第7章-筒体结构设计

合集下载

筒中筒结构和框架

筒中筒结构和框架

1~50层
51~66层
67~90层
91层以上
5.2 筒体结构的受力性能和工作特点
剪力滞后效应: 框筒结构中应力不保持直线分布的现象。 理想筒体在水平力的作用下,腹板应力直线分布,翼缘应力相 等。而实际框筒的腹板框架轴力呈曲线分布,翼缘框架轴力也不相 等。 剪力滞后影响因素:
平面形状、建筑高宽比、梁柱刚度比
广州中信大厦 37层,322米高,97年建成
上海金贸大厦采用的是框架 -核心筒结构,建筑物88层 ,高420.5米。钢筋混凝土核 心筒呈八角形,周边8根钢骨 混凝土柱底部截面1.5mX5m ,柱中配置2根焊接H型钢。
金茂大厦内部结构
南京金陵饭店 地上39层,高108米
青岛保险公司 地下2层,地上19层,高65.9米
香港中环中心广场 60层,374米,92年建成。
马来西亚双塔楼 88层,450米,框—筒结构,1996年建成。
4、多重筒结构 内筒小,平面尺寸大,楼盖跨度大,故在内外筒 之间增设一圈柱或剪力墙并将之联系起来形成筒。
兰州工贸大厦
地上21层,地下2层,高93米,标准层高3.5米
深圳北方大厦
地上25层,地下1层,高81.6米,标准层高3.1米
3、构件截面尺寸 (1)内筒 (2)外框筒柱 截面宜做成矩形或 T形。长边在框筒平面内。尽量少用方柱

和圆柱。
筒体的角部是联系两个方向的结构协同工作的重要部位,
受力很大,通常要采取措施予以加强;
内筒角部通常可以采用局部加厚等措施加强;外筒可以加
大角柱截面尺寸,采用L形、槽形角墙等予以加强,从而
特点: • 将剪力墙集中到房屋的内部或外部形成封闭的筒体; • 筒体在水平荷载作用下好像一个竖向悬臂空心柱体,结构空 间刚度极大,抗扭性能也好; • 筒体结构具有造型美观、受力合理、使用灵活,以及整体性 强等优点,适用于高层和超高层建筑。目前全世界最高的 100幢高层建筑约三分之二以上采用筒体结构,国内百米以 上的高层建筑有一半以上采用简体结构。

7.第七章 压力容器设计基础

7.第七章 压力容器设计基础

1800 (1900) 2000 (2100) 2200 (2300) 2400 2500 2600 2800 3000 3200 3400 3500 3600 3800 4000 4200 4400 4500 4600 4800 5000 5200 5400 5500 5600 5800 6000
缺点
(1)只能套合短筒,筒节间深环焊缝多。
(2)要求准确的过盈量,对筒节的制造要求高。
16
绕板式
优点:(1)机械化程度高,操作简便,材料利用率高 优点 (2)纵焊缝少。 缺点:(1)绕板薄,不宜制造壁厚很大的容器。 缺点 (2)层间松动问题。
17
槽形绕带式
优点 (1)筒壁应力分布均匀且能承受一部分由内压产生的 轴向力。 缺点 (2)机械化程度高,材料利用率高。 (1)钢带成本高,公差要求严格。
(1) 中压容器; (2) 毒性程度为极度和高度危害介质的低压容器; (3) 易燃介质或毒性程度为中度危害介质的低压反应容器和 低压储存容器; (4) 低压管壳式余热锅炉; (5) 低压搪玻璃压力容器。
不在第三类、第二类压力容器之内的低压容器为第一类压力容器。
三类容器
二类容器
一类容器
介质毒性分 级 指 标 Ⅰ 极度危害
31
⑵公称压力
工作压力不同,相同公称直径的压力容器其筒体及其零部件
的尺寸也不同,标准零部件尺寸需按压力确定。
将承受的压力范围分为若干个标准压力等级,即公称压力。 表7-3 压力容器法兰与管法兰的公称压力PN 压力容器法 兰(MPa) 管法兰 (MPa) - 0.25 - 0.6 1.0 1.6 2.5 4.0 6.4


日本国家标准(JIS);
德国压力容器规范(AD)。

筒体结构简介PPT课件

筒体结构简介PPT课件
17
3.影响翼缘框架发挥作用的因素: ①梁、柱刚度比 ②框筒的平面形状和高宽比。 例如:翼缘框架很长时,剪力滞后导致距离角柱过远的中 间部分柱轴力很小。 框筒高宽比比较小时,整体弯曲变形减小,水平荷载将主 要由腹板框架承担,翼缘框架轴力较小,发挥作用不大。
18
二、筒中筒结构
定义:框筒和内筒共同组成的结构,一般 内筒常常做成钢筋混凝土实腹筒。
空间结构示例
12
框筒与筒中筒结构特点及布置
实腹筒与框筒都是充分利用结构的空间性能,做成 三维受力的筒式结构。
一、框筒结构
1.水平力作用下,框筒结构中除腹板框架抵抗倾 覆力矩外,翼缘框架柱主要是通过承受轴力抵抗 倾覆力矩。
2.剪力滞后:
定义:翼缘框架中横梁的弯曲和剪切变形,使得 翼缘框架各柱轴力向中心中间递减,称为剪力滞 后现象,如图所示:
实际角柱轴向变形:
N1h
EA1
Nh
等代角柱轴向变形:
EAeq
其中:N N1 N2 Nm ,m为1/2翼缘框架柱子数目;
26
N1 ——角柱轴力; h——层高;
A1、Aeq ——原角柱与等代角柱面积;
由于以上两个δ相等,可以得到:
N
Aeq N1 A1 A1
在平面结构中,各片框架之间的水平位移是通过楼板协调的。假定楼板在平面内为无限刚性,可以使同 一楼层的所有节点水平位移相同,或者各片框架水平位移也有线性关系,这可以大大减少分析中的未知 变量,在大多数情况下与实际情况也是符合的。假定楼板在其平面外刚度很小,这就表明各片框架之间 的竖向变形是独立的,也即忽略了竖向变形的协调。
②剪力滞后导致远离角柱的柱子不能充分发挥作用, 角柱以及腹板框架必须担负更多内力。从而使得空 间作用减少,结构将耗费更多的材料。

第7章高层建筑简介

第7章高层建筑简介

(二)剪力墙体系
它在自身平面内的刚度大、整体性好、水平承载力高,在水平荷载作用下的侧向位移 小,剪力墙受力示意图及布置形式见12。
图12 剪力墙受力示意图及布置形式
我国广州白云宾馆,建于1976年,高112.4m,地上33层,地下1层,采用的就 是剪力墙体系,是我国第一座高度超过100m的高层建筑,见图13。
(3)建筑高度超过100m时,不论住宅或公共建筑均为超高层 1972年,国际高层建筑会议将高层建筑分为四类: (1)第一类:9 ~ 16层,最高到50m (2)第二类:17 ~25层,最高到75m (3)第三类:26 ~40层,最高到100m (4)第四类:40层以上或高于100m。 为统一标准,我国建设部对建筑一律以10层作为高层建筑统计的起点。
图13 广州白云宾馆
(三)框支剪力墙体系
下部采用框架上部采用剪力墙的体系称为框支剪力墙体系,见图14。
图14 框支剪力墙体系示意图
我国建于1985年的北京兆龙饭店,高71.8m,地上22层,采用的就是框支 剪力墙体系,见图15。
图15 北京兆龙饭店
(四)框架-剪力墙体系
框架—剪力墙体系是在框架结构体系中适当位置布置一定数量的剪力墙,通 过在自身平面内刚度很大的楼盖结构将框架与剪力墙这两类结构单元组合而成的结 构体系,框架-剪力墙常见的形式如下图16。
第7章高层建筑简介
2020年7月24日星期五
二、高层建筑分类
高层建筑主要用于住宅、旅馆、办公楼、商业大楼和一些特殊建筑。我国现 行《民用建筑设计通则》(JGJ-87)对高层建筑作出了明确规定:
(1)住宅建筑按照层数划分为:1-3层为低层;4-6层为多层;7-9层为中高 层;10层以上为高层。
(2)公共建筑及综合性建筑总高度超过24m为高层(不包括高度超过 24米的单层主体建筑)

广东高规补充

广东高规补充

广东高规补充广东省实施《高层建筑混凝土结构技术规程》(JGJ 3—2002)补充规定DBJ/T5-46-20052005-08-30发布2005-10-01实施发布广东省标准广东省实施《高层建筑混凝土结构技术规程》(JGJ 3—2002)补充规定的通知粤建科字[2005]94号广州市建委,各地级以上市建设局、规划局、城建局(公用局、市政局、城管办)、房管局,省直有关单位:由华南理工大学建筑设计研究院、广州市建设科学技术委员会办公室等单位编制的《广东省实施<高层建筑混凝土结构技术规程>(JGJ 3—2002)补充规定》,经我厅组织专家审查,现批准为广东省地方标准,编号为DBJ/T 15—46—2005,自2005年10月1日起实施。

本《补充规定》由我厅负责管理,华南理工大学建筑设计研究院、广州市建设科学技术委员会办公室负责具体技术内容的解释。

广东省建设厅二OO五年八月三十日前言本补充规定是根据广东省工程建设地方标准修订计划和广州市建设委员会穗建技[2003]392号文的要求,由广州市建设科学技术委员会办公室组织、华南理工大学建筑设计研究院主编,邀请广东省超限高层建筑抗震设防审查委员会部分专家及广东省部分设计院参与,参照国家标准《建筑抗震设计规范》(GB 50011—2001),国家行业标准《高层建筑混凝土结构技术规程》(JCJ 3—2002)(以下简称《高规》)、《超限高层建筑工程抗震设防管理规定》(建设部令第111号)及《超限高层建筑工程抗震设防审查技术要点》(建质正[2003]46号),结合本省高层建筑的设计经验和工程实践编制而成。

对照《高规》,本规定主要有以下的补充和改进:1.明确安全等级为一级或高度超过60m的高层建筑,按100年重现期的风压值计算结构承载力,按50年重现期的风压值计算结构水平位移。

2.给出结构设计使用年限为70年、100年的建筑物的地震作用取值。

3.给出结构的质量与刚度分布明显不对称、不均匀,应计算双向地震作用下的扭转影响的定量判别标准。

筒体设计说明书

筒体设计说明书

目录绪论 (3)第一章设计参数的选择 (4)1.1设计题目 (4)1.2设计数据 (4)1.3设计压力 (4)1.4设计温度 (4)1.5主要元件材料的选择 (4)第二章设备的结构设计 (5)2.1圆筒厚度的设计 (5)2.2封头厚度的设计 (5)2.3筒体和封头的结构设计 (5)2.4鞍座选型和结构设计 (6)2.5接管、法兰的选择 (8)第三章开孔补强设计 (10)3.1补强设计方法判别 (10)3.2有效补强范围 (10)3.3有效补强面积 (10)3.4补强面积 (11)第四章液氩储罐的焊接 (12)4.1破口加工 (12)4.2焊接顺序 (12)4.3筒体纵焊缝 (12)4.4筒体环焊缝 (12)4.5接管与筒体焊接 (13)4.6人口及补偿圈焊接 (13)4.7接管与法兰处焊接(排空口、液位计、温度计、压力表) (13)4.8接管与法兰焊接处(安全阀、进料口、出料口、排污口) (14)采用焊条电弧焊,焊条型号为E347-16 (14)4.9鞍座底板与肋板和腹板的焊接 (14)4.9焊缝破口尺寸 (15)第五章备料加工工艺 (18)5.1原材料的储备 (18)5.2板材的预处理 (18)5.4装配的焊接次序 (19)5.5 焊后热处理 (20)第六章焊缝的无损检验与耐压气密性检验 (21)参考文献 (22)绪论随着我国化学工业的蓬勃发展,各地建立了大量的液化气储配站。

对于储存量小于5003m或单罐容积小于1503m时。

一般选用卧式圆筒形储罐。

液化气储罐是储存易燃易爆介质.直接关系到人民生命财产安全的重要设备。

因此属于设计、制造要求高、检验要求严的三类压力容器。

本次设计的为1003m液化石油气储罐设计即为此种情况。

工业生产中具有特定的工艺功能并承受一定压力的设备,称压力容器。

设计温度为-20℃以下的压力容器被称为低温压力容器,对于低温压力容器首先要选用合适的材料,材料在使用温度下应具有良好的韧性。

结构抗震第七章

结构抗震第七章

中心支撑的类型 a.X形支撑;b.单心支撑类型 (a)门架式 1;(b)门架式 2 ;(c)单斜杆式; (d)人字形式;(e)V 字形式
(3)框架-剪力墙板体系 ☺ 框架-剪力墙板体系是以钢框架为主体,并配置一定数量 的抗震墙板。 ☺ 剪力墙板主要类型:① 钢抗震墙板② 内藏钢板支撑的混 凝土墙板③ 带竖缝的钢筋混凝土剪力墙板
第三节 钢结构房屋抗震计算要求和抗震构造措施
一、钢结构房屋抗震计算要求 (一)计算模型的选定 结构规则,质量及刚度沿高度分布均匀,不计扭转效应 时,采用平面结构计算模型;否则采用空间计算模型。 (二)地震作用的计算 不超过12层的多高层钢结构民用建筑规则结构,可按底 部剪力法计算。底部剪力法计算水平地震作用适用于高度 小于等于60 m且平面和竖向较规则的高层建筑。 1.结构自振周期的计算 一般采用顶点位移法计算(考虑非结构构件影响的折减 系数取0.9)。但初步设计时,可按经验公式估算: T1=0.1n 式中,n—建筑物层数(不包括地下部分及屋顶塔楼)。
2.设计反应谱 钢结构房屋的阻尼比小于钢筋混凝土结构,对 于超过12层的钢结构可采用0.02,对于不超过12层 的钢结构可采用0.035,对于单层钢结构和罕遇地震 下采用0.05。设计反应谱中,衰减指数取0.95,斜 率调整系数取0.024,阻尼调整系数取1.32。 (三)地震作用下钢结构的内力与位移计算 1.多遇地震作用下内力和位移计算 一般采用矩阵位移法计算。 2.罕遇地震作用下内力和位移计算 采用时程分析法对结构进行弹塑性时程分析。
3.构件的内力组合与设计原则 (1)内力组合 在抗震设计中,一般高层钢结构可不考虑风荷载及 竖向地震的作用,对于高度大于60m的高层钢结构须考虑 风荷载的作用,在9度区尚须考虑竖向地震作用。 (2)设计原则 框架梁、柱截面按弹性设计。将框架设计成强柱弱 梁体系。 4.侧移控制 在小震下(弹性阶段),过大的层间变形会造成非 结构构件的破坏,而在大震下(弹塑性阶段),过大的 变形会造成结构的破坏或倒塌,因此,应限制结构的侧 移,即多遇地震作用下结构的弹性层间位移角和罕遇地 震作用下结构的弹塑性层间位移角,使其不超过限值。

建筑结构选型07_筒体结构资料

建筑结构选型07_筒体结构资料

增强结构整体刚度的构件时,核心筒的宽度可适当减
小。
2020年9月11日星期五
李广军
21
7.5 框架-核心筒结构的布置(教材无)
2、核心筒应具有良好的整体性,墙肢宜均匀、对 称布置;筒体角部附近不宜开洞。
在核心筒延性要求较高的情况下,可采用钢骨混 凝土核心筒,即在纵横墙相交的地方设置竖向钢骨, 在楼板标高设置钢骨暗梁,钢骨形成的钢框架可以提 高核心筒的承载力和抗震性能。
2020年9月11日星期五
李广军
12
2.开孔率是框筒结构的重要参数之一,框筒的开孔
率不宜大于40%,任何情况下开洞率不大于
50%。
洞口的高宽比应尽量接近层高与柱距的比值,
避免细高和扁宽的洞口。
使柱的宽 度减小
使裙梁的 高度减小
2020年9月11日星期五
李广军
13
7.4 筒体结构的楼盖
一、框筒结构中的楼盖构件(包括楼板和梁)的高度 不宜太大,可将楼盖做成平板或密肋楼盖, 采用钢楼盖时可将楼板梁与柱的连接处理成 铰接。
➢ 框架节点核心区的混凝土强度等级不宜低于柱的混 凝土强度等级,且应进行核心区斜截面承载力计算;
➢ 节点核心区的混凝土强度等级特殊情况下不应低于 柱混凝土强度等级的70%,但应进行核心区斜截面 和正截面承载力验算。
2020年9月11日星期五
李广军
26
7.6 筒体结构的截面设计及构造要求(教材无)
➢ 由于剪力滞后,框筒结构中各柱的竖向压缩量
➢ 在满足承载力要求以及轴压比限值时核心筒内墙可
适当减薄,但不应小于160mm。
2020年9月11日星期五
李广军
29
小结
1、框筒、筒中筒和束筒结构都是常用的高层建 筑结构的形式,除符合高层建筑结构的一般布置 原则外,其结构布置应从平面形状、高宽比、框 筒的开孔率、柱距、框筒柱和裙梁截面、内筒布 置、楼盖形式等方面考虑,减小剪力滞后,以便 高效而充分发挥所有柱子的作用。

筒体结构精品PPT课件

筒体结构精品PPT课件
20
第7章 筒体结构设计
7.2.1 筒体结构的受力性能简介
剪力滞后效应
21
第7章 筒体结构设计
7.2.1 筒体结构的受力性能简介
22
第7章 筒体结构设计
7.2.1 筒体结构的受力性能简介
• 在筒体结构中,侧向力所产生的剪力主要由其腹板承担; 对于筒中筒结构则主要由外筒的腹板框架和内筒的腹板部 分承担,总剪力在内外筒之间按抗侧刚度比分配。
9
第7章 筒体结构设计
7.1.3 框筒结构
深圳国际贸易中心 大厦,50层,158m, 钢筋混凝土筒体,外 筒由钢骨混凝土和钢 柱组成。
10
第7章 筒体结构设计
7.1.4 筒中筒结构
1.把筒中筒结构布置于框筒结构的中间,使之称为筒中 筒结构。筒中筒结构的平面可以为正方形、矩形、圆形、三 角形或其他形状。
16
斜交网格外筒
第7章 筒体结构设计
7.1.6 斜交网格外筒+内筒的筒中筒体系
外框筒斜交网格柱采 用圆钢管,节点区域 左右相邻钢管通过拉 板相贯实现左右连接, 上下相邻钢管则通过 与环板相贯实现上下 连接。因此外筒就是 由一个个四根管与板 件相贯连接的节点和 节点间的连接钢管组 成的斜交的网格。
外筒斜交网格节点
• 侧向力产生的弯矩由内外筒共同承担,由于外筒柱离建筑 平面型心较远,故外筒柱内的轴力所形成的倾覆弯矩极大
2.框筒结构外筒柱距较密,常常不能满足建筑使用的要 求,为扩大底层柱距,减小底层柱子数,常用巨大的拱、梁 或桁架支承上部的柱子。
3.角柱对框筒结构的抗侧刚度和整体抗扭具有十分重要 的作用,在侧向力作用下,角柱往往产生较大的应力,因此 应使角柱具有较大的截面面积和刚度,有时甚至在角柱位置 布置实腹筒(或称为角筒)。

9、筒体结构

9、筒体结构

3)底部转换层旳墙厚及刚度要求
转换层上部构造和下部构造旳侧向刚度比值应符合下列要求: 底部大空间为1层时,上下层等效刚度比γ:非抗震时γ≦3;抗震时γ≦2; 底部大空间不小于1层时,上下层等效刚度比γ:非抗震时γ≦3;抗震时 γ转≦换1.层3;设置在3层或3层以上时,应使下部楼层侧向刚度D下≥0.6D上;
2. 关键筒旳宽度不宜不小于筒体总高度旳1/12; 3. 关键筒角部不宜开洞,洞间墙截面高度不宜不不小于1.2m,
hw/bw<3时宜按框架柱设计。
三、内力分布和变形特征 1. 关键筒是主要旳抗侧力构造,经过楼板与外框架共同作用; 2. 大部分水平剪力由关键筒承担,倾覆力矩也承担50%以上; 3. 变形特征基本上同框架——剪力墙构造,属弯剪型特征。
Vcj
Dj V Dj
M cj
Vcj y
ቤተ መጻሕፍቲ ባይዱ
Vcj
h 2
3. 展开平面框架法
一般情况下框筒是双对 称旳,能够取其四分之 一进行计算。
腹板框架对称轴上,柱旳 轴向位移为零,可用竖向 约束来表达;
翼板框架对称轴上,柱旳 水平位移为零,可用水平 约束来表达。
角柱使腹板框架柱旳轴向 变形传递到翼板框架上, 故角柱可用一种只传递剪 力,但不传递弯矩和轴力 旳虚拟构件来表达
3)楼板在本身平面内旳刚度假定
i)刚性楼板假定
设计中应采用措施确保楼板整体刚度。下列情况宜考虑变形影响: 楼板整体性较弱;有大开孔;楼板有较长旳外伸段; 作为转换层旳楼板。
ii)弹性楼板假定
局部楼板有大开孔、较长旳外伸段时,宜按弹性楼板考虑。
4)空间分析时构件旳多种变形影响
剪切变形、扭转变形——梁、柱、剪力墙均要考虑; 轴向变形——柱、墙要考虑,梁视详细情况决定; 翘曲变形——薄壁柱模型。

第七章筒体结构设计

第七章筒体结构设计
第七章 筒体结构设计
1
7.1筒体结构概念设计

7.1.1筒体结构的类型、变形、受力特点 1、筒体结构的概念、类型 筒体结构:当高层建筑结构的层数增多,高度 增大时,平面抗侧力构件(框架柱、钢筋混凝 土墙肢等)所构成的框架结构、剪力墙结构、 框架-剪力墙结构已不能满足建筑和结构的要 求(水平荷载作用下,抗倾覆要求),需要一 个具有空间受力性能的结构来承担外荷载,如 果我们将各方向的平面的抗侧力构件合理的加 以集中、联合,就形成了一个空间的抗侧力构 件,就是筒体结构。 筒体结构的基本特征:水平力主要由一个或多 个空间受力的竖向筒体承受。 2
7


产生剪力滞后现象的原因: 1、框筒结构中除腹板框架抵抗倾覆弯矩外,翼缘框架 也通过承受轴力抵抗倾覆弯矩,同时,翼缘框架的梁、 柱还承担平面内的弯矩和剪力,有变形,造成翼缘框 架各柱轴力向中心递减,角柱受力较大。 2、角柱轴力较大,角柱的轴向变形引起深梁带动次框 架其他柱受力,离角柱越远受力越小。 3、由于楼板刚度为有限值,楼板的挠曲变形也造成了 角柱轴力较大,而中柱轴力较小。 减小剪力滞后现象的措施: 针对产生原因,加大次框架裙梁的刚度,减小长宽比, 增强楼板刚度。

14
(6)结构总高与总宽之比大于3时,才能充分 发挥框筒作用。平面形状优先采用圆形、椭圆 形、正多边形,矩形平面长宽比不宜大于2, 否则剪力滞后现象严重,长边中柱不能充分发 挥作用。 (7)框筒结构的柱宜采用矩形或T型截面,长 边位于外墙平面内。角柱面积可为中柱的1.5 倍左右,并可采用L形角墙或角筒。
13
(3)框筒结构应设计为密柱深梁,减小剪力 滞后,充分发挥结构空间作用。一般情况下, 柱距为1-3米,最大为4.5米,窗裙梁跨高比约 为3-4,一般窗洞面积不超过建筑面积的50% (开洞率)。洞口高宽比尽量与层高和柱距之 比相似。 (4)核心筒或内筒的外墙与外框柱间的中距: 非抗震时,不宜大于12米,抗震时,不宜大于 10米。超过此限值时,宜另设承受竖向荷载的 内柱或采用预应力混凝土楼面结构。 (5)框架-核心筒结构的周边柱间必须设置框 架梁。

筒体设计说明书

筒体设计说明书

目录绪论 (3)第一章设计参数的选择 (4)1.1设计题目 (4)1.2设计数据 (4)1.3设计压力 (4)1.4设计温度 (4)1.5主要元件材料的选择 (4)第二章设备的结构设计 (5)2.1圆筒厚度的设计 (5)2.2封头厚度的设计 (5)2.3筒体和封头的结构设计 (5)2.4鞍座选型和结构设计 (6)2.5接管、法兰的选择 (8)第三章开孔补强设计 (10)3.1补强设计方法判别 (10)3.2有效补强范围 (10)3.3有效补强面积 (10)3.4补强面积 (11)第四章液氩储罐的焊接 (12)4.1破口加工 (12)4.2焊接顺序 (12)4.3筒体纵焊缝 (12)4.4筒体环焊缝 (12)4.5接管与筒体焊接 (13)4.6人口及补偿圈焊接 (13)4.7接管与法兰处焊接(排空口、液位计、温度计、压力表) (13)4.8接管与法兰焊接处(安全阀、进料口、出料口、排污口) (14)采用焊条电弧焊,焊条型号为E347-16 (14)4.9鞍座底板与肋板和腹板的焊接 (14)4.9焊缝破口尺寸 (15)第五章备料加工工艺 (18)5.1原材料的储备 (18)5.2板材的预处理 (18)5.4装配的焊接次序 (19)5.5 焊后热处理 (20)第六章焊缝的无损检验与耐压气密性检验 (21)参考文献 (22)绪论随着我国化学工业的蓬勃发展,各地建立了大量的液化气储配站。

对于储存量小于5003m或单罐容积小于1503m时。

一般选用卧式圆筒形储罐。

液化气储罐是储存易燃易爆介质.直接关系到人民生命财产安全的重要设备。

因此属于设计、制造要求高、检验要求严的三类压力容器。

本次设计的为1003m液化石油气储罐设计即为此种情况。

工业生产中具有特定的工艺功能并承受一定压力的设备,称压力容器。

设计温度为-20℃以下的压力容器被称为低温压力容器,对于低温压力容器首先要选用合适的材料,材料在使用温度下应具有良好的韧性。

筒体等结构设计

筒体等结构设计

筒中筒结构的平面外形宜选用圆形、正多边形、椭圆 形或矩形等,内筒宜居中,设计时要尽可能增大建筑使用 面积,内外筒之间一般不设柱,若跨度过大也可设柱以减 小水平构件跨度。矩形平面的长宽比不宜大于2。内筒的边 长一般为外筒边长(或直径)的1/2左右,为高度的1/12~ 1/15,如有另外的角筒和剪力墙时,内筒平面尺寸还可适 当减小。内筒宜贯通建筑物全高,竖向刚度宜均匀变化。 三角形平面宜切角,外筒的切角长度不宜小于相应边长的 1/8,其角部可设置刚度较大的角柱或角筒;内筒的切角长 度不宜小于相应边长的1/10,切角处的筒壁宜适当加厚。
各层框架柱的总剪力 V 应按下述规定予以调整。 i 满足 V f 0.2Vo 楼层,其框架总剪力不必调整,不满 足时,其框架总剪力标准值应按 0.2Vo 和 1.5V f , max二者 的较小值采用。 框架-核心筒结构中常常在某些层设置伸臂,连接 内筒与外柱,以增强其抗侧刚度,称为框架-核心筒- 伸臂结构。
伸臂是由刚度很大的桁架、空腹桁架、实腹桁架等 组成。通常是沿高度选择一层、两层或数层布置伸臂构 件。下伸臂的作用原理:在结构侧移时,它使得外柱拉 伸或压缩,从而使得柱承受较大轴力,迎风柱受拉,背 风柱受压,增大了外柱抵抗的倾覆力矩;由于伸臂本身 刚度较大,伸臂使得内筒产生反向的约束弯距,内筒的 弯距图改变,内筒弯距减小;内筒反弯也同时减小了侧 移。伸臂加强了结构抗侧刚度,因此把设置伸臂的楼层 称为加强层或刚性层。
在筒体结构中,大部分水平剪力由核心筒或内筒承 担,框架柱或框筒柱所受剪力远小于框架结构的剪力, 由于剪跨比明显增大,其轴压比限值可适当放松。抗震 设计时,框筒柱和框架柱的轴压比限值可沿用框架-剪力 墙结构的规定。 楼盖梁搁置在核心筒或内筒的连梁上,会使连梁产 生较大剪力和扭矩,容易产生脆性破坏,宜尽量避免。

第7章 框架-剪力墙结构近似计算方法

第7章 框架-剪力墙结构近似计算方法

EI
梁刚域的长度,墙宽为 hc
hc hb hc hb hc hb hc hb al = − , bl = − ,a = ( − )/l ,b = ( − )/l 。 2 4 2 4 2 4 2 4
1. 两端有刚域的连梁刚度 mab =
(1 + a − b) 6 EI (1 − a + b) 6 EI , mba = 。 3 3 (1 + β )(1 − a − b) l (1 + β )(1 − a − b) l
图 7-2 框架-剪力墙结构铰接体系
当与水平力作用方向相同的剪力墙在自身平面内通过连梁 与框架或其他同一方向剪力墙相联结时,剪力墙与连梁的结 点为刚接点,除此之外均为铰接点。
图 7-3 框架-剪力墙结构刚接体系
方向水平力作用方向下( 图7-4(a)所示结构平面,在y方向水平力作用方向下(图7-4(b)), ( )所示结构平面, ( )), 可以将所有纵向剪力墙和纵梁全部删除后, 方向有4片剪力墙 片剪力墙。 个框架中 可以将所有纵向剪力墙和纵梁全部删除后, y方向有 片剪力墙。8个框架中 其在两侧有框架梁。 个框架边柱 其只在一侧有框架梁。 个框架边柱, 柱,其在两侧有框架梁。8个框架边柱,其只在一侧有框架梁。总连梁包含 4个刚结点。 个刚结点。 个刚结点 方向水平力作用方向下( )),可以将所有横向剪力墙和横 在x方向水平力作用方向下(图7-4(c)),可以将所有横向剪力墙和横 方向水平力作用方向下 ( )), 梁全部删除后, 片剪力墙。 个框架中柱 其在两侧有框架梁。 个框 个框架中柱, 梁全部删除后,有2片剪力墙。14个框架中柱,其在两侧有框架梁。6个框 片剪力墙 架边柱,其只在一侧有框架梁。总连梁包含2个刚结点 个刚结点。 架边柱,其只在一侧有框架梁。总连梁包含 个刚结点。

第七章筒体结构

第七章筒体结构

幻灯片1第七章 筒体结构● 1.特点:● 筒体结构——将剪力墙集中到房屋的内部或外部形成封闭的筒体。

● 筒体在水平荷载作用下好像一个竖向悬臂空心柱体,结构空间刚度极大,抗扭性能也好● 剪力墙集中布置不妨碍房屋的使用空间,建筑平面布置灵活,适用于各种高层公共建筑和商业建筑● 2.筒体结构体系的类型:框筒结构、筒中筒结构、框架核心筒结构、多重筒结构和束筒结构。

幻灯片27.1筒体结构的类型幻灯片3一、框筒结构框筒结构是由周边密集柱和高跨比很大的窗裙梁所组成的空腹筒结构。

为了减少楼盖结构的内力和挠度,中间往往要布置一些柱子,以承受楼面竖向荷载。

幻灯片4幻灯片5二、筒中筒结构在高层建筑中,往往有一定数量的电梯间或楼体间及设备井道的墙布置成钢筋混凝土墙,它既可以承受竖向荷载,又承受水平荷载作用,楼电梯间等服务性用房常位于房屋的中部,核心筒得名。

核心筒一般不单独作为承重结构,而与其他结构组合形成新的结构型式。

当把框筒结构与核心筒结合在一起时 ,便成为筒中筒结构。

三、框架核芯筒结构筒中筒结构外部柱距较密,常常不能满足建筑设计的要求。

有时建筑布置上要求外部柱距在4~5m 或更大,这时,周边柱已不能形成筒的工作状态,而相当于空间框架的作用。

四、多重筒结构当建筑物平面尺寸很大或当内筒较小时,内外筒之间的距离较大,即楼盖结构的跨度较大,这样势必会增加楼板的厚度或楼面大梁的高度。

为降低楼盖结构的高度,可在筒中筒结构的内外筒之间增设一圈柱或剪力墙,如果将这些柱或剪力墙连接起来使之形成一个筒体的作用。

五、束筒结构当建筑物的高度或其平面尺寸进一步加大,以致与框筒结构或筒中筒结构可以看成若干个框筒结构的组合,它就可以有效地减少外筒翼缘框架中的剪力滞后效应,使内筒或内部柱充分发挥作用。

7.2筒体结构的受力性能和工作特点筒体结构的基本特征是:水平荷载主要是由一个或多个筒体承受,筒体可以是剪力墙薄壁筒,也可以是密柱框筒。

幻灯片6筒体和理想筒体受力是有差别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
1
1.72
荷载相 柱子最不
同时
利轴力
0.67
0.96
1
1.54
1.47
当基本
位移
0.48
0.83
1
1.63
2.46
风压相 同时
柱子最不 利轴力
0.35
0.83
1
2.53
2.69
平面面积相同,筒壁混凝土消耗量也相同,以正方形为标准
矩形平面的筒体结构平面尺寸应尽量接近于正 方形;
尽量使平面长宽比接近于1.0,不宜大于1.5.当 长宽比接近于2时,剪力滞后非常显著,翼缘框 架的中间部分柱子已不能充分发挥作用,框筒的 工作状态已和框剪结构相似,空间整体作用已经 很微弱了。
第二节 筒中筒结构的布置
• 平面形状 • 高宽比 • 框筒的开孔大小 • 洞口的形状 • 柱距 • 柱的截面 • 裙梁的截面
一、平面形状
筒中筒结构的平面形状以圆形和正多边形最为有利
规则平面形状框筒工作性能
形状
圆形 正六边形 正方形 正三角形 1:2矩形
当水平
位移
0.9
0.96
1
1
1.72
荷载相 柱子最不
深圳国际贸易中心大厦,50层,158m,钢筋混凝土筒体, 外筒由钢骨混凝土和钢柱组成
大高度的建筑物即成束筒结构(组合筒或模数筒)。 在建筑平面内设置多个多个钢筋混凝土剪力墙筒体,适应于复
杂平面的布置要求,即为多筒结构,例如有三重筒体甚至四重筒 体。
第二节 筒体结构的受力性能
图1(b)框筒轴力分布
+
图1(a)实腹筒
剪力滞后
实腹筒体——箱形梁 对于宽度较大的箱形梁,正应力两边大、中间小的不均匀现象— —剪力滞后 。 剪力滞后与梁宽、荷载、弹性模量及侧板和翼缘的相对刚度等因
核心筒具有较大的抗侧刚度,受力明确,分析方便。但是在 地震区,易出现脆性破坏。
2、框筒结构 与框架类似,但梁高度大(即窗 裙梁),柱间距小,形成密柱深 梁组成的空腹筒结构。 一般要求孔洞面积不宜大于立面 总面积的60%,周边柱轴线间距在 2-3m,不宜大于4m。窗裙梁高度 为0.6-1.2m,宽度为0.3-0.5m。 整个结构的高宽比小于3,结构平 面长宽比小于2。
角柱对于框筒体结构的抗侧刚度 和抗扭有很大的作用。在水平力 作用下,角柱会产生很大的应力, 所以角柱应具有较大的刚度和截 面面积。
3、筒中筒结构 筒中筒结构是由两个筒体作为竖
向承重和抗侧力结构的高层结构 体系,是框筒结构和核心筒的结 合 内筒与外筒之间的距离不宜大于 12m。 内筒边长一般为外筒边长 的1/3,为房屋高度的1/12-1/15。 内筒贯通建筑物全高。
第七章 筒体结构设计
筒体结构: 由竖向筒体为主组成的承受竖向和水平作用的高层建
筑结构。
筒体结构的筒体分为: 剪力墙围成的薄壁筒和由密柱框架或壁式框架围成的框
筒等。
第一节 筒体结构的布置
第一节 筒体结构的布置
1、核心筒结构
核心筒可以作为单独的承重结构,承受竖向和水平荷载。一 般建筑物四周的柱子不落地,由核心筒将上部荷载传至基础。
剪力滞后
➢由于剪力滞后效应的影响,角柱轴力很大,而中间柱应力减小,不能充分发 挥材料性能。 ➢筒中筒结构中,侧向力有内外筒共同承担,由于外筒距形心远,故外筒柱轴 力很大,会形成很大的抗倾覆弯矩。外力在内外筒之间的分配有抗侧刚度有关。
深圳国际贸易中心大厦,50层,158m,钢筋混凝土筒体, 外筒由钢骨混凝土和钢柱组成
同时
利轴力
0.67
0.96
1
1.54
1.47
当基本
位移
0.48
0.83
1
1.63
2.46
风压相 同时ቤተ መጻሕፍቲ ባይዱ
柱子最不 利轴力
0.35
0.83
1
2.53
2.69
平面面积相同,筒壁混凝土消耗量也相同,以正方形为标准
规则平面形状框筒工作性能
形状
圆形 正六边形 正方形 正三角形 1:2矩形
当水平
位移
0.9
0.96
深圳国贸中心一层弯矩分配比例
由柱及墙肢轴力形成的整 由柱及墙肢的弯曲所承担
体弯矩
的弯矩
外框筒
内筒
外框筒
内筒
50.4%
40.3%
2.7%
6.6%
深圳国贸中心一层剪力分配比例
外框筒
内筒
27%
73%
成束筒
由若干个筒体并联在一起,共同承受水平力, 也可看成框筒中间加了一些框架隔板,截面应 力分布大体上与整截面筒体相似,但成多波形 的剪力滞后,比同样平面的单个框筒受力要均 匀一些。
(二)、控制结构高宽比 控制结构刚度和侧移 说明:结构合理,满足侧移和自振周期,经验算可以适当放宽
表 3.3.2 钢筋混凝土高层建筑结构适用的最大高宽比
结构体系
框架 板柱-剪力墙 框架-剪力墙、剪力墙 框架-核心筒
筒中筒
非抗震设计
抗震设防烈度
6 度、7 度
8度
9度
5
4
3

6
5
4

7
6
5
4
8
7
6
4
8
五、柱 距
柱距为2~3米 柱距不宜大于4米,当柱距大于4米,工作状态接近普 通框架 一般情况下柱距不大于层高,常用柱距为2.5~3米
六、柱的截面
框筒宜采用扁宽矩形柱,柱的长边位于框架平面内 为提高扁宽柱的抵抗屈曲的能力,常用T形柱 一般不宜采用正方形和圆形截面的柱
框筒受力性能与梁、柱截面形状的关系
4、框架-筒体结构 框架-筒体结构与框架-
剪力墙结构并无本质上的 区别 框架-筒体结构实际上就 是在框架内的一定位置上, 设置剪力墙内筒,外周为 一般框架,其平面形状较 为自由、灵活多样;但是, 为了尽可能较少在水平力 作用下的扭转,还是应尽 可能采用具有对称轴的简 单、规则平面。
5、多筒结构和成束筒结构 由多个筒体并联而成,具有很大的刚度,可建造很多层数和很
8
7
5
三、框筒的开孔大小
墙面上洞口的大小决定了墙的工作性质
角柱轴力 中柱轴力
框筒要发挥 筒体的效能, 开孔率不宜 大于50%, 不得大于 60%。
开孔率与剪力滞后的关系 相同刚度条件下,开孔率 与材料用量的关系
四、洞口的形状
框 孔筒 洞网 的格 高高 宽 c宽 hb比 l比
梁、柱刚度相差过于悬殊,均不利于框筒的整体工作 洞口形状与框筒梁柱轴线网络的形状应相似
不同平面时翼缘应力分布
翼缘框架角柱轴力
中柱轴力
表明翼缘框架角柱与中柱轴力相差越大, 剪力滞后现象越显著,整体空间作用越 弱。
与轴力比的关系
不同平面时翼缘应力分布
不同平面时翼缘应力分布
相同顶点位移条件下,与材料用量的关系
二、高宽比
宜大于4,不宜小于3 当小于2时,空间整体作用已基本上消失 采用筒中筒结构时层数不宜太少,一般宜在20层 以上,H不宜低于80m
相关文档
最新文档