英文-无机纳米材料光解水ppt课件
合集下载
纳米科技全英文ppt
STM
the birth of cluster science and the invention of the scanning tunneling microscope (STM). This development led to the discovery of fullerenes in 1985 and carbon nanotubes a few years later. In another development, the synthesis and properties of semiconductor nanocrystals was studied; this led to a fast increasing number of metal and metal oxide nanoparticles and quantum dots. The atomic force microscope was invented six years after the STM was invented. In 2000, the United States National Nanotechnology Initiative was founded to coordinate Federal nanotechnology research and development and is evaluated by the President's Council of Advisors on Science and Technology.
The stone implements
The core plate
A brief introduction to the nanotechnology
纳米材料介绍ppt课件
IBM
5.1.2 纳米材料学
科学研究发现,当材料的颗粒缩小到只有几纳米到几 十纳米时,由于颗粒表面相对活跃的原子数量与颗粒内 部结构稳定的原子数量的比例大大增加,使得材料的性 质发生了意想不到的变化。
纳米陶瓷材料能够弯 曲180度就是一个典型的例 子。由于陶瓷材料具有坚 硬、耐高温等优良特性, 工业界一直认为陶瓷是未 来汽车、飞机发动机的理 想材料。
在未来的20至30年内,纳米技术将在三个方面对人类
社会产生深刻影响:
一、 社会生产途径; 二、人类生活方式; 三、人们思维模式。 所以,纳米技术的出现,标志着人类社会在发展进程中 正迈向一个新的台阶。
5.1.1 纳米电子学
电子器件的集成度已经接近了它的理论极限。在纳米尺
度上,由于电子的波动性质而呈现各种量子效应,使得电
纳米固体燃料 实验发现纳米铜和铝一遇到空气就会激烈燃烧,
发生爆炸,可以作为未来的固体燃料使火箭具有更大的推动力。
纳米隐身飞机 在飞机外表面涂上纳米超微粒材料,可以有效吸收
雷达波,这就是隐身飞机。纳米卫星、微型飞船和原子精密度计算机 ,都将一一成为现实。
5.1.3 纳米机械学
车、钳、刨、铣等机械加工过程必然要去掉一些下脚料,造成 浪费。而纳米制造技术则是以相反的方向,直接由原子、分子来完 整地构造器件。科学家们已经用原子、分子操纵技术、纳米加工技 术、分子自组装技术等新科技制造了纳米齿轮、纳米电池、纳米探 针、分子泵、分子开关和分子马达等。
•1998年在瑞典斯德哥尔摩召开了第四届纳米材料会议;
纳米这项新技术的诞交叉学科 ,学科领域涵盖
纳米物理学、纳米电子学、纳米化学、纳米材料学、纳
米机械学、纳米生物学、纳米医学、纳米显微学、纳米
纳米材料学英文教学PPT.ppt
2021/3/5
Co/Cu(111) H.C. Monoharan, C.P. Lutz, D.M. Eigler Nature 403 (2000) 512
• Association: the bias was raised to 500 mV for 10 s
• It is not possible to break the C-H and C-C bonds with a single electron process at this voltage, especially as their bond energies are about 2 and 3 times higher than the C-I bond.
Pried them apart into iodine and phenyl (C6H5) by injecting electrons from the STM tip (a).
Used the tip to pull the iodine away (b and c) and draw the phenyl molecules closer together (d).
MIX-AND-MATCH molecule: Atomic engineers eventually hope to create molecules from scratch, adding atoms exactly as needed to perform specific functions. This molecule, with 18 cesium and 18 iodine atoms, was built--one atom at a time--with a STM
2021/3/5
Co/Cu(111) H.C. Monoharan, C.P. Lutz, D.M. Eigler Nature 403 (2000) 512
• Association: the bias was raised to 500 mV for 10 s
• It is not possible to break the C-H and C-C bonds with a single electron process at this voltage, especially as their bond energies are about 2 and 3 times higher than the C-I bond.
Pried them apart into iodine and phenyl (C6H5) by injecting electrons from the STM tip (a).
Used the tip to pull the iodine away (b and c) and draw the phenyl molecules closer together (d).
MIX-AND-MATCH molecule: Atomic engineers eventually hope to create molecules from scratch, adding atoms exactly as needed to perform specific functions. This molecule, with 18 cesium and 18 iodine atoms, was built--one atom at a time--with a STM
2021/3/5
TiO2简要介绍及其修饰改性
ቤተ መጻሕፍቲ ባይዱ
TiO2的表征
40 30 20
10
0
2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 Band gap/ev
利用(Ahν)2对hν做 图,直线部分外 推至横坐标交点, 可知禁带宽度为 3.13eV
Absorption/a.u.
TiO2(sample) P25
300
400
专题报告
TiO2简要介绍及其修饰改性
TiO2简介
• TiO2俗称钛白粉,广泛应用于涂料和颜料等 行业。 • 1972年,Fujishima 在N-型半导体TiO2电极 上发现了水的光催化分解作用,从而开辟 了半导体光催化这一新的领域。 • 随着纳米科学及纳米技术的发展,新的制 备方法和表针手段的出现,纳米TiO2的研究 不断的深入。
80 60 40 20 0
US:1.7MHz MO:10mg/L P25:1.0g/L
t/min US-UV和US-UV-TiO2辐射后甲基橙相对浓度
0
10
20
30
40
50
60
实验结果分析
100
relative concentration/(C/C0*100%)
80
1.7MHz 2.0MHz 2.4MHz
MoS2的制备
• 方法三: (NH4)2MoS4 质量11mg,MIL-101质 量22mg,DMF2.5mL加热回流,然后趁热过滤 干燥,140 ℃抽真空干燥 • 方法四:双溶剂法使(NH4)2MoS4 质量11mg, 浸入至MIL-101质量22mg中 检验MIL-101,ZIF-8,MIL-53(44mg), DMF10mL, N2H4· H2O 0.1mL,200 ℃加热10h 结论ZIF-8彻底破坏,其余的有剩余固体存在
TiO2的表征
40 30 20
10
0
2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 Band gap/ev
利用(Ahν)2对hν做 图,直线部分外 推至横坐标交点, 可知禁带宽度为 3.13eV
Absorption/a.u.
TiO2(sample) P25
300
400
专题报告
TiO2简要介绍及其修饰改性
TiO2简介
• TiO2俗称钛白粉,广泛应用于涂料和颜料等 行业。 • 1972年,Fujishima 在N-型半导体TiO2电极 上发现了水的光催化分解作用,从而开辟 了半导体光催化这一新的领域。 • 随着纳米科学及纳米技术的发展,新的制 备方法和表针手段的出现,纳米TiO2的研究 不断的深入。
80 60 40 20 0
US:1.7MHz MO:10mg/L P25:1.0g/L
t/min US-UV和US-UV-TiO2辐射后甲基橙相对浓度
0
10
20
30
40
50
60
实验结果分析
100
relative concentration/(C/C0*100%)
80
1.7MHz 2.0MHz 2.4MHz
MoS2的制备
• 方法三: (NH4)2MoS4 质量11mg,MIL-101质 量22mg,DMF2.5mL加热回流,然后趁热过滤 干燥,140 ℃抽真空干燥 • 方法四:双溶剂法使(NH4)2MoS4 质量11mg, 浸入至MIL-101质量22mg中 检验MIL-101,ZIF-8,MIL-53(44mg), DMF10mL, N2H4· H2O 0.1mL,200 ℃加热10h 结论ZIF-8彻底破坏,其余的有剩余固体存在
纳米材料应用PPT课件
纳米催化剂
利用纳米催化剂对汽车尾 气、工业废气等进行处理, 减少大气中有害气体的排 放。
纳米滤网
利用纳米滤网对空气中的 颗粒物、病毒、细菌等进 行过滤,提高空气质量。
纳米脱硫脱硝技术
利用纳米技术对燃煤烟气 中的硫化物和氮化物进行 脱除,减少酸雨和光化学 烟雾的形成。
土壤修复
纳米肥料
纳米微生物
利用纳米技术将养分制成纳米级肥料, 提高肥料的利用率,减少化肥的使用 量。
目前面临的挑战与问题
安全问题
技术难题
纳米材料可能对人体健康和环境产生潜在 风险,需要加强安全评估和监管。
பைடு நூலகம்
纳米技术的生产成本高,技术难度大,需 要进一步研究和创新。
法规缺失
公众认知
目前缺乏针对纳米技术的专门法规和标准 ,需要完善相关法律法规。
提高公众对纳米技术的认知和理解,加强 科普宣传和教育。
解决策略与建议
太阳能电池
总结词
太阳能电池是利用纳米材料吸收太阳光并转化为电能的装置,具有高效、环保和可持续的特点。
详细描述
太阳能电池中的吸光材料通常为纳米级的多晶硅、染料或量子点等,能够吸收太阳光的可见光和近红外光,提高 太阳能的利用率。常见的太阳能电池包括晶体硅太阳能电池、染料敏化太阳能电池和量子点太阳能电池等。
分子诊断
纳米材料可以识别和检测生物标志物 和基因突变,实现疾病的早期诊断和 个性化治疗。
生物组织工程
组织修复与再生
利用纳米材料作为支架材料,引导细 胞生长和分化,促进受损组织的修复 和再生。
生物相容性
纳米材料可以提高植入材料的生物相 容性,降低免疫排斥反应,提高植入 成功率。
05 纳米材料在环保领域的应 用
纳米材料及其应用PPT课件
2000s
纳米材料在各个领域得到广泛应用,成为研 究热点。
1990s
纳米技术迅速发展,出现多种制备方法。
2010s至今
纳米技术不断创新,应用领域不断拓展。
02
纳米材料的制备方法
物理法
真空蒸发冷凝法
01
在真空条件下,通过加热蒸发物质,并在冷凝过程中形成纳米
粒子。
激光诱导法
02
利用高能激光束照射物质表面,通过激光能量使物质蒸发并冷
生物法
微生物合成法
利用微生物作为模板或催化剂,通过生物反应合成具有特定结构 和性质的纳米材料。
植物提取法
利用植物中的天然成分作为原料,通过提取和纯化得到纳米材料。
酶催化法
利用酶的催化作用合成具有特定结构和性质的纳米材料。
03
纳米材料的应用领域
能源领域
01
02
03
燃料电池
纳米材料可以提高燃料电 池的效率和稳定性,降低 成本。
纳米材料及其应用 ppt课件
目录
• 纳米材料简介 • 纳米材料的制备方法 • 纳米材料的应用领域 • 纳米材料面临的挑战与前景 • 纳米材料的应用案例分析
01
纳米材料简介
纳米材料的定义与特性
定义
纳米材料是指在三维空间中至少有一 维处于纳米尺度范围(1-100nm)或 由它们作为基本单元构成的材料。
凝形成纳米粒子。
机械研磨法
03
通过机械研磨将大块物质破碎成纳米级粒子,常见于金属、陶
瓷等硬质材料的制备。
化学法
化学气相沉积法
利用化学反应在加热条件下生成纳米粒子,通常需要使用气态反 应剂和催化剂。
溶胶-凝胶法
通过将原料溶液进行溶胶和凝胶化处理,再经过热处理得到纳米 粒子。
纳米材料在各个领域得到广泛应用,成为研 究热点。
1990s
纳米技术迅速发展,出现多种制备方法。
2010s至今
纳米技术不断创新,应用领域不断拓展。
02
纳米材料的制备方法
物理法
真空蒸发冷凝法
01
在真空条件下,通过加热蒸发物质,并在冷凝过程中形成纳米
粒子。
激光诱导法
02
利用高能激光束照射物质表面,通过激光能量使物质蒸发并冷
生物法
微生物合成法
利用微生物作为模板或催化剂,通过生物反应合成具有特定结构 和性质的纳米材料。
植物提取法
利用植物中的天然成分作为原料,通过提取和纯化得到纳米材料。
酶催化法
利用酶的催化作用合成具有特定结构和性质的纳米材料。
03
纳米材料的应用领域
能源领域
01
02
03
燃料电池
纳米材料可以提高燃料电 池的效率和稳定性,降低 成本。
纳米材料及其应用 ppt课件
目录
• 纳米材料简介 • 纳米材料的制备方法 • 纳米材料的应用领域 • 纳米材料面临的挑战与前景 • 纳米材料的应用案例分析
01
纳米材料简介
纳米材料的定义与特性
定义
纳米材料是指在三维空间中至少有一 维处于纳米尺度范围(1-100nm)或 由它们作为基本单元构成的材料。
凝形成纳米粒子。
机械研磨法
03
通过机械研磨将大块物质破碎成纳米级粒子,常见于金属、陶
瓷等硬质材料的制备。
化学法
化学气相沉积法
利用化学反应在加热条件下生成纳米粒子,通常需要使用气态反 应剂和催化剂。
溶胶-凝胶法
通过将原料溶液进行溶胶和凝胶化处理,再经过热处理得到纳米 粒子。
英文-无机纳米材料光解水ppt课件
Contents
1
Introduction
2
Brief history
3 Inorganic nanostructures
4 Conclusion and outlook
carbon free energy technology
The solar energy received on the Earth’s surface meets current and future human energy demand.
photoelectrochemical water splitting
Exploit scaling laws and specific effects at 3 the nanoscale to enhance the efficiency of
existing semiconductors and metal oxides
three main strategies
Coat conventional photovoltaic cells with 1 cocatalysts for water splitting or with
protecting layers to inhibit photocorrosion
Development of new metal oxide materials 2 that combine suitable properties for
Advantages
✓ Shortened carrier collection pathways ✓ Improved light distribution ✓ Quantum size confinement ✓ Potential determining ions (PDI) ✓ Surface area-enhanced charge transfer ✓ Multiple exciton generation
光辅助电解水制氢ppt课件
电解水制氢电极的研究
以碱性电解槽电解水制氢技术为基础,在电解槽阳极上涂 覆光催化剂膜
11
光催化辅助电解水制氢阳极上的光催化剂膜
ZnO硬模板合成的TiO2纳米管阵列膜
纳米TiO2与传统的块状TiO2光催化剂比较:
纳米TiO2粒径更小,具有更大的比表面积,因此在氧化还原能力方 面,相比于传统的块状TiO2光催化剂更高,光催化的活性也更好。 当半导体受到光照射激发后,便产生了光生电子,此时光生电子会 从材料的体相扩散到材料的表面去,由于纳米TiO2粒径很小,从而大大 地减小了电子在体相中扩散的时间,一定程度抑制了空穴和光生电子 的复合几率,提高了光量子的利用效率。 其次,较小的粒径会使得价带的电位更正,导带的电位更负。所以 具有较好的氧化还原的能力。另外大的比表面积更加利于对底物的吸 附。这些特点都大大增强了TiO2的光催化活性。
b.几何的因素:包括所用催化剂的表面粗糙度,比表面积以及催 化剂晶面的暴露程度等,这些几何因素主要依靠于催化剂本身的 制备过程。
6
电解水制氢电极的研究—析氢阴极材料
镍基合金的种类最多,并且镍基合金的化学稳定性较 强,是目前电解水制氢领域中研究并应用最广的合金。 (最具代表性的有Ni-Mo,Ni-W,Ni-Fe和Ni-C等)
15
光催化辅助电解水制氢阳极上的光催化剂膜
层层组装Ni片过程 将生长了ZnO纳米棒阵列的Ni 片基板先后浸渍在TiO2前躯体溶 胶、乙醇溶液、水溶液、乙醇溶液 中,进行ZnO表面层层组装TiO2(如 图所示),每个步骤浸渍时间分别是 10s,层层自组装循环过程重复10 次。将涂覆了TiO2前躯体的ZnO纳 米棒阵列于350℃下保温lh,得到 TiO2/ZnO纳米棒阵列修饰的Ni 片。采用10mmol/L的Ti4CI。稀溶 液对TiO2/ZnO纳米棒阵列修饰的 Ni片进行刻蚀,然后以2℃/min的升 温速率加热到500℃并保温lh,便得 到了TiO2纳米管阵列修饰的Ni片。
纳米材料简介ppt课件
13
2 在磁性材料中的应用 纳米磁性材料包括纳米磁粉材料、纳米磁膜材料和纳米磁性液体。
在铁磁质纳米磁性材料中,存在磁单畴结构,具有超顺磁性,即纳 米结构的尺寸小于磁单畴的临界尺寸时,纳米结构中的原子磁矩有 序化,具有顺磁质的特性,而在无外场时,对任何一个方向都不显 磁性。加外磁场后,形成磁矩有序化,形成过程不是瞬时的,而有 一个驰豫时间。超顺磁性材料,矫顽力远比普通材料大,对高密度 磁记录元件十分重要。 3 在催化剂领域应用
纳米粒子表面积大、表面活性中心多,为催化剂提供了必要条件。 目前纳米粉材如铂黑、银、氧化铝和氧化铁等广泛用于高分子聚合 物氧化、还原及合成反应的催化剂。如用纳米镍粉作为火箭固体燃 料反应催化剂,燃烧效率提高100倍;以粒度小于100nm的镍和铜锌合金的纳米材料为主要成分制成加氢催化剂,可使有机物的氢化 率达到传统镍催化剂的10倍;用纳米TiO2制成光催化剂具有很强的 氧化还原能力,可分解废水中的卤代烃、有机酸、酚、硝基芳烃、 取代苯胺及空气中的甲醇、甲醛、丙酮等污染物。
1
CONTENTS
1
什么是纳米
2
什么是纳米材料
3 纳米材料的纳米效应
4
纳米材料的分类
5
纳米材料的应用
6 纳米材料与未来社会
2
1 什么是纳米
纳米(nanometer):长度单位,即10-9m。 纳米有多大?
3
2 什么是纳米材料
纳米级结构材料简称为纳米材料(nanometer material),是指其结 构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经 接近电子的相干长度,它的性质因为强相干所带来的自组织使得 性质发生很大变化。并且,其尺度已接近光的波长,加上其具有 大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光 学、导热、导电特性等等,往往不同于该物质在整体状态时所表 现的性质。 纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组 成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子, 是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和 宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观 系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和 宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级) 后,它将显示出许多奇异的特性,即它的稀土纳米材料 光学、热学、电学、磁学、力学以及化学方面的性质和大块固体 时相比将会有显著的不同。
2 在磁性材料中的应用 纳米磁性材料包括纳米磁粉材料、纳米磁膜材料和纳米磁性液体。
在铁磁质纳米磁性材料中,存在磁单畴结构,具有超顺磁性,即纳 米结构的尺寸小于磁单畴的临界尺寸时,纳米结构中的原子磁矩有 序化,具有顺磁质的特性,而在无外场时,对任何一个方向都不显 磁性。加外磁场后,形成磁矩有序化,形成过程不是瞬时的,而有 一个驰豫时间。超顺磁性材料,矫顽力远比普通材料大,对高密度 磁记录元件十分重要。 3 在催化剂领域应用
纳米粒子表面积大、表面活性中心多,为催化剂提供了必要条件。 目前纳米粉材如铂黑、银、氧化铝和氧化铁等广泛用于高分子聚合 物氧化、还原及合成反应的催化剂。如用纳米镍粉作为火箭固体燃 料反应催化剂,燃烧效率提高100倍;以粒度小于100nm的镍和铜锌合金的纳米材料为主要成分制成加氢催化剂,可使有机物的氢化 率达到传统镍催化剂的10倍;用纳米TiO2制成光催化剂具有很强的 氧化还原能力,可分解废水中的卤代烃、有机酸、酚、硝基芳烃、 取代苯胺及空气中的甲醇、甲醛、丙酮等污染物。
1
CONTENTS
1
什么是纳米
2
什么是纳米材料
3 纳米材料的纳米效应
4
纳米材料的分类
5
纳米材料的应用
6 纳米材料与未来社会
2
1 什么是纳米
纳米(nanometer):长度单位,即10-9m。 纳米有多大?
3
2 什么是纳米材料
纳米级结构材料简称为纳米材料(nanometer material),是指其结 构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经 接近电子的相干长度,它的性质因为强相干所带来的自组织使得 性质发生很大变化。并且,其尺度已接近光的波长,加上其具有 大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光 学、导热、导电特性等等,往往不同于该物质在整体状态时所表 现的性质。 纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组 成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子, 是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和 宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观 系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和 宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级) 后,它将显示出许多奇异的特性,即它的稀土纳米材料 光学、热学、电学、磁学、力学以及化学方面的性质和大块固体 时相比将会有显著的不同。
纳米材料及应用PPT
加强企业、高校和研究机构的合作,促进纳 米技术的产业化进程。
制定合理的政策和法规
建立健全纳米材料的管理和监管机制,保障 其健康有序发展。
加强国际合作与交流
积极参与国际纳米技术领域的合作与交流, 共同推动纳米技术的发展和应用。
THANKS
感谢观看
纳米材料的安全性评估是确保其应用 安全的重要环节,需要对其潜在的毒 性、生物相容性、稳定性等特性进行 全面评估。
安全评估过程中需要关注纳米材料在 生产、储存、运输和使用过程中的安 全性,以及处理废弃物的可行性,确 保整个生命周期的安全性。
评估纳米材料的安全性需要采用多种 手段,包括体外实验、体内实验以及 计算机模拟等方法,以全面了解其生 物效应和潜在风险。
移转化规律等。
保其安全应用。
04
未来展望与挑战
纳米材料的发展趋势
纳米材料在医疗领域的应用
纳米材料在能源领域的应用
利用纳米材料在药物传输、诊断和生物成 像等方面的优势,提高医疗效果和降低副 作用。
利用纳米材料在太阳能电池、燃料电池和 储能器件等方面的性能,推动能源技术的 进步。
纳米材料在环保领域的应用
纳米材料及应用
• 纳米材料简介 • 纳米材料的应用 • 纳米材料的安全与环境影响 • 未来展望与挑战
01
纳米材料简介
定义与特性
定义
纳米材料是指在三维空间中至少有 一维处于纳米尺度(1-100nm) 的材料。
特性
纳米材料具有许多独特的物理、 化学和机械性能,如高比表面积 、量子尺寸效应、表面效应等。
纳米材料的生物安全性
纳米材料的生物安全性是指其在生物体内的安全性和无毒性,是评估纳米材料能否 用于医疗、食品等领域的重要指标。
制定合理的政策和法规
建立健全纳米材料的管理和监管机制,保障 其健康有序发展。
加强国际合作与交流
积极参与国际纳米技术领域的合作与交流, 共同推动纳米技术的发展和应用。
THANKS
感谢观看
纳米材料的安全性评估是确保其应用 安全的重要环节,需要对其潜在的毒 性、生物相容性、稳定性等特性进行 全面评估。
安全评估过程中需要关注纳米材料在 生产、储存、运输和使用过程中的安 全性,以及处理废弃物的可行性,确 保整个生命周期的安全性。
评估纳米材料的安全性需要采用多种 手段,包括体外实验、体内实验以及 计算机模拟等方法,以全面了解其生 物效应和潜在风险。
移转化规律等。
保其安全应用。
04
未来展望与挑战
纳米材料的发展趋势
纳米材料在医疗领域的应用
纳米材料在能源领域的应用
利用纳米材料在药物传输、诊断和生物成 像等方面的优势,提高医疗效果和降低副 作用。
利用纳米材料在太阳能电池、燃料电池和 储能器件等方面的性能,推动能源技术的 进步。
纳米材料在环保领域的应用
纳米材料及应用
• 纳米材料简介 • 纳米材料的应用 • 纳米材料的安全与环境影响 • 未来展望与挑战
01
纳米材料简介
定义与特性
定义
纳米材料是指在三维空间中至少有 一维处于纳米尺度(1-100nm) 的材料。
特性
纳米材料具有许多独特的物理、 化学和机械性能,如高比表面积 、量子尺寸效应、表面效应等。
纳米材料的生物安全性
纳米材料的生物安全性是指其在生物体内的安全性和无毒性,是评估纳米材料能否 用于医疗、食品等领域的重要指标。
纳米材料PPT演示课件
11
1. 原子团簇 Atomic Clusters
介于单个原子与固态块体之间的原子集合体,其尺寸一般小 于1nm,约含几个到几百个原子。
“幻数”个原子稳定性(2、8、20、28、50、82、114、126、 184 ····)
气、液、固态的并存与转化 极大的表面/体积比 异常高的化学活性和催化活性 结构的多样性和排列的非周期性 电子的原子壳层、原子簇壳层和能带结构的过渡和转化 光的量子尺寸效应和非线性效应 电导的几何尺寸效应
11/6/2019 6:01 PM
3
What does Nano mean?
“Nano” – derived from an ancient Greek word
“Nanos” meaning DWARF.
“Nano” = One billionth of something “A Nanometer” = One billionth of a meter 10 hydrogen atoms shoulder to shoulder
按表面活性:纳米催化材料、吸附材料、防污环境材料
11/6/2019 6:01 PM
10
按照维数划分
零维
指在空间三维方向 均为纳米尺度的颗粒、原 子团簇等
11/6/2019 6:01 PM
一维
指在空间有二维处于纳 米尺度,如纳米丝、纳 米棒、纳米管等
二维
指在空间中有一维 在纳米尺度, 如超薄膜、多层膜、超晶格等
11/6/2019 6:01 PM
5
11/6/2019 6:01 PM
6
纳米材料的发展
最早的纳米材料:
中国古代的铜镜的保护层:纳米氧化锡
中国颗粒
1. 原子团簇 Atomic Clusters
介于单个原子与固态块体之间的原子集合体,其尺寸一般小 于1nm,约含几个到几百个原子。
“幻数”个原子稳定性(2、8、20、28、50、82、114、126、 184 ····)
气、液、固态的并存与转化 极大的表面/体积比 异常高的化学活性和催化活性 结构的多样性和排列的非周期性 电子的原子壳层、原子簇壳层和能带结构的过渡和转化 光的量子尺寸效应和非线性效应 电导的几何尺寸效应
11/6/2019 6:01 PM
3
What does Nano mean?
“Nano” – derived from an ancient Greek word
“Nanos” meaning DWARF.
“Nano” = One billionth of something “A Nanometer” = One billionth of a meter 10 hydrogen atoms shoulder to shoulder
按表面活性:纳米催化材料、吸附材料、防污环境材料
11/6/2019 6:01 PM
10
按照维数划分
零维
指在空间三维方向 均为纳米尺度的颗粒、原 子团簇等
11/6/2019 6:01 PM
一维
指在空间有二维处于纳 米尺度,如纳米丝、纳 米棒、纳米管等
二维
指在空间中有一维 在纳米尺度, 如超薄膜、多层膜、超晶格等
11/6/2019 6:01 PM
5
11/6/2019 6:01 PM
6
纳米材料的发展
最早的纳米材料:
中国古代的铜镜的保护层:纳米氧化锡
中国颗粒
纳米材料简介及其应用ppt课件
ppt课件
6
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
(2) 纳米科技将引发一场新的工业革命
• 纳米技术是80年代初迅 速发展起来的前沿学科, 它使人们认识、改造微观 世界的水平提高到了一个 新的高度。纳米技术将用 于下一代的微电子器件即 纳米电子器件,使未来的 电脑、电视机、卫星、机 器人等的体积变得越来越 小.
其次,由于纳米科技是对人 类认知领域新疆域的开拓,人 类将面临对新理论和新发现重 新学习和理解的任务。
ppt课件
5
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
再次,从人类未来发展的角度看,可持续发展将是人 类社会进步的唯一选择。纳米科技推动产品的微型化、高 性能化和与环境友好化,这将极大节约资源和能源,减少 人类对其过分依赖,并促进生态环境的改善。这将在新的 层次上为可持续发展的理论变为现实提供物质和技术保证。
ppt课件
12
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
纳米电子器件中最有应用前景的是量子元器件。这 种利用量子效应制作的器件不仅体积小,还具有高速、 低耗和电路简化的特点。纳米电子学中另一个有趣的研 究热点是所谓的单电子器件,在单电子器件中,利用库仑 阻塞效应,甚至能够对电子一个一个的加以控制,这有 可能开发出单电子的数字电路或存储器。开发单电子晶 体管, 只要控制一个电子的行动即可完成特定功能,使功耗 降低到原来的1000—10000分之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ in 1971 by Fujishima and Honda
▪ suspended semiconductor particles:
▪ Bard demonstrated the photocatalytic effects
three main strategies
Coat conventional photovoltaic cells with 1 cocatalysts for water splitting or with
protecting layers to inhibit photocorrosion
Development of new metal oxide materials 2 that combine suitable properties for
➢ Electricity is difficult to store and to distribute over long distances.
1 Introduction
▪ Converting the photochemical energy directly into fuel: H2O →1/2 O2(g) + H2(g); ∆G = +237 kJ/mol
Photoelectrochemical devices
▪ The best performing photoelectrochemical devices known today are Tandem cells.
▪ a combination of two or more semiconductors connected in series
▪ Efficiencies between 12.4% and over 18% have been achieved, i.e. about half of the theoretical efficiency limit for these devices.
▪ But the performance cannot be sustained.
2 Brief history of nanoscale photoelectrochemistry and photocatalysis
▪ Modern nanoscience:
▪ only about 40 years old, began in 1974 with Dingle’s discovery of quantum size effects in thin films
▪ The photoelectrode materials are not stable under operating conditions and undergo photocorrosion.
▪ Similar stability problems exist for most other visible light absorbing II–VI, III–V, and group 14 element semiconductors.
1 Introduction
photovoltaic cells
✓ The solar energy can be converted into electricity
with up to 43.5% efficiency.
➢ These cells are more expensive than virtually ‘free’ coal.
▪ Several ways to facilitate reaction:
Photovoltaic cell plus electrolyzer Thermochemical methods, etc.
▪ The most economical ones:
Photoelectrosynthetic cells (PECs) Suspended photocatalysts
▪ Photoelectrochemistry:
▪ started in 1955 with Brattain’s electrochemical studies on germanium electrolyte junctions
▪ Water photoelectrolysis at illuminated TiO2 electrodes:
▪ Semiconductors with smaller bandgaps can be used, can absorb a greater fraction of the solar spectrum
Photoelectrochemical devices
Photoelectrochemical devices
Inorganic nanostructures for photoelectrochemical and photocatalytic
water splitting
Frank E. Osterloh
University of California, Davis Department of Chemistry
photoelectrochemical water splitting
Exploit scaling laws and specific effects at 3 the nanoscale to enhance the efficiency of
existing semiconductors and metal oxides
Contents
1
Introduction
2
Brief history
3 c nanostructures
4 Conclusion and outlook
carbon free energy technology
The solar energy received on the Earth’s surface meets current and future human energy demand.
▪ suspended semiconductor particles:
▪ Bard demonstrated the photocatalytic effects
three main strategies
Coat conventional photovoltaic cells with 1 cocatalysts for water splitting or with
protecting layers to inhibit photocorrosion
Development of new metal oxide materials 2 that combine suitable properties for
➢ Electricity is difficult to store and to distribute over long distances.
1 Introduction
▪ Converting the photochemical energy directly into fuel: H2O →1/2 O2(g) + H2(g); ∆G = +237 kJ/mol
Photoelectrochemical devices
▪ The best performing photoelectrochemical devices known today are Tandem cells.
▪ a combination of two or more semiconductors connected in series
▪ Efficiencies between 12.4% and over 18% have been achieved, i.e. about half of the theoretical efficiency limit for these devices.
▪ But the performance cannot be sustained.
2 Brief history of nanoscale photoelectrochemistry and photocatalysis
▪ Modern nanoscience:
▪ only about 40 years old, began in 1974 with Dingle’s discovery of quantum size effects in thin films
▪ The photoelectrode materials are not stable under operating conditions and undergo photocorrosion.
▪ Similar stability problems exist for most other visible light absorbing II–VI, III–V, and group 14 element semiconductors.
1 Introduction
photovoltaic cells
✓ The solar energy can be converted into electricity
with up to 43.5% efficiency.
➢ These cells are more expensive than virtually ‘free’ coal.
▪ Several ways to facilitate reaction:
Photovoltaic cell plus electrolyzer Thermochemical methods, etc.
▪ The most economical ones:
Photoelectrosynthetic cells (PECs) Suspended photocatalysts
▪ Photoelectrochemistry:
▪ started in 1955 with Brattain’s electrochemical studies on germanium electrolyte junctions
▪ Water photoelectrolysis at illuminated TiO2 electrodes:
▪ Semiconductors with smaller bandgaps can be used, can absorb a greater fraction of the solar spectrum
Photoelectrochemical devices
Photoelectrochemical devices
Inorganic nanostructures for photoelectrochemical and photocatalytic
water splitting
Frank E. Osterloh
University of California, Davis Department of Chemistry
photoelectrochemical water splitting
Exploit scaling laws and specific effects at 3 the nanoscale to enhance the efficiency of
existing semiconductors and metal oxides
Contents
1
Introduction
2
Brief history
3 c nanostructures
4 Conclusion and outlook
carbon free energy technology
The solar energy received on the Earth’s surface meets current and future human energy demand.