高一物理必修二经典例题带答案
高一物理必修二 第五章平抛运动及其规律基础练习题(带参考答案)
高一物理必修二第五章平抛运动及其规律基础练习题(带参考答案)高一物理第五章一、研究要点平抛运动及其规律1.会用运动合成和分解的方法分析平抛运动。
2.掌握平抛运动的规律,会分析解决生活中的平抛运动问题。
二、研究内容一)平抛运动基本知识1.平抛运动的特征初速度方向,只受重力,属于抛体曲线运动。
2.平抛运动的分解水平方向:匀速直线运动,竖直方向:自由落体运动。
问题1:平抛运动是什么性质的运动?例1:(多选题)关于平抛运动,下列说法正确的是()A.是匀变速运动 B.是变加速运动C.任意两段时间内速度改变不一定相等 D.任意相等时间内的速度改变一定相等练1:(多选题)物体在做平抛运动的过程中,以下的物理量不变的是()A.物体的速度 B.物体的加速度C.物体竖直方向的分速度 D.物体水平方向的分速度问题2:如何研究平抛运动?例2:为了研究平抛物体的运动,可以概括为两点:①水平方向作匀速运动;②竖直方向作自由落体运动。
为了研究平抛物体的运动,可以进行如图1所示的实验。
1)把两个小铁球分别吸在电磁铁C、D上,切断电源,使两个小铁球以相同的初速度从轨道A、B射出,两小铁球能够在轨道B上相碰,这可以说明水平方向作匀速运动。
2)把两个小铁球分别吸在电磁铁C、E上,切断电磁铁C的电源,使一只小球从轨道A射出时碰撞开关S,使电磁铁E断电释放它吸着的小球,两个小球可以在空中相碰。
这可以说明竖直方向作自由落体运动。
练2:如图2所示,在光滑的水平面上有一小球a以初速度v运动,同时刻在它的正上方有小球b也以初速度水平v抛出,并落于c点,则()A.小球a先到达c点B.小球b先到达c点C.两小球同时到达c点D.不能确定二)平抛运动规律1.平抛运动的速度及其方向水平速度vx初速度vx竖直速度vy初速度vygt;合速度v=√(vx²+vy²),速度与水平方向的夹角θ,tanθ=v yvxgt/vx2.平抛运动的位移及其方向水平位移x=vxt;竖直位移y=vyt-1/2gt²;合位移s=√(x²+y²),运动方向与初速度方向相同。
高一物理必修2期末检测习题精选4套(含答案)
高一物理必修(2)期末复习习题精选(一)班级姓名一.选择题(本题共10小题:每小题4分,共40分,在每小题给出的4个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.物体沿光滑斜面向下加速滑动,在运动过程中,下述说法正确的是( ) A.重力势能逐渐减少,动能也逐渐减少B.重力势能逐渐增加,动能逐渐减少C.由于斜面是光滑的,所以机械能一定守恒D.重力和支持力对物体都做正功2.物体受水平力F作用,在粗糙水平面上运动,下列说法中正确的是( )A.如果物体做加速直线运动,F一定对物体做正功B.如果物体做减速直线运动,F一定对物体做负功C.如果物体做减速运动,F也可能对物体做正功D.如果物体做减速直线运动,F一定对物体做正功4.物体在平抛运动中,在相等时间内,下列哪个量相等(不计空气阻力)A.速度的增量B.加速度C.位移D.动能的增量5. 如图-1所示,篮球绕中心线OO′以ω角速度转动,则A.A、B两点的角速度相等B.A、B两点线速度大小相等C.A、B两点的周期相等D.A、B两点向心加速度大小相等6.如图-2所示,倒置的光滑圆锥面内侧,有质量相同的两个小玻璃球A、B,沿锥面在水平面内作匀速圆周运动,关于A、B两球的角速度、线速度和向心加速度正确的说法是A. 它们的角速度相等ωA=ωBB. 它们的线速度υA<υBC. 它们的向心加速度相等D.A球的向心加速度大于B球的向心加速度7.1957年10月4日,苏联发射了世界上第一颗人造地球卫星以来,人类活动范围从陆地、海洋、大气层扩展到宇宙空间,宇宙空间成为人类的第四疆域,人类发展空间技术的最终目的是开发太空资源。
宇宙飞船要与轨道空间站对接,飞船为了追上轨道空间站A.只能从较低轨道上加速B.只能从较高轨道上加速C.只能从空间站同一轨道上加速D.无论在什么轨道上,只要加速都行。
8.关于“亚洲一号”地球同步通讯卫星,下列说法中正确的是A.它的运行速度为7.9km/sB.已知它的质量为1.42 t,若将它的质量增为2.84 t,其同步轨道半径变为原来的2倍C.它可以绕过北京的正上方,所以我国能够利用它进行电视转播D它距地面的高度约是地球半径的5倍,所以它的向心加速度约是地面处的重力加速度的1/36 9.北约在对南联盟进行轰炸时,大量使用贫铀炸弹.贫铀比重约为钢的2.5倍,设贫铀炸弹与常规炸弹射行速度之比约为2:1,它们在穿甲过程中所受阻力相同,则形状相同的贫铀炸弹与常规炸弹的最大穿甲深度之比约为A.2:1 B.1:1 C.10:1D.5:2图-5 图-4 10.从某一高处平抛一个物体,物体着地时末速度与水平方向成α角,取地面处重力势能为零,则物体抛出时,动能与重力势能之比为 A .2sin α B .2cos α C .2tan α D .2cot α二.填空题(本题共6小题,每小题各4分,共24分。
(完整版)高一物理必修2章节整理及练习(含答案)
第一节什么是抛体运动抛体运动的速度方向[自读教材·抓基础]1.抛体运动 将物体以一定的初速度向空中抛出,仅在重力作用下物体所做的运动叫作抛体运动。
2.抛体运动的速度方向 (1)在曲线运动中,质点在某一时刻(或某一位置)的速度方向就是曲线上这点的切线方向。
(2)做抛体运动的质点的速度方向,在其运动轨迹各点的切线方向上,并指向质点前进的方向。
(3)质点在曲线运动中速度的方向时刻在改变,即具有加速度,所以曲线运动是一种变速运动。
[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(想一想)物理上的切线与数学上的切线有何区别?提示:数学上的切线不用考虑方向,而物理上的切线具有方向,即要符合物体运动或物理量的“大方向”。
[跟随名师·解疑难]1.如何理解曲线运动的方向?由平均速度的定义知v =s t,则曲线运动的平均速度应为时间t 内的位移s 与时间t 的比值,如图1-1-1所示,v =s AB t。
随时间t 的取值变小,由图知时间t 内位移的方向逐渐向A 点的切线方向靠近,当时间趋于无限短时,位移方向为A 点的切线方向,故极短时间内的平均速度方向为A 点的瞬时速度方向,即A 点的切线方向。
2.曲线运动的性质曲线运动的速度方向时刻在变化,不管大小是否变化,因其矢量性,速度时刻都在变化,即曲线运动一定是变速运动。
3.做曲线运动的物体一定有加速度吗?由于曲线运动是变速运动,所以,做曲线运动的物体一定有加速度。
[特别提醒] 做曲线运动的物体,其速度沿轨迹上所在点的切线方向,确定物体的速度方向应先明确其运动轨迹。
[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(选一选)(多选)下列说法正确的是( )A .曲线运动的速度大小可以不变,但速度方向一定改变B .曲线运动的速度方向可以不变,但速度大小一定改变C .曲线运动的速度方向不是物体的运动方向D .做曲线运动的物体在某点的速度方向沿曲线上该点的切线方向抛体做直线或曲线运动的条件[自读教材·抓基础]1.抛体做直线运动的条件 :抛出时的速度方向在竖直方向上。
必修一二物理试题及答案
必修一二物理试题及答案一、选择题(每题3分,共30分)1. 物体做匀加速直线运动,加速度为a,初速度为v0,经过时间t后,物体的位移x为:A. x = v0t + 1/2at^2B. x = v0t - 1/2at^2C. x = v0t + at^2D. x = v0t + at答案:A2. 一个质量为m的物体从高度h处自由下落,不计空气阻力,物体落地时的速度v为:A. v = √(2gh)B. v = √(gh)C. v = 2ghD. v = gh答案:A3. 根据牛顿第二定律,物体所受合力F与物体的质量m和加速度a的关系是:A. F = maB. F = ma^2C. F = m/aD. F = a/m答案:A4. 两个力F1和F2作用于同一点,且方向相反,若F1 > F2,则合力大小为:A. F1 - F2B. F2 - F1C. F1 + F2D. 2F1答案:A5. 一个物体在水平面上做匀速直线运动,摩擦力的大小与下列哪个因素有关?A. 物体的质量B. 物体的速度C. 物体与地面间的摩擦系数D. 物体所受的外力答案:C6. 一个物体在水平面上做匀速圆周运动,下列哪个因素决定了物体所受的向心力?A. 物体的质量B. 物体的速度C. 物体与圆心的距离D. 物体所受的外力答案:C7. 根据能量守恒定律,下列哪个说法是正确的?A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造,也不能被消灭D. 能量可以被转移,但不能被创造或消灭答案:D8. 一个物体在竖直方向上受到重力作用,同时受到一个向上的拉力F,若物体处于静止状态,则:A. F = mgB. F > mgC. F < mgD. F = 0答案:A9. 根据动量守恒定律,下列哪个说法是正确的?A. 动量是矢量B. 动量是标量C. 动量的方向与速度的方向相反D. 动量的方向与速度的方向相同答案:A10. 一个物体在水平面上受到一个恒定的力F作用,物体的加速度a与力F成正比,与物体的质量m成反比,下列哪个公式正确描述了这种关系?A. a = F/mB. a = mFC. a = F^2/mD. a = m/F答案:A二、填空题(每题2分,共20分)1. 光在真空中的传播速度是___km/s。
教科版高中物理必修二复习试题及答案全套
教科版高中物理必修二复习试题及答案全套重点强化卷(一) 平抛运动规律的应用一、选择题1. (多选)如图1所示,在高空匀速飞行的轰炸机,每隔1 s投下一颗炸弹,若不计空气阻力,则()图1A.这些炸弹落地前排列在同一条竖直线上B.这些炸弹都落于地面上同一点C.这些炸弹落地时速度大小方向都相同D.相邻炸弹在空中距离保持不变【解析】这些炸弹是做平抛运动,速度的水平分量都一样,与飞机速度相同.相同时间内,水平方向上位移相同,所以这些炸弹排在同一条竖直线上.这些炸弹抛出时刻不同,落地时刻也不一样,不可能落于地面上的同一点.由于这些炸弹下落的高度相同,初速度也相同,这些炸弹落地时速度大小和方向都相同.两相邻炸弹在空中的距离为Δx=x1-x2=12g(t+1)2-12gt2=gt+12g.由此可知Δx随时间t增大而增大.【答案】AC2.一个物体以速度v0水平抛出,落地时速度的大小为2v0,不计空气的阻力,重力加速度为g,则物体在空中飞行的时间为()A.v0g B.2v0gC.3v 0gD.2v 0g【解析】 如图所示,gt 为物体落地时竖直方向的速度,由(2v 0)2=v 20+(gt )2得:t =3v 0g ,C 正确.【答案】 C3. (多选)某人在竖直墙壁上悬挂一镖靶,他站在离墙壁一定距离的某处,先后将两只飞镖A 、B 由同一位置水平掷出,两只飞镖插在靶上的状态如图2所示(侧视图),若不计空气阻力,下列说法正确的是( )图2A .B 镖的运动时间比A 镖的运动时间长 B .B 镖掷出时的初速度比A 镖掷出时的初速度大C .A 镖掷出时的初速度比B 镖掷出时的初速度大D .A 镖的质量一定比B 镖的质量小【解析】 飞镖A 、B 都做平抛运动,由h =12gt 2得t =2hg ,故B 镖运动时间比A 镖运动时间长,A 正确;由v 0=xt 知A 镖掷出时的初速度比B 镖掷出时的初速度大,B 错误,C 正确;无法比较A 、B 镖的质量大小,D 错误.【答案】 AC4.从O 点抛出A 、B 、C 三个物体,它们做平抛运动的轨迹分别如图3所示,则三个物体做平抛运动的初速度v A 、v B 、v C 的关系和三个物体在空中运动的时间t A 、t B 、t C 的关系分别是( )图3 A.v A>v B>v C,t A>t B>t CB.v A<v B<v C,t A=t B=t CC.v A<v B<v C,t A>t B>t CD.v A>v B>v C,t A<t B<t C【解析】三个物体抛出后均做平抛运动,竖直方向有h=12gt2,水平方向有x=v0t,由于h A>h B>h C,故t A>t B>t C,又因为x A<x B<x C,故v A<v B<v C,C正确.【答案】C5.如图4所示,在一次空地演习中,离地H高处的飞机以水平速度v1发射一颗炮弹欲轰炸地面目标P,反应灵敏的地面拦截系统同时以速度v2竖直向上发射炮弹拦截.设拦截系统与飞机的水平距离为s,不计空气阻力.若拦截成功,则v1、v2的关系应满足()图4A.v1=v2B.v1=Hs v2C.v1=Hs v2D.v1=sH v2【解析】设经t时间拦截成功,则平抛的炮弹下落h=12gt2,水平运动s=v1t;竖直上抛的炮弹上升H-h=v2t-12gt2,由以上各式得v1=s H v2,故D正确.【答案】D6.如图5所示,以9.8 m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为(g取9.8 m/s2)()图5A.23s B.223sC. 3 s D.2 s【解析】把平抛运动分解成水平的匀速直线运动和竖直的自由落体运动,抛出时只有水平方向的速度v0,垂直地撞在斜面上时,既有水平方向分速度v0,又有竖直方向的分速度v y.物体速度的竖直分量确定后,即可求出物体飞行的时间.如图所示,把末速度分解成水平方向分速度v0和竖直方向的分速度v y,则有tan 30°=v0 v yv y=gt,解两式得t=v yg =3v0g= 3 s,故C 正确.【答案】C7.(多选)刀削面是同学们喜欢的面食之一,因其风味独特,驰名中外.刀削面全凭刀削,因此得名.如图6所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便飞向锅里,若面团到锅的上沿的竖直距离为0.8 m,最近的水平距离为0.5 m,锅的半径为0.5 m.要想使削出的面片落入锅中,则面片的水平速度可以是下列选项中的哪些(g 取10 m/s 2)( )图6A .1 m/sB .2 m/sC .3 m/sD .4 m/s【解析】 由h =12gt 2知,面片在空中的运动时间t =2hg =0.4 s ,而水平位移x =v 0t ,故面片的初速度v 0=xt ,将x 1=0.5 m ,x 2=1.5 m 代入得面片的最小初速度v 01=x 1t =1.25 m/s ,最大初速度v 02=x 2t =3.75 m/s ,即1.25 m/s ≤v 0≤3.75 m/s ,B 、C 选项正确.【答案】 BC8.(多选)从同一点沿水平方向抛出的A 、B 两个小球能落在同一个斜面上,运动轨迹如图7所示,不计空气阻力,则小球初速度v A 、v B 的关系和运动时间t A 、t B 的关系分别是( )图7A .v A >vB B .v A <v BC .t A >t BD .t A <t B【解析】 A 小球下落的高度小于B 小球下落的高度,所以根据h =12gt 2知t =2hg ,故t A <t B ,C 错误,D 正确;根据s =v t 知,B 的水平位移较小,时间较长,则水平初速度较小,故v A >v B ,A 正确,B 错误.【答案】AD9. (多选)如图8所示,x轴在水平地面内,y轴沿竖直方向.图中画出了从y 轴上沿x轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的.不计空气阻力,则()图8A.a的飞行时间比b的长B.b和c的飞行时间相同C.a的水平速度比b的小D.b的初速度比c的大【解析】x=v0t,y=12gt2,所以t=2y g,由y b=y c>y a,得t b=t c>t a,选项A 错,B 对;又根据v0=x g2y,因为y b>y a,x b<x a,y b=y c,x b>x c,故v a>v b,v b>v c,选项C错,D对.【答案】BD10.如图9所示,P是水平面上的圆弧凹槽,从高台边B点以某速度v0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左端A点沿圆弧切线方向进入轨道.O是圆弧的圆心,θ1是OA与竖直方向的夹角,θ2是BA与竖直方向的夹角,则()图9A.tan θ2tan θ1=2 B.tan θ1 tan θ2=2C.1tan θ1 tan θ2=2 D.tan θ1tan θ2=2【解析】 OA 方向即小球末速度垂线的方向,θ1是末速度与水平方向的夹角;BA 方向即小球合位移的方向,θ2是位移方向与竖直方向的夹角.由题意知:tan θ1=v y v 0=gtv 0,tan θ2=x y =v 0t 12gt 2=2v 0gt由以上两式得:tan θ1 tan θ2=2.故B 项正确. 【答案】 B 二、计算题11.从离地高 80 m 处水平抛出一个物体,3 s 末物体的速度大小为 50 m/s ,g 取10 m/s 2.求:(1)物体抛出时的初速度大小; (2)物体在空中运动的时间; (3)物体落地时的水平位移.【解析】 (1)由平抛运动的规律知v =v 2x +v 2y3 s 末v =50 m/s ,v y =gt =30 m/s 解得v x =40 m/s ,即v 0=40 m/s. (2)物体在空中运动的时间t =2hg =2×8010 s =4 s.(3)物体落地时的水平位移x =v 0t =40×4 m =160 m. 【答案】 (1)40 m/s (2)4 s (3)160 m12.如图10所示,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0 s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m =50 kg.不计空气阻力.(取sin 37°=0.60,cos 37°=0.80,g =10 m/s 2)求:图10(1)A点与O点的距离;(2)运动员离开O点时的速度大小.【解析】(1)设A点与O点的距离为L,运动员在竖直方向做自由落体运动,有L sin 37°=12gt2L=gt22sin 37°=75 m.(2)设运动员离开O点的速度为v0,运动员在水平方向做匀速直线运动,即L cos 37°=v0t解得v0=L cos 37°t=20 m/s.【答案】(1)75 m(2)20 m/s重点强化卷(二) 圆周运动及综合应用一、选择题1.如图1所示为一种早期的自行车,这种带链条传动的自行车前轮的直径很大,这样的设计在当时主要是为了()图1A.提高速度B.提高稳定性C.骑行方便D.减小阻力【解析】 在骑车人脚蹬车轮转速一定的情况下,据公式v =ωr 知,轮子半径越大,车轮边缘的线速度越大,车行驶得也就越快,故A 选项正确.【答案】 A2.两个小球固定在一根长为L 的杆的两端,绕杆的O 点做圆周运动,如图2所示,当小球1的速度为v 1时,小球2的速度为v 2,则转轴O 到小球2的距离是( )图2A.L v 1v 1+v 2B.L v 2v 1+v 2 C.L (v 1+v 2)v 1D.L (v 1+v 2)v 2【解析】 两小球角速度相等,即ω1=ω2.设两球到O 点的距离分别为r 1、r 2,即v 1r 1 =v 2r 2 ;又由于r 1+r 2=L ,所以r 2=L v 2v 1+v 2,故选B.【答案】 B3.汽车在转弯时容易打滑出事故,为了减少事故发生,除了控制车速外,一般会把弯道做成斜面.如图3所示,斜面的倾角为θ,汽车的转弯半径为r ,则汽车安全转弯速度大小为( )图3A.gr sin θB.gr cos θC.gr tan θD.gr cot θ【解析】 高速行驶的汽车转弯时所需的向心力由重力和路面的支持力的合力提供同,完全不依靠摩擦力,如图.根据牛顿第二定律得: mg tan θ=m v 2r 解得:v =gr tan θ 故选C. 【答案】 C4.一质量为m 的物体,沿半径为R 的向下凹的圆形轨道滑行,如图4所示,经过最低点的速度为v ,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为( )图4A .μmgB .μm v 2R C .μm (g -v 2R )D .μm (g +v 2R )【解析】 小球在最低点时,轨道支持力和重力的合力提供向心力,根据牛顿第二定律得F N -mg =m v 2R ,物体受到的摩擦力为f =μF N =μm (g +v 2R ),选项D 正确.【答案】 D5. (多选)如图5所示,用细绳拴着质量为m 的小球,在竖直平面内做圆周运动,圆周半径为R ,则下列说法正确的是( )图5A.小球过最高点时,绳子张力可能为零B.小球过最高点时的最小速度为零C.小球刚好过最高点时的速度为gRD.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反【解析】绳子只能提供拉力作用,其方向不可能与重力相反,D错误;在最高点有mg+F T=m v2R,拉力F T可以等于零,此时速度最小为v min=gR,故B 错误,A、C正确.【答案】AC6.如图6所示,质量为m的小球固定在长为l的细轻杆的一端,绕轻杆的另一端O在竖直平面内做圆周运动.球转到最高点A时,线速度大小为gl 2,此时()图6A.杆受到12mg的拉力B.杆受到12mg的压力C.杆受到32mg的拉力D.杆受到32mg的压力【解析】以小球为研究对象,小球受重力和沿杆方向杆的弹力,设小球所受弹力方向竖直向下,则N+mg=m v2l ,将v=gl2代入上式得N=-12mg,即小球在A点受杆的弹力方向竖直向上,大小为12mg,由牛顿第三定律知杆受到12mg的压力.【答案】B7. “快乐向前冲”节目中有这样一种项目,选手需要借助悬挂在高处的绳飞跃到鸿沟对面的平台上,如果已知选手的质量为m,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角为α,如图7所示,不考虑空气阻力和绳的质量(选手可看为质点),下列说法正确的是()图7A.选手摆动到最低点时所受绳子的拉力等于mgB.选手摆动到最低点时所受绳子的拉力大于mgC.选手摆动到最低点时所受绳子的拉力大于选手对绳子的拉力D.选手摆动到最低点的运动过程为匀变速曲线运动【解析】由于选手摆动到最低点时,绳子拉力和选手自身重力的合力提供选手做圆周运动的向心力,有T-mg=F向,T=mg+F向>mg,B正确,A错误;选手摆到最低点时所受绳子的拉力和选手对绳子的拉力是作用力和反作用力的关系,根据牛顿第三定律,它们大小相等、方向相反且作用在同一条直线上,故C错误;选手摆到最低点的运动过程中,是变速圆周运动,合力是变力,故D 错误.【答案】B8.如图8所示,两个水平摩擦轮A和B传动时不打滑,半径R A=2R B,A 为主动轮.当A匀速转动时,在A轮边缘处放置的小木块恰能与A轮相对静止.若将小木块放在B 轮上,为让其与轮保持相对静止,则木块离B 轮转轴的最大距离为(已知同一物体在两轮上受到的最大静摩擦力相等)( )图8A.R B 4B.R B 2C .R BD .B 轮上无木块相对静止的位置【解析】 摩擦传动不打滑时,两轮边缘上线速度大小相等.根据题意有:R A ωA =R B ωB 所以ωB =R A R BωA 因为同一物体在两轮上受到的最大静摩擦力相等,设在B 轮上的转动半径最大为r ,则根据最大静摩擦力等于向心力有:mR A ω2A =mrω2B得:r =R A ω2A ⎝ ⎛⎭⎪⎫R A R B ωA 2=R 2B R A =R B 2. 【答案】 B9.如图9所示,滑块M 能在水平光滑杆上自由滑动,滑杆固定在转盘上,M 用绳跨过在圆心处的光滑滑轮与另一质量为m 的物体相连.当转盘以角速度ω转动时,M 离轴距离为r ,且恰能保持稳定转动.当转盘转速增到原来的2倍,调整r 使之达到新的稳定转动状态,则滑块M ( )图9A .所受向心力变为原来的4倍B .线速度变为原来的12C .转动半径r 变为原来的12D .角速度变为原来的12【解析】 转速增加,再次稳定时,M 做圆周运动的向心力仍由拉力提供,拉力仍然等于m 的重力,所以向心力不变,故A 错误;转速增到原来的2倍,则角速度变为原来的2倍,根据F =mrω2,向心力不变,则r 变为原来的14.根据v =rω,线速度变为原来的12,故B 正确,C 、D 错误.【答案】 B10.在较大的平直木板上相隔一定距离钉几个钉子,将三合板弯曲成拱桥形卡入钉子内形成拱形桥,三合板上表面事先铺上一层牛仔布以增加摩擦,这样玩具惯性车就可以在桥面上跑起来了.把这套系统放在电子秤上做实验,关于实验中电子秤的示数下列说法正确的是( )图10A .玩具车静止在拱桥顶端时的示数小一些B .玩具车运动通过拱桥顶端时的示数大一些C .玩具车运动通过拱桥顶端时处于超重状态D .玩具车运动通过拱桥顶端时速度越大(未离开拱桥),示数越小【解析】 根据mg -F N =m v 2R ,F N =mg -m v 2R ,可见玩具车通过拱桥顶端时失重,速度越大,电子秤的示数越小.选D.【答案】 D二、计算题11.在用高级沥青铺设的高速公路上,汽车的设计时速是108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍.(1)如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?【解析】(1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有F m=0.6mg=m v2r,由速度v=30 m/s,得弯道半径r=150 m.(2)汽车过拱桥,看做在竖直平面内做匀速圆周运动,到达最高点时,根据向心力公式有:mg-F N=m v2R,为了保证安全,车对路面间的弹力F N必须大于等于零,有mg≥m v2R,则R≥90 m.【答案】(1)150 m(2)90 m12.如图11所示,一光滑的半径为0.1 m的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道对小球的压力恰好为零,g取10 m/s2,求:图11(1)小球在B点速度是多少?(2)小球落地点离轨道最低点A多远?(3)落地时小球速度为多少?【解析】(1)小球在B点时只受重力作用,竖直向下的重力提供小球做圆周运动的向心力,根据牛顿第二定律可得:mg=m v2Br代入数值解得:v B =gr =1 m/s.(2)小球离开B 点后,做平抛运动.根据平抛运动规律可得:2r =12gt 2s =v B t ,代入数值联立解得:s =0.2 m.(3)根据运动的合成与分解规律可知,小球落地时的速度为v =v 2B +(gt )2=5 m/s.【答案】 (1)1 m/s (2)0.2 m (3) 5 m/s重点强化卷(三) 万有引力定律的应用一、选择题1.两个密度均匀的球体相距r ,它们之间的万有引力为10-8N ,若它们的质量、距离都增加为原来的2倍,则它们间的万有引力为( )A .10-8NB .0.25×10-8 NC .4×10-8ND .10-4N【解析】 原来的万有引力为:F =G Mm r 2后来变为:F ′=G 2M ·2m (2r )2=G Mm r 2 即:F ′=F =10-8N ,故选项A 正确.【答案】 A2.已知引力常量G =6.67×10-11N·m 2/kg 2,重力加速度g =9.8 m/s 2,地球半径R =6.4×106 m ,则可知地球质量的数量级是( )A .1018 kgB .1020 kgC .1022 kgD .1024 kg【解析】 根据mg =G Mm R 2得地球质量为M =gR 2G ≈6.0×1024 kg.故选项D 正确.【答案】 D3.关于“亚洲一号”地球同步通讯卫星,下述说法正确的是( )A .已知它的质量是1.24 t ,若将它的质量增为2.84 t ,其同步轨道半径将变为原来的2倍B .它的运行速度大于7.9 km/sC .它可以绕过北京的正上方,所以我国能利用它进行电视转播D .它距地面的高度约为地球半径的5倍,故它的向心加速度约为其下方地面上物体的重力加速度的136【解析】 同步卫星的轨道半径是固定的,与质量大小无关,A 错误;7.9 km/s 是人造卫星的最小发射速度,同时也是卫星的最大环绕速度,卫星的轨道半径越大,其线速度越小.同步卫星距地面很高,故其运行速度小于7.9 km/s ,B 错误;同步卫星只能在赤道的正上方,C 错误;由G Mm r 2=ma n 可得,同步卫星的加速度a n =G M r 2=G M (6R )2=136G M R 2=136g ,故选项D 正确. 【答案】 D4.如图1所示,在同一轨道平面上的几个人造地球卫星A 、B 、C 绕地球做匀速圆周运动,某一时刻它们恰好在同一直线上,下列说法中正确的是( )图1A .根据v =gr 可知,运行速度满足v A >vB >v CB .运转角速度满足ωA >ωB >ωCC .向心加速度满足a A <a B <a CD .运动一周后,A 最先回到图示位置【解析】 由G Mm r 2=m v 2r 得,v =GMr ,r 大,则v 小,故v A <v B <v C ,A错误;由G Mm r 2=mω2r 得,ω=GMr 3,r 大,则ω小,故ωA <ωB <ωC ,B 错误;由G Mm r 2=ma 得,a =GM r 2,r 大,则a 小,故a A <a B <a C ,C 正确;由G Mm r 2=m 4π2T 2r 得,T =2πr 3GM ,r 大,则T 大,故T A >T B >T C ,因此运动一周后,C 最先回到图示位置,D 错误.【答案】 C5.(多选)据英国《卫报》网站2015年1月6日报道,在太阳系之外,科学家发现了一颗最适宜人类居住的类地行星,绕恒星橙矮星运行,命名为“开普勒438b”.假设该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍.则该行星与地球的( )A .轨道半径之比为3p 2qB .轨道半径之比为3p 2C .线速度之比为3q pD .线速度之比为1p【解析】 行星公转的向心力由万有引力提供,根据牛顿第二定律,有G Mm R 2=m 4π2T 2R ,解得:R =3GMT 24π2,该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍,故:R 橙R 太=3(M 橙M 太)(T 行T 地)2=3qp 2,故A 正确,B 错误;根据v =2πR T ,有:v 行v 地=R 行R 地·T 地T 行=3qp 2·1p =3q p ;故C 正确,D 错误.【答案】 AC6.银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观测得其周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知万有引力常量为G .由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT 2B.4π2r 31GT 2C.4π2r 3GT 2 D.4π2r 2r 1GT 2【解析】 设S 1、S 2两星体的质量分别为m 1、m 2,根据万有引力定律和牛顿定律得,对S 1有G m 1m 2r 2=m 1(2πT )2r 1,解之可得m 2=4π2r 2r 1GT 2,则D 正确,A 、B 、C 错误.【答案】 D7.质量相等的甲、乙两颗卫星分别贴近某星球表面和地球表面围绕其做匀速圆周运动,已知该星球和地球的密度相同,半径分别为R 和r ,则( )A .甲、乙两颗卫星的加速度之比等于R ∶rB .甲、乙两颗卫星所受的向心力之比等于1∶1C .甲、乙两颗卫星的线速度之比等于1∶1D .甲、乙两颗卫星的周期之比等于R ∶r【解析】 由F =G Mm R 2和M =ρ43πR 3可得万有引力F =43G πRmρ,又由牛顿第二定律F =ma 可得,A 正确;卫星绕星球表面做匀速圆周运动时,万有引力等于向心力,因此B 错误;由F =43G πRmρ,F =m v 2R 可得,选项C 错误;由F =43G πRmρ,F =mR 4π2T 2可知,周期之比为1∶1,故D 错误.【答案】 A8.嫦娥三号探测器绕月球表面附近飞行时的速率大约为1.75 km/s(可近似当成匀速圆周运动),若已知地球质量约为月球质量的81倍 ,地球第一宇宙速度约为7.9 km/s ,则地球半径约为月球半径的多少倍( )A .3倍B .4倍C .5倍D .6倍【解析】 根据万有引力提供向心力知,当环绕天体在中心天体表面运动时,运行速度即为中心天体的第一宇宙速度,由G Mm R 2=m v 2R 解得:v =GMR ,故地球的半径与月球的半径之比为R 1R 2=M 1M 2·v 22v 21,约等于4,故B 正确,A 、C 、D 错误. 【答案】 B9.如图2所示,a 、b 、c 、d 是在地球大气层外的圆形轨道上匀速运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上.某时刻b 卫星恰好处于c 卫星的正上方.下列说法中正确的是( )图2A .b 、d 存在相撞危险B .a 、c 的加速度大小相等,且大于b 的加速度C .b 、c 的角速度大小相等,且小于a 的角速度D .a 、c 的线速度大小相等,且小于d 的线速度【解析】 b 、d 在同一轨道,线速度大小相等,不可能相撞,A 错;由a 向=GM r 2知a 、c 的加速度大小相等且大于b 的加速度,B 对;由ω= GM r 3知,a 、c 的角速度大小相等,且大于b 的角速度,C 错;由v =GM r 知a 、c 的线速度大小相等,且大于d 的线速度,D 错.【答案】 B10.登上火星是人类的梦想.“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )A.B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大【解析】 火星和地球都绕太阳做圆周运动,万有引力提供向心力,由GMmr 2=m 4π2T 2r =ma 知,因r 火>r 地,而r 3T 2=GM4π2,故T 火>T 地,选项A 错误;向心加速度a =GMr 2,则a 火<a 地,故选项B 正确;地球表面的重力加速度g 地=GM 地R 2地,火星表面的重力加速度g 火=GM 火R 2火,代入数据比较知g 火<g 地,故选项C 错误;地球和火星上的第一宇宙速度:v 地=GM 地R 地,v 火=GM 火R 火,v 地>v 火,故选项D 错误.【答案】 B 二、计算题11.经天文学家观察,太阳在绕着银河系中心(银心)的圆形轨道上运行,这个轨道半径约为3×104光年(约等于2.8×1020m),转动一周的周期约为2亿年(约等于6.3×1015s).太阳做圆周运动的向心力是来自位于它轨道内侧的大量星体的引力,可以把这些星体的全部质量看做集中在银河系中心来处理问题.(G =6.67×10-11N·m 2/kg 2)用给出的数据来计算太阳轨道内侧这些星体的总质量.【解析】 假设太阳轨道内侧这些星体的总质量为M ,太阳的质量为m ,轨道半径为r ,周期为T ,太阳做圆周运动的向心力来自于这些星体的引力,则G Mm r 2=m 4π2T 2r故这些星体的总质量为M=4π2r3GT2=4×(3.14)2×(2.8×1020)36.67×10-11×(6.3×1015)2kg≈3.3×1041kg.【答案】 3.3×1041kg12.质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间距离为L.已知A、B的中心和O三点始终共线,A和B分别在O的两侧.引力常量为G.图3(1)求两星球做圆周运动的周期.(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2.已知地球和月球的质量分别为5.98×1024 kg和7.35×1022kg.求T2与T1两者平方之比.(结果保留三位小数)【解析】(1)两星球围绕同一点O做匀速圆周运动,其角速度相同,周期也相同,其所需向心力由两者间的万有引力提供,设OB为r1,OA为r2,则对于星球B:G MmL2=M4π2T2r1对于星球A:G MmL2=m4π2T2r2其中r1+r2=L由以上三式可得T=2πL3G(M+m).(2)对于地月系统,若认为地球和月球都围绕中心连线某点O做匀速圆周运动,由(1)可知地球和月球的运行周期T 1=2πL 3G (M +m )若认为月球围绕地心做匀速圆周运动,由万有引力与天体运动的关系:G MmL 2=m 4π2T 22L解得T 2=4π2L 3GM则T 22T 21=M +m M =1.012. 【答案】 (1)2πL 3G (M +m )(2)1.012重点强化卷(四) 动能定理和机械能守恒定律一、选择题1.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )A .一样大B .水平抛的最大C .斜向上抛的最大D .斜向下抛的最大【解析】 不计空气阻力的抛体运动,机械能守恒.故以相同的速率向不同的方向抛出落至同一水平地面时,物体速度的大小相等.故只有选项A 正确.【答案】 A2.(多选)质量为m 的物体,从静止开始以a =12g 的加速度竖直向下运动h 米,下列说法中正确的是( )A .物体的动能增加了12mgh B .物体的动能减少了12mghC.物体的势能减少了12mghD.物体的势能减少了mgh【解析】物体的合力为ma=12mg,向下运动h米时合力做功12mgh,根据动能定理可知物体的动能增加了12mgh,A对,B错;向下运动h米过程中重力做功mgh,物体的势能减少了mgh,D对.【答案】AD3.如图1所示,AB为14圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R.一质量为m的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A从静止下滑时,恰好运动到C处停止,那么物体在AB段克服摩擦力做功为()图1A.12μmgR B.12mgRC.mgR D.(1-μ)mgR【解析】设物体在AB段克服摩擦力所做的功为W AB,物体从A到C的全过程,根据动能定理有mgR-W AB-μmgR=0,所以有W AB=mgR-μmgR=(1-μ)mgR.【答案】D4.如图2所示,木板长为l,木板的A端放一质量为m的小物体,物体与板间的动摩擦因数为μ.开始时木板水平,在绕O点缓慢转过一个小角度θ的过程中,若物体始终保持与板相对静止.对于这个过程中各力做功的情况,下列说法中正确的是()图2A.摩擦力对物体所做的功为mgl sin θ(1-cos θ)B.弹力对物体所做的功为mgl sin θcos θC.木板对物体所做的功为mgl sin θD.合力对物体所做的功为mgl cos θ【解析】重力是恒力,可直接用功的计算公式,则W G=-mgh;摩擦力虽是变力,但因摩擦力方向上物体没有发生位移,所以W f=0;因木块缓慢运动,所以合力F合=0,则W合=0;因支持力F N为变力,不能直接用公式求它做的功,由动能定理W合=ΔE k知,W G+W N=0,所以W N=-W G=mgh=mgl sin θ.【答案】C5. (多选)如图3所示,一个质量为m的物体以某一速度从A点冲上倾角为30°的光滑斜面,这个物体在斜面上上升的最大高度为h,则在此过程中()图3A.物体的重力势能增加了mghB.物体的机械能减少了mghC.物体的动能减少了mghD.物体的机械能不守恒【解析】物体在斜面上上升的最大高度为h,重力对物体做负功W=-mgh,物体的重力势能增加了mgh,故A正确;物体在上升过程中,只有重力做功,重力势能与动能之间相互转化,机械能守恒,故B、D均错误;由于物体所受的支持力不做功,只有重力做功,所以合力做功为-mgh,由动能定理可知,物体的动能减少了mgh,故C正确.。
人教版高中物理必修二 8.4 机械能守恒定律 练习(含答案)
机械能守恒定律练习一、单选题1.下列所述的物体在运动过程中满足机械能守恒的是( )A. 跳伞运动员张开伞后,在空中匀速下降B. 忽略空气阻力,物体竖直上抛C. 火箭升空过程D. 拉着物体沿光滑斜面匀速上升【答案】B【解析】解:A、跳伞运动员在空中匀速下降,动能不变,重力势能减小,因机械能等于动能和势能之和,则机械能减小。
故A错误。
B、忽略空气阻力,物体竖直上抛,只有重力做功,机械能守恒,故B正确。
C、火箭升空,动力做功,机械能增加。
故C错误。
D、物体沿光滑斜面匀速上升,动能不变,重力势能在增加,所以机械能在增大。
故D错误。
故选:B。
物体机械能守恒的条件是只有重力或者是弹簧弹力做功,或看物体的动能和势能之和是否保持不变,即采用总量的方法进行判断。
解决本题的关键掌握判断机械能是否守恒的方法,1、看是否只有重力做功。
2、看动能和势能之和是否不变。
2.安徽芜湖方特水上乐园是华东地区最大的水上主题公园。
如图为彩虹滑道,游客先要从一个极陡的斜坡落下,接着经过一个拱形水道,最后达到末端。
下列说法正确的是( )A. 斜坡的高度和拱形水道的高度差要设计合理,否则游客经过拱形水道的最高点时可能飞起来B. 游客从斜坡的最高点运动到拱形水道最高点的过程中,重力一直做正功C. 游客从斜坡下滑到最低点时,游客对滑道的压力最小D. 游客从最高点直至滑到最终停下来过程中,游客的机械能消失了【答案】A【解析】解:A、斜坡的高度和拱形水道的高度差要设计合理,不能让游客经过拱形水A正确;B、游客从斜坡的最高点运动到拱形水道最高点的过程中,游客的位置是先降低后升高,所以重力先做正功后做负功,故B错误;C、游客从斜坡上下滑到最低点时,加速度向上,处于超重状态,游客对滑道的压力最大,故C错误;D、游客从最高点直至滑到最终停下来过程中,游客的机械能没有消失,而是转化为其他形式的能(内能),故D错误。
故选:A。
高点运动到拱形水道最高点的过程中,游客是先降低后升高的;游客在最低点时,其加速度向上,游客处于超重状态;整个过程是符合能量守恒的,机械能不是消失,而是转化为其它形式的能。
部编版高中物理必修二第五章抛体运动带答案必练题总结
(名师选题)部编版高中物理必修二第五章抛体运动带答案必练题总结单选题1、竖直边长为L,倾角正切值tanθ=12的直角斜面固定在水平面上,若将某小球a以速度v0从斜面顶端水平抛出,正好落在该斜面的中点上,现将该小球b以2v0的初速度水平抛出,下面说法正确的是()A.小球b的水平位移为2LB.小球a与小球b落在斜面上的时间之比为1∶2C.小球a落在斜面上的速度与水平方向夹角为45°D.小球a与小球b落在接触面上的速度方向平行2、如图所示是排球场的场地示意图,设排球场的总长为L,前场区的长度为L6,网高为h,在排球比赛中,对运动员的弹跳水平要求很高。
如果运动员的弹跳水平不高,运动员的击球点的高度小于某个临界值H,那么无论水平击球的速度多大,排球不是触网就是越界。
设某一次运动员站在前场区和后场区的交界处,正对网前竖直跳起垂直网将排球水平击出,不计空气阻力,关于该种情况下临界值H的大小,下列关系式正确的是()A.H=4948ℎB.H=16(L+ℎ)15LℎC.H=1615ℎD.H=L+ℎLℎ3、一物体在F1、F2、F3三个恒力共同作用下做匀速直线运动,突然撤去F2这个力,则()A.物体立即朝F2的反方向运动B.物体一定改做匀变速曲线运动C .物体有可能沿F 2原方向做匀减速运动D .物体有可能沿F 2反方向做匀减速运动4、一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ)为( )A .vLcos 2θℎB .vLsin 2θℎC .vLsinθℎD .vLcosθℎ5、2019年10月28日发生了天王星冲日现象,即太阳、地球、天王星处于同一直线,此时是观察天王星的最佳时间。
已知日地距离为R 0,天王星和地球的公转周期分别为T 和T 0,则天王星与太阳的距离为( ) A .√T 2T 023R 0B .√T 2T 02R 0C .√T 02T 23R 0D .√T 02T 2R 0 6、物体a 在距地面高度为H 处以初速度v 0做平抛运动,距a 的抛出点水平距离为s 且等高的物体b 同时开始无初速度下落,两物体在空中相遇。
高一物理必修2《机械能守恒》典型例题偏难有答案
机械能守恒定律1. 对于质量一定的物体,下面陈述中正确的是A .物体的动量发生变化,其动能必定变化B .物体的动量发生变化,其动能不一定变化C .物体的动能发生变化,其动量不一定变化D .物体的动能变化,其动量必定变化解析 对于质量一定的物体,由p=m υ可知,物体的动量变化只有可能是υ的变化引起,υ是矢量,其变化有三种可能:(1)方向不变,大小改变(例如,自由落体运动);(2)方向改变,大小不变(例如,匀速圆周运动);(3)方向、大小均改变(例如,平抛物体运动).所以,在第二种情况中,物体速度的大小不变,其动能就不变,动量的大小也不变,但由于物体速度的方向改变,动量的方向也就改变,故动量在变化.选项B 正确,选项A 错误.对于质量一定的物体,物体的动能变化,物体的速度大小一定变化,又由p=m υ可知,物体的动量一定变化,选项C 错误,选项D 正确。
答案 BD2.质量为0.2kg 的小球自距地0.8m 高处自由落下,碰地后跳起,第一次所能达到的最大高度是0.45m ,若空气阻力不计,以竖直向下方向为正方向,则小球落地时的速度是________;弹起时的速度是________;碰撞过程中动量的增量是_______.解析:设小球落地时的速度是1v ,弹起时的速度是2v ,则自由落体运动公式gs v 22=,得:sm s m gs v /4/8.0102211=⨯⨯==.小球弹起时做竖直上抛运动,由s g v v )(22021-=-得:s m s m gs v /3/45.0102222=⨯⨯==,方向竖直向上,碰撞过程中动量的增量是)/(4.142.0)3(2.012s m kg mv mv p ⋅-=⨯--⨯=-=∆.答案4m /s ; -3m /s ; -1.4kg ·m /s .3.质量为0.1kg 的小球以υ=3m /s 的速度水平抛出,当t=0.4s 时,小球的动量多大?在0.4s 内,重力的冲量是多大?(g 取2/10s m )解析:小球作平抛物体运动,水平方向做匀速运动,竖直方向做自由落体运动.当t=0.4s 时,小球的水平速度s m v x/3=,竖直方向速度s m s m gt v y/4/4.010=⨯==,小球的合速度s m s m v v v y x /5/432222=+=+=如图7—1).所以,小球的动量p=m υ=0.1×5kg ·m /s=0.5kg ·m /s .由于υ与水平方向的夹角θ满足:sin θ=4/5=0.8,即θ=53°,所以小球在0.4s 的动量方向跟υ相同,与水平方向成53°角.在0.4s 内,重力的冲量I=mgt=0.1×10×0.4N ·s=0.4N ·s ,方向沿重力方向,竖直向下.答案:0.5kg ·m /s ,与水平方向成53°角;0.4N ·s ,方向竖直向下.4.总长为L 的光滑匀质铁链跨过一个光滑的小滑轮,开始时底端相齐(图8—46).当略有扰动时,其一端下落,则铁链脱离滑轮的瞬间速度多大?解析 设铁链的质量为m ,取铁链刚离开滑轮时其下端所在水平面为参考平面.则初状态铁链的机械能L mg E 431⋅=(L 43是铁链重心到参考平面的高度) 末状态铁链的机械能222121mv L mg E +⋅= 由机械能守恒定律得2212143mv L mg L mg +⋅=⋅解得22gL v =5.如图8-47所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A .动量守恒,机械能守恒B .动量不守恒,机械能不守恒C .动量守恒,机械能不守恒D .动量不守恒,机械能守恒解析 从子弹射入木块到弹簧压缩至最短的整个过程可以分为两个阶段,第一阶段,子弹射入,使木块获得速度,此过程时间非常短暂,弹簧还未被压缩;第二阶段,子弹与木块以同一速度压缩弹簧,直到速度为零,弹簧被压缩至最短.在第一阶段,系统不受外力,动量守恒,但由于子弹射入 木块中会产生热量,子弹损失一部分机械能,机械能不守恒.在第二阶段,子弹和木块以同一速度压缩弹簧,只有弹力做功,机械能守恒,而此阶段中,墙壁对弹簧产生越来越大的作用力,系统受到的合外力不为零,动量不守恒.(从直观也可以判断出系统的动量从有到无,不守恒)综上所述,子弹从开始射入木块到弹簧压缩至最短的整个过程中动量不守恒,机械能也不守恒. 答案 B6.如下图所示的装置中,木块B 与水平桌面间的接触是光滑的子弹A 沿水平方向射入木块后留在木块将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入到弹簧压缩至最短的整个过程中( )A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒解析:子弹打击木块B ,子弹和B 组成系统.由于作用时间很短,弹簧还未发生形变,合外力为零,系统动量守恒.子弹对B 的摩擦力做功(A 的位移很小),小于子弹克服摩擦力做功,两者的总功为摩擦力乘以子弹射入木块的深度,即-f·d,机械能减少,机械能不守恒.在压缩过程中,系统受墙的冲量,动量不守恒但机械能守恒,因系统所受墙的作用力不做功,只有弹簧弹力做功.若从开始作用直到将弹簧压至最短作为一个过程,组成系统的木块、子弹和弹簧既受外力作用又有除弹力以外的力做功,所以系统的动量和机械能均不守恒.答案选D.7.如下图所示,轻弹簧竖直立在水平桌面上并与桌面连接,在距弹簧上端高为h 处有一小球自由下落,正好落在弹簧上,把弹簧压缩后又被弹起,不计空气阻力,则下列说法中正确的是( )A.小球落到弹簧上后立即做减速运动,动能不断减小,但动能与弹性势能之和保持不变B.小球在碰到弹簧后,把弹簧压至最短的过程中,系统的重力势能与动能之和一直在减小C.小球在碰到弹簧后,把弹簧压至最短的过程中,系统的弹性势能与重力势能之和一直在增大D.小球被弹簧弹起后,运动的最高点仍是出发点解析:由于不计空气阻力,以小球、弹簧和地球组成的系统为研究对象,则只有系统内的重力和弹力做功,因此系统的机械能守恒,即小球的动能、重力势能和弹簧的弹性势能相互转化,这三种能量之和保持不变.所以本题应根据机械能守恒进行分析与判断.小球落到弹簧上,压缩弹簧向下运动至最低点的过程中,小球所受重力做正功,使小球的重力势能减小,同时小球又克服弹簧弹力做功,使弹簧的弹性势能增大.在此过程中,先是小球所受重力大于向上的弹力,合力向下,速度与加速度方向均向下,小球向下作变加速运动,动能与弹性势能增大而重力势能减小,因此选项A不正确;当小球运动到平衡位置时,小球所受合力为零,加速度为零,速度增至最大,动能也达到最大;当小球越过平衡位置继续向下运动时,小球所受合力及其产生的加速度方向改为向上,与速度反向,小球作变减速运动,动能减小,重力势能继续减小而弹性势能继续增大;当小球到达最低点时,动能减到零,重力势能减小到最小而弹性势能达到最大.由此可知,在此运动过程中,动能与重力势能之和(等于系统机械能与弹性势能之差)随弹性势能的增大而减小,故选项B正确.而弹性势能与重力势能之和(等于系统机械能与动能之差)则在平衡位置上方是随动能的增大而减小,在平衡位置下方是随动能的减小而增大,即经历了先减小后增大的过程,故选项C不对.从最低点反弹后的运动中,动能、重力势能,弹性势能又经历了与上述相反的过程,由机械能守恒可知小球上升的最高点与出发点相同,系统的机械能表现为最大的重力势能,故选项D正确.故本题正确答案是B、D.8.如下图所示,粗细均匀的全长为L的光滑铁链对称地挂在轻小而光滑的定滑轮上.轻轻扰动一下铁链的一端,使它从静止开始运动,则铁链刚脱离滑轮的瞬间的速度多大?解析:铁链在运动过程中只有重力做功,因此铁链的机械能守恒.当铁链刚脱离滑轮时具有动能,而刚开始时铁链的动能为零,那么这个动能只能是减小的重力势能转化而来的.因此应运用机械能守恒定律求解本题.设铁链的质量为m,由于只有重力对铁链做功,p=mg·2L-mg·4L=41mgL,增加的重力势能为△Ep=21mυ2p=△E k即41mgL=21mυ2得υ=21gL29.如下图所示,离地高为H的物体A通过跨在定滑轮上的轻绳与放在光滑水平桌面上,质量和A相同的物体B连接,由静止开始下落和从同一高度单独自由下落这两种情况下,A离地面的高度h分别为多少时,它的动能与势能相等?(设B没有滑离桌面)解析A离地高度为h时,其动能等于势能,则有mgh=21mυ2当AE1=mgH,末态时机械能为E2k2=mgh+21mυ2=2mgh,由机械能守恒E2=E1得 mgH=2mgh. ∴ h=2 1H当A通过绳子连接B H′,则初态系统的机械能为E1=mgH+mgH′,末了状E2=mgh+mgH′+21(m+m)υ2E2mgH+mgH′+21·2mυ2=mgH+mgH′将mgh=21mυ2 h=31H即两种情况下,A物体动能与势能相等时离地面的高度分别为31H和21H.10.如下图所示,半径为r ,质量不计的圆盘盘面与地面相垂直.圆心处有一个垂直盘面的光滑水平固定轴O ,在盘的最右边缘固定一个质量为m 的小球A ,在O点的正下方离O 点r/2处固定一个质量也为m 的小球B.放开盘让其自由转动,问:(1)当A 球转到最低点时,两小球的重力势能之和减少了多少?(2)A 球转到最低点时的线速度是多少?(3)在转动过程中半径OA 向左偏离竖直方向的最大角度是多少?解析:(1)两小球势能之和的减少,可选取任意参考平面进行计算.设以通过O 点A 球转到最低点时两球的重力势能之和分别为:E p1=E pA +E pB =0+(-mg 2r )=-mg 2r , Ep 2=E′pA 则两球重力势能之和减少量为 △E p =E p1-E p2=-21mgr-(-mgr)= 21mgr.(2)由于圆盘转动过程中,只有两小球重力做功,机械能守恒,因此两球重力势能之和的减少一定等于两.A 、B 两球速度分别为υA 、υB ,则△E p =△E kA +△E kB ,即 21mgr=21mυ2A +21υ2B . ①又A 、B 两球固定在同一个圆盘上,转动过程中的角速度ω相同,υA =ωr, υB =ω2r ,所以 υA =2υB 。
高中物理必修2解答题及解析50道
在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。
这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图3.01所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。
图3.01(1)求弹簧长度刚被锁定后A 球的速度。
(2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。
解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得10)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由以上两式求得A 的速度0231v v =。
(2)设弹簧长度被锁定后,贮存在弹簧中的势能为E P ,由能量守恒,有P E mv mv +⋅=⋅2221321221撞击P 后,A 与D 的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D 的动能,设D 的速度为v 3,则有23)2(21v m E P ⋅=以后弹簧伸长,A 球离开挡板P ,并获得速度,当A 、D 的速度相等时,弹簧伸至最长,设此时的速度为v 4,由动量守恒得4332mv mv =当弹簧伸到最长时,其势能最大,设此势能为E P ',由能量守恒,有'3212212423P E mv mv +⋅=⋅解以上各式得20361'mv E P =。
1. 图3.02中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态。
高中物理必修二必会50题(题+解析)完整
高中物理必修二必会50题一、单选题(共10题;共20分)1.如图所示,两倾角均为的光滑斜面对接后固定水平地面上,O点为斜面的最低点。
一个小物块从右侧斜面上高为H处由静止滑下,在两个斜面上做往复运动。
小物块每次通过O点时都会有动能损失,损失的动能为小物块当次到达O点时动能的5%。
小物块从开始下滑到停止的过程中运动的总路程为()A. B. C. D.2.如图,底端固定有挡板的斜面体置于粗糙水平面上,轻弹簧一端与挡板连接,弹簧为原长时自由端在B点,一小物块紧靠弹簧放置并在外力作用下将弹簧压缩至A点.物块由静止释放后,沿粗糙斜面上滑至最高点C,然后下滑,最终静止在斜面上.若整个过程中斜面体始终静止,则下列判定正确的是()A.整个运动过程中,物块加速度为零的位置只有一处B.物块上滑过程中速度最大的位置与下滑过程中速度最大的位置不同C.整个运动过程中,系统弹性势能的减少量等于系统内能的增加量D.物块从A上滑到C的过程中,地面对斜面体的摩擦力大小先增大再减小,然后不变3.在足够长的光滑绝缘水平台面上,存在有平行于水平面向右的匀强电场,电场强度为E。
水平台面上放置两个静止的小球A和B(均可看作质点),两小球质量均为m,带正电的A球电荷量为Q,B球不带电,A、B连线与电场线平行。
开始时两球相距L,在电场力作用下,A球开始运动(此时为计时零点,即t=0),后与B球发生正碰,碰撞过程中A、B两球总动能无损失。
若在各次碰撞过程中,A、B两球间均无电荷量转移,且不考虑两球碰撞时间及两球间的万有引力,则()A.第一次碰撞结束瞬间B球的速度大小为B.第一次碰撞到第二次碰撞B小球向右运动了2LC.第二次碰撞结束瞬间B球的速度大小为D.相邻两次碰撞时间间隔总为24.如图所示,A,B两滑块(可视为质点)质量分别为2m和m,A与弹簧一端拴接,弹簧的另一端固定在N点,B 紧靠着A,二者静止时弹簧处于原长位置O点,已知M点左边的平面光滑,滑块与右边平面间的动摩擦因数为μ,且ON>OM,重力加速度为g.现用水平向左的外力作用在滑块B上,缓慢压缩弹簧,当滑块运动到P点(图中未标出)时,撤去水平外力,测得滑块B在M点右方运动的距离为d,则下列说法正确的是()A.水平外力做的功为B.B与A分离时的速度为C.B与A分离后的运动过程中A与弹簧组成的系统机械能一定不变D.B与A分离后的运动过程中A可能经过P点5.地质勘探发现某地区表面的重力加速度发生了较大的变化,怀疑地下有空腔区域。
高一物理必修2《曲线运动》典型例题
高一物理必修二曲线运动经典题1、关于曲线运动,下列说法中正确的是( )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】AC.曲线运动的速度向沿曲线的切线向,一定是变化的,所以曲线运动一定是变速运动。
变速运动可能是速度的向不变而大小变化,则可能是直线运动。
当物体受到的合力是大小、向不变的恒力时,物体做匀变速运动,但力的向可能与速度向不在一条直线上,这时物体做匀变速曲线运动。
做变加速运动的物体受到的合力可能大小不变,但向始终与速度向在一条直线上,这时物体做变速直线运动。
2、质点在三个恒力F 1、F 2、F 3的共同作用下保持平衡状态,若突然撤去F 1,而保持F 2、F 3不变,则质点( )A .一定做匀变速运动B .一定做直线运动C .一定做非匀变速运动D .一定做曲线运动【解析】A.质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。
由题意可知,当突然撤去F 1而保持F 2、F 3不变时,质点受到的合力大小为F 1,向与F 1相反,故一定做匀变速运动。
在撤去F 1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F 1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F 1后,质点可能做直线运动(条件是F 1的向和速度向在一条直线上),也可能做曲线运动(条件是F 1的向和速度向不在一条直线上)。
3、关于运动的合成,下列说法中正确的是( )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】C.根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。
两个匀速直线运动的合运动一定是匀速直线运动。
两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度向是否与合加速度向在一直线上。
高一物理必修二第七章。功 动能 势能基础练习题(带参考答案)
高一物理必修二第七章。
功动能势能基础练习题(带参考答案)一、研究要点高一物理第七章功、动能、势能1.理解功的概念,掌握功的公式W=FScosθ,能够用这个公式进行计算。
2.理解正功和负功的概念,知道在什么情况下力做正功或负功。
3.知道几个力对物体所做的总功,以及总功的计算方法。
4.理解动能的概念,了解影响动能的因素。
5.理解势能的概念,了解重力势能的变化和重力做功的关系,知道重力做功与路径无关。
二、研究内容一)功的概念1.做功的要素是力和位移,功的表达式为W=FScosθ。
其中,θ为力与位移的夹角。
若0°≤θ<90°,力对物体做正功;若θ=90°,力对物体不做功;若 90°<θ≤180°,力对物体做负功,也叫物体做功。
2.功是一种量,功的正负号表示动力做功或阻力做功。
3.功的国际单位是XXX(J)。
4.总功的求解方法:1)先求出每一个力做的功,再求各个力做功的代数和,即为总功 W 总= ∑W i。
2)若物体所受力均为XXX,先求物体所受力的合力,再求总功 W 总 = F net s。
问题1:如何求功?如何理解正、负功?例1、如图1所示,一个物块在与水平方向成α 角的XXX F 作用下,沿水平面向右运动一段距离 s,在此过程中,XXX F 对物块所做的功为()A.Fs cos α B.Fs sin α C.Fs sin α cos α D.Fs cos α练1、如图2所示,一个质量为 m=150kg 的雪橇,受到与水平方向成θ=37° 角斜向上的拉力 F=500N 作用,在水平面上移动了距离 s=5m。
雪橇与地面间的滑动摩擦力 f=100N。
求各力对物体做的功。
问题2:功的正负如何判断?例2、一人乘电梯从 1 楼到 30 楼,在此过程中经历了先加速,后匀速,再减速的运动过程。
电梯支持力对人做功的情况是()A.加速时做正功,匀速时不做功,减速时做负功B.加速时做正功,匀速和减速时做负功C.加速和匀速时做正功,减速时做负功D.始终做正功练2、地球在万有引力作用下绕太阳的运动轨道是椭圆,当地球从近日点向远日点运动的过程中()A.万有引力对地球做正功B.万有引力对地球做负功C.万有引力对地球不做功D.有时做正功,有时做负功点评:判断功的正负,应从功的定义出发。
高一必修二物理功和功率练习题带答案解析
7.3 功率同步练习题解析(人教版必修2)1.质量为m的木块放在光滑水平面上,在水平力F的作用下从静止开始运动,则开始运动时间t后F的功率是()。
A.22F tmB.222F tmC.2F tmD.22F tm2.一辆小车在水平路面上做匀速直线运动,从某时刻起,小车受到的牵引力F和阻力f随时间的变化规律如图所示,则小车所受的牵引力的功率随时间变化的规律是()。
3.近年我国高速铁路技术得到飞速发展,20XX年12月3日京沪杭高铁综合试验运行最高时速达到486.1千米,刷新了世界记录,对提高铁路运行速度的以下说法,错误的是()。
A.减少路轨阻力,有利于提高列车最高时速B.当列车保持最高时速行驶时,其牵引力与阻力大小相等C.列车的最高时速取决于其最大功率、阻力及相关技术D.将列车车头做成流线形,减小空气阻力,有利于提高列车功率4.如图所示是健身用的“跑步机”示意图,质量为m的运动员踩在与水平面成α角的静止皮带上,运动员用力向后蹬皮带,皮带运动过程中受到的阻力恒为f,使皮带以速度v 匀速向后运动,则在运动过程中,下列说法正确的是()。
A.人脚对皮带的摩擦力是皮带运动的动力B.人对皮带不做功C.人对皮带做功的功率为mg vD.人对皮带做功的功率为f v5.一辆小汽车在水平路面上由静止启动,在前5 s内做匀加速直线运动,5 s末达到额定功率,之后保持额定功率运动,其v t图象如图所示。
已知汽车的质量为m=2×103 kg,汽车受到地面的阻力为车重的0.1倍,g取10 m/s2,则()。
A.汽车在前5 s内的牵引力为4×103 NB.汽车在前5 s内的牵引力为6×103 NC.汽车的额定功率为60 kWD.汽车的最大速度为30 m/s6.纯电动概念车E1是中国馆的镇馆之宝之一。
若E1概念车的总质量为920 kg,在16 s内从静止加速到100 km/h(即27.8 m/s)。
受到恒定的阻力为1 500 N,假设它做匀加速直线运动,其动力系统提供的牵引力为____N。
高一物理必修二试卷及答案
高一物理必修二试卷及答案1.这道题目要求计算一个物体在两个互相垂直的水平力的共同作用下增加的动能。
已知两个力分别做了6J和8J的功,需要求出动能增加了多少。
答案是A。
14J。
2.这道题目要求计算一个足球在斜坡上落地时的动能。
已知足球被踢出时的初动能为9J,斜坡的倾角为30度。
需要求出足球第一次落在斜坡上时的动能是多少。
答案是B。
21J。
3.这道题目要求求解一个常数k的大小,其中k等于周期T的平方除以轨道半径R的三次方。
需要判断k的大小与哪些因素有关。
答案是B。
只与恒星的质量有关。
4.这道题目描述了一个测定运动员体能的装置,需要判断哪些说法是正确的。
答案是C。
在时间t内人对传送带做功消耗的能量为Gvt。
5.这道题目描述了一艘小船渡河的情况,需要求出小船自此时起相对静水速度至少为多少才能避免通过危险区。
答案是B。
1.92ms。
6.这道题目描述了一个物体在飞行一段时间后撞在斜面上的情况,需要求出物体完成这段飞行的时间。
答案是XXX。
7.这道题目描述了一个小球在竖直面内绕杆做圆周运动的情况,需要判断球对杆的作用力是什么。
答案是D。
mg的压力。
8.这道题目描述了人造卫星在轨道上做匀速圆周运动的情况,需要判断哪些说法是正确的。
答案是A。
在任何轨道上运动时,地球球心都在卫星的轨道平面内。
9、根据动能定理,物体的动能变化等于重力做功,即ΔE = W = Fd = mgd。
在落地前瞬间,物体下落了3s,重力做功为ΔE = mgd = 10N × 30m = 300J。
因此,重力的瞬时功率为P = ΔE/Δt = 300J/3s = 100W,选项A错误,应选B。
10、由机械能守恒定律可知,物体的机械能在运动过程中保持不变,即E = K + U = const。
通过斜面某一点M时,物体的动能减少80J,机械能减少32J,因此,物体在点M处获得的势能为U = E - K = 32J,且在点M处动能为K = 120J - 80J = 40J。
高中物理必修二曲线运动难题典型题带答案
高中物理必修二曲线运动一.选择题(共25小题)1.物理学中有些问题的结论不一定必须通过计算才能验证,有时只需要通过一定的分析就可以判断结论是否正确.如图所示,AB为倾角为θ的斜面,小球从A点以初速度v0(方向与斜面成α角)抛出,恰好落到斜面底端的B点,不计空气阻力,则AB两点间的距离为()A.B.C.D.2.如图甲所示,一轻杆一端固定在O点,另一端固定一小球,在竖直平面内做半径为R的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F N,小球在最高点的速度大小为v,F N﹣v2图象如图乙所示.下列说法正确的是()A.当地的重力加速度大小为B.小球的质量为C.当v2=c时,杆对小球弹力方向向上D.若v2=2b,则杆对小球弹力大小为2a3.如图所示,O为斜面的底端,在O点正上方的A、B两点分别以初速度v A、v B正对斜面抛出两个小球,结果两个小球都垂直击中斜面,击中的位置分别为P、Q(图中未标出)。
OB=AB,空气阻力忽略不计,则()A.OP=OQ B.OP=4OQ C.v A=v B D.v A=v B4.汽车以速度v0沿平直的水平面向右匀速运动,通过定滑轮(不计滑轮的质量和摩擦)把质量为M的重物向上提起,某时刻汽车后面的绳子与水平方向的夹角为θ,如图所示。
则下列说法正确的是()A.此时重物的速度大小为v=v0sinθB.重物上升的速度越来越小C.由于汽车做匀速运动,所以重物也是匀速上升D.绳子中的拉力大于重物的重力5.如图所示是一个玩具陀螺。
a、b和c是陀螺上的三个点。
当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b 和c 三点的线速度大小相等B.a、b 和c 三点的角速度相等C.a、b 的角速度比c 的大D.c 的线速度比a、b 的大6.如图所示,套在竖直细杆上的轻环A由跨过定滑轮的不可伸长的轻绳与重物B相连,施加外力让A沿杆以速度v 匀速上升,从图中M位置上升至与定滑轮的连线处于水平N位置,已知AO与竖直杆成θ角,则()A.刚开始时B的速度为B.A匀速上升时,重物B也匀速下降C.重物B下降过程,绳对B的拉力大于B的重力D.A运动到位置N时,B的速度最大7.质量为m的物体P置于倾角为θ1的固定光滑斜面上,轻细绳跨过光滑定滑轮分别连接着P与小车,P与滑轮间的细绳平行于斜面,小车以速率v水平向右做匀速直线运动。
高一物理必修二试卷及答案
高一物理必修二试卷及答案高一物理必修二试卷及答案一、选择题1.在速度为1km/s的质点,作匀加速直线运动,2s内通过的路程为:A. 1kmB. 2kmC. 3kmD. 4km2.具有相同质量的两个物体,在分别放到空气和水中时,两物体受到的浮力之比为:A.1:1B.小于1:1C.大于1:1D.与介质无关3.已知质量为4kg的物体,受到10N的水平拉力,运动学方程为:S=8t^2则,物体在4s时的速度是:A.4m/sB.6m/sC.8m/sD.10m/s4.若同一电子在电场强度相同的条件下有两种不同的初速度,则其在垂直于磁场方向的匀强磁场中轨迹上的位置将:A.相重合B.错位相离C.分叉D.下垂弯曲5.若一自然数在3、6、7、9除以这4个数后,余数相同,则这个自然数是:A.84B.167C.251D.257答案:1.B 2.B 3.C 4.D 5.C二、填空题1.应用能量守恒定律,求出下面系统的重力势能之和:A质点由高度为8m坠落至地面,B质点由同一高度直搏上升8m答案:02.化合物P2O5+Na2O反应后得到化合物Na3PO4和另一种化合物X,求X的名字。
答案:Na4P2O73.小怡站在5米的悬崖边,用40N的力水平甩出0.5kg的石头,求石头落地时的速度大小。
答案:10m/s4.要使一个质点沿着圆形弧形运动,半径为R,运动速度为v,受到的向心加速度大小为a,它需要的角速度是:答案:v/R5.在电流强度不变的情况下,电流从1安变为5安,则电阻变为原来的多少倍?答案:1/5三、计算题1.一辆汽车行驶40秒后,速度从每小时72公里增加至每小时108公里。
它的初速度是多少?答案:20m/s2.一个15kg的小重物放在一个30m长的不摩擦的斜面上,斜面的高度差为20m,求小重物离地面时的速度。
答案:44.1m/s3.一根长度为1.5m,80N重的绳子的一端挂着一个20N重的小球,另一端缠在光滑的滑轮上,求小球下落2m时滑轮所旋转的角度。
高一物理必修2期末复习知识-典型例题
高一物理必修2期末复习知识-典型例题高中物理必修2综合总复习典型例题:1、过河问题例1.小船在200m 的河中横渡,水流速度为2m/s ,船在静水中的航速是4m/s ,求: 1.小船怎样过河时间最短,最短时间是多少? 2.小船怎样过河位移最小,最小位移为多少?解:如右图所示,若用v1表示水速,v2表示船速,则:①过河时间仅由v2的垂直于岸的分量v ⊥决定,即⊥=v dt ,与v1无关,所以当v2⊥岸时,过河所用时间最短,最短时间为2v dt =也与v1无关。
②过河路程由实际运动轨迹的方向决定,当v1<v2时,最短路程为d ; 2、连带运动问题指物拉绳(杆)或绳(杆)拉物问题。
由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。
例2 如图所示,汽车甲以速度v1拉汽车乙前进,乙的速度为v2,甲、乙都在水平面上运动,求v1∶v2解析:甲、乙沿绳的速度分别为v1和v2cos α,两者应该相等,所以有v1∶v2=cos α∶13、平抛运动例3平抛小球的闪光照片如图。
已知方格边长a 和闪光照相的频闪间隔T ,求:v0、g 、vc解析:水平方向:T av 20=竖直方向:22,T a g gT s =∴=?先求C 点的水平分速度vx 和竖直分速度vy ,再求合速度vC :412,25,20Tav T a v T a v v c y x =∴===(2)临界问题典型例题是在排球运动中,为了使从某一位置和某一高度水平扣出的球既不触网、又不出界,扣球速度的取值范围应是多少?例4 已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求:水平扣球速度v 的取值范围。
解析:假设运动员用速度vmax 扣球时,球刚好不会出界,用速度vmin 扣球时,球刚好不触网,从图v 2v 1v 1 甲乙α v 1v 2ABCDE中数量关系可得:()h g s L g h s L v 2)(2/max +=+=;)(2)(2/min H h gs g H h s v -=-=实际扣球速度应在这两个值之间。
高一物理必修二课本课后答案
高一物理必修二课本课后答案
一、选择题
1. 在空气中,声音的传播速度是
A. 340m/s
B. 340km/s
C. 340m/s2
D. 340km/s2
答案:A. 340m/s
2. 在空气中,声音的传播方式是
A. 直线传播
B. 波动传播
C. 平面传播
D. 球形传播
答案:B. 波动传播
3. 声音的传播速度受到什么因素的影响
A. 温度
B. 湿度
C. 压强
D. 浓度
答案:A. 温度
4. 声音的传播速度随温度的变化而
A. 增加
B. 减少
C. 不变
D. 无法确定
答案:A. 增加
5. 声音的传播速度在什么介质中最快
A. 空气
B. 水
C. 铁
D. 金属
答案:B. 水
二、填空题
1. 声音的传播速度是指声波在特定介质中每秒传播的距离。
2. 声音的传播速度受温度的影响,随着温度的升高,声音的传播速度也会增加。
3. 声音的传播速度在空气中为340m/s,在水中为1450m/s,在铁中为5000m/s。
4. 声音的传播方式是波动传播,它是由声波在介质中传播而产生的。
5. 声音的传播受到介质的影响,在不同介质中,声音的传播速度也不同。
(完整版)高一物理必修二经典例题带答案总复习
高一物理必修2复习第一章曲线运动1、 曲线运动中速度的方向不断变化,所以曲线运动必定是一个变速运动。
2、物体做曲线运动的条件:当力F 与速度V 的方向不共线时,速度的方向必定发生变化,物体将做曲线运动。
注意两点:第一,曲线运动中的某段时间内的位移方向与某时刻的速度方向不同。
位移方向是由起始位置指向末位置的有向线段。
速度方向则是沿轨迹上该点的切线方向。
第二,曲线运动中的路程和位移的大小一般不同。
3、 平抛运动:将物体以某一初速度沿水平方向抛出,不考虑空气阻力,物体所做的运动。
平抛运动的规律:(1)水平方向上是个匀速运动(2)竖直方向上是自由落体运动 位移公式:t x 0ν= ;221gt y = 速度公式:0v v x = ; gt v y = 合速度的大小为:22y x v v v += ; 方向,与水平方向的夹角θ为:0tan v v y =θ1. 关于质点的曲线运动,下列说法中不正确的是 ( )A .曲线运动肯定是一种变速运动B .变速运动必定是曲线运动C .曲线运动可以是速率不变的运动D .曲线运动可以是加速度不变的运动2、某人骑自行车以4m/s 的速度向正东方向行驶,天气预报报告当时是正北风,风速也是4m/s ,则骑车人感觉的风速方向和大小( )A.西北风,风速4m/sB. 西北风,风速24 m/sC.东北风,风速4m/sD. 东北风,风速24 m/s3、有一小船正在渡河,离对岸50m 时,已知在下游120m 处有一危险区。
假设河水流速为5s m ,为了使小船不通过危险区而到达对岸,则小船自此时起相对静水速度至少为( )A 、2.08s mB 、1.92s mC 、1.58s mD 、1.42s m4. 在竖直上抛运动中, 当物体到达最高点时 ( )A. 速度为零, 加速度也为零 B . 速度为零, 加速度不为零C. 加速度为零, 有向下的速度D. 有向下的速度和加速度5.如图所示,一架飞机水平地匀速飞行,飞机上每隔1s 释放一个铁球,先后共释放4个,若不计空气阻力,则落地前四个铁球在空中的排列情况是( )6、做平抛运动的物体,每秒的速度增量总是:( )A .大小相等,方向相同B .大小不等,方向不同C .大小相等,方向不同D .大小不等,方向相同7.一小球从某高处以初速度为v 0被水平抛出,落地时与水平地面夹角为45︒,抛出点距地面的高度为 ( ) A .g v 20 B .g v 202 C .g v 220D .条件不足无法确定 8、如图所示,以9.8m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上,可知物体完成这段飞行的时间是( )A .33sB .332s C .3 s D .2s 第二章圆周运动物体做匀速圆周运动时:线速度、向心力、向心加速度的方向时刻变化,但大小不变;速率、角速度、周期、转速不变。
高一物理必修二课后习题答案
高一物理必修二课后习题答案第五章第1节曲线运动1. 答:如图6-12所示,在A、C位置头部的速度与入水时速度v方向相同;在B、D位置头部的速度与入水时速度v方向相反。
2. 答:汽车行驶半周速度方向改变180°。
汽车每行驶10s,速度方向改变30°,速度矢量示意图如图6-13所示。
3. 答:如图6-14所示,AB段是曲线运动、BC段是直线运动、CD段是曲线运动。
第2节质点在平面内的运动1. 解:炮弹在水平方向的分速度是vx=800×cos60°=400m/s;炮弹在竖直方向的分速度是vy=800×sin60°=692m/s。
如图6-15。
2. 解:根据题意,无风时跳伞员着地的速度为v2,风的作用使他获得向东的速度v1,落地速度v为v2、v1的合速度,如图6-15所示,,与竖直方向的夹角为θ,tanθ=0.8,θ=38.7°3. 答:应该偏西一些。
如图6-16所示,因为炮弹有与船相同的由西向东的速度v1,击中目标的速度v是v1与炮弹射出速度v2的合速度,所以炮弹射出速度v2应该偏西一些。
4. 答:如图6-17所示。
第3节抛体运动的规律1. 解:(1)摩托车能越过壕沟。
摩托车做平抛运动,在竖直方向位移为y=1.5m=经历时间在水平方向位移x=vt=40×0.55m=22m>20m所以摩托车能越过壕沟。
一般情况下,摩托车在空中飞行时,总是前轮高于后轮,在着地时,后轮先着地。
(2)摩托车落地时在竖直方向的速度为vy=gt=9.8×0.55m/s=5.39m/s摩托车落地时在水平方向的速度为vx=v=40m/s摩托车落地时的速度摩托车落地时的速度与竖直方向的夹角为θ,tanθ=vx/vy=405.39=7.422. 解:该车已经超速。
零件做平抛运动,在竖直方向位移为y=2.45m =经历时间,在水平方向位移x=vt=13.3m,零件做平抛运动的初速度为:v=x/t=13.3/0.71m/s=18.7m/s=67.4km/h>60km/h所以该车已经超速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理必修2复习 第一章曲线运动 1、 曲线运动中速度的方向不断变化,所以曲线运动必定是一个变速运动。
2、物体做曲线运动的条件:当力F 与速度V 的方向不共线时,速度的方向必定发生变化,物体将做曲线运动。
注意两点:第一,曲线运动中的某段时间内的位移方向与某时刻的速度方向不同。
位移方向是由起始位置指向末位置的有向线段。
速度方向则是沿轨迹上该点的切线方向。
第二,曲线运动中的路程和位移的大小一般不同。
3、 平抛运动:将物体以某一初速度沿水平方向抛出,不考虑空气阻力,物体所做的运动。
平抛运动的规律:(1)水平方向上是个匀速运动(2)竖直方向上是自由落体运动位移公式:t x 0ν= ;221gt y =速度公式:0v v x = ; gt v y = 合速度的大小为:22y x v v v += ; 方向,与水平方向的夹角θ为:0tan v v y =θ1. 关于质点的曲线运动,下列说法中不正确的是 ( )A .曲线运动肯定是一种变速运动B .变速运动必定是曲线运动C .曲线运动可以是速率不变的运动D .曲线运动可以是加速度不变的运动2、某人骑自行车以4m/s 的速度向正东方向行驶,天气预报报告当时是正北风,风速也是4m/s ,则骑车人感觉的风速方向和大小( )A.西北风,风速4m/sB. 西北风,风速24 m/sC.东北风,风速4m/sD. 东北风,风速24 m/s3、有一小船正在渡河,离对岸50m 时,已知在下游120m 处有一危险区。
假设河水流速为5s m ,为了使小船不通过危险区而到达对岸,则小船自此时起相对静水速度至少为( )A 、2.08s mB 、1.92s mC 、1.58s mD 、1.42s m4. 在竖直上抛运动中, 当物体到达最高点时 ( )A. 速度为零, 加速度也为零 B . 速度为零, 加速度不为零C. 加速度为零, 有向下的速度D. 有向下的速度和加速度5.如图所示,一架飞机水平地匀速飞行,飞机上每隔1s 释放一个铁球,先后共释放4个,若不计空气阻力,则落地前四个铁球在空中的排列情况是( )6、做平抛运动的物体,每秒的速度增量总是:( )A .大小相等,方向相同B .大小不等,方向不同C .大小相等,方向不同D .大小不等,方向相同7.一小球从某高处以初速度为v 0被水平抛出,落地时与水平地面夹角为45︒,抛出点距地面的高度为 ( ) A .g v 20 B .gv 202 C .g v 220D .条件不足无法确定 8、如图所示,以9.8m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上,可知物体完成这段飞行的时间是( )A .33sB .332s C .3 s D .2s 第二章圆周运动物体做匀速圆周运动时:线速度、向心力、向心加速度的方向时刻变化,但大小不变;速率、角速度、周期、转速不变。
匀速圆周运动是一种非匀变速运动。
即变加速度的曲线运动 离心现象:向心力突然消失时,它就以这一时刻的线速度沿切线方向飞去;向心力不足时,质点是做半径越来越大的曲线运动,而且离圆心越来越远1、匀速圆周运动属于( )A 、匀速运动B 、匀加速运动C 、加速度不变的曲线运动D 、变加速度的曲线运动2、如图所示,小物体A 与水平圆盘保持相对静止,跟着圆一起做匀速圆周运动,则A 的受力情况是A 、重力、支持力B 、重力、支持力和指向圆心的摩擦力C 、重力、支持力、向心力、摩擦力D 、以上均不正确3、在光滑水平桌面上;用细线系一个小球,球在桌面上做匀速圆周运动,当系球的线突然断掉,关于球的运动,下述说法正确的是A .向圆心运动B .背离圆心沿半径向外运动C .沿圆的切线方向做匀速运动D .做半径逐渐变大的曲线运动4.在一段半径为R 的圆孤形水平弯道上,已知汽车拐弯时的安全速度为gR μ,则弯道路面对汽车轮胎的最大静摩擦力等于车重的( ) 倍A .μB .2μC .μD .3μ5、汽车驶过凸形拱桥顶点时对桥的压力为F 1,汽车静止在桥顶时对桥的压力为F 2,那么F 1与F 2比较( ) A .F 1>F 2 B .F 1<F 2 C .F 1=F 2 D .都有可能6、如图1所示,质量为m 的小球固定在杆的一端,在竖直面内绕杆的另一端做圆周运动,当小球运动到最高点时,瞬时速度Rg v 23=, R 是球心到O 点的距离,则球对杆的作用力是: Amg 21的拉力B mg 21的压力 C mg 23的拉力 D mg 23的压力 第三章万有引力定律和天体运动v R O一、万有引力定律二、万有引力定律的应用1.解题的相关知识: (1)应用万有引力定律解题的知识常集中于两点:一是天体运动的向心力来源于天体之间的万有引力,即222r v m r Mm G ==r T m 224πr m 2ω=;二是地球对物体的万有引力近似等于物体的重力,即G 2RmM =mg 从而得出GM =R 2g 。
(2)圆周运动的有关公式:ω=T π2,v=ωr 。
1、一个物体在地球表面所受重力为G ,则在距地面高度为地球半径2倍时,所受的引力为( )A.G/3B.G/4 C .G/9 D.G/22、当人造卫星进入轨道做匀速圆周运动后,下列叙述中不正确的是( )A.在任何轨道上运动时,地球球心都在卫星的轨道平面内B.卫星运动速度一定不超过7.9 km/sC .卫星内的物体仍受重力作用,并可用弹簧秤直接测出所受重力的大小D.卫星运行时的向心加速度等于卫星轨道所在处的重力加速度3、某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从r 1慢慢变到r 2,用E Kl 、E K2分别表示卫星在这两个轨道上的动能,则A 、r 1<r 2,E K1<E K2B 、r 1>r 2,E K1<E K2C 、r 1<r 2,E k1> E K2D 、r 1>r 2,E K1>E K24、关于同步卫星是指相对于地面不动的人造卫星,有关说法正确的是( )①同步卫星不绕地球运动 ②同步卫星绕地球运动的周期等于地球自转的周期 ③同步卫星只能在赤道的正上方 ④同步卫星可以在地面上任一点的正上方⑤同步卫星离地面的高度一定 ⑥同步卫星离地面的高度可按需要选择不同的数值A .①③⑤B .②④⑥C .①④⑥ D.②③⑤假如一做圆周运动的人造卫星的轨道半径r 增为原来的2倍,则 ( )A .据v =r ω可知,卫星的线速度将变为原来的2倍B .据F =mv 2/r 可知,卫星所受的向心力减为原来的1/2C .据F=GmM/r 2可知,地球提供的向心力减为原来的1/4D .由GmM/r 2=m ω2r 可知,卫星的角速度将变为原来的2/4倍R ,质量为M ,地面附近的重力加速度为g ,万有引力恒量为G 。
那么第一宇宙速度可以表示为:θ F m 1 θ Fm 2 A Rg B 2R M C g R D RGM 第四章功 功率1、如图所示,质量分别为m 1和m 2的两个物体,m 1<m 2,在大小相等方向相同的两个力F 1和F 2作用下沿水平方向移动了相同距离.若F 1做的功为W 1,F 2做的功为W 2,则( )A .W 1>W 2B .W 1<W 2C .W 1=W 2D .无法确定2.在水平粗糙的地面上使一物体由静止开始作匀加速运动,如图示,第一次是拉力,第二次是推力,两种情况下力的作用线与水平方向夹角、力的大小、位移的大小均相同,那么比较两种情况,则( ) A、力F 对物体所做的功相等B 、摩擦力对物体所做的功相等C 、物体的动能变化量相等D 、力F 做功的平均功率相等 3、从空中以40m/s 的初速度平抛一重为10N 的物体。
物体在空中运动3s 落地,不计空气阻力,取g=10m/s 2,则物体落地前瞬间,重力的瞬时功率为 A 、300W B 、400 W C 、500W D 、700W4、汽车在水平的公路上匀速直线运动,行驶速度为18米/秒,其输出功率为36千瓦,则汽车所受到的阻力是( )A .2000NB .3000NC .4000ND .5000N5、几年前,走私活动十分猖獗,犯罪分子利用高速走私船妄图逃避打击,海关针锋相对,装备了先进的高速缉私艇,狠狠打击了违法犯罪活动。
设水的阻力与船的速率平方成正比,欲使船速加倍,发动机的输出功率应变为原来的( ) A.2倍 B.2倍 C.4倍D .8倍动能定理1.物体以120J 的初动能从斜面底端向上运动,当它通过斜面某一点M 时,其动能减少80J ,机械能减少32J ,如果物体能从斜面上返回底端,则物体到达底端的动能为A .20JB .24JC .48JD .88J2、如图所示,物体从A 处开始沿光滑斜面AO 下滑,又在粗糙水平面上滑动,最终停在B 处。
已知A 距水平面OB 的高度为h ,物体的质量为m ,现将物体m 从B 点沿原路送回至AO 的中点C 处,需外力做的功至少应为A .12mghB .mghC .32mghD .2mgh机械能守恒定律1、下面各个实例中,物体机械能守恒的是( )A .物体沿斜面匀速下滑B .物体从高处以0.9g 的加速度竖直下落αα HC .物体沿光滑曲面滑下D .拉着一个物体沿光滑的斜面匀速上升 2、 如图所示,桌面高为h ,质量为m 的小球从离桌面高H 处自由落下.不计空气阻力,假设桌面处的重力势能为零,则小球落到地面前瞬间的机械能为( )A .mghB .mgHC .mg(H+h)D .mg(H 一h)3.如图所示,从H 高处以v 平抛一小球,不计空气阻力,当小球距地面高度为h 时,其动能恰好等于其势能,则A .h =2HB .h <2HC .h >2H D .无法确定 4、如右图所示,小球从高处下落到竖直放置的轻弹簧上,在小球接触弹簧到将弹簧压缩到最短的整个过程中,下列叙述中不正确的是:( )A 、 系统机械能守恒B 、小球动能先增大后减小C 、动能和弹性势能之和总保持不变D 、动能和重力势能之和一直减小 功能原理1、质量为m 的物体,在距地面h 高处以g/3的加速度由静止竖直下落到地面,下列说法中正确的有 ( )A.物体的重力势能减少1/3mgh B .物体的机械能减少2/3mghC .物体的动能增加1/3mghD .重力做功mgh2、光滑水平面上静置一质量为M 的木块,一质量为m 的子弹以水平速度v 1射入木块,以v 2速度穿出,木块速度变为v ,对这个过程,下列说法中正确的是( )A .子弹对木块做的功等于221Mv B .子弹对木块做的功等于子弹克服阻力做的功C .子弹对木块做的功等于木块获得的动能与子弹跟木块间摩擦生热的内能之和D .子弹损失的动能等于木块的动能跟子弹与木块间摩擦转化的内能之和3.某人用手将1Kg 物体由静止向上提起1m ,这时物体的速度为2m/s (g 取10m/s 2),则下列说法正确的是( ) A .手对物体做功12J B .合外力做功2J C .合外力做功12J D .物体克服重力做功10J实验专题处理纸带数据常用的2个推论:a=△s/t 2可以推广到s m -s n =(m-n)at 2; v t/2=s/t1.某同学在做“测定匀变速直线运动的加速度”实验时打出的纸带如图所示,每两点之间还有四点没有画出来,图中上面的数字为相邻两点间的距离,打点计时器的电源频率为50Hz 。