负序零序正序分量的作图求法

合集下载

电力系统正序、负序、零序网络画法

电力系统正序、负序、零序网络画法

__________________________________________________ 电力系统正序、负序、零序网络画法1 电力系统各元件数学模型及其正、负、零序等值电路 1.1 发电机发电机采用次暂态模型,用图 2.9(a )所示电路表示,图中X d''为次暂态电抗,忽略定子回路电阻,并设发电机的负序电抗等于次暂态电抗,即X X d2=''。

''E为次暂态电动势。

发电机的中性点一般不接地,从而没有零序回路;同步发电机在对称运行时,只有正序电势和正序电流,此时的电机参数,就是正序参数。

1.2负荷负荷采用恒阻抗模型,其正序阻抗由潮流计算求得的负荷功率和负荷节点电压计算,即:Z U P Q L L L L 12=-() (51)负序电抗由经验公式计算或由用户给定,默认为与正序相等。

负荷的中性点一般不接地,从而也没有零序回路。

最新版的故障程序中未考虑负荷。

1.3线路线路采用集中阻抗模型,如图2.10所示,其正、负序参数相等,根据该图计算正负序节点导纳矩阵的有关元素。

零序参数一般与正负序参数不同,当该线路不存在与其它线路的互感时,也采用图2.10所示的等值电路来形成零序节点导纳矩阵。

当该线路与其平行线路之间还存在零序互感时,则在形成零序节点导纳矩阵时需计及互感的影响。

不妨以两条互感支路为例来说明形成零序节点导纳矩阵时对互感的处理,多条线路组成的互感组的处理可以依此类推。

IJ 图2.10 线路模型p q rs(a)pqr s(b)y 'rsy '-my'图2.11 互感支路及其等值电路E '' d X j ''G (a)正序电动势源d''G (b) 正序电流源I dX j ''G (c) 负序等值电路图2.9 发电机等值电路__________________________________________________由图2.11(a )得两支路的电压-电流方程为:⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--s r qp rs m m pq rs pq rs pq rs m m pq s r q p V V V V y y y y I I I I Z Z Z Z V V V V'''' (52) 由此得消互感后的等值电路如图2.11(b )所示,根据该图即可按照无互感的情况计算零序节点导纳矩阵的有关元素。

图解正序负序零序

图解正序负序零序

正序负序与零序电力三相不平衡作图法对称分量法1:三相不平衡的的电压(或电流),可以分解为平衡的正序、负序和零序2:零序为3相电压向量相加,除以33:正序将BC相旋转120度到A相位置,这样3个向量相加会较长,3个向量相加,除以34:负序将BC相旋转120度到A相相反位置,这样3个向量相加会较短,3个向量相加,除以3个人为理解三相不平衡做的总结。

总没有理解三相不平衡,因为我没有上过电力系统的课程,实际上课本上有,所以百度上很少。

有很多东西,网上没有的原因是因为实际很简单,专家们都不好意思写。

对称分量法参考借用了东南大学电器工程学院的PPT的图片。

作图法用CAD的平移很方便,求3分点位置还网上查了下。

449836432@.,欢迎补充、更正、交流。

1:不过我仍没有了解三相不平衡的各种保护方法。

零序保护倒是理解,用开口三角即可。

负序保护难道采样后用算,那一个周波都过了,保护时间是否足够。

2:similink是否可以仿真故障并做相序分析3:可以方便的实现matlab编程,将不平衡的三相精确地分解为正序、负序与零序(曾经有简单估算方法)。

计算程序需要输入每相的幅值与相角。

不平衡保护设备现场计算需要采集幅值与相角作为输入参数吗?这个问题肯定很简单,但我没查到文章介绍实现方法。

4:暂态过程的不平衡一致吗5:希望理解或仿真电力系统故障导致的不平衡,并以此判定系统故障,本次仍没能实现,希望下次再突击阅读理解。

欢迎推荐文章。

一:理解1 相序在三相电力系统中,各相电压或电流依其先后顺序分别达到最大值(以正半波幅值为准)的次序,称为相序。

正相序:分别达到最大值的次序为A、B、C;负相序:分别达到最大值的次序为A、C、B。

对于理想的电力系统,只有正序分量。

以电压为例。

对称的三相系统:三相中的电压Ua 、Ub 、Uc 对称,只有一个独立变量。

如三相相序为a 、b 、c ,由Ua 得出其余两相a c ab U U U U αα== 2式中α为复数算子j120e =α2不对称运行状态的主要原因(1)外施电压不对称,三相电流也不对称。

电力系统中的正序负序零序分量详解

电力系统中的正序负序零序分量详解

电力系统中的正序负序零序分量详解正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称,这时就能分解出有幅值的负序和零序分量度(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知道系统出了问题(特别是单相接地时的零序分量)。

下面介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于绘图条件有限,请大家按文字说明在纸上画,从已知条件画出系统三相电流(以电流为例,电压亦是一样)的向量图(请尽量绘图规范)。

(1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。

(2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。

按上述方法把此向量图三相相加并取三分之一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。

这就得出了正序分量。

(3)求负序分量:注意原向量图的处理方法与求正序时不一样。

A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。

下面的方法就与正序时一样了。

通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。

零序分量、负序分量

零序分量、负序分量

零序分量、负序分量正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量.只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零).对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因).当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图.从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端).1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端.此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。

2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。

这就得出了正序分量。

3)求负序分量:注意原向量图的处理方法与求正序时不一样。

A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。

下面的方法就与正序时一样了。

通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。

正序负序零序

正序负序零序

正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,一般针对三相三线制的电机回路,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图。

从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。

1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。

2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C 相顺时针转120度,因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。

这就得出了正序分量。

3)求负序分量:注意原向量图的处理方法与求正序时不一样。

A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。

下面的方法就与正序时一样了。

总之,零序电流通常作为漏电故障判断的参数;负序电流常作为电机故障判断;正序电流对电机运行质量是一种评估。

对称分量法(正序、负序、零序)

对称分量法(正序、负序、零序)

对称分量法之宇文皓月创作正序:A相领先B相120度,B相领先C相120度,C相领先A 相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A 相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序、负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。

图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不服衡的有效方法,其基本思想是把三相不服衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不服衡的问题转化成平衡问题进行处理。

在三相电路中,对于任意一组分歧错误称的三相相量(电压或电流),可以分解为3组三相对称的分量。

图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2 Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0 式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1, α+α2+1=0 由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC) I2=Ia2= 1/3(IA +α2IB +αIC) I0=Ia0= 1/3(IA +IB +IC) 以上3个等式可以通过代数方法或物理意义(方法)求解。

对称分量法(正序、负序、零序)

对称分量法(正序、负序、零序)

对称分量法正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序、负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。

图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。

在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。

图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC)I2=Ia2= 1/3(IA +α2IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数方法或物理意义(方法)求解。

电力系统的正序,负序,零序分量

电力系统的正序,负序,零序分量

电力系统的正序,负序,零序分量当前世界上的交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC三相的顺序来定的。

正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

系统里面什么时候分别用到什么保护?三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序负序和零序分量。

正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知道系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图。

u9mAC-kW从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。

1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。

电力系统里正序,负序,零序分量

电力系统里正序,负序,零序分量

电力系统里什么是正序,负序,零序分量?系统分别用到何种保护?交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC三相的顺序来定的。

正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

系统里面什么时候分别用到什么保护?三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序负序和零序分量。

正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图。

1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A 相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。

2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。

正序、负序、零序

正序、负序、零序

在计算电力系统不平衡情况下引用了对称分量法,即任何三相不平衡的电流、电压或阻抗都可以分解成为三个平衡的相量成分即正相序(UA1、UB1、UC1)、负相序(UA2、UB2、UC2)和零相序(UA0、UB0、UC0),即有:UA=UA1+UA2+UA0,UB=UB1+UB2+UB0,UC=UC1+UC2+UC0,其正相序的相序(顺时方向)依次为UA1、UB1、UC1,大小相等,互隔120度;负相序的相序(逆时方向)依次为UA2、UB2、UC2,大小相等,互隔120度;零相序大小相等且同相,各相序都是按逆时针方向旋转。

在对称分量法中引用算子a,其定义是单位相量依逆时针方向旋转120度,则有:UA0=1/3(UA+UB+UC),UA1=1/3(UA+aUB+aaUC),UA2=1/3(UA+aaUB+aUC)注意以上都是以A相为基准,都是矢量计算。

知道了UA0实际也知道了UBO和VCO,同样知道了UA1也就知道了UB1和UC1,知道了UA2也就知道了UB2和UC2简介正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图。

图例分析从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。

5分钟教你正确理解电力系统中的正序负序零序

5分钟教你正确理解电力系统中的正序负序零序
(2) 对新的向量图进行图解零序时进行的操作,得到向量 OC”。 (3) 取 OC”向量幅值的三分之一 ,O1 即为正序分量的 A 相
2.3 作图求负序
(1) 保持 A 相不动, B 相顺时针转 120 度 OB’, C 相逆时针转 120 度 OC’, 得到新的向量图。
(2) 对新的向量图进行图解零序时进行的操作,得到向量 OC", (3) 取 OC"向量幅值的三分之一即为负序分量的 A 相
2.1 作图求零序
把三个向量相加求和。 即 A 相不动,B 相的原点平移到 A 相的顶端(箭头处), 同方法把 C 相的平移到 AB’的顶端。 此时作 o 点到 C’向量,这个向量就是三相 向量之和。取此向量幅值的三分之一,向量 o0, 这就是零序分量。
2.2 作图求正序
(1) 保持 A 相不动,然后 B相逆时针转 120 度 OB’,C相顺时针转 120 度 OC’, 得到新的向量图。
3
3
IA
四 三相电压向量和为零
对称的三相系统,其 3 相电压向量之和为零。
( 1)用三角函数
sin( α+β)=sin αcosβ+cosαsin β sin( α- β)=sin αcosβ-cos αsin β A 相电压 U sin α B 相电压 U sin( α -120) C相电压 U sin( α +120) Ua+U b+U c =U(sin α+sin( α-120)+sin( α+120)) =U(sin α +(sin αcos120-cos αsin120)+ (sin α cos120+cosαsin120) ) =U(sin α +2sin αcos120) =U(sin α +2sin α(-0.5))=0

图解正序负序零序

图解正序负序零序

图解正序负序零序正序负序与零序电⼒三相不平衡作图法对称分量法1:三相不平衡的的电压(或电流),可以分解为平衡的正序、负序和零序 2:零序为3相电压向量相加,除以33:正序将BC 相旋转120度到A 相位置,这样3个向量相加会较长,3个向量相加,除以34:负序将BC 相旋转120度到A 相相反位置,这样3个向量相加会较短,3个向量相加,除以3⼀:理解1 相序在三相电⼒系统中,各相电压或电流依其先后顺序分别达到最⼤值(以正半波幅值为准)的次序,称为相序。

正相序:分别达到最⼤值的次序为A 、B 、C ;负相序:分别达到最⼤值的次序为A 、C 、B 。

对于理想的电⼒系统,只有正序分量。

以电压为例。

对称的三相系统:三相中的电压Ua 、Ub 、Uc 对称,只有⼀个独⽴变量。

如三相相序为a 、b 、c ,由Ua 得出其余两相a c ab U U U U αα== 2式中α为复数算⼦ j120e =α2不对称运⾏状态的主要原因(1)外施电压不对称,三相电流也不对称。

(2)各相负载阻抗不对称。

当初级外施电压对称,三相电流不对称。

不对称的三相电流流经变压器,导致各相阻抗压降不相等,从⽽次级电压也不对称。

(3)外施电压和负载阻抗均不对称。

3对称分量法对称分量法是分析三相不对称运⾏的基本⽅法。

任意⼀组三相不对称的物理量(电压、电流等)均可分解成三组同频率的对称的物理量。

以电流为例,说明如下:理解为:1:⼀个三相,幅值各不相同,⽅向差也可能不互为120。

2:我们可以将其分解为3个三相,正序、负序、零序。

3:将新分解产⽣的每相各⾃相加,即可还原为源三相的各相电压。

4:正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

⼆:作图出正负零序理解及记忆⽅法(1)零序,三个向量不动。

向量相加后/3(2)正序,将BC相指针拨到与A⽅向⼤概⼀致,这样3个相加会较长。

正确理解电力系统中的正序负序零序

正确理解电力系统中的正序负序零序

三 计算得出正负零序
以电流为例
( 1)引入复数因子
在正序中, A 相领先 B 相 120 度。由于角度一般以逆时针为正,如电压用向 量表示的话,向量 B 可由向量 A 逆时针旋转 240 度而得,而不是 120 度。 向量 C可由向量 A 逆时针旋转 120 度而得,而不是 240 度。
若 A 相电压表示为 Ue j 0 ,则 B 相电压可表示为 Ue j 240 ,C 相电压可表示为
正序负序与零序
电力 三相不平衡 作图法 对称分量法 1:三相不平衡的的电压(或电流) ,可以分解为平衡的正序、负序和零序 2:零序为 3 相电压向量相加,除以 3 3:正序将 BC相 旋转 120 度到 A 相位置 ,这样 3 个向量相加会较 长 ,3 个向 量相加,除以 3 4:负序将 BC相 旋转 120 度到 A 相相反位置 ,这样 3 个向量相加会较 短 ,3 个向量相加,除以 3
I
0
IC
IA IC
2I A
I
0 C
I
0 A
利用上述公式,已知系统的各相电压及相角,即可用程序求出正负零序。也 就是可以通过编程求正负零序。
( 3)已知正负零序,合成三相电流向量
IA
1 1 1 IA
IB
2
1 IA
IC
21
I
0 A
IA
IA
IA
I
0 A
IB
IB
IB
I
0 B
IC
IC
IC
I
0 C
2I A
二:作图出正负零序
理解及记忆方法 (1)零序,三个向量不动。向量相加后 /3 (2)正序,将 BC相指针拨到与 A 方向大概一致,这样 3 个相加会较长。于 是 B 逆时针拨 120 度,C顺时针拨 120 度。拨后的 3 个向量相加 /3, 即为正序的 A 相 (3)负序,将 BC相位置大概调换,这样 3 个相加会较短。于是 B 顺时针拨 120 度, C 逆时针拨 120 度。拨后的 3 个向量相加 /3, 即为负序的 A 相 求出 A 相后, BC相按正负相序旋 120 度或 240 度。

对称分量法(正序、负序、零序)

对称分量法(正序、负序、零序)

对称分量法正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序、负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。

图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。

在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。

图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC)I2=Ia2= 1/3(IA +α2IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数方法或物理意义(方法)求解。

对称分量法(正序、负序、零序)

对称分量法(正序、负序、零序)

对称分量法正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序、负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。

图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。

在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。

图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2 Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2 Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α 2 IC)I2=Ia2= 1/3(IA +α2 IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数方法或物理意义(方法)求解。

图解正序、负序、零序分量3页

图解正序、负序、零序分量3页

图解正序、负序、零序分量:
1. 正序分量
正序分量是指三相电网上电压或电流的相量按照正弦规律依次相差120°的电压或电流。

在三相电网上,正序分量的存在会导致电网出现较大的零序电流,从而影响电网的稳定性和可靠性。

因此,在设计和维护三相电网上,需要采取措施来减小正序分量的影响。

2. 负序分量
负序分量是指三相电网上电压或电流的相量按照负弦规律依次相差120°的电压或电流。

在三相电网上,负序分量的存在会导致电网出现较大的负序电流,从而影响电网的稳定性和可靠性。

因此,在设计和维护三相电网上,需要采取措施来减小负序分量的影响。

3. 零序分量
零序分量是指三相电网上电压或电流的相量按照零值规律依次相差120°的电压或电流。

在三相电网上,零序分量的存在会导致电网出现较大的零序电流,从而影响电网的稳定性和可靠性。

因此,在设计和维护三相电网上,需要采取措施来减小零序分量的影响。

电力系统正序、负序、零序网络画法

电力系统正序、负序、零序网络画法

I电力系统正序、负序、零序网络画法1电力系统各元件数学模型及其正、负、零序等值电路1.1发电机发电机采用次暂态模 型,用图2.9(a )所示电 路表示,图中X ;为次暂态 电抗,忽略定子回路电阻, 并设发电机的负序电抗等 于次暂态电抗,即 X 2 = X ;。

E "为次暂态电 动势。

发电机的中性点一般 不接地,从而没有零序回 路;同步发电机在对称运行时,只有正序电势和正序电流,此时的电机参数,就是正序参数。

1.2负荷负荷采用恒阻抗模型,其正序阻抗由潮流计算求得的负荷功率和负荷节点电压计算,即:Z L 1 =U[(P L -Q L )(51)负序电抗由经验公式计算或由用户给定,默认为与正序相等。

负荷的中性点一般不接地, 从而也没有零序回路。

最新版的故障程序中未考虑负荷。

1.3线路线路采用集中阻抗模型,如图2.10所示,其正、负序参数相等,根据该图计算正负序节点导纳矩阵的有关元素。

零序参数一般与正负序参数不同,当该线路不存在与其它线路的互 感时,也采用图2.10所示的等值电路来形成零序节点jX d(c)负序等值电路导纳矩阵。

当该线路与其平行线路之间还存在零序互感时,则在形成零序节点导纳矩阵时需计及互感的影响。

不妨以两条互感支路为例来说明形成零序节点导纳矩阵时对互感的处理,y pq jO.5B j0.5BJ多条线路组成的互感组的处理可以依此类推。

图2.10线路模型图2.11互感支路及其等值电路I1.4变压器(1)双绕组变压器不计变压器励磁回路,双绕组变压器的正负序等值电路用它的漏抗串联一个无损耗的理 想变压器模拟,如图2.12所示,其中Z 为变压器的标幺值等值阻抗,K 为理想变压器的变比。

经变压器以后,不仅电压和电流的幅值要根据变比变化,它们的相位也会发生变化,即变比 为一复数,K 二K“,其中 取决于变压器的接线方式, 当所有计算均针对标幺值时,理想变压器变比的幅值为 1,即K =1.°。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是正序电流,什么是负序电流,什么是零序电流
[ 2010-5-22 12:52:00 | By: zydlyq ]
1.用最简单的语言概括如下:
当今全球的交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC 三相的顺序来定的。

正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

系统里面什么时候分别用到什么保护?
三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序负序和零序分量。

2.
三相电网中什么是正序电流,什么是负序电流,什么是零序电流
正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图。

从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。

1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A 相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。

2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。

这就得出了正序分量。

3)求负序分量:注意原向量图的处理方法与求正序时不一样。

A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。

下面的方法就与正序时一样了。

通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。

在这里再说说各分量与谐波的关系。

由于谐波与基波的频率有特殊的关系,故在与基波合成时会分别表现出正序、负序和零序特性。

但我们不能把谐波与这些分量等同起来。

由上所述,之所以要把基波分解成三个分量,是为
了方便对系统的分析和状态的判别,如出现零序很多情况就是发生单相接地,这些分析都是基于基波的,而正是谐波叠加在基波上而对测量产生了误差,因此谐波是个外来的干扰量,其数值并不是我们分析时想要的,就如三次谐波对零序分量的干扰。

相关文档
最新文档