典型螺栓组的受力分析及螺栓载荷计算
螺栓组受力
螺纹联接设计:螺栓组联接的受力分析螺栓联接多为成组使用,设计时,常根据被联接件的结构和联接的载荷来确定联接的传力方式、螺栓的数目和布置。
螺栓组联接受力分析的任务是求出联接中各螺栓受力的大小,特别是其中受力最大的螺栓及其载荷。
分析时,通常做以下假设:①被联接件为刚性;②各螺栓的拉伸刚度或剪切刚度(即各螺栓的材料、直径和长度)及预紧力都相同;③螺栓的应变没有超出弹性范围。
下面介绍几种典型螺栓组受力分析的方法。
1. 受轴向力Fz的螺栓组联接图15.5所示为气缸盖螺栓组联接,其载荷通过螺栓组形心,因此各螺栓分担的工作载荷F相等。
设螺栓数目为z,则F=Fz/z (15-19)此外螺栓还受预紧力,其总拉力的求法见本章第15.2.1节。
2. 受横向载荷FR的螺栓组联接图15.10为受横向力的螺栓组联接,螺栓沿载荷方向布置,载荷可通过两种不同方式传递。
图15.10(1) 用受拉螺栓联接螺栓只受预紧力F` ,靠接合面间的摩擦来传递载荷。
假设各螺栓联接接合面的摩擦力相等并集中在中心处,则根据板的平衡条件得或(15-20)式中μs--接合面摩擦系数,对于钢铁零件,当接合面干燥时,μs=0.10~0.16;当接合面沾有油时,μs=0.06~0.10;m--接合面数目;z--螺栓数目;kf--考虑摩擦传力的可靠系数,kf=1.1~1.5。
若z=1,m=1,并取μs=0.15,kf=1.2,则F`=8FR。
由此可见,这种联接的主要缺点是所需的预紧力很大,为横向载荷的很多倍。
(2) 用受剪螺栓联接时,靠螺栓受剪和螺栓与被联接件相互挤压时的变形来传递载荷。
联接中的预紧力和摩擦力一般忽略不计。
假设各螺栓受均匀载荷Fs,则根据板的静力平衡条件得zF S= F R或F S=F R/z(15-21)3. 受旋转力矩T的螺栓组联接图15.11图15.11为底座承受旋转力矩T的作用,有绕螺栓组形心的轴线O-O旋转的趋势,载荷也可通过两种方式传递。
螺栓组受力分析与计算..
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算
螺栓组受力分析与计算一.螺栓组联接得设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面得工作能力5.校核螺栓所需得预紧力就是否合适确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。
1、螺栓组联接得结构设计螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。
为此,设计时应综合考虑以下几方面得问题:1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。
2)螺栓得布置应使各螺栓得受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。
如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓得布置3)螺栓排列应有合理得间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。
扳手空间得尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。
同一螺栓组中螺栓得材料,直径与长度均应相同。
5)避免螺栓承受附加得弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。
螺栓受力分析与计算
螺栓受力分析与计算详解螺栓是一种常用的固定连接件,广泛应用于船舶、机械、航空航天等,对螺栓的受力分析不仅对此类固定件的研究有重要的意义,也是螺栓安装拧紧工艺的重要基础。
螺栓受力分析研究一般分为受力类型及其有关计算方法,螺栓受力类型共分为四类:螺栓的拉伸受力、压缩受力、旋转受力和扭转受力。
受力计算则以不同受力类型对应相应受力计算方法为基础:(1)拉伸受力计算:拉伸受力是指在螺栓紧固时,螺栓身体和螺母以及螺栓润滑层之间的表面间隙由于拉伸失稳变形而造成的受力。
由于螺栓预紧受力基本由表面间隙中受压力组件之外主动应力和受压由内外动应力共同决定,因此拉伸受力计算方法会考虑表面间隙的内外应力组合的效应,通常以应力开发系数的概念算出表面间隙中受力组件的拉伸受力,有:【δ= βα/π (α+δ/2)】其中,δ为受压力组件的表面间隙,α为受压力组件的理论应力,β为受压力组件的应力开发系数,以此为基础可算出螺栓的拉伸受力。
(2)压缩受力计算:压缩受力是指在螺栓紧固时,螺栓身体螺母以及螺栓润滑层之间的表面间隙由于压缩变形而造成的受力。
压缩受力的计算方法则可由塑性曲线等静力方程式及计算钱求解,通常考虑材料的塑性应力应变曲线,由此可得出表面间隙变形宽度和内外应力之间的关系,然后可利用公式计算出螺栓的压缩受力。
有:【y=(α/B)×(B2-x2),F=y×A】其中,y为受压力组件的表面间隙变形宽度,α为受压力组件的理论应力,B为受压力组件的应力开发系数,x为受压力组件的表面间隙宽度,A为受压力组件的表面区域,F为受压力组件的压缩受力。
(3)旋转受力计算:旋转受力是指在螺栓紧固时,由于拧紧扭矩产生的螺纹旋转斜滑力的受力。
由于螺栓旋转斜滑力的受力大小受扭矩大小影响并与拧紧螺纹的支承面积有关,因此,旋转受力计算应考虑螺纹支承面积以及拧紧扭矩大小,有:【F=τ × δ 】其中,F为螺栓的旋转受力,τ为螺栓拧紧扭矩大小,δ为螺栓紧固时螺纹支承螺纹面积。
机械设计-螺栓组受力分析计
πD 2 P π × 300 2 × 1.5 F= = = 10602.88 N 4Z 4 × 10
F1 = 1.5F = 1.5×10602.88 = 15904.32N × 螺栓的总拉力F2 螺栓的总拉力 = F1 +F = 15904.32 +10602.88 = 26507.2N 螺栓的拉伸应力为: 螺栓的拉伸应力为:
解:每个螺栓所受得径向载荷F = R / Z = R / 2 每个螺栓所受得径向载荷 由接触面不出现间隙条件: 由接触面不出现间隙条件:
R
F1 = F0 — F×Cm /(Cb+Cm)≥0 ( 1000 — Cm /2Cm×R/2 ≥0 得R≤4000 N
某钢架用螺栓组固定在水平钢架上,螺栓组有四个普通螺栓组成, 某钢架用螺栓组固定在水平钢架上,螺栓组有四个普通螺栓组成,它们的尺寸 均相同,试问:吊架承受垂直拉力F时 受力最大的螺栓所受的载荷为多大? 均相同,试问:吊架承受垂直拉力 时,受力最大的螺栓所受的载荷为多大?
⇒ T = FD0 Z / 2 = 13571.68 × 160 × 6 / 2 = 6514406.4 N mm
图示钢制扳手,用两个普通螺栓联接扳手接杆。扳紧力 图示钢制扳手,用两个普通螺栓联接扳手接杆。扳紧力F=200N,螺栓许用拉伸 , 应力[σ 应力 σ]=80Mpa,联接面摩擦系数 ,联接面摩擦系数f=0.15,可靠性系数 ,可靠性系数Ks=1.2,试确定螺栓最小 , 直径d 直径 1 形心简化, 解: 1、将外载荷向螺栓组形心简化, 、将外载荷向螺栓组形心简化 旋转力矩T=200×850 = × 旋转力矩 170000N.mm 横向载荷F 横向载荷 = 200N 2、单个螺栓所受的工作载荷 、单个螺栓所受的工作载荷
螺栓组受力分析与计算..
式中:Q—螺栓总拉力,N 。
其余符号意义同前。
螺栓总拉力的计算:
Q=Qp+[Cb/(Cb+Cm)]·F
式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐
的数据选取。
螺栓的相对刚度Cb/(Cb+Cm)
被联接钢板间所用垫片类别
Cb/(Cb+Cm)
金属垫片(或无垫片)
r1=r2=…=rz的关系以及螺栓联接的类型,分别代人式(5-25)或
(5-28)即可求得。
3).受轴向载荷的螺栓组联接
下图为一受轴向总载荷FΣ的汽缸盖螺栓组联接。FΣ的作用线与螺 栓轴线平行,并通过螺栓组的对称中心O。计算时,认为各螺栓平均受 载,则每个螺栓所受的轴向工作载荷为
图:受轴向载荷的螺栓组联接
螺栓组受力分析与计算
1. 螺栓组联接的设计
设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫 圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装 置等全面考虑后定出。
1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形 状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工 和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆 形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于 对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保 证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要 在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布 过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联 接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷 和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载 荷,以减小螺栓的预紧力及其结构尺寸。
螺栓组受力分析与计算
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓强度计算
――受力不均匀因数,受压螺母 =1,受拉螺母 =1.5~1.6;
――缺口应力集中因数,按表3查得;
――抗压疲劳极限,按表4查得;
――安全因数,控制预紧力 =1.5~2.5,不控制预紧力 =2.5~5。
表1螺栓连接
一、螺栓受力分析:
螺栓为受轴向载荷紧螺栓连接(动载荷),受轴向载荷紧螺栓连接(动载荷)的基本形式如下图所示:
二、受轴向载荷紧螺栓连接(动载荷)的基本公式:
(1)许用应力计算公式:
(2)强度校核计算公式:
式中:
――轴向载荷,N;
――螺栓小径,mm,查表获得;
――相对刚度,按表1选取;
――尺寸因数,按表2查得;
表3缺口应力集中因数
表4抗压疲劳极限
三、计算内容:
相关参数如下表:
(1)许用应力计算:
(2)强度校核计算:
四、结论:
由上述计算可知,螺栓强度满足要求。
螺栓组受力分析与计算
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算
螺栓组受力分析与计算前言螺栓组是机械结构中常用的连接元件,常见于机器零件和设备中。
在机械结构中,螺栓组的受力分析和计算是非常重要的。
其中,螺栓组受力的大小和方向,不仅决定了螺栓的抗拉强度,还决定了整个机械结构的稳定性和可靠性。
在本文中,我们将介绍螺栓组的受力分析和计算,包括螺栓组的受力特点、受力方向、计算公式和实际案例。
螺栓组受力特点螺栓组是由若干个螺栓组成的一种连接结构。
在受到外力作用时,螺栓组的受力特点主要表现为:1.拉力:螺栓组一般是在拉伸状态下进行工作的,拉力是螺栓组受力的主要形式。
2.压力:螺栓组在受到工作装置的压力时,螺栓头和垫圈会承受一定的压力。
3.剪力:螺栓组在受到横向力或剪切力时,螺栓会发生剪切变形。
4.扭矩:螺栓组在受到扭矩力时,螺栓会扭转变形。
螺栓组受力方向螺栓组的受力方向可以分为两种类型:轴向力和剪力。
轴向力轴向力是螺栓组最常见的受力形式,是指沿着螺栓中心线方向的受力。
当受到轴向拉力和压力时,螺栓组会发生轴向变形,通过计算轴向力和剪力的大小和方向,可以确定螺栓组的破坏形式。
剪力剪力是指横向力或者剪切力在螺栓组上的作用。
当受到横向力或者剪切力时,螺栓组会承受剪切变形,通过计算剪力和轴向力的大小和方向,可以确定螺栓组的破坏形式。
螺栓组的计算公式为了确定螺栓组的受力方向和大小,可以使用材料力学的基本公式进行计算。
下面是螺栓组的计算公式。
轴向力的计算公式轴向拉力的计算公式如下:F = A * σ其中,F表示轴向拉力;A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。
轴向压力的计算公式如下:F = A * σ其中,F表示轴向压力;A表示螺栓的截面积;σ表示螺栓材料的压缩强度。
剪力的计算公式剪力的计算公式如下:F = A * τ其中,F表示剪切力;A表示螺栓的截面积;τ表示螺栓材料的剪切强度。
实例分析螺栓组的实际应用非常广泛,下面介绍几个实际案例。
案例1:车轮螺栓的受力分析和计算车轮螺栓是汽车结构中常见的连接元件,其受力情况如下图所示:在这个情况下,车轮螺栓的轴向拉力如下所示:F = A * σ = 3.14 * (12.52/2)^2 * 780 = 23161.3 N其中,A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。
螺栓组受倾覆力矩作用时其螺栓受力剖析
螺栓组受倾覆力矩作用时其螺栓受
力剖析
螺栓组受倾覆力矩作用时其螺栓受力剖析,是实际工程中常见的一种情况。
当螺栓组受到倾覆力矩作用时,由于螺栓组中各螺栓数量不同,力的分布也会有所不同。
因此,在分析这种情况时,我们必须考虑每个螺栓受力的情况,以确保螺栓组能够有效地承受倾覆力矩的作用,从而保证结构的安全性。
首先,我们需要确定螺栓组受到倾覆力矩作用时的受力情况。
由于倾覆力矩本质上是一个由上部和下部构成的对称力矩,因此,螺栓组中各螺栓受力的情况将受到对称性的制约。
考虑到螺栓组中各螺栓数量的不同,需要采用合理的计算方法来确定每个螺栓受力的大小。
具体而言,当螺栓组受到倾覆力矩作用时,螺栓组中各螺栓所受的力大小可以通过轴压力的分配系数来确定。
轴压力的分配系数的计算可以采用梁端弯矩的计算,即令梁端弯矩等于倾覆力矩时,求出梁端弯矩相应的轴压力分配系数。
接下来,通过将梁端弯矩的轴压力分配系数乘以螺栓组中各螺栓数量,即可求出每个螺栓受力的大小。
此外,除了计算每个螺栓受力的大小之外,我们还需要计算每个螺栓受力的方向。
由于倾覆力矩的作用,螺栓组中各螺栓受力的方向将呈现出一定的规律。
根据这种规律,可以知道,当螺栓组受到倾覆力矩作用时,螺栓组中的上部螺栓将受到一个下行力,而下部螺栓将受到一个上行力。
综上所述,当螺栓组受到倾覆力矩作用时,为了确保螺栓组能够有效地承受倾覆力矩,我们需要通过合理的计算方法来确定每个螺栓受力的大小和方向。
只有当每个螺栓受力的大小和方向均符合设计要求时,螺栓组才能有效地承受倾覆力矩的作用,从而保证结构的安全性。
紧固件设计规范
版本号制定/更改概述制定/更改会签审核批准实施日期V1.0 创建蒋壮紧固件设计规范广电运通金融电子股份有限公司文控中心发文件制定/更改记录文档历史记录编号与名称版本日期修改说明参与人员紧固件设计规范V1.0 2011-10-12 新建编写:蒋壮王建刚审核:李喆陈小电批准:谭栋目录1. 目的 (5)2. 适用范围 (5)3. 紧固件设计规范 (5)3.1 螺栓,螺钉的选用 (5)3.1.1螺栓组受力计算 (5)3.1.2按强度计算螺栓尺寸 (7)3.2 螺栓,螺钉的预紧 (10)3.2.1 预紧的目的 (10)3.2.2 预紧力F的确定 (10)3.2.3 拧紧力矩M的计算 (11)3.2.4拧紧力矩的控制方法 (13)3.3 螺栓,螺钉的防松 (14)3.3.1松动机理 (14)3.3.2防松方法 (15)4. 常见紧固件的技术参数 (15)4.1 螺栓 (15)4.1.1六角头螺栓 (15)4.1.2六角头螺栓-全螺纹 (17)4.2 螺母 (18)4.2.1六角螺母C级 (18)4.2.2六角薄螺母无倒角 (19)4.3 螺钉 (19)4.3.1十字槽盘头螺钉 (19)4.3.2十字槽沉头螺钉(十字平头螺钉) (20)4.3.3内六角圆柱端紧定螺钉 (21)4.3.4 组合螺钉 (22)4.3.5螺钉、螺栓的过孔和沉头座 (23)4.4 自攻螺钉 (24)4.4.1 十字槽盘头自攻螺钉(十字圆头自攻螺钉) (24)4.4.2 十字沉头自攻螺钉(十字平头自攻螺钉) (25)4.5 垫圈 (27)4.5.1标准型弹簧垫圈 (27)4.5.2平垫圈 (27)4.6 开口挡圈 (29)4.7 圆柱销 (32)4.7.1弹性圆柱销 (32)4.7.2实心圆柱销 (32)4.8 铆钉 (34)4.8.1沉头铆钉 (34)4.8.2圆头铆钉 (35)4.8.3开口型肩圆头抽芯铆钉 (35)4.8.4开口型沉头抽芯铆钉 (36)4.8.5铆钉规格适用于被铆件的总厚度 (37)5. 常见紧固件的材料要求 (37)6. 机械螺纹的主要技术参数 (40)7. 参考文献 (41)8. 附录 (41)8.1 常用紧固件选用便览表 (41)8.2世界钢号对照表 (46)1. 目的规范广电运通研究院紧固件的设计选型,并为生产装配螺栓,螺钉时扭力的确定提供依据。
机械设计-螺栓组受力分析计
F = Q / 4 = 16000 / 4 = 4000 N
解:由接合面的摩擦条件得: 由接合面的摩擦条件得:
f ⋅ F1 ⋅ Z ⋅ i ≥ K S ⋅ R ⇒ F1 ≥ K S ⋅ R 1.2 × 5000 = = 10000 N f ⋅ Z ⋅ i 0.15 × 4 × 1
σ=
4 ×1.3F2 ≤ [σ ] 2 πd1 4 × 1.3 × F2
⇒ d1 ≥
π [σ ]
4 ×1.3 ×14000 = = 8.51mm π × 320
悬挂的板材用两个普通螺栓与顶板联接。如果每个螺栓与被联接件刚度相等, 悬挂的板材用两个普通螺栓与顶板联接。如果每个螺栓与被联接件刚度相等, 即C1 = C2,每个螺栓的预紧力为 ,每个螺栓的预紧力为1000N,当轴承受载时要求轴承座与顶板接合面 , 间不出现间隙,则轴承上能承受的极限垂直径向载荷R是多少 是多少?。 间不出现间隙,则轴承上能承受的极限垂直径向载荷 是多少?。
σ=
4 × .1.3F2 ≤ [σ ] πd12 4 × 1.3F2
P
⇒ d1 ≥
π [σ ]
=
4 × 1.3 × 2500 = 7.69mm π × 70
螺栓的小径d1=8.376>7.69 ∵M10螺栓的小径 螺栓的小径 的螺栓。 ∴ 选M10的螺栓。 的螺栓
某容器内装有毒气体, 某容器内装有毒气体,P=1.5N/mm2,D=300mm,容器盖周围均布 个M20的 ,容器盖周围均布10个 的 螺栓( 为防止泄漏, 螺栓(d1=17.835mm)为防止泄漏,取残余预紧力 为防止泄漏 取残余预紧力F1=1.5F,螺栓杆的许用应力 , [σ]=160Mpa,试问该螺栓组的设计是否安全? ,试问该螺栓组的设计是否安全? 解:每个螺栓受的轴向载荷为
螺栓受剪切力状态下的分析和计算
(2)螺栓排列的要求
①受力要求
在垂直于受力方向:对于受拉构件,各排螺栓的中距 及边距不能过小,以免使螺栓周围应力集中相互影响, 且使钢板的截面削弱过多,降低其承载能力。
平行于受力方向: 端距应按被连接钢板抗挤压及抗剪切等强度条件确定,
以便钢板在端部不致被螺栓冲剪撕裂,规范规定端距不 应小于2d0;
螺栓连接的构造要求
螺栓连接除了满足上述螺栓排列的容许距离外,根据 不同情况尚应满足下列构造要求:
(1)为了证连接的可靠性,每个杆件的节点或拼接接头一 端,永久螺栓不宜少于两个,但组合构件的缀条除外。
(2)直接承受动荷载的普通螺栓连接应采用双螺帽,或其 他措施以防螺帽松动。
(3)C级螺栓宜用于沿杆轴方向的受拉连接,可用于抗剪连 接情况有:承受静载或间接动载的次要连接;承受静载的可 拆卸结构连接;临时固定构件的安装连接。 (4)型钢构件拼接采用高强螺栓连接时,为保证接触面紧密, 应采用钢板而不能采用型钢作为拼接件。
N
b c
d
t
f
b c
d
式中: fcb —螺栓承压强度设计值; ∑ t— 连 接 接 头 一 侧 承 压 构 件 总 厚 度 a+b+c 和
d+e的较小值。
N/3
a
N/3
b
N/3
c
d
N/2
e
N/2
一个抗剪普通螺栓的承载力设计值:
Nb min
min
N
vb,N
b c
四、受剪螺栓组连接的计算
N
++ ++
坏。
2、单个普通螺栓的抗剪承载力计算
由破坏形式知抗剪螺栓的承载力取决于螺栓杆受剪和孔 壁承压(即螺栓承压)两种情况。
机械设计习题--螺栓连接
− bh13 12
=b 12
h3 − h13
( ) = 150 3403 − 2203
12
= 358200000(mm 4 )
K
α
O
O
h h1 220
280 160
W
=
Ioo h2
=
35820000 170
150
= 2107059(mm 3)
b
1.接合面下端
σ pmax
=
zF1 A
+
M W
=
4 × 5783 + 150 × (340 - 220)
116
作业:
P101-102 思考题: 5-1、5-2、5-3、5-4 习题:5-5、5-6、5-8、5-10*
138
FPV
=
PV 4
= 3677 4
= 919(N )
PH
(3)在翻转力矩M作用下,上面两个螺栓受轴向力:
Pv
M PH α Pv
150
力的合成?
∑ FM
=
MLmax
z
L2i
= 1051070×140 4 × 1402
= 1877(N)
i=1
横向力: FH = 771(N )
可见受力最大的单个联接所受力为:
0.2× 2796
=
7079(N )
F1+Fmax来计算F2
114
280 160
Pv
解:(一)受力分析 (二)按拉伸强度确定螺栓直径
选4.6级螺栓,控制预紧力,S=1.5 则许用应力[σ]=240/1.5=160MPa
d1 ≥
4 ×1.3F2
π [σ ]
螺栓组受力分析与计算
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓有效载荷计算公式
螺栓有效载荷计算公式
螺栓有效载荷是指螺栓或螺钉能够承受的最大拉力或剪力。
它是工程设计中非常重要的一个指标,能够保证机械装置的安全运行。
螺栓有效载荷的计算公式是根据螺栓的材料、直径、螺纹规格以及紧固力等参数来确定的。
一般而言,螺栓的有效载荷计算公式可分为拉力和剪力两种情况。
对于拉力情况,螺栓的有效载荷计算公式为:
P = F / A
其中,P代表螺栓的有效载荷,F代表螺栓所承受的拉力,A代表螺栓的截面积。
对于剪力情况,螺栓的有效载荷计算公式为:
P = F / A_s
其中,P代表螺栓的有效载荷,F代表螺栓所承受的剪力,A_s代表螺栓的剪切截面积。
在实际应用中,为了保证螺栓的安全性,通常会对螺栓的有效载荷进行安全系数的调整。
安全系数可以根据具体的工程要求来确定,一般建议在设计时选择适当的安全系数,以确保螺栓的可靠性和稳定性。
螺栓有效载荷的计算公式在工程设计中起着重要的作用,它能够帮助工程师评估螺栓的承载能力,从而选择合适的螺栓规格和数量。
合理的螺栓设计不仅可以提高机械装置的安全性和可靠性,还能够减少材料的浪费,降低成本。
螺栓有效载荷计算公式是工程设计中不可或缺的一部分,它能够帮助工程师评估螺栓的承载能力,确保机械装置的安全运行。
在实际应用中,我们需要根据具体情况选择合适的螺栓规格和数量,并考虑安全系数的影响,以确保螺栓的可靠性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型螺栓组的受力分析及螺栓载荷计算
载荷类型螺栓组的布置工作要求单个螺栓的载荷
载荷平行于螺栓组的轴线,且合力通过被联接件结合面的形心保证受载后结
合面的紧密性
各螺栓受工作载荷均等:
式中z —螺栓的个数;
F w—作用于被联接件上的外力总和
采用普通螺栓联接时,各螺栓受力 (预紧力)均等:
采用铰制孔螺栓联接时, 各螺栓受力(切向力)均等:
载荷作用在被联接件的结 合面上,且通过螺栓组的形心 在受横向载荷 后,被联接件不允 许有相对错动
-摩擦联接可靠性因子,取K f=1.1〜1.3 ;
m—结合面数;
卩一结合面间摩擦因数,见表22.1-9
K f
采用普通螺栓联接时,各螺栓的预紧力均等:
采用铰制孔螺栓时,距螺栓组形心最远的螺栓受力 最大:
载荷为作用在结合面上的 旋转力矩T 受旋转力矩后, 被联接件不能有相 对转动
螺栓组受翻转力矩 M
受载后,结合面不允
许开缝和压溃
距结合面对称轴最远的螺栓受工作载荷最大:
螺栓最小预紧力
允许螺栓最大预紧力:
结合面材料的许用挤压应力,见表22.1-10
内部资料, 请勿外传!。