半导体物理学(刘恩科)课后习题解第四章答案
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学刘恩科第七版完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量(k)和价带极大值附近能量(k)分别为:220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC=== sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25的一维晶格,当外加102,107 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tk hqE f∆∆== 得qEkt -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (,式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m 解:(1)由0)(=dk k dE 得 an k π=(0,1,2…)进一步分析an k π)12(+= ,E (k )有极大值,222)ma k E MAX =(ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MINMAX=-((3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部an k π2=所以m m n 2*=(5)能带顶部 an k π)12(+=,且**n p m m -=,所以能带顶部空穴的有效质量32*m m p=半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理(刘恩科)参考习题和解答-2008
第一章、 半导体中的电子状态习题1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、试指出空穴的主要特征。
1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。
1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。
求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。
题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge 、Si 的禁带宽度具有负温度系数。
1-3、 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A 、荷正电:+q ;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E nD 、m P *=-m n *。
1-4、 解:(1) Ge 、Si:a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;b )间接能隙结构c )禁带宽度E g 随温度增加而减小;(2) GaAs :a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、 解:(1) 由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a k d dE ka ka aE dk dE+=-=eVE E E E a kd dE a k E a kd dE a k a k a k ka tg dk dE ooo o 1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。
半导体物理(刘恩科)第四章小结含习题答案
ℏ������������
������0 ∝ [ⅇ������0������ − 1]
12.当几种散射概率同时存在时
P=������Ι + ������ΙΙ + ������ΙΙΙ + ⋯ ⋯
τ
=
1 ������
=
1 ������Ι+������ΙΙ+������ΙΙΙ+⋯
⟹
1 ������
=
������Ι
比本征情况下增大了������′
������
=
6.4 3.18×10−6
=
2.01
×
106倍
显然掺杂大大提高了电导率
3. 电阻率为 10.m 的 p 型 Si 样品,试计算室温时多数载流子和少数载流子浓度。
解:对 p 型 Si,多子为空穴 ������ = 1
������������������������
其中������������ = 500 ������������2/(������������)
∴
������
=
1 ������������������������
=
1 10×1.6×10−19×500
=
1.25
×
1015������������−3
������
=
������������2 ������
=
47
×
1.602
×
1 10−19
×
(3800
+
1800)
=
2.37
×
1013������������−3
2. 试 计 算本 征 Si 在 室温 时的 电导率 ,设 电子和 空穴 迁移率 分别 为 1450cm2/( V.S)和
半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案
料的电阻率n=0.38m2/( 121.8。
V.S),Ge的单晶密度为5.32g/cm3,Sb原子量为
解:该Ge单晶的体积为:;
Sb掺杂的浓度为:
查图3-7可知,室温下Ge的本征载流子浓度,属于过渡区
5. 500g的Si单晶,掺有4.510-5g 的B ,设杂质全部电离,试求该材
料的电阻率p=500cm2/( V.S),硅单晶密度为2.33g/cm3,B原子量为10.8。 解:该Si单晶的体积为:;
21. 试计算掺磷的硅、锗在室温下开始发生弱简并时的杂质浓度为多 少?
22. 利用上题结果,计算掺磷的硅、锗的室温下开始发生弱简并时有 多少施主发生电离?导带中电子浓度为多少?
第四章习题及答案 1. 300K时,Ge的本征电阻率为47cm,如电子和空穴迁移率分别为 3900cm2/( V.S)和1900cm2/( V.S)。 试求Ge 的载流子浓度。 解:在本征情况下,,由知 2. 试计算本征Si在室温时的电导率,设电子和空穴迁移率分别为 1350cm2/( V.S)和500cm2/( V.S)。当掺入百万分之一的As后,设杂质 全部电离,试计算其电导率。比本征Si的电导率增大了多少倍?
5. 利用表3-2中的m*n,m*p数值,计算硅、锗、砷化镓在室温下的NC , NV以及本征载流子的浓度。
6. 计算硅在-78 oC,27 oC,300 oC时的本征费米能级,假定它在禁带 中间合理吗?
所以假设本征费米能级在禁带中间合理,特别是温度不太高的情况 下。
7. ①在室温下,锗的有效态密度Nc=1.051019cm-3,NV=3.91018cm-3, 试求锗的载流子有效质量m*n m*p。计算77K时的NC 和NV。 已知300K 时,Eg=0.67eV。77k时Eg=0.76eV。求这两个温度时锗的本征载流子浓 度。②77K时,锗的电子浓度为1017cm-3 ,假定受主浓度为零,而EcED=0.01eV,求锗中施主浓度ED为多少?
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科、朱秉升)第七版-最全课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=(, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,222)ma k E MAX=( 214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
【精品】半导体物理学(刘恩科第七版)习题答案(比较完全)
半导体物理学(刘恩科第七版)习题答案(比较完全)------------------------------------------作者------------------------------------------日期第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC=== sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka mak E +-= (, 式中a 为 晶格常数,试求214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatom a a a cm atom a a a cmatom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():((1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,222)ma k E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()mak E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==(4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π〔1〕禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;〔4〕价带顶电子跃迁到导带底时准动量的变化 解:〔1〕eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si 〔100〕,〔110〕,〔111〕面每平方厘米内的原子个数,即原子面密度〔提示:先画出各晶面内原子的位置和分布图〕Si 在〔100〕,〔110〕和〔111〕面上的原子分布如图1所示:〔a 〕(100)晶面 〔b 〕(110)晶面〔c 〕(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求〔1〕布里渊区边界; 〔2〕能带宽度;〔3〕电子在波矢k 状态时的速度;〔4〕能带底部电子的有效质量*n m ;〔5〕能带顶部空穴的有效质量*p m解:〔1〕由0)(=dk k dE 得 an k π= 〔n=0,±1,±2…〕 进一步分析an k π)12(+= ,E 〔k 〕有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E 〔k 〕有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3〕电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== 〔4〕电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:〔1〕理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科、朱秉 升)第七版-最全课后题答案
(5)能带顶部空穴的有效质量
解:(1)由 得 (n=0,1,2…) 进一步分析 ,E(k)有极大值,
时,E(k)有极小值 所以布里渊区边界为 (2)能带宽度为 (3)电子在波矢k状态的速度 (4)电子的有效质量 能带底部 所以 (5)能带顶部 , 且, 所以能带顶部空穴的有效质量
20. 制造晶体管一般是在高杂质浓度的n型衬底上外延一层n型外延层, 再在外延层中扩散硼、磷而成的。
(1)设n型硅单晶衬底是掺锑的,锑的电离能为0.039eV,300K时的EF 位于导带下面0.026eV处,计算锑的浓度和导带中电子浓度。
(2)设n型外延层杂质均匀分布,杂质浓度为4.61015cm-3,计算300K 时EF的位置及电子和空穴浓度。
8. 利用题 7所给的Nc 和NV数值及Eg=0.67eV,求温度为300K和500K 时,含施主浓度ND=51015cm-3,受主浓度NA=2109cm-3的锗中电子及
空穴浓度为多少?
9.计算施主杂质浓度分别为1016cm3,,1018 cm-3,1019cm-3的硅在室温下 的费米能级,并假定杂质是全部电离,再用算出的的费米能 级核对 一下,上述假定是否在每一种情况下都成立。计算时,取施主能级 在导带底下的面的0.05eV。
17. 施主浓度为1013cm3的n型硅,计算400K时本征载流子浓度、多子浓 度、少子浓度和费米能级的位置。
18. 掺磷的n型硅,已知磷的电离能为0.044eV,求室温下杂质一 半电离时费米能级的位置和浓度。
19. 求室温下掺锑的n型硅,使EF=(EC+ED)/2时锑的浓度。已知锑的 电离能为0.039eV。
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(第7版本)刘恩科第四章习题答案
比本征情况下增大了
' 6.4 2.1 10 6 倍 6 3 10
3. 电阻率为 10 .m 的 p 型 Si 样品,试计算室温时多数载流子和少数载流子浓度。 解:查表 4-15(b)可知,室温下,10 .m 的 p 型 Si 样品的掺杂浓度 NA 约为1.5 1015 cm 3 ,查表 3-2 或 图 3-7 可知,室温下 Si 的本征载流子浓度约为 ni 1.0 10 10 cm 3 , N A ni
n p0 N D 2 10 13 8.4 10 14 8.6 10 14 cm 3
1/
1 1 1.9 cm 14 nqun 8.6 10 1.602 10 19 0.38 10 4
5. 500g 的 Si 单晶,掺有 4.510-5g 的 B ,设杂质全部电离,试求该材料的电阻率p=500cm2/( V.S), 硅单晶密度为 2.33g/cm3,B 原子量为 10.8。 解:该 Si 单晶的体积为: V B 掺杂的浓度为: N A
7 长为 2cm 的具有矩形截面的 Ge 样品,截面线度分别为 1mm 和 2mm,掺有 1022m-3 受主,试求室温时样 品的电导率和电阻。再掺入 51022m-3 施主后,求室温时样品的电导率和电阻。 解: N A 1.0 10 22 m 3 1.0 10 16 cm 3 ,查图 4-14(b)可知,这个掺杂浓度下,Ge 的迁移率 u p 为 1500 cm2/( V.S),又查图 3-7 可知,室温下 Ge 的本征载流子浓度 ni 2 10 13 cm 3 , N A ni ,属强电离区, 所以电导率为
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版-课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理分章答案第四章-36页文档资料
L [111] Γ
X[100]
• Si的能带结构
L [111]
Γ
X[100]
• Ge的能带结构
L [111]
Γ
X[100]
2、高场畴及耿氏振荡
更多精品资源请访问
docin/sanshengshiyuan doc88/sanshenglu
著) • 能谷间散射:等同能谷间散射高温下较易发生;不同
能谷间散射一般在强电场下发生。
(1)电离杂质散射(即库仑散射)
载流子的散射几率P 散射几单率位Pi∝时N间iT内-3/2 一个载流子受到散射的平均 (次N数i:。为主杂要质浓用度于总描和述)散射的强弱。
(2)晶格振动散射
晶格振动表现为格波
N个原胞组成的晶体→格波波矢有N个。格波的总数 等于原子自由度总数
§4.7 多能谷散射 耿氏效应
1、双能谷模型和砷化镓的能带结构
(1)负微分电导、负微分迁移率 半导体材料的载流子运动速度随电场的增加而减
小称为负微分电导。
(2)双能谷模型 半导体有两个能谷,它们之间有能量间隔△E。在外
电场为零时,导带电子按晶格温度和各自的状态密度所决
定的分布规律分布于两能谷之中。外电场增加时载流子将
(A)声学波散射:
在长声学波中,纵波对散射起主要作用(通过体变 产生附加势场)。
对于单一极值,球形等能面的半导体,理论推导得
到
Ps 16c2kh04Tu(2mn*)2 v
Ec
c
V V0
其中u纵弹性波波速。 由上式可知
3
Ps T 2
半导体物理学[刘恩科]第七版完整课后题答案解析
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC=== sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(一维晶体的电子能带可写为)2cos 81cos 87()22ka ka mak E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()mak E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=,且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
σ = nqu n + pqu p = ni q(u n + u p ) = 1×1010 ×1.602 ×10 -19 × (1350+500) = 3.0 ×10 -6 S / cm
1 1 金钢石结构一个原胞内的等效原子个数为 8 × + 6 × + 4 = 8 个,查看附录 B 知 Si 8 2
ρ i = 1/ σ i =
1 ni q(u n + u p )
=
1 = 12.5Ω ⋅ cm 5 ×10 ×1.602 × 10 −19 × ( 400 + 600)
14
11. 截面积为 10-3cm2, 掺有浓度为 1013cm-3 的 p 型 Si 样品,样品内部加有强度为 103V/cm的电场,求; ①室温时样品的电导率及流过样品的电流密度和电流强度。 ②400K 时样品的电导率及流过样品的电流密度和电流强度。 解: ①查表 4-15(b)知室温下,浓度为 1013cm-3的p型Si样品的电阻率为 ρ ≈ 2000Ω ⋅ cm , 则电导率为 σ = 1 / ρ ≈ 5 ×10 −4 S / cm 。 电流密度为 J = σE = 5 ×10 −4 ×10 3 = 0.5 A / cm 2 电流强度为 I = Js = 0.5 ×10 −3 = 5 ×10 −4 A ②400K时,查图 4-13 可知浓度为 1013cm-3的p型Si的迁移率约为 u p = 500cm 2 /(V ⋅ s ) , 则电导率为 σ = pqu p = 1013 ×1.602 ×10 −19 × 500 = 8 ×10 −4 S / cm 电流密度为 J = σE = 8 ×10 −4 ×10 3 = 0.8 A / cm 2
n = p0 + N D = 2 × 1013 + 8.4 × 1014 = 8.6 × 1014 cm −3
ρ = 1/ σ ≈
1 1 = = 1.9Ω ⋅ cm 14 nqu n 8.6 ×10 ×1.602 ×10 −19 × 0.38 ×10 4
5. 500g的Si单晶,掺有 4.5×10-5g 的B ,设杂质全部电离,试求该材料的电阻率 [m p =500cm2/( V.S),硅单晶密度为 2.33g/cm3,B原子量为 10.8]。 解:该 Si 单晶的体积为: V = B 掺杂的浓度为: N A =
2
>> ni ,属强电离区
ρ=
1 1 1 ≈ = = 7.8Ω.cm -19 pqu p + nqu n u p qp 1.602 × 10 × 2 × 1015 × 400
14. 截面积为 0.6cm2、长为 1cm的 n型GaAs样品,设u n =8000 cm2/( V•S),n=1015cm-3, 试求样品的电阻。
ni ≈ 2 × 1013 cm −3 , N A >> ni ,属强电离区,所以电导率为
σ = pqu p = 1.0 × 1016 × 1.602 × 10 −19 × 1500 = 2.4Ω ⋅ cm
电阻为
R=ρ
2 l l = = = 41.7Ω s s ⋅ s 2.4 × 0.1× 0.2
掺入 5×1022m-3施主后 n = N D − N A = 4.0 ×10 22 m −3 = 4.0 ×1016 cm −3 总的杂质总和 N i = N D + N A = 6.0 ×1016 cm −3 ,查图 4-14(b)可知,这个浓度下,Ge的 迁移率 u n 为 3000 cm2/( V.S),
7 长为 2cm的具有矩形截面的G e 样品,截面线度分别为 1mm 和 2mm,掺有 1022m-3受 主,试求室温时样品的电导率和电阻。再掺入 5×1022m-3施主后,求室温时样品的电导 率和电阻。 解: N A = 1.0 ×10 22 m −3 = 1.0 ×1016 cm −3 ,查图 4-14(b)可知,这个掺杂浓度下,Ge的 迁 移 率 u p 为 1500 cm2/( V.S), 又 查 图 3-7 可 知 , 室 温 下 Ge 的 本 征 载 流 子 浓 度
V 10 = = 100Ω I 0.1 Rs 100 × 0.001 ② 样品电阻率为 ρ = = = 1Ω ⋅ cm l 0.1
③ 查表 4-15(b)知,室温下,电阻率 1Ω ⋅ cm 的 n 型 Si 掺杂的浓度应该为
5 ×1015 cm −3 。
9. 试从图 4-13 求杂质浓度为 1016cm-3和 1018cm-3的Si,当温度分别为-50OC和+150OC 时的电子和空穴迁移率。 解:电子和空穴的迁移率如下表,迁移率单位cm2/( V.S) 浓度 温度 电子 空穴 1016cm-3 -50OC 2500 800 +150OC 750 600 1018cm-3 -50OC 400 200 +150OC 350 100
第四章习题及答案 1. 300K时, Ge的本征电阻率为 47Ωcm, 如电子和空穴迁移率分别为 3900cm2/( 和 1900cm2/( V.S)。 试求Ge 的载流子浓度。
1 1 知 = nqu n + pqu p ni q(u n + u p )
V.S)
解:在本征情况下, n = p = ni ,由 ρ = 1 / σ =
500 = 214.6cm 3 ; 2.33
4.5 ×10 −5 × 6.025 ×10 23 / 214.6 = 1.17 ×1016 cm 3 10.8
查表 3-2 或图 3-7 可知,室温下 Si 的本征载流子浓度约为 ni = 1.0 ×1010 cm −3 。 因为 N A >> ni ,属于强电离区, p ≈ N A = 1.12 × 1016 cm −3
N型
P型
N型
P型 N型 690 0.09
P型 240 0.26
迁移率(cm2/( V.S))(图 4-14) 1300 500 电阻率ρ(Ω.cm) 电阻率ρ(Ω.cm)(图 4-15) 4.8 4.5
1200 420
12.5 0.52 1.5 14 0.54 1.6
0.085 0.21
硅的杂质浓度在 1015-1017cm-3范围内, 室温下全部电离, 属强电离区,n ≈ N D 或 p ≈ N A 电阻率计算用到公式为 ρ =
10. 试求本征 Si 在 473K 时的电阻率。 解:查看图 3-7,可知,在 473K 时,Si 的本征载流子浓度 ni = 5.0 ×1014 cm −3 ,在这个 浓度下,查图 4-13 可知道 u n ≈ 600cm 2 /(V ⋅ s ) , u p ≈ 400cm 2 /(V ⋅ s )
0.1×1000 = 18.8cm 3 ; 5.32
3.2 ×10 −9 ×1000 Sb 掺杂的浓度为: N D = × 6.025 ×10 23 / 18.8 = 8.42 ×1014 cm 3 121.8 查图 3-7 可知,室温下 Ge 的本征载流子浓度 ni ≈ 2 × 1013 cm −3 ,属于过渡区
电流强度为 I = Js = 0.8 ×10 −3 = 8 ×10 −4 A 12. 试从图 4-14 求室温时杂质浓度分别为 1015, 1016, 1017cm-3的p型和n型Si 样品的 空穴和电子迁移率,并分别计算他们的电阻率。再从图 4-15 分别求他们的电阻率。 浓度(cm-3) 1015 1016 1017
1 1 或ρ = pqu p nqu n
13.掺有 1.1×1016硼原子cm-3和 9×1015磷原子cm-3的S i样品,试计算室温时多数载流 子和少数载流子浓度及样品的电阻率。 解:室温下,Si 的本征载流子浓度 ni = 1.0 ×1010 / cm 3 有效杂质浓度为: N A − N D = 1.1×1016 − 9 ×1015 = 2 ×1015 / cm 3 多数载流子浓度 p ≈ N A − N D = 2 × 1015 / cm 3 n 1×10 20 少数载流子浓度 n = i = = 5 ×10 4 / cm 3 p0 2 ×1015 总 的 杂 质 浓 度 N i ≈ N A + N D = 2 × 1016 / cm 3 , 查 图 u p� � ≈ 400cm 2 / V ⋅ s , u n� � ≈ 1200cm 2 / V ⋅ s 电阻率为 4-14 ( a ) 知 ,
n=
ni (1.0 ×1010 ) 2 = = 6.7 ×10 4 cm −3 15 p 1.5 ×10
2
4. 0.1kg的Ge单晶,掺有 3.2×10-9kg的Sb,设杂质全部电离,试求该材料的电阻率 [m n =0.38m2/( V.S),Ge的单晶密度为 5.32g/cm3,Sb原子量为 121.8]。 解:该 Ge 单晶的体积为: V =
' σ ' ≈ N D qu n = 5 ×1016 ×1.602 ×10 -19 × 800 = 6.4 S / cm
比本征情况下增大了
σ' 6.4 = = 2.1 × 10 6 倍 σ 3 × 10 −6
3. 电阻率为 10Ω.m 的 p 型 Si 样品,试计算室温时多数载流子和少数载流子浓度。 解: 查表 4-15(b)可知, 室温下, 10Ω.m的p型Si样品的掺杂浓度N A 约为 1.5 × 1015 cm −3 , 查表 3-2 或图 3-7 可知,室温下Si的本征载流子浓度约为 ni = 1.0 ×1010 cm −3 , N A >> ni p ≈ N A = 1.5 ×1015 cm −3
ni =
1 1 = = 2.29 ×1013 cm −3 −19 ρq(u n + u p ) 47 ×1.602 ×10 × (3900 + 1900)
2. 试计算本征Si在室温时的电导率,设电子和空穴迁移率分别为 1350cm2/( V.S) 和 500cm2/( V.S)。当掺入百万分之一的As后,设杂质全部电离,试计算其电导率。 比本征Si的电导率增大了多少倍? 解:300K 时, u n = 1350cm 2 /(V ⋅ S ), u p = 500cm 2 /(V ⋅ S ) ,查表 3-2 或图 3-7 可知, 室温下 Si 的本征载流子浓度约为 ni = 1.0 ×1010 cm −3 。 本征情况下,