典型螺栓组的受力分析及螺栓载荷计算
螺栓组受力

螺纹联接设计:螺栓组联接的受力分析螺栓联接多为成组使用,设计时,常根据被联接件的结构和联接的载荷来确定联接的传力方式、螺栓的数目和布置。
螺栓组联接受力分析的任务是求出联接中各螺栓受力的大小,特别是其中受力最大的螺栓及其载荷。
分析时,通常做以下假设:①被联接件为刚性;②各螺栓的拉伸刚度或剪切刚度(即各螺栓的材料、直径和长度)及预紧力都相同;③螺栓的应变没有超出弹性范围。
下面介绍几种典型螺栓组受力分析的方法。
1. 受轴向力Fz的螺栓组联接图15.5所示为气缸盖螺栓组联接,其载荷通过螺栓组形心,因此各螺栓分担的工作载荷F相等。
设螺栓数目为z,则F=Fz/z (15-19)此外螺栓还受预紧力,其总拉力的求法见本章第15.2.1节。
2. 受横向载荷FR的螺栓组联接图15.10为受横向力的螺栓组联接,螺栓沿载荷方向布置,载荷可通过两种不同方式传递。
图15.10(1) 用受拉螺栓联接螺栓只受预紧力F` ,靠接合面间的摩擦来传递载荷。
假设各螺栓联接接合面的摩擦力相等并集中在中心处,则根据板的平衡条件得或(15-20)式中μs--接合面摩擦系数,对于钢铁零件,当接合面干燥时,μs=0.10~0.16;当接合面沾有油时,μs=0.06~0.10;m--接合面数目;z--螺栓数目;kf--考虑摩擦传力的可靠系数,kf=1.1~1.5。
若z=1,m=1,并取μs=0.15,kf=1.2,则F`=8FR。
由此可见,这种联接的主要缺点是所需的预紧力很大,为横向载荷的很多倍。
(2) 用受剪螺栓联接时,靠螺栓受剪和螺栓与被联接件相互挤压时的变形来传递载荷。
联接中的预紧力和摩擦力一般忽略不计。
假设各螺栓受均匀载荷Fs,则根据板的静力平衡条件得zF S= F R或F S=F R/z(15-21)3. 受旋转力矩T的螺栓组联接图15.11图15.11为底座承受旋转力矩T的作用,有绕螺栓组形心的轴线O-O旋转的趋势,载荷也可通过两种方式传递。
螺栓组受力分析与计算..

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接得设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面得工作能力5.校核螺栓所需得预紧力就是否合适确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。
1、螺栓组联接得结构设计螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。
为此,设计时应综合考虑以下几方面得问题:1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。
2)螺栓得布置应使各螺栓得受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。
如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓得布置3)螺栓排列应有合理得间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。
扳手空间得尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。
同一螺栓组中螺栓得材料,直径与长度均应相同。
5)避免螺栓承受附加得弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。
螺栓受力分析与计算

螺栓受力分析与计算详解螺栓是一种常用的固定连接件,广泛应用于船舶、机械、航空航天等,对螺栓的受力分析不仅对此类固定件的研究有重要的意义,也是螺栓安装拧紧工艺的重要基础。
螺栓受力分析研究一般分为受力类型及其有关计算方法,螺栓受力类型共分为四类:螺栓的拉伸受力、压缩受力、旋转受力和扭转受力。
受力计算则以不同受力类型对应相应受力计算方法为基础:(1)拉伸受力计算:拉伸受力是指在螺栓紧固时,螺栓身体和螺母以及螺栓润滑层之间的表面间隙由于拉伸失稳变形而造成的受力。
由于螺栓预紧受力基本由表面间隙中受压力组件之外主动应力和受压由内外动应力共同决定,因此拉伸受力计算方法会考虑表面间隙的内外应力组合的效应,通常以应力开发系数的概念算出表面间隙中受力组件的拉伸受力,有:【δ= βα/π (α+δ/2)】其中,δ为受压力组件的表面间隙,α为受压力组件的理论应力,β为受压力组件的应力开发系数,以此为基础可算出螺栓的拉伸受力。
(2)压缩受力计算:压缩受力是指在螺栓紧固时,螺栓身体螺母以及螺栓润滑层之间的表面间隙由于压缩变形而造成的受力。
压缩受力的计算方法则可由塑性曲线等静力方程式及计算钱求解,通常考虑材料的塑性应力应变曲线,由此可得出表面间隙变形宽度和内外应力之间的关系,然后可利用公式计算出螺栓的压缩受力。
有:【y=(α/B)×(B2-x2),F=y×A】其中,y为受压力组件的表面间隙变形宽度,α为受压力组件的理论应力,B为受压力组件的应力开发系数,x为受压力组件的表面间隙宽度,A为受压力组件的表面区域,F为受压力组件的压缩受力。
(3)旋转受力计算:旋转受力是指在螺栓紧固时,由于拧紧扭矩产生的螺纹旋转斜滑力的受力。
由于螺栓旋转斜滑力的受力大小受扭矩大小影响并与拧紧螺纹的支承面积有关,因此,旋转受力计算应考虑螺纹支承面积以及拧紧扭矩大小,有:【F=τ × δ 】其中,F为螺栓的旋转受力,τ为螺栓拧紧扭矩大小,δ为螺栓紧固时螺纹支承螺纹面积。
机械设计-螺栓组受力分析计

πD 2 P π × 300 2 × 1.5 F= = = 10602.88 N 4Z 4 × 10
F1 = 1.5F = 1.5×10602.88 = 15904.32N × 螺栓的总拉力F2 螺栓的总拉力 = F1 +F = 15904.32 +10602.88 = 26507.2N 螺栓的拉伸应力为: 螺栓的拉伸应力为:
解:每个螺栓所受得径向载荷F = R / Z = R / 2 每个螺栓所受得径向载荷 由接触面不出现间隙条件: 由接触面不出现间隙条件:
R
F1 = F0 — F×Cm /(Cb+Cm)≥0 ( 1000 — Cm /2Cm×R/2 ≥0 得R≤4000 N
某钢架用螺栓组固定在水平钢架上,螺栓组有四个普通螺栓组成, 某钢架用螺栓组固定在水平钢架上,螺栓组有四个普通螺栓组成,它们的尺寸 均相同,试问:吊架承受垂直拉力F时 受力最大的螺栓所受的载荷为多大? 均相同,试问:吊架承受垂直拉力 时,受力最大的螺栓所受的载荷为多大?
⇒ T = FD0 Z / 2 = 13571.68 × 160 × 6 / 2 = 6514406.4 N mm
图示钢制扳手,用两个普通螺栓联接扳手接杆。扳紧力 图示钢制扳手,用两个普通螺栓联接扳手接杆。扳紧力F=200N,螺栓许用拉伸 , 应力[σ 应力 σ]=80Mpa,联接面摩擦系数 ,联接面摩擦系数f=0.15,可靠性系数 ,可靠性系数Ks=1.2,试确定螺栓最小 , 直径d 直径 1 形心简化, 解: 1、将外载荷向螺栓组形心简化, 、将外载荷向螺栓组形心简化 旋转力矩T=200×850 = × 旋转力矩 170000N.mm 横向载荷F 横向载荷 = 200N 2、单个螺栓所受的工作载荷 、单个螺栓所受的工作载荷
螺栓组受力分析与计算..

式中:Q—螺栓总拉力,N 。
其余符号意义同前。
螺栓总拉力的计算:
Q=Qp+[Cb/(Cb+Cm)]·F
式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐
的数据选取。
螺栓的相对刚度Cb/(Cb+Cm)
被联接钢板间所用垫片类别
Cb/(Cb+Cm)
金属垫片(或无垫片)
r1=r2=…=rz的关系以及螺栓联接的类型,分别代人式(5-25)或
(5-28)即可求得。
3).受轴向载荷的螺栓组联接
下图为一受轴向总载荷FΣ的汽缸盖螺栓组联接。FΣ的作用线与螺 栓轴线平行,并通过螺栓组的对称中心O。计算时,认为各螺栓平均受 载,则每个螺栓所受的轴向工作载荷为
图:受轴向载荷的螺栓组联接
螺栓组受力分析与计算
1. 螺栓组联接的设计
设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫 圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装 置等全面考虑后定出。
1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形 状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工 和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆 形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于 对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保 证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要 在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布 过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联 接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷 和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载 荷,以减小螺栓的预紧力及其结构尺寸。
螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型螺栓组的受力分析及螺栓载荷计算
载荷类型螺栓组的布置工作要求单个螺栓的载荷
载荷平行于螺栓组的轴线,且合力通过被联接件结合面的形心保证受载后结
合面的紧密性
各螺栓受工作载荷均等:
式中z —螺栓的个数;
F w—作用于被联接件上的外力总和
采用普通螺栓联接时,各螺栓受力 (预紧力)均等:
采用铰制孔螺栓联接时, 各螺栓受力(切向力)均等:
载荷作用在被联接件的结 合面上,且通过螺栓组的形心 在受横向载荷 后,被联接件不允 许有相对错动
-摩擦联接可靠性因子,取K f=1.1〜1.3 ;
m—结合面数;
卩一结合面间摩擦因数,见表22.1-9
K f
采用普通螺栓联接时,各螺栓的预紧力均等:
采用铰制孔螺栓时,距螺栓组形心最远的螺栓受力 最大:
载荷为作用在结合面上的 旋转力矩T 受旋转力矩后, 被联接件不能有相 对转动
螺栓组受翻转力矩 M
受载后,结合面不允
许开缝和压溃
距结合面对称轴最远的螺栓受工作载荷最大:
螺栓最小预紧力
允许螺栓最大预紧力:
结合面材料的许用挤压应力,见表22.1-10
内部资料, 请勿外传!。