=∠,①②式联立可得21AB AC =,则2AB x =,则211sin 2sin sin 22ABC S AB AC BAC x x x θθ=⋅⋅∠=⋅⋅=⋅△,对ABC ,由余弦定理可得22222536cos 24AB AC BC x BAC AB AC x +--∠==⋅,则()22422242424425362536036sin 1cos 1416x x x S x x x x x θθ⎛⎫⎛⎫--+ ⎪=⋅=⋅-=⋅-=-⎪ ⎪⎝⎭⎝⎭()()()2422422199********+14420256161616x x x x x ⎡⎤=--+=--=---⎢⎥⎣⎦, 当220x =时,2S 有最大值,()2max 925614416S =⨯=,所以max 12S =, 故选:C【点睛】本题考查由三角形的边角关系求解面积最值,正弦定理、余弦定理解三角形,属于难题,本题中的角平分线性质可当结论进行识记:AD 为ABC 的角平分线,则AB BDAC CD= 例11.(2022·全国·高三专题练习)在平面四边形ABCD 中,AB =1,AD =4,BC =CD =2,则四边形ABCD 面积的最大值为( )A B C .D .【答案】A【分析】通过余弦定理分别表示BD ,从而找到角A ,C 的关系,将四边形的面积用角A ,C 表示,从而求得面积的最大值. 【详解】由余弦定理知:在ABD △中, 有2222cos BD AB AD AB AD A =+-⋅2214214cos 178cos A A =+-⨯⨯⋅=-,在BCD △中,有2222cos BD CB CD CB CD C =+-⋅2222222cos 88cos C C =+-⨯⨯⋅=-,则9178cos 88cos cos cos 8A C A C -=-⇒-=,由四边形ABCD 的面积=三角形ABD 的面积+三角形BCD 的面积, 故1111sin sin 14sin 22sin 2222S AB AD A CB CD C A C =⋅+⋅=⨯⨯+⨯⨯ 2(sin sin )A C =+,在三角形中,易知,(0,)A C π∈,sin ,sin 0A C >,()22sin sin (cos cos )A C A C ++-2222sin sin 2sin sin cos cos 2cos cos A C A C A C A C =++++-22cos()4A C =-+≤,当且仅当A C π+=时等号成立,此时229(sin sin )4sin sin 8A C A C ⎛⎫++≤⇒+≤ ⎪⎝⎭,故2(sin sin )2S A C =+≤=故选:A.【点睛】方法点睛:四边形对角线是公共边,以之为连接点找到角与角的关系,把面积也化成角来表示,从而借助三角函数的最值来求得面积的最值.例12.(2022·全国·高三专题练习)已知边长为2的等边三角形ABC ,D 是平面ABC 内一点,且满足:2:1DB DC =,则三角形ABD 面积的最大值是( ) A43BC43D【答案】C【分析】建立直角坐标系,设(,)D x y ,写出,,A B C 的坐标,利用:2:1DB DC =列式得关于,x y的等式,可得点D 的轨迹为以5(,0)3为圆心,以43为半径的圆,写出直线AB 的方程,计算AB和点D 距离直线AB 的最大距离d r +,代入三角形面积公式计算.【详解】以BC 的中点O为原点,建立如图所示的直角坐标系,则(1,0),(1,0)A B C -,设(,)D x y ,因为:2:1DB DC =,所以()()22221414++=-+x y x y ,得2251639x y ⎛⎫-+= ⎪⎝⎭,所以点D 的轨迹为以5(,0)3为圆心,以43为半径的圆,当点D 距离直线AB 距离最大时,ABD △面积最大,已知直线AB0y -=,2AB =,点D 距离直线AB 的最大距离为:4433+=d r ,所以ABD △面积的最大值为1442233⎫=⨯⨯=⎪⎪⎝⎭ABD S △. 故选:C【点睛】解答本题的关键在于建立直角坐标系,设点(,)D x y ,通过:2:1DB DC =得关于,x y 的等式,从而判断出点D 的轨迹,数形结合分析得当点D 距离直线AB 距离最大时,ABD △面积最大.例13.(2022·全国·高三专题练习)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2a C b c =+,若6a =,则ABC ∆的面积的最大值为( ) A .6 B .3C .D .【答案】D【解析】利用余弦定理求得角A 的值,结合基本不等式可求得bc 的最大值,进而可求得ABC ∆的面积的最大值.【详解】由余弦定理得222222a b c a b c ab+-⋅=+,所以22222a b c b bc +-=+,所以222b c a bc +-=-.由余弦定理的推论得2221cos 222b c a bc A bc bc +-==-=-,又()0,A π∈,所以23A π=.若6a =,由余弦定理的得222222cos 23a b c bc A b c bc bc bc bc =+-=++≥+=, 当且仅当b c =时取等号,所以336bc ≤,解得12bc ≤.故1sin 2ABC S bc A ∆=≤.因此,ABC ∆面积的最大值为故选:D.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积最值的计算,涉及基本不等式的应用,考查运算求解能力,属于中等题.【题型】四、正余弦定理与三角函数性质结合最值例14.(2022·福建·三明一中高三阶段练习)在ABC中,角A、B、C所对的边分别为a、b、c,若sinc A=,λ=b a,则实数λ的最大值是()AB.32C.D.2+【答案】D【分析】根据余弦定理和sinc A=得222212sin2sin cosa b A b b A A=+-⋅,进而得22723aAbπ⎛⎫=-+⎪⎝⎭,再根据三角函数的性质求解即可得答案.【详解】解:由余弦定理,得2222cosa cb b A=+-,结合sinc A=,得222212sin2sin cosa b A b b A A=+-⋅,解得22212sin12aA Ab=+-,即22723aAbπ⎛⎫=-+⎪⎝⎭,则当12Aπ=时,222max(2ba⎛⎫=⎪⎝⎭.max max()2baλ==故选:D.【点睛】本题考查余弦定理与三角函数的性质求最值,考查运算能力,是中档题.例15.(2020·全国·高三专题练习(文))已知平面四边形ABCD由ACD与等边ABC拼接而成,其中22AD CD==,则平面四边形ABCD面积的最大值为______.【答案】2【解析】设D θ∠=,利用余弦定理求出AC ,利用面积公式将ACD 与等边ABC 的面积用θ表示,利用三角函数的性质即可求解.【详解】设D θ∠=,在ACD 中,由余弦定理可得:2222cos 54cos AC AD CD AD CD θθ=+-⨯=- ,所以)21sin 54cos 23ABCSAC πθ=⨯=-, 因为1sin sin 2ACDSAD CD θθ=⨯⨯=,所以)sin 54cos ABC ACDS SSθθ=+=+-sin 2sin 3πθθθ⎛⎫==- ⎪⎝⎭,因为()0,θπ∈,所以2,333πππθ⎛⎫-∈- ⎪⎝⎭,所以max 2S =,故答案为:2【点睛】本题主要考查了三角函数的实际应用,求面积的最值,考查余弦定理、辅助角公式,属于中档题.例16.(2020·全国·高三阶段练习(理))在边长为ABC 中,G 是中心,直线l 经过点G 且与AB ,AC 两边分别交于P ,Q 两点,则11GP GQ+的最大值为__________.【分析】设AGP θ∠=,在,APG AQG 中由正弦定理,用θ表示出,PG GQ ,再利用正余弦的和角公式,将11GP GQ+表示为 θ的函数,求该函数的最值即可. 【详解】设BC 中点为D ,AGP θ∠=,2,33ππθ⎡⎤∈⎢⎥⎣⎦,如下图所示:因为G是重心,所以22233AG AD AC =⋅=⨯=. 在AGP 中,由正弦定理得,sin sin GP AGPAG APG=∠∠,所以sin165sin sin 66AG GP πππθθ⋅==⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,同理在AGQ △中,由正弦定理得1sin 6GQ πθ=⎛⎫- ⎪⎝⎭.所以11sin sin 2sin cos 666GP GQ πππθθθθ⎛⎫⎛⎫+=++-=⋅= ⎪ ⎪⎝⎭⎝⎭, 2,33ππθ⎡⎤∈⎢⎥⎣⎦,当2πθ=时,max112GP GQ π⎛⎫+== ⎪⎝⎭【点睛】本题考查利用正余弦定理求解三角形中的最值问题,涉及三角函数最值的求解,第三天学习及训练【题型】五、化角为边判断三角形的形状例17.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()2cos cos a b c A B +=+,则角C 的大小为( )A .π2B .π3C .π4D .π6【答案】B【分析】利用余弦定理进行边化角222222222b c a a c b a b c bc ac ⎛⎫+-+-+=+ ⎪⎝⎭,整理可得()()2220a b c a b ab +--+=即2220c a b ab --+=,再用余弦定理可得1cos 2C =. 【详解】因为()2cos cos a b c A B +=+,则222222222b c a a c b a b c bc ac ⎛⎫+-+-+=+ ⎪⎝⎭,整理得()()2220a b c a b ab +--+=,所以2220c a b ab --+=即222a b c ab +-=, 则2221cos 222a b c ab C ab ab +-===, ∵()0,πC ∈,所以π3C =. 故选:B.例18.(2023·全国·高三专题练习)设△ABC 的三边长为BC a =,=CA b ,AB c =,若tan2A a b c =+,tan 2B ba c=+,则△ABC 是( ). A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形【答案】B【分析】若三角形各边长为a 、b 、c 且内切圆半径为r , 法一:由内切圆的性质有tan2A a b c =+、tan 2B ba c=+,根据边角关系可得a b =或222+=a b c ,注意讨论所得关系验证所得关系的内在联系;法二:由半角正切公式、正弦定理可得A B =或π2A B +=,结合三角形内角的性质讨论所得关系判断三角形的形状. 【详解】设()12P a b c =++,△ABC 的内切圆半径为r ,如图所示,法一: ∴tan2A r a p a b c ==-+①;tan 2B r b p b a c==-+②. ①÷②,得:p b a a cp a b c b -+=⋅-+,即()()()()22p b a a c p a b b c -+=-+. 于是()()()()b b c c a b a a c b c a ++-=++-,232232ab b bc a b a ac -+=-+,()()2220a b a b c -+-=,从而得a b =或222+=a b c ,∴A B ∠=∠或90C ∠=︒.故△ABC 为等腰三角形或直角三角形, (1)当a b =时,内心I 在等腰三角形CAB 的底边上的高CD 上,12ABCS AB CD c =⋅△,从而得2S r a b c ==++又()1122p a b c a c -=+-=,代入①式,()22a abc a ca c c==+++⋅,a a c =+, 上式两边同时平方,得:()2222a c a a c a c -=++,化简2220c a -=,即c =.即△ABC 直角三角形,∴△ABC 为等腰直角三角形.(2)当222+=a b c 时,易得()12r a b c =+-.代入②式,得()()1212a b c b a c a c b +-=++-,此式恒成立, 综上,△ABC 为直角三角形. 法二: 利用sin tan21cos A A A =+,sin tan 21cos B B B =+及正弦定理和题设条件,得sin sin 1cos sin sin A A A B C=++①,sin sin 1cos sin sin B B B A C=++②.∴1cos sin sin A B C +=+③;1cos sin sin B A C +=+④.由③和④得:1cos sin 1cos sin A B B A +-=+-,即sin cos sin cos A A B B +=+,ππsin sin 44A B ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,因为,A B 为三角形内角, ∴ππ44A B +=+或πππ44A B +=--,即A B =或π2A B +=. (1)若A B =,代入③得:1cos sin sin A B C +=+⑤又ππ2C A B A =--=-,将其代入⑤,得:1cos sin sin 2A A A +=+. 变形得()()2sin cos sin cos 0A A A A ---=, 即()()sin cos sin cos 10A A A A ---=⑥,由A B =知A 为锐角,从而知sin cos 10A A --≠. ∴由⑥,得:sin cos 0A A -=,即π4A =,从而π4B =,π2C =.因此,△ABC 为等腰直角三角形. (2)若π2A B +=,即π2C =,此时③④恒成立,综上,△ABC 为直角三角形. 故选:B例19.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos c B a =,则这个三角形的形状为( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .等腰或直角三角形【答案】A【解析】由条件和余弦定理可得2222a c b a acc +-=⋅,然后化简可得答案. 【详解】因为cos c B a =,所以由余弦定理可得2222a c b a acc +-=⋅,即22222a c b a +-= 所以222+c a b ,所以三角形的形状为直角三角形故选:A例20.(2022·江苏·高邮市第一中学高三阶段练习)在ABC ,下列说法正确的是( ) A .若cos cos a A b B =,则ABC 为等腰三角形 B .若40,20,25a b B ===︒,则ABC 必有两解 C .若ABC 是锐角三角形,则sin cos A B >D .若cos2cos2cos21A B C +-<,则ABC 为锐角三角形 【答案】BC【分析】利用正弦定理结合正弦函数的性质可判断A ;根据边角关系判断三角形解的个数可判断B ; 由已知得022A B ππ>>->,结合正弦函数性质可判断C ;利用二倍角的余弦公结合余弦定理可判断D.【详解】对于A ,由正弦定理可得sin cos sin cos A A B B =,sin 2sin 2A B ∴=,A B ∴=或22180A B +=即90A B +=,ABC ∴为等腰或直角三角形,故A 错误;对于B ,1sin 40sin 2540sin3040202a B =<=⨯=,即sin a Bb a <<,ABC ∴必有两解,故B 正确; 对于C ,ABC 是锐角三角形,2A B π∴+>,即022A B ππ>>->,由正弦函数性质结合诱导公式得sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭,故C 正确;对于D ,利用二倍角的余弦公式知22212sin 12sin 12sin 1A B C -+--+<,即222sin sin sin 0A B C +->,即2220a b c +->,cos 0C ∴>,即C 为锐角,不能说明ABC 为锐角三角形,故D 错误. 故选:BC【点睛】方法点睛:在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用: (1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”; (2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”; (3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”;例21.(2022·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列命题正确的是( ) A .若a b >,则cos2cos2A B <B .若cos cos a B b A c -=,则ABC 一定为直角三角形C .若4a =,5b =,6c =,则ABCD .若()()()cos cos cos 1A B B C C A ---=,则ABC 一定是等边三角形 【答案】ABD【分析】对于A ,利用正弦定理和三角函数恒等变换公式化简判断,对于B ,利用余弦定理统一成边化简进行判断,对于C ,先利用余弦定理求出cos A ,从而可求出sin A ,再利用正弦定理可求出ABC 外接圆半径,对于D ,利用三角函数的性质结合三角形内角进行判断 【详解】解:对于A ,因为a b >,所以由正弦定理得sin sin 0A B >>,所以22sin sin A B >,所以1cos 21cos 222A B-->,所以cos2cos2A B <,所以A 正确, 对于B ,因为cos cos a B b A c -=,所以22222222a c b b c a a b c ac bc+-+-⋅-⋅=,即22222222a c b b c a c +---+=,所以222a b c =+,所以ABC 一定为直角三角形,所以B 正确,对于C ,由余弦定理得2222536163cos 22564+-+-===⨯⨯b c a A bc ,因为(0,)A π∈,所以sin A ==2sin a R A ===ABCC 错误, 对于D ,因为在ABC 中,()()()cos ,cos ,cos (1,1]A B B C C A ---∈-,()()()cos cos cos 1A B B C C A ---=,所以()()()cos cos cos 1A B B C C A -=-=-=,所以0A B B C C A -=-=-=,所以A B C ==,所以ABC 一定是等边三角形,所以D 正确,故选:ABD【题型】六、化边为角判断三角形的形状例22.(2023·全国·高三专题练习)在ABC 中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,2cos 22A b cc+=,则ABC 的形状一定是( ) A .正三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形【答案】B【分析】根据降幂公式,先得到1cos 22A c bc+=+,化简整理,再由正弦定理,得到sin cos 0A C =,推出cos 0C =,进而可得出结果. 【详解】因为2cos22A b c c +=,所以1cos sin sin sin 122sin 2sin 2A B C B C C ++==+,所以sin cos sin B A C= 即()cos sin sin sin sin cos cos sin A C B A C A C A C ==+=+,所以sin cos 0A C =,因为sin 0A ≠, 所以cos 0C =,因为()0,C π∈,所以2C π=,即ABC 是直角三角形.故选:B例23.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足cos cos a A b B =,则ABC 的形状为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形【答案】D【分析】利用正弦定理得到A B =或2A B π+=,即可判断.【详解】在ABC 中,对于 cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π+= 即A B =或2A B π+=.所以ABC 为等腰三角形或直角三角形. 故选:D例24.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos sin cos b A c B a B =-,则ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形【答案】C【分析】利用正弦定理化边为角,逆用两角和的正弦公式、结合诱导公式求出sin B 的值,结合角B 的范求得角B ,即可求解.【详解】因为cos sin cos b A c B a B =-由正弦定理化边为角可得:sin cos sin sin sin cos B A C B A B =-, 所以()()sin sin sin cos sin cos sin sin πsin C B A B B A A B C C =+=+=-=, 因为sin 0C ≠,所以sin 1B =, 因为0πB <<,所以π2B =, 所以ABC 是直角三角形, 故选:C.例25.(2022·江苏·海安市立发中学高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列的结论中正确的是( ) A .若cos cos A B >,则sin sin A B <B .若sin cos sin cos A A B B =,则ABC 一定是等腰三角形C .若ABC 是锐角三角形,则sin sin sin cos cos cos A B C A B C ++>++D .已知ABC 不是直角三角形,则tan tan tan tan tan tan A B C A B C =++ 【答案】ACD【分析】结合正弦定理以及三角函数与三角形的性质、三角恒等变换以及两角和与差的三角函数公式逐项判断即可.【详解】解:因为A ,0πB ∈(,),且cos y x =在0π(,)上单调递减,故由cos cos A B >,得A B <,故a b <,结合正弦定理得sin sin A B <,故A 正确;sin cos sin cos A A B B =⇒ sin 2sin 2A B =,故22A B =,或22πA B +=,即=A B ,或π2A B +=,故三角形ABC 是等腰三角形或直角三角形,故B 错误; 若三角形ABC 为锐角三角形,则π2A B +>π02A B ⇒>->,故πsin sin()cos 2A B B >-=, 同理可得sin cos B C >,sin cos C A >,三式相加得sin sin sin cos cos cos A B C A B C ++>++,故C 正确;ABC 不是直角三角形,即A ,B ,C 都不是直角,因为tan tan[π()]tan()C B C B C =-+=-+=tan tan tan tan 1A BA B +⋅-,整理得tan tan tan tan tan tan A B C A B C =++,故D 正确. 故选:ACD .第四天学习及训练【题型】七、利用不等式求范围问题例26.(2023·江苏·苏州中学高三阶段练习)已知△ABC 中,sin A =3sin C cos B ,且AB =2,则△ABC 的面积的最大值为( )A .3B .C .9D .【答案】A【分析】法一:根据正弦定理,将角化边,从而利用三角形面积公式,半角公式及三角函数有界性求出面积的最大值;法二:根据正弦定理,将边化角,得到tan =2tan B C ,画出图形,作出辅助线,设,AD h BD x ==,得到22+=4x h ,利用基本不等式求出三角形面积的最大值. 【详解】法一:由正弦定理得:=3cos =6cos a c B B , ()11=sin =6cos 2sin =3sin2322ABCSac B B B B ⋅⋅≤ 法二:由正弦定理得:sin cos +cos sin =3sin cos B C B C C B , 所以sin cos =2cos sin B C B C故tan =2tan B C ,如图所示:过点A 作AD ⊥BC 于点D , 设,AD h BD x ==,则2CD x =, 由勾股定理得:22+=4x h , 所以()2213313=3=+=4=322224ABCSx h xh x h ⋅⋅⋅≤⨯当且仅当=x h 故选:A.例27.(2023·全国·高三专题练习)在等腰ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则ABC 的面积的最大值是( ) A .6 B .12 C .18 D .24【答案】A【分析】利用余弦定理得到边长的关系式,然后结合勾股定理和基本不等式即可求得ABC 面积的最大值.【详解】设2AB AC m ==,2BC n =, 由于ADB CDB π∠=-∠,在ABD △和BCD △中应用余弦定理可得:2222949466m m m n m m+-+-=-,整理可得:2292m n =-,结合勾股定理可得ABC 的面积:112322S BC n =⨯224362n n +-=⨯=,。
2023年人教A版新教材高中数学必修第二册解三角形中周长最大值及取值范围问题 同步讲义
14、解三角形中周长最大值及取值范围问题【考点分析】考点一:解三角形中角的最值及范围问题①利用锐角三角形,⎪⎩⎪⎨⎧<<<<<<πππC B A 000,求出角的范围②利用余弦定理及基本不等式求角的最值:bca bc bc a cb A 222cos 2222-≥-+=考点一:解三角形中周长的最值及范围问题①利用基本不等式:()bca bc cb bc a c b A 222cos 22222--+=-+=,再利用bc c b 2≥+及a c b >+,求出c b +的取值范围②利用三角函数思想:()B A R B R C R B R c b ++=+=+sin 2sin 2sin 2sin 2,结合辅助角公式及三角函数求最值 【题型目录】题型一:三角形角的最值及范围问题 题型二:三角形边周长的最值问题题型三:三角形边周长的最值范围问题 【典型例题】题型一:三角形角的最值问题【例1】在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2sin B C A +=,则A 的最大值为( ) A .2π3B .π6C .π2 D .π3值是( )A .1 BCDA .2C A =B .A 的取值范围是(,)64ππC .2A C =D .2ca的取值范围是 因为ABC 是锐角三角形,所以2sin 2sin sin C A =【例4】已知在锐角ABC 中,tan 1cos A B=+.(1)证明:2B A =; (2)求tan tan 1tan tan B AA B-+⋅的取值范围.,从而根据ABC 是锐角三角形,得到,再逆用正切的差角公式,结合第一问的结论得到因为ABC 是锐角三角形,π0,2A ⎛⎫∈ ⎪⎝⎭sin x 在π2⎛- 由锐角ABC 知:ππ,64A ⎛⎫∈ ⎪⎝⎭tan B A-1.在锐角三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,若cos cos b b A a B +=,则( ) A .2A B = B .64B ππ<<C .(ab∈D .22a b bc =+【答案】ABD【分析】由正弦定理将条件转化为角的关系,判断A ,结合内角和定理和条件及余弦函数的又ABC 为锐角三角形,所以所以2πA -<所以A B -=因为ABC 为锐角三角形,所以022B π<<B ππ<<2.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若22sin()A C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A .⎫+∞⎪⎣⎭B .43⎤⎥⎣⎦ C .43⎫⎪⎪⎝⎭D .43⎫⎪⎪⎣⎭【详解】在ABC 中,故题干条件可化为2bABC为锐角三角形,故tan A+题型二:三角形边周长的最值问题【例1】已知ABC的内角,,A B C的对应边分别为,,a b c,6c=,60B=︒,则b的最小值为()A.3 B.C.D.6)0,120求解即可sin33B),120,sin3c B=论中正确的是()A.b aa b+取不到最小值2B.b aa b+的最大值为4C.角C的最大值为2π3D.23b a ca b ab+-的最小值为-ABCS=2cos +-b a()()()2sin sin 2sin sin a A B c b B C -=-+,若2AD DB =,1CD =,求: (1)求()cos A B +的值; (2)求2b a +的最大值.32CD CA CB =+,利用平面向量数量积的运算可得出)解:法一:ADC ∠+∠cos 0BDC ∠=22492c b c -=又ABC 中cos 从而(2322a +()22b a +=5法二:由()2232B A D CA CB CD C B D C D A C C D -=-⇒==⇒+ 2222294444cos CD CA CB CB CA b a ab ACB =++⋅=++∠, 24a ab ++, )()2339392922a ab a b ⎛=+=+⋅≤+ ⎝1+cos2C .(1)求角C ;(2)设D 为边AB 的中点,△ABC 的面积为CD 的最小值. 又()12CD CA CB =+,故2211222CD CA CB CA CB a =++⋅=22113322CD a b ab ab =++≥⨯=,当且仅当23a b ==时取得等号例5】ABC (1)求C ∠;(2)已知6c =,求ABC 周长的最大值. 故ABC 周长【题型专练】1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足sin 2sin sin A B C =,则c bb c+的最大值为______,此时内角A 的值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形最值或范围1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2a -c b
=cos C cos B ,b =2.(1)求B ;
(2)求△ABC 的面积的最大值.
【解】(1)由2a -c b =cos C cos B ,结合正弦定理可得(2sin A -sin C )cos B =sin B cos C ,
∴2sin A cos B ﹣sin C cos B =sin B cos C ,
∴2sin A cos B =sin C cos B +sin B cos C =sin (B +C )=sin A ,得cos B =12 ,∵B ∈(0,π),∴B =π3 ;(2)若b =2,由余弦定理得:4=a 2+c 2-2ac ⋅cos π3
,即a 2+c 2﹣ac =4,
又a 2+c 2﹣ac ≥2ac ﹣ac =ac ,即ac ≤4.∴△ABC 的面积的最大值为S =12 ac ∙sin B =12 ×4×3 2 =3 .2.在锐角△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,且a sin B -3 2
b =0.(1)求角A 的大小;
(2)若a =4,求△ABC 面积的最大值.【解】(1)因为a sin B -3 2 b =0,所以sin A sin B -3 2 sin B =0,又sin B ≠0,所以sin A =3 2
,即A =60°.(2)因为a 2=b 2+c 2﹣2bc cos A ,A =60°,a =4,
所以16=b 2+c 2-2bc ×12
=b 2+c 2-bc ,所以16≥2bc ﹣bc =bc ,即bc ≤16(当且仅当b =c =4时取等号),故S △ABC =12 bc sin A ≤12 ×16×sin60°=43 .△ABC 面积的最大值:43 .
3.在△ABC 中,a =2,2cos2A +3=4cos A .
(1)求角A 的大小
(2)求△ABC 的周长L 的取值范围
【解】(1)因为2cos2A +3=4cos A ,
所以2cos 2A +12 =2cos A ,所以4cos 2A ﹣4cos A +1=0,所以cos A =12
,又因为0<A <π,所以A =π3 .(2)因为a sin A =b sin B =c sin C
,A =π3 ,a =2,
所以b =43 sin B ,c =43 sin C ,所以l =2+b +c =2+43 (sin B +sin C ),因为B +C =2π3 ,所以l =2+b +c =2+43 [sin B +sin (2π3 -B )]=2+4sin (B +π6 ),又因为B ∈(0,2π3 ),可得B +π6 ∈(π6 ,5π6 ),所以12 <sin (B +π6
)≤1,所以l ∈(4,6].
4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积S =abc ,sin 2A +sin 2B +sin A sin B =2c sin C .
(Ⅰ)求角C ;
(Ⅱ)求△ABC 周长的取值范围.
【解】(Ⅰ)由S =abc =12 ab sin C ,可知:2c =sin C ,∴sin 2A +sin 2B +sin A sin B =sin 2C .由正弦定理得a 2+b 2+ab =c 2.
∴由余弦定理得cos C =-12 ,∴C =2π3
.(Ⅱ)由(Ⅰ)知2c =sin C ,
∴2a =sin A ,2b =sin B .∴△ABC 的周长为a +b +c =12 (sin A +sin B +sin C )=12 [sin A +sin (π3 -A )]+3 4 =12 (sin A +3 2 cos A -12 sin A )+3 4 =12 (12 sin A +3 2 cos A )+3 4 =12 sin (A +π3 )+3 4 ∵A ∈(0,π3 ),∴A +π3 ∈(π3 ,2π3 ),∴sin (A +π3 )∈(3 2 ,1],∴△ABC 的周长的取值范围为(3 2 ,2+3 4
].5.已知锐角△ABC 面积为S ,∠A 、∠B 、∠C 所对边分别是a 、b 、c ,∠A 、∠C 平分线相交于点O ,b =3 且S =3 4
(a 2+c 2-b 2),求:(1)∠B 的大小;
(2)△ABC 周长的最大值.【解】(1)∵S =3 4
(a 2+c 2-b 2),∴12 ac sin B =3 4 (a 2+c 2﹣b 2),故:12 ac sin B =3 4
•2ac cos B ,
可得:tan B =3 ,
由B ∈(0,π),可得:B =π3 .…6分(2)∵b =3 ,B =π3 .∴由正弦定理可得:a sin A =c sin C =3 3 2 =2,可得:a =2sin A ,c =2sin C =2sin (2π3 -A ),∴则a +c =2sin A +2sin (2π3 )=2sin A +2sin 2π3 cos A ﹣2cos 2π3 sin A =3sin A +3 cos A =23 sin (A +π6 ).∵0<A <2π3 ,∴π6 <A +π6 <5π6 .当A +π6 =π2 ,即A =π3 时,a +c 取得最大值为23 .那么△AC 周长的最大值为:23 +3 =33 .
6.已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,满足cos A cos B +sin A sin B =2c b 且b =3.
(Ⅰ)求角B ;
(Ⅱ)求△ABC 周长L 的最大值.
【解】(Ⅰ).cos A cos B +sin A sin B =2c b ,由正弦定理得cos A sin B +cos B sin A cos B sin B =2sin C sin B ,即sin (A +B )cos B sin B =2sin C sin B
,又sin (A +B )=sin C ≠0,
所以cos B =12
,又B ∈(0,π),得B =60°(Ⅱ)在△ACD 中,由余弦定理得b 2=a 2+c 2﹣2ac cos B =a 2+c 2﹣ac =9,所以(a +c )2=9+3ac ≤9+3(a +c 2
)2,即a +c ≤6,所以L =a +b +c ≤9,
当a =b =c =3时,△ABC 的周长L 最大值为9.
7.在△ABC 中,∠ACB =60°,∠ACB 的平分线CD 交边AB 于D ,若CD =1,则4BC +AC 的最小值是( )
A.33
B.63
C.6
D.9【解】如图所示,
△ABC 中,∠ACB =60°,∠ACB 的平分线CD 交边AB 于D ,
且CD =1,设AC =b ,BC =a ,
由S
△ABC =S △ADC +S △DBC ,
即12 ab sin60°=12 b sin30°+12 a sin30°,化为1a +1b =3 ,
则4BC +AC =4a +b =13 (4a +b )(1a +1b )=13 (5+b a
+4a b )≥13 (5+2b a ⋅4a b )=33 ,当且仅当b =2a =3 时,取得等号,则4BC +AC 的最小值为33 ,
故选:A .
8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线BD 交AC 于点D ,且BD =1,则4a +c 的最小值为( )
A.8
B.9
C.10
D.7
【解】由题意得 12 ac sin120°=12 a sin60°+12
c sin60°,即ac =a +c ,
得1a +1c =1,得4a +c =(4a +c )( 1a +1c )=c a +4a c +5≥2c a ⋅4a c +5=4+5=9,
当且仅当c a =4a c ,即c =2a 时,取等号,
故选:B .
9.在△ABC 中,∠A =π4 ,已知BC 边上的中线AD =3,则△ABC 面积的最大值为.
【解】△ABC 中,∵∠BAC =π4 ,BC 边上的中线AD 长为3,AD →=12 (AB →+AC →),设AB =c ,AC =b ,
平方可得:9=14 (c 2+b 2+2AB →⋅AC →)=14 (c 2+b 2+2cb •sin π4 ),化简可得,c 2+b 2+2 bc =36≥2bc +2 bc ,可得:bc ≤362+2 =18(2-2 ),故△ABC 的面积S =12 bc •sin π4 ≤12 ×18(2-2 )×2 2 =92 -9.故答案为:92 -9.
10.在△ABC 中,∠A =2π3
,已知BC 边上的中线AD =3,则△ABC 面积的最大值为.【解】设内角A ,B ,C 的对边分别为a ,b ,c ,则S △ABC =12 bc sin 2π3 =3 4
bc ,在△ABC 中,由余弦定理可得:a 2=b 2+c 2+bc ,
在△ABD 中,c 2=14 a 2+9﹣3a cos ∠ADB ,在△ACD 中,b 2=14 a 2+9﹣3a cos ∠ADC ,所以b 2+c 2=12 a 2+18,即:b 2+c 2=36+bc ,由b 2+c 2≥2bc ,可得:bc ≤36,当且仅当b =c 时成立,故△ABC 面积的最大值为93 .故答案为:93 .。