计算方法课件第一章

合集下载

第一章数值计算方法与误差分析PPT课件

第一章数值计算方法与误差分析PPT课件

编辑版pppt
29
0 . 4 9 0 . 4 0 0 8 . 0 0 4 1 0 . 0 2 1 3 1 2 1 9 1 5 0 7 1 1 ( 2 1 ) 0
0 . 484
2 4 2 4
我们不能由此推出x*有两位有效数字,这是因为
x-x*=0.4900-0.484=0.0060>0.005
即可知近似值x*并不具有两位有效数字。
例4 对于绝对值小的 x,可利用泰勒级数
ex–1= x+x2/2+x3/6+…
取前n项来计算。
编辑版pppt
23
(二)要防止大数“吃掉“小数,注意保护重要数据
在数值运算中,参加运算的数有时数量级相差很大,而计算 机位数有限,如不注意运算次序就可能出现大数“吃掉”小数的
现 象,影响计算结果的可靠性。
5 .编制源程序并调试
6 .做出算法的误差分析
编辑版pppt
2
从工程实际中抽象出来的数学问题往往很复杂,典型的有: 1、数据点的插值 2 、曲线拟和 3、复杂函数的微积分运算 4、非线性方程f(x)=0的根的求解
5、当n很大时线性方程组AX=B的求解 6、常微分方程的求解
minf (x) xX
编辑版pppt
3
参考书籍的几种名称: 1、数值分析 2、数值计算原理 3、计算方法 4、算法设计 5、计算机数值计算方法与程序设计
编辑版pppt
4
数值计算中的误差
1、误差的种类和来源
① 模型误差
② 观测误差
③ 截断误差
④ 舍入误差

2、误差的有关概念:

近似值
① 绝对误差: (x)xx
编辑版pppt

计算方法课件1

计算方法课件1
数值分析
理学院 崔丽鸿
教材:西安交通大学出版社 《计算方法》
作者:邓建中
2/47
主要参考书
1.《数值分析基础教程》, 李庆杨, 高等教育出版社, 2019年第1版
3/47
主要参考书
2.《数值方法和MATLAB实现与应用》, (美) Gerald Recktenwald 著 伍卫国 万群 张辉 等译, 机械工业出版社, 2019年第1版
其他各类有关 “数值分析” 和 “计算方法” 的 书
4/47
《计算方法》课程体系
第一章 第二章 第三章 第四章 第五章
数值计算中的误差 插值法 曲线拟合的最小二乘法 数值积分 非线性方程的数值解法
5/47
《计算方法》课程体系
插值法
数值逼近 数据拟合的最小二乘法

数值积分和数值微分*
§1.3 绝对误差和相对误差
一.绝对误差 /* absolute error */
设 x——准确值,x * ——近似值。
称 e(x)x*x 为 x * 的绝对误差(简称误差)
|e(x)| 为 x * 的绝对误差限。
二.相对误差 /* relative error */

e(x) er (x) x
2、(1.000002 )2 1.000004 0 (本应(1.000002)2 1.000004 1.0000040000 04 1.000004 0.0000000000 04 4 10 12)
舍入误差很小,本课程将研究它在运算过程中 是否能有效控制。
20/47
q(x)
上例说明,即使数学上的恒等公式,用计 算机来算,结果也是不一样的。

数值分析与计算方法 第一章 插值法

数值分析与计算方法 第一章 插值法

同 理 : (t) 至 少 有n 个 互 异 零 点;
(t) 至 少 有n 1 个 零 点 ;
(n1) (t ) 至 少 有 一 个 零 点 ; 即 (a ,b),
(n1) (
)
R(n1) n
(
)
K ( x)n1(n1) (
)
R(n1) n
(
)
K ( x) (n
1)!
f (n1) ( ) K ( x) (n 1)! 0
x x0 x1 x2 xn , y f ( x)? y y0 y1 y2 yn
(1)有的函数没有表达式,只是一种表格函数,而我们需要的 函数值可能不在该表格中。
(2)如果函数表达式本身比较复杂,计算量会很大;
对于这两种情况,我们都需要寻找一个计算方便且表达简单
的函数 P x来近似代替 f ( x),求 P x 的方法称为插值法。
Ln1( x)
为此我们考虑对Lagrange插值多项式进行改写; ——由唯一性,仅是形式上的变化
期望:Ln ( x) 的计算只需要对Ln1( x)作一个简单的修正.
考虑 h( x) Ln ( x) Ln1( x) h( x) 是次数 n 的多项式,且有
h( x j ) Ln ( x j ) Ln1( x j ) 0 ,j 0 ,1,2 ,L ,n 1 ;
)
3
)
1 2
(x
(
4
6
6
)( x
)(
4
3
)
3
)
1
(
x
6
)(
x
4
)
2
(
3
6
)(
3
4
)
3 2

计算方法第一章 绪论

计算方法第一章 绪论

知称道,实为Er际近(x)计似算值时x的通相常对取误差,由于精确值 一般x不*
x* x
Er (x)
作为近似值x的相对误差。
x
若能求出一个正数 ,使r 得
E,r (x则) 称r 为近似r
值x的相对误差限。它是无量纲的数,通常用百分
比表示。
2021/6/26
整理课件
15
例:甲用米尺测量10M长的物体,所产生的绝对 误差为2cm,乙用同一米尺测量1M长的物体,所产 生的绝对误差为1cm,他们谁的测量精度好?
用计算机解决科学计算问题的一般过程,可以概括为:
实际问题→数学模型→计算方法→ 程序设计→上机计算→结果分析
整理课件
由实际问题应用有关科学知识和数学理论建立
数学模型这一过程,通常作为应用数学的任务。 而根据数学模型提出求解的计算方法直到编出程 序上机算出结果,进而对计算结果进行分析,这 一过程则是计算数学的任务,也是数值计算方法 的研究对象。
第二,有可靠的理论分析,能任意逼近并达到精度要 求,对近似算法要保证方法的收敛性和数值稳定性,还要对 误差进行分析,这些都建立在相应数学理论基础上。
第三,要有好的计算复杂性(即时间复杂性和空间复杂 性);时间复杂性好是指节省时间,空间复杂性好是指节省 存储量,这也是建立算法要研究的问题,它关系到算法能否 在计算机上实现。
x x * 0.04 0.05 1 101 2
x 又 (0.3289) 1,故02该不等式又可写为
x x * 1 10 23 2
x 故 有3位有效数字,分别是 3,2,8。 x x 由于 中的数字9不是有效数字,故 不是有效数。
思考: 3.1415有几位有效数字?
2021/6/26

西安交通大学《计算方法》课件-第一章

西安交通大学《计算方法》课件-第一章

浮点运算原则
(1)避免产生大结果的运算,尤其是避免小数作为除数 参加运算 (2)避免“大”“小”数相加减 (3)避免相近数相减,防止大量有效数字损失 (4)尽可能简化运算步骤,减少运算次数
第1章 绪论
定义 数据相对小的变化引起解的相对大的变化的问题 称为病态问题,否则称为良态问题。
问题的性态就是指问题的解对原始数据扰动的敏感性
第1章 绪论
浮点数系运算误差
(2)计算结果的尾数多于t位数字
在F (2,3,1,2)中
(0.100 20 ) (0.111 20 ) 0.1101 21 (0.100 22 ) (0.111 21 ) 0.1000111 22
需要对结果进行舍入处理,产生的差称为舍入误差
记为F ( , t , L,U )
l
将计算机中所能表示的全体数的集合称为计算机的浮点数系
浮点数系中的数的个数是有限的,其个数为
2( 1) t 1 (U L 1) 1
第1章 绪论
浮点数系的误差
在计算机的浮点数系中,四则运算是非封闭的 为使经过算术运算产生的结果仍然要用浮点数系中的数 表示,因此必须用一个比较接近的数来代替 因此产生误差 称此误差称为舍入误差
第1章 绪论
第1章 绪论
什么是计算方法
《计算方法》介绍基本的数学问题中的主要数值方法, 介绍方法的思想、结构、条件、对输入数据的要求、生成 数据的意义、应注意的事项等 介绍数值计算中的一些最基本的概念 设计常见应用问题的数值处理方法 对数值方法的数值特性进行研究 分析方法的可靠性 分析方法的效率
第1章 绪论
问题的性态
已知问题f ( x)的输入数据只有一个 ,用x来表示 若有两个输入数据x和~ x , 则可以得到两个不同的结果f ( x)和f ( ~ x)

计算方法第一章绪论(32学时)-2014.2

计算方法第一章绪论(32学时)-2014.2

教材聂玉峰、王振海等《数值方法简明教程》,高等教育出版社,2011作业计算方法作业集(A、B)参考书¾封建湖,车刚明计算方法典型题分析解集(第三版)西北工业大学出版社,2001¾封建湖,聂玉峰,王振海数值分析导教导学导考(第二版)西北工业大学出版社,2006¾车刚明,聂玉峰,封建湖,欧阳洁数值分析典型题解析及自测试题(第二版)西北工业大学出版社,2003西北工业大学理学院欧阳洁2第一章绪论§1 引言§2 误差的度量与传播§3 选用算法时应遵循的原则西北工业大学理学院欧阳洁3§1 引言科学与工程领域中运用计算机求解问题的一般过程:1 实际问题的提出2 建立数学模型3 设计可靠、高效的数值方法4 程序设计5 上机实践计算结果6 数据处理及结果分析西北工业大学理学院欧阳洁4学习算法的意义科学计算(数值模拟)已经被公认为与理论分析、实验分析并列的科学研究三大基本手段之一。

计算方法课程的研究对象具有广泛的适用性,著名流行软件如Maple、Matlab、Mathematica 等已将其绝大多数内容设计成函数,简单调用之后便可以得到运行结果。

但由于实际问题的具体特征、复杂性, 以及算法自身的适用范围决定了应用中必须选择、设计适合于自己特定问题的算法,因而掌握数值方法的思想和内容至关重要。

西北工业大学理学院欧阳洁5鉴于实际问题的复杂性,通常将其具体地分解为一系列子问题进行研究,本课程主要涉及如下几个方面问题的求解算法:¾非线性方程求根¾线性代数方程组求解¾函数插值¾曲线拟合¾数值积分与数值微分¾常微分方程初值问题的数值解法¾矩阵特征值与特征向量计算西北工业大学理学院欧阳洁6§2 误差的度量与传播一误差的来源与分类模型误差:数学模型与实际问题的误差观测误差:观测结果与实际问题的误差截断误差:数学模型的理论解与数值计算问题的精确解之间的误差舍入误差:对超过某有限位数的数据进行舍入所产生的误差西北工业大学理学院欧阳洁75 使用数值稳定性好的公式一个算法,如果初始数据微小的误差仅使最终结果产生微小的误差,或在运算过程中舍入误差在一定条件下能够得到控制,则称该算法(数值)稳定,否则称其为(数值)不稳定.西北工业大学理学院欧阳洁26总结1.数值运算的误差估计2.绝对误差、相对误差与有效数字3.数值运算中应遵循的若干原则西北工业大学理学院欧阳洁30。

计算方法引论-第一章

计算方法引论-第一章
• 基−进制
– β称为基 – 这样表示的数称为β进制数
• 上溢、下溢
计算方法引论( 第三版)
1.3
徐萃薇、孙绳武 高教2007
误差
• 误差
– 准确数x、近似数x*
– 误差e*=x*-x 、误差限ε*≥|x*-x|
– x=x2 65…
近似数
x* 3 3.14 3.141 6
max(0.005 /1.21 0.005 / 3.65, 0.005 / 9.81)
max(0.005 5, 0.000 5) 0.005 5
– 设y = xn, y的相对误差与x的相对误差之间的关
系: dr y | d( ln y) || nd( ln x) | ndr x
计算方法引论( 第三版)
2.4×10-6≈2×10-6
计算方法引论( 第三版)
1.6
徐萃薇、孙绳武 高教2007
相对误差(续)
• 相对误差与有效数字关系
– 设数x*可表成(1.1),

若x*有n位有效数字则有相对误差限
1
21
101n
x * x
1 2
10 pn
,x *
1 10p1
,相除.

若x*相对误差限
* r
1 2(1 1)
dlnf(x)= f′(x)/ f(x)dx= xf′(x)/f(x)dlnx
drf(x)= | x f′(x)/f(x) | drx
计算方法引论( 第三版)
1.10
徐萃薇、孙绳武 高教2007
误差的传播:例
•例
– 设a 1.213.65 9.81,其中每个数据的绝对误差 限为0.005,求a的绝对误差限和相对误差限

人教版数学七年级上册第一章有理数的混合运算课件(共17张)

人教版数学七年级上册第一章有理数的混合运算课件(共17张)

解:原式=
1.计算:
解:原式= =-10-80 =-90
解:原式=
2.计算:
有理数的加减乘除混合运算三步走: 1.看清运算,定运算顺序; 2.根据特点,巧用运算律; 3.选对法则,耐心计算.
(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).
解:(1)原式=2×(-27)-(-12)+15 =-54+12+15 =-27
(2)原式=-8+(-3)×(16+2)-9÷(-2)
=-8+(-3)×18-(-4.5) =-8-54+4.5 =-57.5
计算:
(1)(1)10 2 (2)3 4
(3)取每行数的第10个数,计算这三个数的和. 解:(3)每行数中的第10个数的和是
视察下列各式:
1 21 1
1 2 22 1
1 2 22 23 1
猜想:1 2 22 23 263
若n是正整数,那么 1 2 22 2n
1.计算:
解:原式= -2×9-36 =-18-36 =-54
例2
计算:(3)2
2 3
(
5 9
)
点拨:在运算过程中,巧 用运算律,可简化计算
解法一:
解法二:
解:原式=
9 (
11 9
)
= -11
解:
原式=
9
(
2 3
)
9
(
5 9
)
=-6+(-5)
=-11
讨论交流:你认为哪 种方法更好呢?
例3 视察下面三行数: -2, 4, -8, 16, -32, 64,…;① 0, 6, -6, 18, -30, 66,…;② -1, 2, -4, 8, -16, 32,…. ③

数值计算方法第一章

数值计算方法第一章

数值计算方法第一章(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 绪 论本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题.§ 引 言计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。

由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括(1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法;(3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等从如上内容可以看出,计算方法的显着特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关.计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差.我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断,从而产生截断误差. 如 +++=!21!111e 的计算是无穷过程,当用!1!21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了截断误差e e n -.3当用计算机计算n e 时,因为舍入误差的存在,我们也只能得到n e 的近似值*e ,也就是说最终用*e 近似e ,该近似值既包含有舍入误差,也包含有截断误差.当参与计算的原始数据是从仪器中观测得来时,也不可避免得有观测误差. 由于这些误差的大量存在,我们得到的只能是近似结果,进而对这些结果的“可靠性”进行分析就是必须的,它成为计算方法的第二个显着特点. 可靠性分析包括原问题的适定性和算法的收敛性、稳定性.所谓适定性问题是指解存在、惟一,且解对原始数据具有连续依赖性的问题. 对于非适定问题的求解,通常需要作特殊的预处理,然后才能做数值计算. 在这里,如无特殊说明,都是对适定的问题进行求解.对于给定的算法,若有限步内得不到精确解,则需研究其收敛性. 收敛性是研究当允许计算时间越来越长时,是否能够得到越来越可靠的结果,也就是研究截断误差是否能够趋于零.对于给定的算法,稳定性分析是指随着计算过程的逐步向前推进,研究观测误差、舍入误差对计算结果的影响是否很大.对于同一类模型问题的求解算法可能不止一种,常希望从中选出高效可靠的求解算法. 如我国南宋时期着名的数学家秦九韶就提出求n 次多项式0111a x a x a x a n n n n ++++-- 值的如下快速算法n a s =;k n a t -=;t sx s += ),,2,1(n k =它通过n 次乘法和n 次加法就计算出了任意n 次多项式的值. 再如幂函数64x 可以通过如下快速算法计算出其值x s =;s s s ⋅=;循环6次如上算法仅用了6次乘法运算,就得到运算结果.算法最终需要在计算机上运行相应程序,才能得到结果,这样就要关注算法的时间复杂度(计算机运行程序所需时间的度量)、空间复杂度(程序、数据对存储空间需求的度量)和逻辑复杂度(关联程序的开发周期、可维护性以及可扩展性). 事实上,每一种算法都有自己的局限性和优点,仅仅理论分析是很不够的,大量的实际计算也非常重要,结合理论分析以及相当的数值算例结果才有可能选择出适合自己关心问题的有效求解算法. 也正因如此,只有理论分析结合实际计算才能真正把握准算法.4§ 误差的度量与传播一、误差的度量误差的度量方式有绝对误差、相对误差和有效数字.定义 用*x 作为量x 的近似,则称)(:**x e x x =-为近似值*x 的绝对误差. 由于量x 的真值通常未知,所以绝对误差不能依据定义求得,但根据测量工具或计算情况,可以估计出绝对误差绝对值的一个较小上界ε,即有ε≤-=x x x e **)( 称正数ε为近似值*x 的绝对误差限,简称误差. 这样得到不等式εε+≤≤-**x x x工程中常用ε±=*x x表示近似值*x 的精度或真值x 所在的范围.误差是有量纲的,所以仅误差数值的大小不足以刻划近似的准确程度. 如量m m cm s μ50001230000005.023.15.0123±=±=±= 为此,我们需要引入相对误差定义 用0*≠x 作为量x 的近似,称)(:**x e xx x r =-为近似值*x 的相对误差. 当*x 是x 的较好近似时,也可以用如下公式计算相对误差***)(x x x x e r -=显然,相对误差是一个无量纲量,它不随使用单位变化. 如式中的量s 的近似,无论使用何种单位,它的相对误差都是同一个值.同样地,因为量x 的真值未知,我们需要引入近似值*x 的相对误差限)(*x r ε,它是相对误差绝对值的较小上界. 结合式和,*x 相对误差限可通过绝对误差限除以近似值的绝对值得到,即***)()(x x x r εε= 为给出近似数的一种表示法,使之既能表示其大小,又能体现其精确程度,需引入有效数字以及有效数的概念.定义 设量x 的近似值*x 有如下标准形式 p n m a a a a x 21*.010⨯±=()p m p n m n m m a a a a ----⨯++⨯++⨯+⨯±101010102211 =其中}9,,1,0{}{1 ⊂=p i i a 且01≠a ,m 为近似值的量级. 如果使不等式5n m x x -⨯≤-1021* 成立的最大整数为n ,则称近似值*x 具有n 位有效数字,它们分别是1a 、2a 、… 和 n a . 特别地,如果有p n =,即最后一位数字也是有效数字,则称*x 是有效数.从定义可以看出,近似数是有效数的充分必要条件是末位数字所在位置的单位一半是绝对误差限. 利用该定义也可以证明,对真值进行“四舍五入”得到的是有效数. 对于有效数,有效数字的位数等于从第一位非零数字开始算起,该近似数具有的位数. 注意,不能给有效数的末位之后随意添加零,否则就改变了它的精度.例 设量π=x ,其近似值141.3*1=x ,142.3*2=x ,722*3=x . 试回答这三个近似值分别有几位有效数字,它们是有效数吗 解 这三个近似值的量级1=m ,因为有312*110211021005.000059.0--⨯=⨯=≤=- x x 413*2102110210005.00004.0--⨯=⨯=≤=- x x 571428571428.3*3=x312*310211021005.0001.0--⨯=⨯=≤=- x x 所以*1x 和*3x 都有3位有效数字,但不是有效数. *2x 具有4位有效数字,是有效数.二、误差的传播这里仅介绍初值误差传播,即假设自变量带有误差,函数值的计算不引入新的误差. 对于函数),,,(21n x x x f y =有近似值),,,(**2*1*n x x x f y =,利用在点),,,(**2*1n x x x 处的泰勒公式(Taylor Formula),可以得到)(),,,()(*1**2*1**i i ni n i x x x x x f y y y e -≈-=∑= )(),,,(*1**2*1i ni n i x e x x x f ∑==其中ii x ff ∂∂=:,*i x 是i x 的近似值,)(*i x e 是*i x 的绝对误差),,2,1(n i =. 式表明函数值的绝对误差近似等于自变量绝对误差的线性组合,组合系数为相应的偏导数值.从式也可以推得如下函数值的相对误差传播近似计算公式6)(),,,()(***1**2*1*i r i ni ni r x e y x x x x f y e ∑=≈对于一元函数)(x f y =,从式和可得到如下初值误差传播近似计算公式)()()(***x e x f y e '≈)()()(*****x e yx x f y e r r '≈式表明,当导数值的绝对值很大时,即使自变量的绝对误差比较小,函数值的绝对误差也可能很大.例 试建立函数n n x x x x x x f y +++== 2121),,,(的绝对误差(限)、相对误差的近似传播公式,以及{}ni i x 1*0=>时的相对误差限传播公式.解 由公式和可分别推得和的绝对误差、相对误差传播公式如下∑∑==≈ni i ini ni x e x e x x x f y e 1**1**2*1*)()(),,,()(=∑∑==≈ni i r i i r i ni ni r x e yx x e y x x x x f y e 1******1**2*1*)()(),,,()(=进而有∑∑∑===≤≤≈ni in i in i ix x e x e y e 1*1*1**)()()()(ε于是有和的绝对误差限近似传播公式 ∑=≈ni i x y 1**)()(εε当{}ni i x 1*0=>时,由式推得相对误差限的近似传播公式)(max )(max )(max )()()(*11***11***11****1**i r ni ni i ir n i ni i i r n i ni i r i ni ir x yx x y x x x y x yxy εεεεεε≤≤=≤≤=≤≤====≤=≈∑∑∑∑例 使用足够长且最小刻度为1mm 的尺子,量得某桌面长的近似值3.1304*=a mm ,宽的近似值8.704*=b mm (数据的最后一位均为估计值). 试求桌子面积近似值的绝对误差限和相对误差限.解 长和宽的近似值的最后一位都是估计位,尺子的最小刻度是毫米,故有误差限5.0)(*=a εmm ,5.0)(*=b εmm面积ab S =,由式得到近似值***b a S =的绝对误差近似为)()()(*****b e a a e b S e +≈7进而有绝对误差限55.10045.03.13045.08.704)()()(*****=⨯+⨯=+≈b a a b S εεε mm 2 相对误差限 %11.00011.08.7043.130455.1004)()(***=≈⨯=≈S S S r εε§ 数值实验与算法性能比较本节通过几个简单算例说明解决同一个问题可以有不同的算法,但算法的性能并不完全相同,他们各自有自己的适用范围,并进而指出算法设计时应该注意的事项.算例 表达式)1(1111+=+-x x x x ,在计算过程中保留7位有效数字,研究对不同的x ,两种计算公式的计算精度的差异.说明1:Matlab 软件采用IEEE 规定的双精度浮点系统,即64位浮点系统,其中尾数占52位,阶码占10位,尾数以及阶码的符号各占1位. 机器数的相对误差限(机器精度)eps=2-52≈×10-16,能够表示的数的绝对值在区间×10-308,×10308)内,该区间内的数能够近似表达,但有舍入误差,能够保留至少15位有效数字. 其原理可参阅参考文献[2, 4].分析算法1: 111)(1+-=x x x y 和算法2: )1(1)(2+=x x x y 的误差时,精确解用双精度的计算结果代替. 我们选取点集301}{=i i π中的点作为x ,比较两种方法误差的差异.从图可以看出,当x 不是很大时,两种算法的精度相当,但当x 很大时算法2的精度明显高于算法1. 这是因为,当x 很大时,x 1和11+x 是相近数,用算法1进行计算时出现相近数相减,相同的有效数字相减后变成零,于是有效数字位数急剧减少,自然相对误差增大. 这一事实也可以从误差传播公式分析出. 鉴于此,算法设计时,应该避免相近数相减.在图中我们给出了当x 接近1-时,两种算法的精度比较,其中变量x 依次取为{}3011=--i i π. 从图中可以看出两种方法的相对误差基本上都为710-,因而二者的精度相当.8图 算例中两种算法的相对误差图(+∞→x )图 算例中两种算法的精度比较)1(-→x算例 试用不同位数的浮点数系统求解如下线性方程组⎩⎨⎧=+=+2321200001.02121x x x x 说明2:浮点数系统中的加减法在运算时,首先按较大的阶对齐,其次对尾数实施相应的加减法运算,最后规范化存入计算机.算法1 首先用第一个方程乘以适当的系数加至第二个方程,使得第二个方程的1x 的系数为零,这时可解出2x ;其次将2x 带入第一个方程,进而求得1x (在第三章中称该方法为高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法1a 和算法1b .9算法 2 首先交换两个方程的位置,其次按算法1计算未知数 (第三章中称其为选主元的高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法2a 和算法2b .方程组的精确解为...25000187.01=x ,...49999874.02=x ,用不同的算法计算出的结果见表.对于算例,表中的数据表明,当用4位尾数计算时,算法1给出错误的结果,算法2则给出解很好的近似. 这是因为在实现算法1时,需要给第一个方程乘以00001.0/2-加至第二个方程,从而削去第二个方程中1x 的系数,但在计算2x 的系数时需做如下运算661610000003.0104.0103.0104.03200001.02⨯⨯⨯⨯=+⨯+=-+--对上式用4位尾数进行计算,其结果为6104.0⨯-. 因为舍入误差,给相对较大的数加以相对较小的数时,出现大数“吃掉”小数的现象. 计算右端项时,需做如下运算661610000002.0102.0102.0102.02100001.02⨯⨯⨯⨯=+⨯+=-+--同样出现了大数吃小数现象,其结果为6102.0⨯-. 这样,得到的变形方程组⎩⎨⎧⨯-=⨯-⨯=⨯+⨯62612114102.0104.0101.0102.0101.0x x x 中没有原方程组中第二个方程的信息,因而其解远偏离于原方程组的解. 该算法中之所以出现较大数的原因是因为运算00001.0/2-,因而算法设计中尽可能避免用绝对值较大的数除以绝对值较小的数. 其实当分子的量级远远大于分母的量级时,除法运算还会导致溢出,计算机终止运行.虽从单纯的一步计算来看,大数吃掉小数,只是精度有所损失,但多次的大数吃小数,累计起来可能带来巨大的误差,甚至导致错误. 例如在算法1a 中出现了两次大数吃小数现象,带来严重的后果. 因而尽可能避免大数吃小数的出现在算法设计中也是非常必要的.10当用较多的尾数位数进行计算,舍入误差减小,算法1和2的结果都有所改善,算法1的改进幅度更大些.算例 计算积分⎰+=1055dx x x I n 有递推公式),2,1(511 =-=-n I nI n n ,已知56ln 0=I . 采用IEEE 双精度浮点数,分别用如下两种算法计算30I 的近似值.算法1 取0I 的近似值为6793950.18232155*0=I ,按递推公式*1*51--=n n I nI 计算*30I算法2 因为)139(5156)139(611039103939+⨯=<<=+⨯⎰⎰dx x I dx x ,取39I 的近似值为3333330.004583332001240121*39≈⎪⎭⎫ ⎝⎛+=I ,按递推公式⎪⎭⎫ ⎝⎛-=-**1151n n I n I 计算*30I算法1和算法2 的计算结果见表. 误差绝对值的对数图见图.图 算例用不同算法计算结果的误差绝对值的对数图 从表中的计算结果可以看出,算法1随着计算过程的推进,绝对误差几乎不断地以5的倍数增长,即有0*02*221*1*555I I I I I I I I n n n n n n n -≈≈-≈-≈-----成立. 对于逐步向前推进的算法,若随着过程的进行,相对误差在不断增长,导致产生不可靠的结果,这种算法称之为数值不稳定的算法. 对于算法1绝对误差按5的幂次增长,但真值的绝对值却在不断变小且小于1,相对误差增长的速度快于5的幂次,导致产生错误的结果,因而算法1数值不稳定,不能使用. 而算法2随着计算过程的推进,绝对误差几乎不断地缩小为上一步的1/5,即有m m n m n n n n n n n I I I I I I I I 5/5/5/*22*21*1*++++++-≈≈-≈-≈-成立. 绝对误差不断变小,真值的绝对值随着过程向前推进却在变大,这样相对误差也越来越小,这样的方法称之为数值稳定的算法. 算法1和算法2的误差对数示意图见图. 这个算例告诉我们应该选用数值稳定的算法.知识结构图⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧算法设计要点数值方法的稳定性数值方法的收敛性算法多元函数一元函数传播有效数字相对误差(限)绝对误差(限)度量截断误差舍入误差误差的产生误差误差与算法 习题一1 已知有效数105.3*1-=x ,4*210125.0⨯=x ,010.0*3=x . 试给出各个近似值的绝对误差限和相对误差限,并指出它们各有几位有效数字.2 证明当近似值*x 是x 的较好近似时,计算相对误差的计算公式x x x -*和**x x x -相差一个和2*⎪⎪⎭⎫ ⎝⎛-x x x 同阶的无穷小量.3 设x 的近似值*x 具有如式的表示形式,试证明 1) 若*x 具有n 位有效数字,则相对误差n r a x e -⨯≤11*1021)(; 2) 若相对误差n r a x e -⨯+≤11*10)1(21)(,则*x 至少具有n 位有效数字. 4 试建立二元算术运算的绝对误差限传播近似计算公式.5 试建立如下表达式的相对误差限近似传播公式,并针对第1题中数据,求下列各近似值的相对误差限.1) *3*2*1*1x x x y +=; 2) 3*2*2x y =; 3) *3*2*3/x x y = 6 若例题中使用的尺子长度是80mm ,最小刻度为1mm ,量得某桌面长的近似值3.1304*=a mm ,宽的近似值8.704*=b mm . 试估计桌子长度、宽度的绝对误差限,并求用该近似数据计算出的桌子面积的绝对误差限和相对误差限. 7 改变如下计算公式,使其计算结果更为精确. 1) 0,cos 1≠-x xx 且1<<x 2) 1,1ln )1ln()1(ln 1>>--++=⎰+N N N N N xdx N N3) 1,133>>-+x x x8 (数值试验)试通过分析和数值试验两种手段,比较如下三种计算1-e 近似值算法的可靠性.算法1 ∑=--≈m n nn e 01!)1(; 算法2 101!1-=-⎪⎭⎫ ⎝⎛≈∑m n n e ; 算法3 101)!(1-=-⎪⎪⎭⎫ ⎝⎛-≈∑m n n m e ;9 (数值试验)设某应用问题归结为如下递推计算公式72.280=y ,251-=-n n y y , ,2,1=n 在计算时2取为具有5位有效数字的有效数*c . 试分析近似计算公式**1*5c y y n n -=-的绝对误差传播以及相对误差传播情况,并通过数值实验验证 (准确值可以用IEEE 双精度浮点运算结果代替),该算法可靠可用吗。

人教版六年级上册数学课件 第一章 1.分数乘整数 课件

人教版六年级上册数学课件  第一章 1.分数乘整数   课件

做一做
3 1、一袋面包重 kg 10 3 10
3
9 10
想:
3 3 3 9 3 10 10 10
(kg)
做一做
2计算下列各题。
2 4 15
5 8 12
3 2 4
算式:
12 3
想:求3个12L,就是求12L的(3倍)是多少。
根据什么列式呢?
想:求12 L的一半
2 2 3 6 2 3 9 9 9 3
分数乘整数,用分子乘整数 的积作分子,分母不变
2 2 3 2 3 9 9 3 3
能约分的可以先约分,再计算,结果相同
1
分数乘整数的计算法则
①分数乘整数,用分数的分子乘整数 的积作分子,分母不变。 ②计算时能约分的可以先约分,再计 算出结果。
根据乘法的意义怎样列式呢?
2 ×3 15
小新、爸爸、妈妈一起吃一个蛋糕,每人吃
2 9
个 ,3人一共吃多少个?

?
?个
2 2 2 6 2 (个) 9 9 9 9 3
2 3个 9 相加,用乘法 2
表示就是 2 或者 3
9
9
3

2 2 2 2 2 2 2 2 3 6 2 3 9 9 9 9 9 9 9 3
3 一袋面粉重3kg。已经吃了它的 ,吃 10 了多少千克?

今天我们学习了什么内容? 分数乘以整数、一个数乘分数的 意义是什么?
分数乘以整数的计算方法是什么?
计算时应注意什么?
课堂作业:
练习一的1~3题。
• • • • • • • • • • • • • • • • • • • •
1、想要体面生活,又觉得打拼辛苦;想要健康身体,又无法坚持运动。人最失败的,莫过于对自己不负责任,连答应自己的事都办不到,又何必抱怨这个世界都和你作对?人生的道理很简单,你想要什么,就去付出足够的努力。 2、时间是最公平的,活一天就拥有24小时,差别只是珍惜。你若不相信努力和时光,时光一定第一个辜负你。有梦想就立刻行动,因为现在过的每一天,都是余生中最年轻的一天。 3、无论正在经历什么,都请不要轻言放弃,因为从来没有一种坚持会被辜负。谁的人生不是荆棘前行,生活从来不会一蹴而就,也不会永远安稳,只要努力,就能做独一无二平凡可贵的自己。 4、努力本就是年轻人应有的状态,是件充实且美好的事,可一旦有了表演的成分,就会显得廉价,努力,不该是为了朋友圈多获得几个赞,不该是每次长篇赘述后的自我感动,它是一件平凡而自然而然的事,最佳的努力不过是:但行好事,莫问前程。愿努力,成就更好的你! 5、付出努力却没能实现的梦想,爱了很久却没能在一起的人,活得用力却平淡寂寞的青春,遗憾是每一次小的挫折,它磨去最初柔软的心智、让我们懂得累积时间的力量;那些孤独沉寂的时光,让我们学会守候内心的平和与坚定。那些脆弱的不完美,都会在努力和坚持下,改变模样。 6、人生中总会有一段艰难的路,需要自己独自走完,没人帮助,没人陪伴,不必畏惧,昂头走过去就是了,经历所有的挫折与磨难,你会发现,自己远比想象中要强大得多。多走弯路,才会找到捷径,经历也是人生,修炼一颗强大的内心,做更好的自己! 7、“一定要成功”这种内在的推动力是我们生命中最神奇最有趣的东西。一个人要做成大事,绝不能缺少这种力量,因为这种力量能够驱动人不停地提高自己的能力。一个人只有先在心里肯定自己,相信自己,才能成就自己! 8、人生的旅途中,最清晰的脚印,往往印在最泥泞的路上,所以,别畏惧暂时的困顿,即使无人鼓掌,也要全情投入,优雅坚持。真正改变命运的,并不是等来的机遇,而是我们的态度。 9、这世上没有所谓的天才,也没有不劳而获的回报,你所看到的每个光鲜人物,其背后都付出了令人震惊的努力。请相信,你的潜力还远远没有爆发出来,不要给自己的人生设限,你自以为的极限,只是别人的起点。写给渴望突破瓶颈、实现快速跨越的你。 10、生活中,有人给予帮助,那是幸运,没人给予帮助,那是命运。我们要学会在幸运青睐自己的时候学会感恩,在命运磨练自己的时候学会坚韧。这既是对自己的尊重,也是对自己的负责。 11、失败不可怕,可怕的是从来没有努力过,还怡然自得地安慰自己,连一点点的懊悔都被麻木所掩盖下去。不能怕,没什么比自己背叛自己更可怕。 12、跌倒了,一定要爬起来。不爬起来,别人会看不起你,你自己也会失去机会。在人前微笑,在人后落泪,可这是每个人都要学会的成长。 13、要相信,这个世界上永远能够依靠的只有你自己。所以,管别人怎么看,坚持自己的坚持,直到坚持不下去为止。 14、也许你想要的未来在别人眼里不值一提,也许你已经很努力了可还是有人不满意,也许你的理想离你的距离从来没有拉近过......但请你继续向前走,因为别人看不到你的努力,你却始终看得见自己。 15、所有的辉煌和伟大,一定伴随着挫折和跌倒;所有的风光背后,一定都是一串串揉和着泪水和汗水的脚印。 16、成功的反义词不是失败,而是从未行动。有一天你总会明白,遗憾比失败更让你难以面对。 17、没有一件事情可以一下子把你打垮,也不会有一件事情可以让你一步登天,慢慢走,慢慢看,生命是一个慢慢累积的过程。 18、努力也许不等于成功,可是那段追逐梦想的努力,会让你找到一个更好的自己,一个沉默努力充实安静的自己。 19、你相信梦想,梦想才会相信你。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。 20、生活不会按你想要的方式进行,它会给你一段时间,让你孤独、迷茫又沉默忧郁。但如果靠这段时间跟自己独处,多看一本书,去做可以做的事,放下过去的人,等你度过低潮,那些独处的时光必定能照亮你的路,也是这些不堪陪你成熟。所以,现在没那么糟,看似生活对你的亏欠,其 实都是祝愿。

计算方法-第一章

计算方法-第一章

三、有效数字及其位数
若近似值 x*某位数数值的半个单位是其绝对误差 限, 而从该位数字到x*的最左边的非零数值数位止, 共 有n位数, 则我们称这个近似值 x*具有n位有效数字. 例如, =3.141592· · · , x*= 3.14的绝对误差 |e(x*)|= 0.00159· · · 0.011/2, 即“4”所在的百分位的半个单位 0.011/2 是x*的绝对误差限, 故x*的最左边的非零位 数(个位)“3”到百分位“4”共有三位, 所以x* = 3.14具 有3位有效数字. 有效数字位数越多, 近似值的绝对误差和相对误 差就相对越小, 反之亦然.
§1 误差的来源
实际 问题 建立数 学模型 确定计 算方法 编程 上机
由抽象简 化产生的 模型误差 及参数的 观测误差
由计算方 法本身产 生的截断 误差或称 方法误差
计算过 程中产 生的舍 入误差
例如用级数
1 3 1 5 1 7 sin x x x x x 3! 5! 7! 的前三项计算 sinx 的近似值, 即取 1 3 1 5 sin x S5 ( x ) x x x 3! 5! 则截断误差为: 1 7 1 9 R( x ) sin x S5 ( x ) x x 7! 9! 由于计算机的字长有限, 用0.166667近似表示1/3!, 就会产生舍入误差.
加, 减法相关的误差公式:
设 f (x1, x2)= x1±x2 .
e( x1 x2 ) e( x1 ) e ( x2 ) 1 er ( x1 x2 ) [ x e ( x ) x e ( x )] 1 r 1 2 r 2 x1 x2

e( x*) x x * 通常将 er* ( x*) x* x* 作为近似值 x*的相对误差. 满足不等式 e( x*) x x * | er ( x*) || || | r x* x* 的正数r*称为近似值 x*的相对误差限. 例如: x1=100±2的近似值 x1*=100的相对误差为 e ( x ) 2 1 | er ( x1 ) || | 2% x1 100 而 x2=10±1的近似值 x2*=10的相对误差为 e ( x ) 1 2 | er ( x2 ) || | 10% x2 10 因此, 从相对误差来讲近似值x1*比x2*的精度要好.

计算方法 第一章 误差

计算方法 第一章  误差

五、误差的传播与估计
1.误差估计的一般公式:(略) 2.误差在算术运算中的传播:大小相近的同号
数相减、乘数的绝对值很大以及除数接近于0 等,在数值计算中应设法避免。 3.前例的误差分析:从相对误差来看,前两种 算法比后两种大许多。
六、算法的数值稳定性
▪ 定义:凡一种算法的计算结果受舍入误差的 影响小者称它为数值稳定的算法。
y=1000的相对误差限分别为
r
(
x)
Байду номын сангаас
1 10
0.1,
r
(
y)
5 1000
0.005
r (x) r (y)
故y的精度比x高得多。
四、有效数字
★定义:若近似值x 的绝对误差限是某一位上 的半个单位,且该位直到 x的第一位非零数 字一共有n位,则称近似值 x有n位有效数字, 或说 精确x到该位。
※用四舍五入法得到的近似数都是准确到末位 的有效数字。
第一章 误差
一、误差的种类及其来源 二、绝对误差和绝对误差限 三、相对误差和相对误差限 四、有效数字 五、误差的传播与估计 六、算法的数值稳定性
一、误差的种类及其来源
1.描述误差:也称环境误差或模型误差 将复杂的物理现象抽象、归结为数学
模型,往往只得忽略一些次要的因素,从 而造成误差。 2.观测误差:也称初值误差
实际使用的初始数据往往都是通过人 们实际观察测量得来的,这些测得的数据 都只能是近似的,称为参数误差。
3.截断误差:
计算时只能完成有限次运算,需要对一些 无穷计算过程(如微分、积分、无穷级数求 和等)进行截断,即仅保留无穷过程的前段 有限序列而舍弃它的后段。
4.舍入误差:四舍五入所造成的误差。 ※前两种为非过失误差,无法避免;后两种为

最新人教版六年级上册数学第一章《分数乘法》精品教学课件及课后练习讲解(208页)

最新人教版六年级上册数学第一章《分数乘法》精品教学课件及课后练习讲解(208页)

2000×
500

1
= 500(只)
答:我国约有500只。
儿童的负重最好不要超过体重的 。如果长期背负过 重物体,会导致腰痛及背痛,严重的甚至会妨碍骨骼成 长。王明的书包超重吗?为什么?
30× = 4.5(kg) 4.5kg<5kg
答:王明的书包超重了。
体重30kg 书包重5kg 王明
已知a和b都是不为0的整数,如果
答: 这个人身高 米。
课堂小结
这节课你们都学会了哪些知识?
分数乘法的简便算法 分数乘分数在计算过程中,也可以先约分再相乘, 这样可以使计算简便。 约分后的结果要写在整数的上面、下面,还是分子与 分子相乘,分母与分母相乘。
人教版 数学 六年级 上册
1 分数乘法
练习一
复习旧知 课堂小结
巩固练习 课后作业
3
分数乘整数,用分数的分子和整数 相乘的积作分子,分母不变。
能约分要先 约分再计算
小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人
一共吃多少个?
1
×3 =
= (个) 3
答:3人一共吃 个。
课堂练习
一袋面包重 kg。
×3 =
= (kg)
3袋重?kg
答:3袋面包重 kg。
改写算式
++ +
=
×4
=3
分数乘小数
情境导入
探究新知
课堂练习
课堂小结
课后作业
情境导入
× = =
计算下面各题
×2
1 = ×2
25 =
×
1
1

35
=
松鼠的尾巴长度约占身体
我身体长2.1dm

计算方法_第一章_绪论

计算方法_第一章_绪论

第一章绪论1.1 "数值分析"研究对象与特点"数值分析"是计算数学的一个主要部分.而计算数学是数学科学的一个分支,它研究用计算机求解数学问题的数值计算方法及其软件实现.计算数学几乎与数学科学的一切分支有联系,它利用数学领域的成果发展了新的更有效的算法及其理论,反过来很多数学分支都需要探讨和研究适用于计算机的数值方法.因此,"数值分析"内容十分广泛.但本书作为"数值分析"基础,只介绍科学与工程计算中最常用的基本数值方法,包括线性方程组与非线性方程求根、插值与最小二乘拟合、数值积分与常微分方程数值解法等.这些都是计算数学中最基础的内容.近几十年来由于计算机的发展及其在各技术科学领域的应用推广与深化,新的计算性学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算经济学等等,不论其背景与含义如何,要用计算机进行科学计算都必须建立相应的数学模型,并研究其适合于计算机编程的计算方法.因此,计算数学是各种计算性科学的联系纽带和共性基础,是一门兼有基础性、应用性和边缘性的数学学科.计算数学作为数学科学的一个分支,当然具有数学科学的抽象性与严密科学性的特点,但它又具有广泛的应用性和边缘性特点.现代科学发展依赖于理论研究、科学实验与科学计算三种主要手段,它们相辅相成,互相独立,可以互相补充又都不可缺少,作为三种科学研究手段之一的科学计算是一门工具性、方法性、边缘性的新学科,发展迅速,它的物质基础是计算机(包括其软硬件系统),其理论基础主要是计算数学.计算数学与计算工具发展密切相关,在计算机出现以前,数值计算方法只能计算规模小的问题,并且也没形成单独的学科,只有在计算机出现以后,数值计算才得以迅速发展并成为数学科学中一个独立学科--计算数学.当代计算能力的大幅度提高既来自计算机的进步,也来自计算方法的进步,计算机与计算方法的发展是相辅相成、互相促进的.计算方法的发展启发了新的计算机体系结构,而计算机的更新换代也对计算方法提出了新的标准和要求.例如为在计算机上求解大规模的计算问题、提高计算效率,诞生并发展了并行计算机.自计算机诞生以来,经典的计算方法业已经历了一个重新评价、筛选、改造和创新的过程,与此同时,涌现了许多新概念、新课题和能充分发挥计算机潜力、有更大解题能力的新方法,这就构成了现代意义下的计算数学.这也是数值分析的研究对象与特点.概括地说,数值分析是研究适合于在计算机上使用的实际可行、理论可靠、计算复杂性好的数值计算方法.具体说就是:第一,面向计算机,要根据计算机特点提供实际可行的算法,即算法只能由计算机可执行的加减乘除四则运算和各种逻辑运算组成.第二,要有可靠的理论分析,数值分析中的算法理论主要是连续系统的离散化及离散型方程数值求解.有关基本概念包括误差、稳定性、收敛性、计算量、存储量等,这些概念是刻画计算方法的可靠性、准确性、效率以及使用的方便性.第三,要有良好的复杂性及数值试验,计算复杂性是算法好坏的标志,它包括时间复杂性(指计算时间多少)和空间复杂性(指占用存储单元多少).对很多数值问题使用不同算法,其计算复杂性将会大不一样,例如对20阶的线性方程组若用代数中的Cramer法则作为算法求解,其乘除法运算次数需要,若用每秒运算1亿次的计算机计算也要30万年,这是无法实现的,而用"数值分析"中介绍的Gauss消去法求解,其乘除法运算次数只需3 060次,这说明选择算法的重要性.当然有很多数值方法不可能事先知道其计算量,故对所有数值方法除理论分析外,还必须通过数值试验检验其计算复杂性.本课程虽然只着重介绍数值方法及其理论,一般不涉及具体的算法设计及编程技巧,但作为基本要求仍希望读者能适当做一些计算机上的数值试验,它对加深算法的理解是很有好处的.讲解:(1)计算数学是研究用计算机求解数学问题的数值计算方法及其软件实现,"数值分析"是计算数学的主要部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 In I n 1 n ( n 10,9, ,2,1)
计算结果相当好,见P5表1-2 问题:两个递推公式都对,为何会出现上面这两种截然 不同的现象?
误差分析
例5中对于算法一中的迭代公式进行稳定性分析
I n 1 nI n1 (n 1, 2, , 9) 记 I ( n) 的误差为 n I ( n) I n
则迭代格式
I n 1 nI n1
计算得 I1 0.3679,, I 8 0.7280, I 9 7.552
In
1 ( n 1)e
1 1 n x e 0 x e dx
1 1 1 1 n I 8 0.7280, 0 x n edx e 0 x dx I n e
其解析解(精确解)为 y( x ) e
x2
•为什么要求数值解?

x
0
e dt
t2
而实际中只需知道 y(1), y(1.5) 等近似值。这些近似值 就是数值解。
•如何构造方法(主要思想) 1. 2. 3. 4. 迭代法 以直线代替曲线(非线性问题线性化) 化整为零(离散化) 外推法(加速)
•构造什么样的方法 实用的好的算法有三个标准: 快 ——— 计算步骤少,收敛速度快 准 ——— 数值稳定性好,计算结果可靠性高 省 ——— 节省计算机内存(大型稀疏矩阵问题)
算法的稳定性会是一个非常重要的话题。 n n 0 ( 1) 误差没有增大,算法稳定
n!
稳定性的定义
若一个算法的结果受初始误差影响较小或运算过 • 算法一是数值不稳定的 程中舍入误差不增长,则称此算法为数值稳定的。否 则,是不稳定的。 • 算法二是数值稳定的 具体图示如下 准确初值 准确解 数值稳定性指的是方法,与问题无关; 稳定 近似初值 近似解 数值不稳定的算法是不能用的; 不稳定 不能说方法正确,程序正确,结果就正确。
注:求和时从小到大相加,可使和的误差减小。
例:按从小到大、以及从大到小的顺序分别计算 1 + 2 + 3 + … + 40 + 109
(2) 防止相近的数相减 f ( x h) f ( x h) 例 利用f ( x ) , 求f ( x ) 2h 处的导数值。
解 f ( x )
m
易知
1 x x 10m n. 2
*
定义 设x*为x的近似值, * 0.a1a2 10m a1 0,若 x
1 x x 10m n 且 n是满足此不等式的最大正整数, 2
*
则称 x*具有 n 位有效数字。
结论:1、用四舍五入得到的近似数从最后一位到前面第一位非零 数字为止的所有数字都是有效数字。
1. 快
例1 多项式求值的Horner算法(秦九韶算法P7)
Pn ( x ) an x n an1 x n1 a1 x a0
给定x的值,计算 Pn ( x ) 的值。 算法一 按自然顺序计算
n( n 1) 乘法次数= n ( n 1) 1 2
注:0.2300有4位有效数字,而0.0023只有2位有效。12300 如果写成0.123105,则表示只有3位有效数字。 数字末尾的0不可随意省去!
举例分析:
例 作为0.0509966……的近似值,下列各数有几位 有效数字? 0.051 2位 0.0509 2位 0.05100 4位 0.05099
2、若x*具有n位有效数字,则 x - x*
897932 ; * 3.1415 例 3.1415926535 问: * 有几位有效数字?请证明你的结论。
1 10m n. (绝对误差限) 2
证明
π* 0 .31415 101 , an d |π * π| 0 .5 10 3 0 .5 101 4 * 有 4 位有效数字,精确到小数点后第 3 位
算机,要连续工作30多万年才可完成;而用Gauss消去法,
乘除次数为 n3 / 3 n2 n / 3 ,只需 3 105 秒.
例3 计算积分的梯形公式与Simpson公式(以后讲);
非线性方程求根,Newton法比二分法快。
2. 准
例4 求根 x 56 x 1 0,假设计算机有尾数为5位,
建立模型时产生 本课不讨论
求解模型时产生
本课主要讨论


1.模型误差
2.观测误差 3.方法误差或 截断误差
收敛性
涉及
4.舍入误差
稳定性
涉及
二、基本概念
误 差
假设x为准确值,x*为近似值 绝对误差 绝对误差限 相对误差 相对误差限
e x x*
:| e | 的一个上界, | e |
e e * er * er x x
r
:| e |的一个上界,| er | r
r
有效数字
用科学计数法,记 x 0.a1a2 10 (其中 a1 0 )。则按 四舍五入得 0.a1a2 an 10m , 0 an1 4 * x 0.a1a2 an 10 n 10m ,5 an1 9
x1 b b 2 4ac 109 , 2a x2 b b 2 4ac 0 2a
b sign(b) b 2 4ac 109 算法2:先解出 x1 2a c c 109 x2 9 1 再利用 x1 x2 a a x1 10
~ I 9 7.552
1 n1
What happened ?!
1 1 I8 9e 9
1 1 I9 10e 10
I8 , I9严重失真.
不稳定的算法,结果不可靠。
解法二

易知
I10 0
1 0 I ( n) 0 n1
将迭代格式 I n 1 nI n1 变形成如下格式
b b 2 4ac x 2a
在计算机内,109存为0.11010,1存为0.1101。做加法时 两加数的指数先向大指数对齐,再将浮点部分相加。即1 的指数部分须变为1010,则:1 = 0.0000000001 1010, 取单精度时就成为: 109+1=0.100000001010+0.00000000 1010=0.10000000 1010 大数吃小数

()
n I (n) I n (1 nI (n 1)) (1 nI n1 ) n( I (n 1) I n1 ) n n1 n[( n 1)] n 2 (1) n! 0
n
误差逐渐增大,(*)式不稳定
(3) 防止绝对值很小的数做分母
t 1.01 /x, 取 x 105 , 则 t 1.01/x 1.01105 例 x 1.01105是近似值, 则 t 1.01/x 105
t t 1000
3 、省
§2 误差的来源和基本概念
一、误差的来源
3位
三、有效数字与误差限的关系
1、有效数字与绝对误差限的关系 设 x 的近似值 x*为: x
在4位机上仍取h 0.0001, 算得有f (2) 0.35356.
几种经验性避免方法:
xε x ε ; xε x
ε ln x ε ln x ln 1 ; x
2
Байду номын сангаас
x 当 | x | << 1 时: 1 cos x 2 sin ; 2 1 2 1 x e 1 x 1 x x ... 6 2
嵌套算法(Hornor,秦九韶)
加法次数= n
算法二
Pn ( x ) (((an x an1 ) x an 2 ) x a1 ) x a0
乘法次数=加法次数= n
例2 用Cramer法则来求解一个n阶线性方程组,共需要
n!(n 1) n 次乘除法。
2
若要求解一个20阶方程组,用每秒一亿次乘除法的电子计
•基本的数学问题?
1.大型线性代数方程组Ax=b求解; 2.矩阵A的特征值和特征向量计算; 3.非线性方程 f ( x ) 0 的求解(求根); b 4.积分 f ( x ) dx 计算; a 5.常微分方程初值问题求解; 6.其它。

y 1 2 xy 例如 常微分方程的初值问题 y(0) 0

第一章 绪 论

第二章
非线性方程求解
第三章 线性方程组求解 第四章 插 值 法
第五章 第六章 第七章 曲线拟合和函数逼近 数值积分和数值微分 常微分方程数值解法
第一章
§1
绪论
计算方法的研究对象和特点
§2
§3
误差及其基本概念
数值计算的原则
§1 计算方法的研究对象和特点
计算方法的研究内容:构造算法(数学问题数值解的 计算方法)
x 在x 2
xh xh 2h
2 h 2h f ( 2 ) 2h
在4位机上, h 0.0001, 取
1.4142 1.4142 f (2) 0 0.0002 1 精确值 f (2) 0.353553 2 2
解决办法: f ( 2)
2h 2h 2h ( 2 h 2 h )2h 2h
同样对于算法二中的迭代公式进行稳定性分析
1 In I n 1 ( n 10,9, ,2,1) n I ( n) 的误差为 n I ( n) I n 记 1 (1 I ( n)) 1 (1 I ) 则 n1 I ( n 1) I n1 n n n I ( n) I n n 在我们今后的讨论中,误差将不可回避, n n
相关文档
最新文档