螺栓受力分析与计算
典型螺栓组的受力分析及螺栓载荷计算
典型螺栓组的受力分析及螺栓载荷计算
载荷类型螺栓组的布置工作要求单个螺栓的载荷
载荷平行于螺栓组的轴线,且合力通过被联接件结合面的形心保证受载后结
合面的紧密性
各螺栓受工作载荷均等:
式中z —螺栓的个数;
F w—作用于被联接件上的外力总和
采用普通螺栓联接时,各螺栓受力 (预紧力)均等:
采用铰制孔螺栓联接时, 各螺栓受力(切向力)均等:
载荷作用在被联接件的结 合面上,且通过螺栓组的形心 在受横向载荷 后,被联接件不允 许有相对错动
-摩擦联接可靠性因子,取K f=1.1〜1.3 ;
m—结合面数;
卩一结合面间摩擦因数,见表22.1-9
K f
采用普通螺栓联接时,各螺栓的预紧力均等:
采用铰制孔螺栓时,距螺栓组形心最远的螺栓受力 最大:
载荷为作用在结合面上的 旋转力矩T 受旋转力矩后, 被联接件不能有相 对转动
螺栓组受翻转力矩 M
受载后,结合面不允
许开缝和压溃
距结合面对称轴最远的螺栓受工作载荷最大:
螺栓最小预紧力
允许螺栓最大预紧力:
结合面材料的许用挤压应力,见表22.1-10
内部资料, 请勿外传!。
螺栓组受力分析与计算..
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算
螺栓组受力分析与计算一.螺栓组联接得设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面得工作能力5.校核螺栓所需得预紧力就是否合适确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。
1、螺栓组联接得结构设计螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。
为此,设计时应综合考虑以下几方面得问题:1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。
2)螺栓得布置应使各螺栓得受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。
如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓得布置3)螺栓排列应有合理得间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。
扳手空间得尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。
同一螺栓组中螺栓得材料,直径与长度均应相同。
5)避免螺栓承受附加得弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算..
式中:Q—螺栓总拉力,N 。
其余符号意义同前。
螺栓总拉力的计算:
Q=Qp+[Cb/(Cb+Cm)]·F
式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐
的数据选取。
螺栓的相对刚度Cb/(Cb+Cm)
被联接钢板间所用垫片类别
Cb/(Cb+Cm)
金属垫片(或无垫片)
r1=r2=…=rz的关系以及螺栓联接的类型,分别代人式(5-25)或
(5-28)即可求得。
3).受轴向载荷的螺栓组联接
下图为一受轴向总载荷FΣ的汽缸盖螺栓组联接。FΣ的作用线与螺 栓轴线平行,并通过螺栓组的对称中心O。计算时,认为各螺栓平均受 载,则每个螺栓所受的轴向工作载荷为
图:受轴向载荷的螺栓组联接
螺栓组受力分析与计算
1. 螺栓组联接的设计
设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫 圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装 置等全面考虑后定出。
1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形 状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工 和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆 形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于 对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保 证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要 在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布 过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联 接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷 和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载 荷,以减小螺栓的预紧力及其结构尺寸。
螺栓组受力分析与计算
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓强度计算
――受力不均匀因数,受压螺母 =1,受拉螺母 =1.5~1.6;
――缺口应力集中因数,按表3查得;
――抗压疲劳极限,按表4查得;
――安全因数,控制预紧力 =1.5~2.5,不控制预紧力 =2.5~5。
表1螺栓连接
一、螺栓受力分析:
螺栓为受轴向载荷紧螺栓连接(动载荷),受轴向载荷紧螺栓连接(动载荷)的基本形式如下图所示:
二、受轴向载荷紧螺栓连接(动载荷)的基本公式:
(1)许用应力计算公式:
(2)强度校核计算公式:
式中:
――轴向载荷,N;
――螺栓小径,mm,查表获得;
――相对刚度,按表1选取;
――尺寸因数,按表2查得;
表3缺口应力集中因数
表4抗压疲劳极限
三、计算内容:
相关参数如下表:
(1)许用应力计算:
(2)强度校核计算:
四、结论:
由上述计算可知,螺栓强度满足要求。
螺栓组受力分析与计算(可编辑)
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组的受力分析
5)导程S——同一条螺旋线相邻两牙的轴向距离;
单线:S=t
d2
双线:S=2t
多线:S=nt
n——头数;
右旋
6)升角:螺旋线与水平线夹角;
S t
tg S d2
7)牙型角 牙型斜角
8)牙的工作高度h
S
d2
二、各种螺纹的特点、应用
自锁条件:升角<v(摩擦角); 牙型斜角越小越不容易加工。
b只受预紧力214dqp???31116dt???紧螺栓联接装配时螺母需要拧紧在拧紧力矩作用下螺栓除受预紧力qp的拉伸而产生拉伸应力外还受螺纹摩擦力矩t1的扭转而产生扭转剪应力使螺栓处于拉伸与扭转的复合应力状态下
第四章 螺纹零件
一、概述
1、作用
联接:起联接作用的螺纹; 传动:起传动作用的螺纹;
2、螺纹的形成 刀具——做直线运动; 工件——做旋转运动; 螺纹线:转动与直线运动;
rz
ks T
z
f ri
i 1
式中:f——结合面的摩擦系数;
ri——第i个螺栓的轴线到螺栓组 对称中心O的距离;
z——螺栓数目;
ks——防滑系数,同前。
机架 地基
T
r4 r1
rr32
Qpf
Qpf
松配
T
r4 r1
rr23
Qpf
Qpf
紧配
b)紧配 当采用紧配螺栓时,在转矩T的作用下,各螺栓受到剪切和挤压
习题: 一、选择题
第四章 螺纹零件
1、在常用的螺旋传动中,传动效率最高的螺纹是 4 。
(1)三角形螺纹;(2)梯形螺纹;(3)锯齿形螺纹;(4)矩 形螺纹;
2、在常用的螺纹联接中,自锁性最好的螺纹是 1 。
螺栓组受力分析与计算
螺栓组受力分析与计算前言螺栓组是机械结构中常用的连接元件,常见于机器零件和设备中。
在机械结构中,螺栓组的受力分析和计算是非常重要的。
其中,螺栓组受力的大小和方向,不仅决定了螺栓的抗拉强度,还决定了整个机械结构的稳定性和可靠性。
在本文中,我们将介绍螺栓组的受力分析和计算,包括螺栓组的受力特点、受力方向、计算公式和实际案例。
螺栓组受力特点螺栓组是由若干个螺栓组成的一种连接结构。
在受到外力作用时,螺栓组的受力特点主要表现为:1.拉力:螺栓组一般是在拉伸状态下进行工作的,拉力是螺栓组受力的主要形式。
2.压力:螺栓组在受到工作装置的压力时,螺栓头和垫圈会承受一定的压力。
3.剪力:螺栓组在受到横向力或剪切力时,螺栓会发生剪切变形。
4.扭矩:螺栓组在受到扭矩力时,螺栓会扭转变形。
螺栓组受力方向螺栓组的受力方向可以分为两种类型:轴向力和剪力。
轴向力轴向力是螺栓组最常见的受力形式,是指沿着螺栓中心线方向的受力。
当受到轴向拉力和压力时,螺栓组会发生轴向变形,通过计算轴向力和剪力的大小和方向,可以确定螺栓组的破坏形式。
剪力剪力是指横向力或者剪切力在螺栓组上的作用。
当受到横向力或者剪切力时,螺栓组会承受剪切变形,通过计算剪力和轴向力的大小和方向,可以确定螺栓组的破坏形式。
螺栓组的计算公式为了确定螺栓组的受力方向和大小,可以使用材料力学的基本公式进行计算。
下面是螺栓组的计算公式。
轴向力的计算公式轴向拉力的计算公式如下:F = A * σ其中,F表示轴向拉力;A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。
轴向压力的计算公式如下:F = A * σ其中,F表示轴向压力;A表示螺栓的截面积;σ表示螺栓材料的压缩强度。
剪力的计算公式剪力的计算公式如下:F = A * τ其中,F表示剪切力;A表示螺栓的截面积;τ表示螺栓材料的剪切强度。
实例分析螺栓组的实际应用非常广泛,下面介绍几个实际案例。
案例1:车轮螺栓的受力分析和计算车轮螺栓是汽车结构中常见的连接元件,其受力情况如下图所示:在这个情况下,车轮螺栓的轴向拉力如下所示:F = A * σ = 3.14 * (12.52/2)^2 * 780 = 23161.3 N其中,A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。
螺栓疲劳强度计算分析
螺栓疲劳强度计算分析螺栓是一种常用的连接元件,在机械装配中起着重要的作用。
然而,螺栓在使用过程中会受到外部载荷的作用,由此产生的应力可能会导致螺栓的疲劳破坏。
因此,对于螺栓的疲劳强度进行准确的计算和分析对于确保装配的可靠性至关重要。
螺栓的疲劳强度计算分析主要包括以下几个方面:载荷分析、应力分析、疲劳强度计算和疲劳寿命预测等。
首先,进行载荷分析。
载荷是指作用在螺栓上的力或力矩,可以通过工程设计中的负载情况、运动情况等来确定。
载荷分析的目的是确定螺栓在使用中承受的最大载荷,作为计算疲劳强度和寿命的依据。
其次,进行应力分析。
应力是指单位截面上的内力,对于螺栓而言,应力主要分为拉伸应力和剪切应力。
拉伸应力是根据载荷分析的结果和螺栓的几何特征来计算的,剪切应力则取决于连接件的设计和布置。
通过应力分析可以确定螺栓的受力情况,为后续的疲劳强度计算提供数据支持。
然后,进行疲劳强度计算。
疲劳强度计算是基于材料的疲劳性能进行的。
螺栓材料的疲劳曲线可以通过实验得到,其中重要的参数包括疲劳极限和疲劳强度系数。
疲劳极限是指螺栓材料在特定条件下可以承受的最大应力水平,疲劳强度系数则是根据材料实际疲劳寿命和理论疲劳寿命的比值。
通过疲劳强度计算,可以确定螺栓在给定载荷条件下的疲劳寿命。
最后,进行疲劳寿命预测。
疲劳寿命预测是基于已知的载荷和应力条件,通过疲劳强度计算得到的疲劳寿命,进而预测螺栓的使用寿命。
疲劳寿命预测可以帮助工程师评估螺栓的使用寿命,并在必要时进行优化设计。
总结来说,螺栓疲劳强度的计算分析是确保装配可靠性的重要环节。
通过载荷分析、应力分析、疲劳强度计算和疲劳寿命预测等步骤,可以全面评估螺栓在使用中的疲劳性能,为工程设计和装配提供科学依据。
螺栓受力分析总结
螺栓受力分析总结引言螺栓是机械设备中常见的紧固元件,起到将零部件连接在一起的作用。
在实际应用中,螺栓承受着各种受力,因此了解螺栓受力分析原理和方法,对于设计合理的螺栓连接至关重要。
本文将对螺栓受力分析进行总结,并介绍螺栓受力分析的基本原理、常见的受力情况和分析方法。
1. 螺栓受力分析概述螺栓的受力分析是指通过计算和分析螺栓连接在不同工况下所受到的受力,从而确定合适的螺栓尺寸、材料和紧固力矩。
螺栓在连接过程中承受的受力主要包括剪切力、压力和拉伸力。
在不同工况下,受力情况各不相同,因此需要进行受力分析,确保螺栓连接的安全性和可靠性。
2. 螺栓受力分析的基本原理螺栓受力分析的基本原理是基于力的平衡原理和材料力学原理。
在受力分析过程中,主要考虑以下几个方面:(1) 剪切力分析螺栓连接中的剪切力是指相邻两个连接部件在连接面上产生的相对滑动力。
剪切力的大小取决于螺栓直径、刚度和连接面的粗糙程度等因素。
在剪切力分析中,需要计算螺栓连接处的剪切应力,并根据材料的抗剪强度来判断连接的安全性。
(2) 压力分析螺栓连接中的压力是指由于拉伸力产生的连接面上的压力,主要承受连接面的变形和变形产生的应力。
在压力分析中,需要计算螺栓连接处的压力和应力,并根据材料的抗压强度来判断连接的安全性。
(3) 拉伸力分析螺栓连接中的拉伸力是指由于外部加载产生的拉伸力,主要承受连接件的拉伸应力。
在拉伸力分析中,需要计算螺栓的拉伸应力,并根据螺纹剩余截面的强度来判断连接的安全性。
(4) 紧固力矩分析螺栓连接中的紧固力矩是指施加在螺栓上的扭矩,用于产生连接时所需的摩擦力和压力。
紧固力矩的大小会直接影响螺栓连接的紧固程度和连接的可靠性。
在紧固力矩分析中,需要考虑螺栓材料的摩擦系数、连接面的润滑情况等因素,并根据实验数据或经验公式来确定合适的紧固力矩。
3. 常见的螺栓受力情况和分析方法(1) 单向剪切受力在单向剪切受力情况下,连接件在一侧受到剪切力,另一侧受到相等反向的剪切力。
机械设计-螺栓组受力分析计
F = Q / 4 = 16000 / 4 = 4000 N
解:由接合面的摩擦条件得: 由接合面的摩擦条件得:
f ⋅ F1 ⋅ Z ⋅ i ≥ K S ⋅ R ⇒ F1 ≥ K S ⋅ R 1.2 × 5000 = = 10000 N f ⋅ Z ⋅ i 0.15 × 4 × 1
σ=
4 ×1.3F2 ≤ [σ ] 2 πd1 4 × 1.3 × F2
⇒ d1 ≥
π [σ ]
4 ×1.3 ×14000 = = 8.51mm π × 320
悬挂的板材用两个普通螺栓与顶板联接。如果每个螺栓与被联接件刚度相等, 悬挂的板材用两个普通螺栓与顶板联接。如果每个螺栓与被联接件刚度相等, 即C1 = C2,每个螺栓的预紧力为 ,每个螺栓的预紧力为1000N,当轴承受载时要求轴承座与顶板接合面 , 间不出现间隙,则轴承上能承受的极限垂直径向载荷R是多少 是多少?。 间不出现间隙,则轴承上能承受的极限垂直径向载荷 是多少?。
σ=
4 × .1.3F2 ≤ [σ ] πd12 4 × 1.3F2
P
⇒ d1 ≥
π [σ ]
=
4 × 1.3 × 2500 = 7.69mm π × 70
螺栓的小径d1=8.376>7.69 ∵M10螺栓的小径 螺栓的小径 的螺栓。 ∴ 选M10的螺栓。 的螺栓
某容器内装有毒气体, 某容器内装有毒气体,P=1.5N/mm2,D=300mm,容器盖周围均布 个M20的 ,容器盖周围均布10个 的 螺栓( 为防止泄漏, 螺栓(d1=17.835mm)为防止泄漏,取残余预紧力 为防止泄漏 取残余预紧力F1=1.5F,螺栓杆的许用应力 , [σ]=160Mpa,试问该螺栓组的设计是否安全? ,试问该螺栓组的设计是否安全? 解:每个螺栓受的轴向载荷为
螺栓受剪切力状态下的分析和计算
(2)螺栓排列的要求
①受力要求
在垂直于受力方向:对于受拉构件,各排螺栓的中距 及边距不能过小,以免使螺栓周围应力集中相互影响, 且使钢板的截面削弱过多,降低其承载能力。
平行于受力方向: 端距应按被连接钢板抗挤压及抗剪切等强度条件确定,
以便钢板在端部不致被螺栓冲剪撕裂,规范规定端距不 应小于2d0;
螺栓连接的构造要求
螺栓连接除了满足上述螺栓排列的容许距离外,根据 不同情况尚应满足下列构造要求:
(1)为了证连接的可靠性,每个杆件的节点或拼接接头一 端,永久螺栓不宜少于两个,但组合构件的缀条除外。
(2)直接承受动荷载的普通螺栓连接应采用双螺帽,或其 他措施以防螺帽松动。
(3)C级螺栓宜用于沿杆轴方向的受拉连接,可用于抗剪连 接情况有:承受静载或间接动载的次要连接;承受静载的可 拆卸结构连接;临时固定构件的安装连接。 (4)型钢构件拼接采用高强螺栓连接时,为保证接触面紧密, 应采用钢板而不能采用型钢作为拼接件。
N
b c
d
t
f
b c
d
式中: fcb —螺栓承压强度设计值; ∑ t— 连 接 接 头 一 侧 承 压 构 件 总 厚 度 a+b+c 和
d+e的较小值。
N/3
a
N/3
b
N/3
c
d
N/2
e
N/2
一个抗剪普通螺栓的承载力设计值:
Nb min
min
N
vb,N
b c
四、受剪螺栓组连接的计算
N
++ ++
坏。
2、单个普通螺栓的抗剪承载力计算
由破坏形式知抗剪螺栓的承载力取决于螺栓杆受剪和孔 壁承压(即螺栓承压)两种情况。
机械设计习题--螺栓连接
− bh13 12
=b 12
h3 − h13
( ) = 150 3403 − 2203
12
= 358200000(mm 4 )
K
α
O
O
h h1 220
280 160
W
=
Ioo h2
=
35820000 170
150
= 2107059(mm 3)
b
1.接合面下端
σ pmax
=
zF1 A
+
M W
=
4 × 5783 + 150 × (340 - 220)
116
作业:
P101-102 思考题: 5-1、5-2、5-3、5-4 习题:5-5、5-6、5-8、5-10*
138
FPV
=
PV 4
= 3677 4
= 919(N )
PH
(3)在翻转力矩M作用下,上面两个螺栓受轴向力:
Pv
M PH α Pv
150
力的合成?
∑ FM
=
MLmax
z
L2i
= 1051070×140 4 × 1402
= 1877(N)
i=1
横向力: FH = 771(N )
可见受力最大的单个联接所受力为:
0.2× 2796
=
7079(N )
F1+Fmax来计算F2
114
280 160
Pv
解:(一)受力分析 (二)按拉伸强度确定螺栓直径
选4.6级螺栓,控制预紧力,S=1.5 则许用应力[σ]=240/1.5=160MPa
d1 ≥
4 ×1.3F2
π [σ ]
螺栓组受力分析与计算
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺栓受力分析与计算
详解
螺栓是一种常用的固定连接件,广泛应用于船舶、机械、航空航天等,对螺栓的受力分析不仅对此类固定件的研究有重要的意义,也是螺栓
安装拧紧工艺的重要基础。
螺栓受力分析研究一般分为受力类型及其有关计算方法,螺栓受力类
型共分为四类:螺栓的拉伸受力、压缩受力、旋转受力和扭转受力。
受力计算则以不同受力类型对应相应受力计算方法为基础:
(1)拉伸受力计算:
拉伸受力是指在螺栓紧固时,螺栓身体和螺母以及螺栓润滑层之间的
表面间隙由于拉伸失稳变形而造成的受力。
由于螺栓预紧受力基本由表面间隙中受压力组件之外主动应力和受压
由内外动应力共同决定,因此拉伸受力计算方法会考虑表面间隙的内
外应力组合的效应,通常以应力开发系数的概念算出表面间隙中受力
组件的拉伸受力,有:
【δ= βα/π (α+δ/2)】
其中,δ为受压力组件的表面间隙,α为受压力组件的理论应力,β为
受压力组件的应力开发系数,以此为基础可算出螺栓的拉伸受力。
(2)压缩受力计算:
压缩受力是指在螺栓紧固时,螺栓身体螺母以及螺栓润滑层之间的表
面间隙由于压缩变形而造成的受力。
压缩受力的计算方法则可由塑性曲线等静力方程式及计算钱求解,通
常考虑材料的塑性应力应变曲线,由此可得出表面间隙变形宽度和内
外应力之间的关系,然后可利用公式计算出螺栓的压缩受力。
有:【y=(α/B)×(B2-x2),F=y×A】
其中,y为受压力组件的表面间隙变形宽度,α为受压力组件的理论应力,B为受压力组件的应力开发系数,x为受压力组件的表面间隙宽度,A为受压力组件的表面区域,F为受压力组件的压缩受力。
(3)旋转受力计算:
旋转受力是指在螺栓紧固时,由于拧紧扭矩产生的螺纹旋转斜滑力的
受力。
由于螺栓旋转斜滑力的受力大小受扭矩大小影响并与拧紧螺纹的支承
面积有关,因此,旋转受力计算应考虑螺纹支承面积以及拧紧扭矩大小,有:
【F=τ × δ 】
其中,F为螺栓的旋转受力,τ为螺栓拧紧扭矩大小,δ为螺栓紧固时
螺纹支承螺纹面积。
(4)扭转受力计算:
扭转受力是指在螺栓紧固时,由于螺纹的拧紧过程中受到的抗旋转力。
由于该受力的大小受螺栓的半径和螺纹的长度以及拧紧扭矩的影响,
因此,扭转受力计算需考虑螺栓的半径、螺纹的长度以及拧紧扭矩大小,。