最新物理生活中的圆周运动试题类型及其解题技巧

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新物理生活中的圆周运动试题类型及其解题技巧

一、高中物理精讲专题测试生活中的圆周运动

1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=

3

5

,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:

(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR

(223m gR (3355R g 【解析】

试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.

解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有

tan F mg

α=① 2220()F mg F =+②

设小球到达C 点时的速度大小为v ,由牛顿第二定律得

2

v F m R

=③

由①②③式和题给数据得

03

4

F mg =④

5gR

v =

(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥

(1cos CD R α=+)⑦

由动能定理有

220111

22

mg CD F DA mv mv -⋅-⋅=-⑧

由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232

m gR p mv ==

⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有

2

12

v t gt CD ⊥+

=⑩ sin v v α⊥=

由⑤⑦⑩

式和题给数据得

355R t g

=

点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.

2.有一水平放置的圆盘,上面放一劲度系数为k 的弹簧,如图所示,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体A ,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l .设最大静摩擦力大小等于滑动摩擦力.求:

(1)盘的转速ω0多大时,物体A 开始滑动?

(2)当转速缓慢增大到2ω0时,A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少? 【答案】(1) g

l

μ(2)

34mgl

kl mg

μμ-

【解析】 【分析】

(1)物体A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x . 【详解】

若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.

(1)当圆盘转速为n 0时,A 即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有: μmg =ml ω02, 解得:ω0= g

l

μ.

即当ω0=

g

l

μ时物体A 开始滑动.

(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg +k △x =mr ω12, r=l+△x 解得:34mgl

x kl mg

μμ-V =

【点睛】

当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.

3.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离

【答案】(1)160N (2)2 【解析】 【详解】

(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =

1

2

mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:

2B

v N mg m R

-=

联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N

由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N

(2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:

2D

v mg m R

=

可得:v D =2m/s

设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,

2R =

12

gt 2

解得:x =0.8m

则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x =

=

4.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:

(1)滑块A 在半圆轨道最高点对轨道的压力;

(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;

(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内

【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】

(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:

2211222

A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:

2

A N A v m g F m R

+=

滑块在半圆轨道最高点受到的压力为:

F N =1N

相关文档
最新文档