四年级数学鸡兔同笼问题与假设法
最新人教版四年级数学下册重点,鸡兔同笼问题讲解及习题(含答案)
鸡兔同笼问题讲解及习题例1:小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只)有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),有兔16-10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2:100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
例3:彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
小学四年级鸡兔同笼20道典型数学题假设法解题(含答案解析易中难度)
小学四年级鸡兔同笼20道典型数学题假设法解题(含答案解析易中难度)1.有一只笼子装着鸡和兔,从上数头有20个,从下数脚64只,问笼中鸡、兔各有多少只?解:①假设笼中全是兔子,共有多少只脚?4×20=80(只)②比原来的总数多多少只脚?80-64=16(只)③一只兔子比一只鸡多多几只脚?4-2=2④(把看多的兔子换成鸡)有几只鸡?16÷2=8⑤兔子有多少只?20-8=12只答:有鸡8只,兔12只。
2.一个商场有两轮摩托车和三轮摩托车共26辆,其中共有轮子67个,问两轮摩托车和三轮摩托车各有多少辆?解:①假设商场全是三轮摩托车,共有多少个轮子?3×26=78(个)②比原来的总数多多少个轮子?78-67=11(个)③一个三轮摩托车比一辆二轮摩托车多几各轮子?3-2=1④(把看多的三轮摩托车换成两轮摩托车)有几辆两轮摩托车?11÷1=11⑤有多少辆三轮摩托车?26-11=15只答:有两轮摩托车11辆,三轮摩托车15辆。
3. 小明家有200千克油,分别装在48个油瓶中,其中大油瓶每瓶装5千克,小油瓶每瓶装3千可,问大、小油瓶各有多少个?解:①假设全部是大油瓶,共装多少千克油?5×48=240(千克)②比原来的总数多多少千克?240-200=40(千克)③一个大油瓶比一个小油瓶多装多少千克油?5-3=2④(把看多的大油瓶换成小油瓶)有几小油瓶?40÷2=20⑤有多少个大油瓶?48-20=28(个)答:有大油瓶28个,小油瓶20个。
4.小亮存钱罐里有42枚硬币,共有32元,分别是硬币1元和5角的,问1元和5角的各有多少枚?解:①假设全部1元的,即10角,共有多少角?10×42=420(角)②比原来的总数多多少角?420-320=100(角)③1元比5角多多少角?10-5=5(角)④(把看多的1元换成5角)有几5角?100÷5=20(枚)⑤有多少个1元?42-20=22(枚)答:有1元的22枚,5角的20枚。
四年级数学下册重点,鸡兔同笼问题讲解及习题(含答案)
鸡兔同笼问题讲解及习题例1:小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只)有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),有兔16-10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2:100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
例3:彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
小学四年级 数学广角:鸡兔同笼
数学广角-鸡兔同笼鸡兔同笼【知识梳理】一、“鸡兔同笼”问题的解题方法1、猜测、列表的方法先从鸡是8只,兔是0只开始猜测,鸡的只数每次减少1只,兔的只数就相应地增加1只,保证鸡兔的只数和是8只,一直猜到鸡兔的脚数和是26只为止。
数据量较大时,解题过程就很繁琐。
2、假设的方法①假设笼子里全是鸡兔的只数=(实际脚数-2⨯鸡兔的总只数)÷(4-2)鸡的只数=鸡兔的总只数-兔的只数②假设笼子里全是兔鸡的只数=(4⨯鸡兔的总只数-实际脚数)÷(4-2)兔的只数=鸡兔的总只数-鸡的只数3、方程法鸡的只数⨯2+兔的只数⨯4=鸡兔的总脚数二、“鸡兔同笼”问题解法的应用当题中所给数据较大时,不易采用猜测、列表方法,用假设的方法或方程法解决问题较简便。
【诊断自测】一.填空题1.笼子里有若干只鸡和兔.从上面数,有8个头,从下面数,有26只脚.鸡有只,兔有只.2.30枚硬币,由2分和5分组成,共值9角9分,2分硬币有个,5分有个.3.鸡、兔同笼,一共有94只脚,兔比鸡少11只,鸡有只,兔有只.4.买1个篮球要40元,买1个排球30元.250元买8个球,其中有个篮球和个排球;300元钱买8个球,其中有个篮球和个排球.5.10人参加智力竞赛,每人必须回答24个问题,答对一题得5分,答错一题扣3分,结果得分最低的人得8分,且每个人的得分都不相同,那么第一名至少得分.【考点突破】类型一:鸡兔同笼问题(假设法)例1、在进行智力竞赛时,规定每人底分先给50分,每人必须回答10个问题,且规定答对一题得10分,答错或不答反扣5分.某人得分90分,问这个人答对几道题?答案:6解析:某人得分90分,其实他答题实际得了90﹣50=40(分);假设10个问题他全答对了,应得100分,但实际得了40分,也就是被扣掉了100﹣40=60(分);答错或不答不但不得分,反而反扣5分,也就是答错或不答一题要扣掉15分;所以这60分就是因为答错或不答扣掉的,因此答错或不答的题有[100﹣(90﹣50)]÷15=4(道),答对了10﹣4=6(道).解:10﹣[100﹣(90﹣50)]÷15,=10﹣60÷15,=10﹣4,=6(道).答:这个人答对了6道题.例2、一名篮球运动员在一场比赛中一共投中11个球,有2分球,也有3分球,已知这名运动员一共得了26分,他投中的2分球和3分球各得多少分?答案:7个2分球,4个3分球解析:假设投中的全部是3分球,可得:3×11=33(分),比实际得的26分多:33﹣26=7(分),是因为我们把每个2分球当作了3分球,每个球多算了3﹣2=1分,所以可以求出2分球的个数:7÷1=7(个),那么3分球的个数是:11﹣7=4(个).解:假设投中的全部是3分球,2分球的个数:(3×11﹣26)÷(3﹣2)=7÷1=7(个)3分球的个数是:11﹣7=4(个);答:他投中了7个2分球,4个3分球.例3、实验小学六年级二班48人到公园去划船,一共租了7条船.售票处规定每条大船坐8人,每条小船坐6人,要保证每位同学都能坐上船,而且大小船都有,那么需要大小船各多少条?答案:大船有3条,小船有4条解析:此题采用假设法分析:如果全部用的是大船,则可坐7×8=56人,那就比实际多坐56﹣48=8人,因为其中有一部分小船,每条大船比小船多坐8﹣6=2人,所以,小船有:8÷2=4条,则大船有:7﹣4=3(条).解:假设7条船全部是大船,则可以坐7×8=56(人),所以小船有:(56﹣48)÷(8﹣6),=8÷2=4(条)则大船有:7﹣4=3(条)答:大船有3条,小船有4条.例4、鸡和兔一共有30只,腿一共有100只.鸡、兔各有多少只?答案:鸡有10只,兔子有20只解析:假设全是鸡,共有脚2×30=60只,比实际脚的只数少了100﹣60=40(只),数量出现矛盾,因为我们把4只脚的兔子看做了2只脚的鸡,每只少算了:4﹣2=2只脚;因此根据这个矛盾可以求出兔子的只数,列式为:40÷2=20(只);那么鸡的只数是:30﹣20=10(只);问题得解.解:假设全是鸡,兔子的只数为:(100﹣2×30)÷(4﹣2),=40÷2,=20(只);那么鸡的只数是:30﹣20=10(只);答:鸡有10只,兔子有20只.例5、盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克.盒中大钢珠、小钢珠各有多少个?答案:盒中大钢珠有14个,小钢珠16个解析:假设全部都是大钢珠,则共重:11×30=330(克),比原来的克数重:330﹣266=64(克),因为一个大钢珠比一个小钢珠重11﹣7=4克,小钢珠的个数是:64÷(11﹣7)=16(个),进而得出大钢珠的个数;解:解法一:假设全是大钢珠.小钢珠:(30×11﹣266)÷(11﹣7)=16(个);大钢珠:30﹣16=14(个);解法二:假设全是小钢珠.大钢珠:(266﹣30×7)÷(11﹣7)=14(个);小钢珠:30﹣14=16(个);答:盒中大钢珠有14个,小钢珠16个.例6、新星小学“环保卫士”小分队12人参加植树活动.男同学每人栽了4棵树,女同学每人栽了2棵树,一共栽了34棵树.男女同学各有多少人?答案:男同学有5人,女同学有7人解析:假设12人全部是男同学,则一共植树12×4=48棵,这比已知的34棵多了48﹣34=14棵,又因为1个男同学比一个女同学多植树4﹣2=2棵,由此可得参加植树的女同学有14÷2=7人,则男同学有12﹣7=5人.解:假设12人全部是男同学,则女同学有:(12×4﹣34)÷(4﹣2),=14÷2,=7(人),男同学有12﹣7=5(人),答:男同学有5人,女同学有7人.例7、小明家有鸡、兔共15只,它们的总腿数有40条.鸡、兔各有多少只?答案:鸡有10只,兔有5只解析:此题可以利用假设法,假设全是鸡,那么就有15×2=30条腿,这比已知40条腿少了40﹣30=10条腿,1只兔比1只鸡多4﹣2=2条腿,由此即可得出兔有:10÷2=5只,则鸡有:15﹣5=10只,由此即可解答.解:假设全是鸡,那么兔有:(40﹣15×2)÷(4﹣2)=10÷2=5(只)则鸡有:15﹣5=10(只)答:鸡有10只,兔有5只.例8、某慈善机构为福利院募捐组织了一场义演,学生票和成人票共售出1500张,筹款19500元.学生票每张10元,成人票每张15元,学生票和成人票各售出多少张?答案:学生票600张,成人票900张解析:假设全是成人票,则需要筹款1500×15=22500元,这比已知的19500元多了22500﹣19500=3000元,因为一张成人票比一张学生票多15﹣10=5元,据此可得学生票是3000÷5=600张,则成人票是1500﹣600=900张.解:(1500×15﹣19500)÷(15﹣10),=3000÷5,=600(张),则成人票是:1500﹣600=900(张),答:学生票600张,成人票900张.类型二:鸡兔同笼问题(方程法)例9、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?答案:鸡有62只,兔有38只解析:设兔有x只,则鸡有100﹣x只,那么兔的腿一共有4x条,鸡的腿一共有(100﹣x)×2,再根据“鸡的腿的条数比兔的腿的条数少28条,”即兔的腿的条数﹣鸡的腿的条数=28,由此列出方程解答.解:设兔有x只,则鸡有(100﹣x)只,4x﹣(100﹣x)×2=28,4x﹣200+2x=28,6x=228,x=38,100﹣38=62(只),答:鸡有62只,兔有38只.例10、有龟和鹤共40只,龟的腿和鹤的腿共有112条.龟鹤各有几只?答案:龟有16只,鹤有24只解析:设龟有x只,则鹤有(40﹣x)只,由题意得:龟的只数×4+鹤的只数×2=112,从而列方程求解.解:设龟有x只,则鹤有(40﹣x)只,由题意得:4x+(40﹣x)×2=112,4x+80﹣2x=112,2x=32,x=16,40﹣x=40﹣16=24,答:龟有16只,鹤有24只.【易错精选】一.选择题1.数学竞赛共10题,做对一题得8分,做错一题(或不做),倒扣5分,小军得41分,他做错了()A.3题B.4题C.5题D.2题2.小兔子采蘑菇,晴天每天能采36只,雨天每天只能采24只,它一连几天共采了288只蘑菇,平均每天采32只,这些天中有()天是晴天.A.2B.6C.4D.53.太和镇某小学植树小分队10人参加植树活动.男生每人栽了5棵树,女生每人栽了3棵树,一共栽了42棵树.男生有()人.A.8B.6C.44.全国足球甲A联赛每胜一场得3分,平一场得1分,负一场得0分,某支球队共得了30分,赛了14场,其中平了3场,那么负了.()A.4场B.3 场C.2 场D.1场二.填空题5.一次数学竞赛有10道题,做对一题得10分,做错一题倒扣2分,小明得了76分,小明做对了题.6.鸡、兔同笼,一共有94只脚,兔比鸡少11只,鸡有只,兔有只.7.海边的沙滩上,海龟和仙鹤共有12只,有30条腿.仙鹤有只.8.鸡兔同笼,从上面数有19个头,从下面数有56只脚,鸡有只,兔有只.9.自行车和三轮车共20辆,总共有52个轮子,自行车辆,三轮车辆.【精华提炼】1、假设的方法①假设笼子里全是鸡兔的只数=(实际脚数-2⨯鸡兔的总只数)÷(4-2)鸡的只数=鸡兔的总只数-兔的只数②假设笼子里全是兔鸡的只数=(4⨯鸡兔的总只数-实际脚数)÷(4-2)兔的只数=鸡兔的总只数-鸡的只数【本节训练】训练【1】刘军向某市运送2000只玻璃杯,每只运费0.1元,若损坏1只,不但得不到运费,还要赔偿0.4元.刘军最后共得到运费198元.你知道损坏了几只玻璃杯吗?训练【2】一个笼子里关了一些鸡和兔,从上面数头有100个,从下面数脚共有220只,笼子中有鸡,兔各多少只?训练【3】一个停车场:停着汽车和摩托车(两个轮)共24辆,这些车子共有86个轮子,求摩托车和汽车各有多少辆?训练【4】小明的爸爸在旅行社工作,本月为顾客订制了2种门票共30张,一共用去2400元.其中瘦西湖门票为150元,个园门票为45元.两种票各买了多少张?基础巩固一.选择题1.停车场里有三轮车和自行车共20辆,共有42个轮子,自行车共有()辆.A.2B.12C.182.在学校一次环境保护知识抢答比赛中,共有20道题,每答对一道题得10分,答错一道倒扣5分,蓝天队最后得分是155分,那么该队共答对()题.A.10B.12C.15D.173.学校举行智力竞赛,答对一题加10分,答错一题扣6分,李龙共抢答16题,最后得分16分,他答错了()题.A.9B.15C.7D.104.36人去划船,一共租了8只船,每只大船坐5人,每只小船坐3人,那么一共租了()只小船.A.6B.2C.35.组装车间要装配两轮摩托车和三轮车共21辆,需要51个轮胎,两轮摩托车和三轮摩托车的辆数分别是()A.12和9B.8和13C.10和11二.填空题6.班里组织知识竞赛,选手进行抢答.答对一题加10分,答错一题倒扣6分.小明共抢答12道题,最后得分72分.小明共答对题.7.鸡兔共有20个头,70只腿.鸡有只,兔有只.8.有2分和5分的硬币共18枚,一共6角钱,5分的硬币有枚.9.学校有象棋、跳棋共26副,2人下l副象棋,6人下一副跳棋,恰好可供120个学生进行课外活动.象棋有副,跳棋有副.10.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么汽车有辆.三.应用题11.鸡兔同笼,有12个头,30只脚,鸡、兔各有多少只?(用你喜欢的方法解答)12.80名学生分别住进了12间宿舍,每间大宿舍住8人,每间小宿舍住6人,12间宿舍刚好都住满,大、小宿舍各有几间?13.六年级同学分组参加课外兴趣小组.科技类每5人一组,艺术类每3人一组,共有37名同学参加报名,正好分成9组.参加科技类和艺术类的学生各有多少人?巅峰突破一.选择题1.有5元和10元的人民币共20张,一共是175元,5元的人民币有()张.A.5B.10C.152.“鸡兔同笼”问题是我国古代的数学名题之一,《孙子算经》中记载的题目是这样的“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,同学们,你得出的这个古代名题的结果是()A.鸡23只兔12只B.鸡12只兔23只C.鸡14只兔21只3.一位工人搬运1000只玻璃杯,每只杯子的运费是3分,破损一只要赔5分,最后这位工人得到运费26元,搬运中他打碎杯子()只.A.30B.50C.60D.804.一队猎手一队狗,二队并作一队走,数头一共三十三,数脚一共九十整,问有多少猎手多少狗?()A.18,15B.21,12C.12,215.一次数学竞赛,共有20道题.每一题,做对者得6分,做错或者未做者,扣一分.小毕参加竞赛得了78分,那么他做对了()道题.A.17B.16C.15D.14二.解答题6.车棚里停着三轮车和自行车一共10辆,一共有24个轮子.三轮车和自行车各有多少辆?(调整假设,列表解答)假设三轮车的辆数相应的自行车的辆数轮子总个数5 57.某市高中一年级学生进行野外军训.晴天每天行20千米,雨天行10千米.在8天内行程为140千米.这期间有多少天晴天?有多少天雨天?8.仓库有1440个苹果准备装箱,现有两种规格的箱子共27个,已知每个大箱子可装苹果70个,每个小箱子可装苹果40个.问大、小箱子各需多少个?参考答案【诊断自测】1、答案:3,52、答案:17、133、答案:鸡有23只,兔有12只4、答案:1,7,6,25、答案:80【易错精选】1、A2、B3、B4、C5、答案:8解析:根据题意,假设全做对得10×10=100(分),小明得了76分,少得100﹣76=24(分),一求出做错的道数,就可以求出作对的道数.解:根据题意,假设小明全做对可得:10×10=100(分);现在小明得了76分,比总分少:100﹣76=24(分);因为每做错一道少得:10+2=12(分),所以小明做错的道数是:24÷12=2(道),那么他做对的道数是:10﹣2=8(道).6.答案:23,12.解析:根据“兔比鸡少11只,”知道鸡的只数=兔的只数+11,再根据“鸡兔共有脚94只,”知道鸡的只数×2+兔的只数×4=94,由此列方程即可解答.解:设兔有X只,则鸡有(X+11)只,4X+2×(X+11)=94,4X+2X+22=94,6x+22=94,6X=72,X=12;鸡:X+11=12+11=23;7.答案:9解析:假设12只全是仙鹤,则腿的总条数是:12×2=24条,比实际少了:30﹣24=6条,因为我们把海龟当作了仙鹤,每只少算了4﹣2=2条腿,一共少算了6条腿,则一共有海龟:6÷2=3只,进而即可求出仙鹤的只数.8.答案:10,9解析:设兔有x只,则鸡有(19﹣x)只,由鸡的只数×2+兔的只数×4=鸡兔共有脚数,据此等量关系列方程求解.解:设兔有x只,则鸡有(19﹣x)只,由题意得(19﹣x)×2+4x=56,38﹣2x+4x=56,2x=18,x=9;19﹣x=19﹣9=10;9.答案:8,12解析:此类问题可以利用假设法,假设全是自行车,那么就有20×2=40个轮子,已知的52个轮子比40就多了52﹣40=12个轮子,1辆三轮车比1辆自行车多3﹣2=1个轮子,由此即可得出三轮车有:12÷1=12辆,则自行车有:20﹣12=8辆.解:假设全是自行车,那么三轮车有:(52﹣20×2)÷(3﹣2)=12÷1=12(辆)则自行车有:20﹣12=8(辆);【本节训练】训练【1】答案:4解析:解答此题先假设2000只玻璃杯全都安全运到,应得运费2000×0.1=200(元),现在共得运费198元,说明途中有损坏的玻璃杯;现在比假设少得运费200﹣198=2(元),损坏一只玻璃杯比安全运到少得0.1+0.4=0.5(元),用2÷0.5=4(只),就是损坏的玻璃杯数量.解:(2000×0.1﹣198)÷(0.1+0.4)=(200﹣198)÷0.5=2÷0.5=4(只);答:损坏了4只玻璃杯.训练【2】答案:鸡有90只,兔子有10只解析:假设全是兔,共有4×100=400只脚,这比已知220只脚多出了400﹣220=180只,因为1只兔比1只鸡多4﹣2=2只脚,所以鸡有:180÷2=90只,进而求得兔的只数,由此即可解决问题.解:(4×100﹣220)÷(4﹣2)=180÷2=90(只)100﹣90=10(只)答:鸡有90只,兔子有10只.训练【3】答案:汽车有19辆,摩托车有5辆解析:假设全是两轮摩托车,则轮子有24×2=48个,这比已知的86个轮子少了86﹣48=38个,因为一辆四轮汽车比一辆摩托车多4﹣2=2个轮子,所以四轮汽车有38÷2=19辆,则摩托车有24﹣19=5辆,由此即可解决问题.解:假设全是两轮摩托车,则四轮汽车有:(86﹣24×2)÷(4﹣2)=38÷2=19(辆)摩托车有:24﹣19=5(辆)答:汽车有19辆,摩托车有5辆.训练【4】答案:150元的买了10张,45元的买了20张解析:根据题干,设买了x张150元的,则买了(30﹣x)张45元的,根据等量关系:买每张150元花掉的钱数+买每张45元花掉的钱数=总钱数2400,列出方程即可解决问题.解:买了x张150元的,则买了(30﹣x)张45元的,根据题意可得方程:150x+45×(30﹣x)=2400150x+1350﹣45x=2400105x=1050x=1030﹣10=20(张)答:150元的买了10张,45元的买了20张.基础巩固1、C2、D3、A4、B5、A6、答案:97、答案:5,158、答案:8解析:假设都是2分的硬币,则一共2×18=36=3角6分,而实际一共有6角,原因是硬币中有5分的,1个5分硬币比1个2分硬币多3分,现在多出60﹣36=24分需要多少个5分硬币呢?用24除以3,即可得解.解:(60﹣18×2)÷(5﹣2),=(60﹣36)÷3,=24÷3,=8(枚);9、答案:9;1710、答案:14解析:假设24辆全是4个轮子的汽车,则一共有轮子24×4=96个,这比已知的86个轮子多出了96﹣86=10个,因为1辆汽车比1辆三轮车多4﹣3=1个轮子,据此可得三轮车有10辆,再求汽车即可.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3)=10÷1=10(辆)24﹣10=14(辆)巅峰突破一.选择题1.答案:A.2.答案:A.3.答案:B.4.答案:B.5.答案:D.二.解答题6.答案:自行车有6辆,三轮车有4辆.解析:此类问题可以利用假设法,假设全是自行车,那么就有10×2=20个轮子,已知的24个轮子比20就多了24﹣20=4个轮子,1辆三轮车比1辆自行车多3﹣2=1个轮子,由此即可得出三轮车有:4÷1=4辆,则自行车有:10﹣4=6辆.解:三轮车有:(24﹣10×2)÷(3﹣2),=4÷1=4(辆)则自行车有:10﹣4=6(辆);答:自行车有6辆,三轮车有4辆.7.答案:6天晴天,2天雨天解析:属于鸡兔同笼问题,采用假设法即可解答解:假设全是晴天,则雨天有:(8×20﹣140)÷(20﹣10),=(160﹣140)÷10,=20÷10,=2(天),所以晴天有:8﹣2=6(天);答:这期间有6天晴天,2天雨天.8.答案:大箱子需12个、小箱子需15个解析:假设27个箱子全是大箱子,则一共可装27×70=1890个,这比已知的1440个苹果多出了1890﹣1440=450个,因为1个大箱子比1个小箱子多装70﹣40=30个苹果,据此可得小箱子15个,则大箱子就需27﹣15=12个,据此即可解答.解:假设27个箱子全是大箱子,则小箱子需:(27×70﹣1440)÷(70﹣40)=450÷30=15(个)所以大箱子有:27﹣15=12(个),答:大箱子需12个、小箱子需15个.。
鸡兔同笼典型例题及详细讲解
鸡兔同笼问题与假设法鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的;它是一类有名的中国古算题..许多小学算术应用题;都可以转化为鸡兔同笼问题来加以计算..例1小梅数她家的鸡与兔;数头有16个;数脚有44只..问:小梅家的鸡与兔各有多少只分析:假设16只都是鸡;那么就应该有2×16=32只脚;但实际上有44只脚;比假设的情况多了44-32=12只脚;出现这种情况的原因是把兔当作鸡了..如果我们以同样数量的兔去换同样数量的鸡;那么每换一只;头的数目不变;脚数增加了2只..因此只要算出12里面有几个2;就可以求出兔的只数..解:有兔44-2×16÷4-2=6只;有鸡16-6=10只..答:有6只兔;10只鸡..当然;我们也可以假设16只都是兔子;那么就应该有4×16=64只脚;但实际上有44只脚;比假设的情况少了64-44=20只脚;这是因为把鸡当作兔了..我们以鸡去换兔;每换一只;头的数目不变;脚数减少了4-2=2只..因此只要算出20里面有几个2;就可以求出鸡的只数..有鸡4×16-44÷4-2=10只;有兔16—10=6只..由例1看出;解答鸡兔同笼问题通常采用假设法;可以先假设都是鸡;然后以兔换鸡;也可以先假设都是兔;然后以鸡换兔..因此这类问题也叫置换问题..例2100个和尚140个馍;大和尚1人分3个馍;小和尚1人分1个馍..问:大、小和尚各有多少人分析与解:本题由中国古算名题“百僧分馍问题”演变而得..如果将大和尚、小和尚分别看作鸡和兔;馍看作腿;那么就成了鸡兔同笼问题;可以用假设法来解..假设100人全是大和尚;那么共需馍300个;比实际多300-140=160个..现在以小和尚去换大和尚;每换一个总人数不变;而馍就要减少3—1=2个;因为160÷2=80;故小和尚有80人;大和尚有100-80=20人..答:大和尚有20人;小和尚有80人..同样;也可以假设100人都是小和尚;大家不妨自己试试..在下面的例题中;我们只给出一种假设方法..例3彩色文化用品每套19元;普通文化用品每套11元;这两种文化用品共买了16套;用钱280元..问:两种文化用品各买了多少套分析与解:我们设想有一只“怪鸡”有1个头11只脚;一种“怪兔”有1个头19只脚;它们共有16个头;280只脚..这样;就将买文化用品问题转换成鸡兔同笼问题了..假设买了16套彩色文化用品;则共需19×16=304元;比实际多304—280=24元;现在用普通文化用品去换彩色文化用品;每换一套少用19—11=8元;所以买普通文化用品24÷8=3套;买彩色文化用品16-3=13套..答:买普通文化用品3套;买彩色文化用品13套..例4鸡、兔共100只;鸡脚比兔脚多20只..问:鸡、兔各多少只分析:假设100只都是鸡;没有兔;那么就有鸡脚200只;而兔的脚数为零..这样鸡脚比兔脚多200只;而实际上只多20只;这说明假设的鸡脚比兔脚多的数比实际上多200—20=180只..现在以兔换鸡;每换一只;鸡脚减少2只;兔脚增加4只;即鸡脚比兔脚多的脚数中就会减少4+2=6只;而180÷6=30;因此有兔子30只;鸡100——30=70只..解:有兔2×100—20÷2+4=30只;有鸡100—30=70只..答:有鸡70只;兔30只..例5现有大、小油瓶共50个;每个大瓶可装油4千克;每个小瓶可装油2千克;大瓶比小瓶共多装20千克..问:大、小瓶各有多少个分析:本题与例4非常类似;仿照例4的解法即可..解:小瓶有4×50-20÷4+2=30个;大瓶有50-30=20个..答:有大瓶20个;小瓶30个..例6一批钢材;用小卡车装载要45辆;用大卡车装载只要36辆..已知每辆大卡车比每辆小卡车多装4吨;那么这批钢材有多少吨分析:要算出这批钢材有多少吨;需要知道每辆大卡车或小卡车能装多少吨..利用假设法;假设只用36辆小卡车来装载这批钢材;因为每辆大卡车比每辆小卡车多装4吨;所以要剩下4×36=144吨..根据条件;要装完这144吨钢材还需要45-36=9辆小卡车..这样每辆小卡车能装144÷9=16吨..由此可求出这批钢材有多少吨..解:4×36÷45-36×45=720吨..答:这批钢材有720吨..例7乐乐百货商店委托搬运站运送500只花瓶;双方商定每只运费0.24元;但如果发生损坏;那么每打破一只不仅不给运费;而且还要赔偿1.26元;结果搬运站共得运费115.5元..问:搬运过程中共打破了几只花瓶分析:假设500只花瓶在搬运过程中一只也没有打破;那么应得运费0.24×500=120元..实际上只得到115.5元;少得120-115.5=4.5元..搬运站每打破一只花瓶要损失0.24+1.26=1.5元..因此共打破花瓶4.5÷1.5=3只..解:0.24×500-115.5÷0.24+1.26=3只..答:共打破3只花瓶..例8小乐与小喜一起跳绳;小喜先跳了2分钟;然后两人各跳了3分钟;一共跳了780下..已知小喜比小乐每分钟多跳12下;那么小喜比小乐共多跳了多少下分析与解:利用假设法;假设小喜的跳绳速度减少到与小乐一样;那么两人跳的总数减少了12×2+3=60下..可求出小乐每分钟跳780——60÷2+3+3=90下;小乐一共跳了90×3=270下;因此小喜比小乐共多跳780——270×2=240下..答:小喜比小乐共多跳了240下..。
鸡兔同笼解题方法(范文9篇)
鸡兔同笼解题方法(范文9篇)以下是网友分享的关于鸡兔同笼解题方法的资料9篇,希望对您有所帮助,就爱阅读感谢您的支持。
鸡兔同笼解题方法(1)一.笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?解题方法:1.猜测,列表法2.假设法3.解方程法1.列表法2.假设法假设笼子里全是鸡,则共有2×8=16(只)脚,比实际少了26-16=10(只)脚,因为我们把兔子都看成了鸡,每只兔子少算了2只脚,共少了10只脚,说明兔子应该有10÷2=5(只)同理:假设笼子里的全是兔子,则一共有4×8=32(只)脚,比实际多了32-26=6(只)脚。
把鸡的脚当兔子的脚计算时,每只兔子比鸡多算了2只脚,所以鸡有6÷2=3(只)3.解方程法兔的脚数+鸡的脚数=鸡兔总脚数=26(只)设鸡有x只,那么兔就有8-x只,就有方程:2x+4(8-x)=26;解出x是鸡的只数,再求兔的只数。
鸡兔同笼解题方法(2)鸡兔同笼的解题方法【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数.或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数.例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数.(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式. (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数.或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数.(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数. 例如,“灯泡厂生产灯泡的工人,按得分的多少给工资.每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分.某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元…….它的解法显然可套用上述公式.)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数.例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只.鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼解题方法(3)四年级下册鸡兔同笼数学问题解决方案:1、假设法:假设全部都是兔,(每只兔的脚数x头数-原来的总脚数)÷(每只兔的脚数-每只鸡的脚数)=鸡的只数;头数-鸡的只数=兔的只数假设全部都是鸡,(原来的总脚数-每只鸡的脚数x头数)÷(每只兔的脚数-每只鸡的脚数)=兔的只数;头数-兔的只数=鸡的只数例如:鸡兔同笼,头共有20个,脚共有50只,鸡,兔分别有多少只?(4x20-50)÷(4-2)=15(只)……鸡;20-15=5(只)……兔(50-2x20)÷(4-2)=5(只)……兔;20-5=15(只)……鸡2、列方程解:设兔有x只,鸡有20-x只。
鸡兔同笼问题与假设法讲解
鸡兔同笼问题与假设法讲解The document was prepared on January 2, 2021第13讲鸡兔同笼问题与假设法鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题.许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算.例1 小梅数她家的鸡与兔,数头有16个,数脚有44只.问:小梅家的鸡与兔各有多少只分析:假设16只都是鸡,那么就应该有2×16=32只脚,但实际上有44只脚,比假设的情况多了44-32=12只脚,出现这种情况的原因是把兔当作鸡了.如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只.因此只要算出12里面有几个2,就可以求出兔的只数.解:有兔44-2×16÷4-2=6只,有鸡16-6=10只.答:有6只兔,10只鸡.当然,我们也可以假设16只都是兔子,那么就应该有4×16=64只脚,但实际上有44只脚,比假设的情况少了64-44=20只脚,这是因为把鸡当作兔了.我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2只.因此只要算出20里面有几个2,就可以求出鸡的只数.有鸡4×16-44÷4-2=10只,有兔16——10=6只.由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔.因此这类问题也叫置换问题.例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人分析与解:本题由中国古算名题“百僧分馍问题”演变而得.如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解.假设100人全是大和尚,那么共需馍300个,比实际多300-140=160个.现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2个,因为160÷2=80,故小和尚有80人,大和尚有100-80=20人.同样,也可以假设100人都是小和尚,同学们不妨自己试试.在下面的例题中,我们只给出一种假设方法.例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元.问:两种文化用品各买了多少套分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚.这样,就将买文化用品问题转换成鸡兔同笼问题了.假设买了16套彩色文化用品,则共需19×16=304元,比实际多304——280=24元,现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8元,所以买普通文化用品 24÷8=3套,买彩色文化用品 16-3=13套.例4 鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零.这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180只.现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6只,而180÷6=30,因此有兔子30只,鸡100——30=70只.解:有兔2×100——20÷2+4=30只,有鸡100——30=70只.答:有鸡70只,兔30只.例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克.问:大、小瓶各有多少个分析:本题与例4非常类似,仿照例4的解法即可.解:小瓶有4×50-20÷4+2=30个,大瓶有50-30=20个.答:有大瓶20个,小瓶30个.例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆.已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨.利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144吨.根据条件,要装完这144吨钢材还需要45-36=9辆小卡车.这样每辆小卡车能装144÷9=16吨.由此可求出这批钢材有多少吨.解:4×36÷45-36×45=720吨.答:这批钢材有720吨.例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿元,结果搬运站共得运费元.问:搬运过程中共打破了几只花瓶分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费×500=120元.实际上只得到元,少得=元.搬运站每打破一只花瓶要损失+=元.因此共打破花瓶÷=3只.解:×500-÷+=3只.答:共打破3只花瓶.例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下.已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×2+3=60下.可求出小乐每分钟跳780——60÷2+3+3=90下,小乐一共跳了90×3=270下,因此小喜比小乐共多跳780——270×2=240下.。
变型鸡兔同笼问题与假设法详细课件典型题型
变型鸡兔同笼问题与假设法详细课件典型题型第三讲变型鸡兔同笼问题与假设法【习题精讲】【例1】(难度等级※)工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个要倒赔100元,运完这批花瓶后,工人共得4400元.问共损坏了几个花瓶?【分析与解】假设250个能够完整运达目的地。
将得运费250×20=5000(元),与实际所得相差5000-4400=600(元)。
损坏个数600÷(100+20)=5(个)。
【例2】(难度等级※※)松鼠妈妈采松果,晴天每天可以采20个,雨天每天只能采12个.它一连几天采了112个松果,平均每天采14个.问这几天中有几个雨天?因松鼠妈妈共采松果112个,平均每天采14个,所以实际用了112÷14=8(天).假设这8天全是晴天,松鼠妈妈应采松果20×8=160(个),比实际采的多了160-112=48(个),因雨天比晴天少采20-12=8(个),所以共有雨天48÷8=6(天).【例3】(难度等级※※)四年级四班有60个学生参加下棋活动老师准备了象棋、跳棋20副,2人下一幅象棋,6人下一副跳棋,问象棋和跳棋各多少副?假设20副均为象棋,共有20×2=40(人)在玩,还有20人没参加活动。
跳棋数20÷(6-2)=5(副),象棋数20-5=15(副)。
【例4】(难度等级※※)实验小学四年级举行数学竞赛,一共出了10道题目,答对一道得10分,答错一题反扣5分(没有不答的情况)。
张华得了70分,他答对了几道题?假设所有问题全部答对,得分10×10=100(分),比实际得分多100-70=30(分),错题数:30÷(10+5)=2(道),正确题数:10-2-8(道)。
【例5】(难度等级※※※)蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
现在这三种小虫共18只,有118条腿和20对翅膀。
四年级奥数--用假设法解题
例5:某场乒乓球比赛售出30元、 40元、50元的门票共200张,收 入7800元。其中40元和50元的 张数相等,每种票各售出多少 张?
分析与解答:
Байду номын сангаас因为“40元和50元的张数相等”,所以可 以把40元和50元的门票都看作45元的门票, 假设这200张门票都是45元的,应收入: 45×200=9000元, 比实际多收入:9000-7800=1200元, 这是因为把30元的门票都当作45元来计算 了。因此30元的门票有: 1200÷(45-30)=80张, 40元和50元的门票各有: (200-80)÷2=60张。
1,某场球赛售出40元、30元、50元的门票共400 张,收入15600元。其中40元和50元的张数相等, 每种门票各售出多少张? 2,数学测试卷有20道题,做对一题得7分,做错 一题倒扣4分,不做得0分。红红得了100分,她几 道题没做? 3,有甲、乙、丙三种练习簿,价钱分别为7角、3 角和2角,三种练习簿一共买了47本,付了21元2 角。买乙种练习簿的本数是丙种练习簿的2倍,三 种练习簿各买了多少本?
例3、一批水泥,用小车装载, 要用45辆;用大车装载,只要 36辆。每辆大车比小车多装4吨, 这批水泥有多少吨?。
分析与解答:
求出大车每辆各装多少吨,是解题 关键。如果用36辆小车来运,则剩 4×36=144吨,需45-36=9辆小车来 运,这样可以求出每辆小车的装载 量是144÷9=16吨,所以,这批水泥 共有16×45=720吨。
:四年级数学下册重点,鸡兔同笼问题讲解及习题(含答案)
鸡兔同笼问题讲解及习题例1:小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只)有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),有兔16-10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2:100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
例3:彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
四年级鸡兔同笼问题
方法二: 还可以“假设增加14只兔” 则腿的数量增加到: 136+14×4=192(只) (脚的只数)
鸡的只数为:
192÷(4+2)=32(只) (鸡的数量) 兔的只数为: 32-18=14(只) (兔的只数)
答: 兔有14只,鸡有32只。
【例4】鸡兔同笼,鸡兔共45个头,兔脚比鸡脚多78只,鸡 兔各有多少只?
本次课的教学目标:
会用假设法解决鸡兔同笼问题
例1:鸡兔同笼,不知其数,只知头共10个, 腿共28条,鸡兔各多少只? 想一想还
分析: 用 表示鸡,用 表示兔,
有其他方 法吗?
解: 假设全是鸡 共有腿:10×2=20(条) 共少:28-20=8(条) 1只鸡比1只兔子少:4-2=2(条) 兔子:8÷2=4(只) 鸡:10-4=6(只) 答:鸡有6只,兔子有4只。
答:鸡有17只,兔有28只。
【例5】达慧学校举行智力竞赛,每位选手应回答25道 题,若回答正确,每题得4分,若答错了或不答,则每 题倒扣1分。小奇得了85分,他答对了多少道题?
分析:对每一道题来讲,得分情况都有哪些?“答错了或 不答,则每题倒扣1分”的意思是什么?(从做对题得分 中扣1分)
解:假设25道题全答对,每题得4分,
则得:25×4=100(分)。 而实际得分85分,损失了15分, 把一道扣分的题当成对的, 多少了:4+1=5(分), 就可计算出他答错了:15÷(4+1)=3(道)(答错或未答的) 答对了:25-3=22(道)。
答:答对了22道。
【例6】小慧的储蓄盒里有2元、5元和10元人民币共48 张,总钱数为220元,其中2元和5元的张数相同,三种 人民币各有多少张?
四年级数学专题《鸡兔同笼》题目及答案(1)
鸡兔同笼(1)姓名:___________用假设法。
解题思路是:先假设它们全是鸡,于是根据鸡、兔的总数,就可以先算出在假设条件下共有几只脚,再与原来的脚数相比较,看看差多少,从差中求出兔的数量。
也可以先假设全是兔,由差求鸡的数量,再求另一个数量是多少。
用假设法解答鸡兔同笼问题的基本数量关系为:兔数=(总脚数一每只鸡脚数×鸡兔总数)÷鸡兔脚数差鸡数=(每只兔脚数×鸡兔总数一总脚数)÷鸡兔脚数差1、现在有一笼鸡和兔,从笼子上面看共有30个头,从笼子下面看共有70只脚。
这个笼子里鸡和兔各有多少只?兔的只数:(70-2×30)÷(4-2)=5(只)鸡的只数:30-5=25(只)2、今有鸡兔同笼,已知鸡头与兔头共64个,鸡脚与兔脚共204只,鸡、兔各有多少只?兔的只数:(204-64×2)÷(4-2)=38(只)鸡的只数:64-38=26(只)3、笼子里有若干只鸡和兔,共有8个头22只脚,问:鸡、兔各有多少只?鸡的只数:(8×4-22)÷(4-2)=5(只)兔的只数:8-5=3(只)4、饲养员小王在自家庭院里饲养了鸭子和山羊共40只,它们的脚数一共108只。
小王养的鸭子、山羊各多少只?鸭子的只数:(4×40-108)÷(4-2)=26(只)山羊的只数:40-26=14(只)5、王老师带了51名学生去春游,他们只租了11条船,每条大船坐6人,每条小船坐4人,请你算一算,他们各租了几条大船,几条小船?(1)小船的条数:(6×11-51-1)÷(6-4)=14÷2=7(条)(2)大船的条数: 11-7=4(条)6、四(1)班56人去划船,共乘12条船,其中每条小船能坐4人,每条大船能坐6人。
大船、小船各几条?大船:(56-12×4)÷(6-4)=4(条)小船:12-4=8(条)7、学校有象棋、跳棋共26副,恰好可供120个学生同时活动,象棋2人下一副,跳棋6人下一副,象棋和跳棋各有几副?象棋:(26×6-120)÷(6-2)=9(副)跳棋:26-9=17(副)8、四(1)班的同学去商店买了钢笔和圆珠笔共9支,用去52元。
小学数学鸡兔同笼问题解题思路和方法公式例题附答案
鸡兔同笼问题【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例1:长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
请你仔细算一算,多少兔子多少鸡?解:假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:有鸡23只,有兔12只。
例2:2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解:此题实际上是改头换面的“鸡兔同笼”问题。
“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。
假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)答:白菜地有10亩。
鸡兔同笼问题所有方法总结
一、“画图法”
1. 假设全是鸡,先把35只鸡画好
……
2. 这样还差94-35x2=24条腿 3. 鸡变成兔还差2条腿,24条腿补在 鸡身上,需要变24÷2=12只鸡为兔
……
鸡兔同笼问题方法总结
二、“假设法”
1. 假设全是鸡 则有35x2=70条腿,比实际少94-70=24条腿 鸡变成兔要加2条腿,那么有24÷2=12只鸡变为兔 也就是有12只兔,35-12=23只鸡
…… …… ……
……
使用“分组法”的前提是两种物一样多,或者成整数倍的关系 根据“鸡的数量是兔子的3倍” 我们把3只鸡和1只兔分为一组 则每组腿数是:2x3+4x1=10(条) 组数为:110÷10=11(组) 兔子有11x1=11只 鸡有11x3=33只
鸡兔同笼问题方法总结
四、“方程法”
1. 设鸡的数量为x只,则兔子有(35-x)只 列方程为:2x+4(35-x)=94 2x+4x35-4x=94 x=23
所以:鸡有23只 兔子有35-23=12只
鸡兔同笼问题方法总结
五、“分组法”
鸡兔同笼,鸡的数量是兔子的3倍,兔子和鸡的腿数总和 为110条。请问:鸡和兔子各有几只?
2. 假设全是兔 则有35x4=140条腿,比实际多140-94=46条腿 兔变成鸡要减2条腿,那么有46÷2=23只兔变为鸡 也就是有23只鸡,35-23=“金鸡独立法”
1. 让每只鸡都一只脚站立着,每只兔都用两只后脚站立着 2. 那么地上的总脚数只是原来的一半,即47只脚。 3. 鸡的脚数与头数相同 4. 兔的脚数是兔的头数的2倍 5. 因此从47里减去头数35 6. 剩下来的就是兔的头数47-35=12只 7. 鸡有35-12=23只
四年级数学下册鸡兔同笼经典例题及简单解法
鸡兔同笼经典例题及简单解法鸡兔同笼问题,已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,也叫“龟鹤问题”、“置换问题”。
解题思路和方法:解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
常用的基本公式有:(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数兔子只数=(总腿数-总头数×2) ÷2鸡的只数=(总头数×4-总腿数) ÷2(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数例1、鸡兔同笼共有32只,共有腿100条,有几只鸡?几只兔?解法一:解:题上告诉我们:鸡兔一共32只,我们可以先假设这32只都是鸡,这样应该有腿2×32=64(条),这比题上告诉的腿数100条少了100-64=36(条)。
这36条腿是怎样少出来的呢?显然是因为把兔子算成了鸡,把一只兔子算成鸡便会少两条腿,把两只兔子算成鸡便会少2个两条腿……据此推想:少了几个两条腿,就是把几只兔子算成了鸡,因此兔子的只数一定是:36÷2=18(只);鸡的只数也就是:32-18=14(只)综合列式:(100-2×32)÷(4-2)=36÷2=18(只)(兔)32-18=14(只)(鸡)解法二:解:假设32只全部是兔子,这样就应该有腿4×32=128(条),这比题目已知的100条腿多了128-100=28(条)。
为什么会多出28条腿呢?显然是把其中的鸡当作兔子计算了,把一只鸡当兔子计算就多出两条腿,把两只鸡当兔子计算便会多出2个两条腿,推而广之:把几只鸡当兔子计算,便会多出几个两条腿,因此鸡的只数一定是:28÷2=14(只);兔子的只数自然是32-14=18(只)。
四年级数学专题《鸡兔同笼》题目及答案(2)
鸡兔同笼(2)姓名:___________用假设法。
解题思路是:先假设它们全是鸡,于是根据鸡、兔的总数,就可以先算出在假设条件下共有几只脚,再与原来的脚数相比较,看看差多少,从差中求出兔的数量。
也可以先假设全是兔,由差求鸡的数量,再求另一个数量是多少。
用假设法解答鸡兔同笼问题的基本数量关系为:兔数=(总脚数一每只鸡脚数×鸡兔总数)÷鸡兔脚数差鸡数=(每只兔脚数×鸡兔总数一总脚数)÷鸡兔脚数差1、育才小学举行数学竞赛,试题共12道,每做对一题得10分,每做错一题倒扣5分。
张平最终得了90分,他做对了多少道?做错了多少道?做错的题数:(10×12-90)÷(10+5)=2(道)做对的题数:12-2=10(道)2、四年级举行数学竞赛,共有10道题。
每做对一题得7分,做错一题倒扣3分。
李华同学共得50分。
他做对了几道题?10-(7×10-50)÷(7+3)=8(道)3、某校举行数学竞赛,共有20道选择题,评分标准是每做对1题得5分,做错1题倒扣2分,没做得0分。
小红得了73分,则小红有几题没做?小红做错和没做而扣除的分数为20×5-73=27(分),做错1题扣5+2=7(分),不做1题扣5+0=5(分),因为27=1×7+4×5,所以,小红做错了1题,有4 题没做。
4、红星小学举行安全知识竞赛,一共20道题,答对一题得5分,答错一题扣3分,没有回答得0分。
小明做完了全部题目,得到76分,他答对了多少道题?做错的题数:(20×5-76)÷(5+3)=3(道)做对的题数:20-3=17(道)5、有若干只鸡和兔被关在同一个笼子里,它们共有100个头,320只脚,那么请问鸡、兔各有多少只?假设100只都是鸡,则有脚100×2=200(只)。
比实际的脚少320-200=120(只)。
鸡兔同笼与假设法
鸡兔同笼与假设法一、概念:鸡兔同笼问题是指鸡兔同关一笼,已知鸡兔的头数与脚的只数,要求鸡兔各有多少只的应用题。
许多与上述问题性质相同或类似的问题,也都称为鸡兔同笼。
二、解鸡兔同笼的关键是使用“假设法”,我们现在学的是通过“画图法”来解决,这样我们可以一目了然就发现了答案。
例1 鸡兔同笼,共10个头,28条腿,有几只鸡?几只兔?1、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?2、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?3、有鸡兔共20只,脚44只,鸡兔各几只?4、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?5、车棚里有自行车、三轮车共12辆,数数车轮27个,问自行车三轮车各有几辆?6、逸豪有16枚硬币,有5分和2分两种,它们合在一起共有5角3分。
5分和2分的硬币各有几枚?7、鸡兔同笼,共有5个头,16条腿,有几只鸡?几只兔?8、车棚里放着自行车和三轮车共10辆,共26个轮子。
自行车和三轮车各几辆?9、三轮货车和小轿车有9辆,有30个轮子。
三轮货车和小轿车各有几辆?10、玥灵有20枚硬币,有5分和2分的两种,它们合在一起是7角6分,5分和2分的硬币各有几枚?11、今有一笼,里面有鸡也有兔,数了数共有74个头,200只脚。
问:鸡和兔各有多少只?12、鸡兔同笼,共有头40个,脚114只。
鸡和兔各有多少只?13、鸡和兔共有74只,脚有254只,问:鸡、兔各有多少只?14、30枚硬币由2分和5分组成,共值9角9分。
两种硬币各有多少枚?15、5角纸币与2角纸币共41张,共值15元1角。
两种纸币各多少张?16、钢笔与圆珠笔共40支,总价值408元,钢笔每支卖13元,圆珠笔每支卖6元。
问:两种笔各有多少支?17、某校进行数学竞赛,共20道题,规定每做对一道得5分,做错一道倒扣4分(没做的题目按错题计算),小明这次竞赛中共得46分。
鸡兔同笼问题4种解题方法
鸡兔同笼解题方法:1,假设法设全是鸡,则兔的只数为:(总头数×2--总脚数)÷2设全是兔,则鸡的只数为:(总头数x4--总脚数)÷2总只数--鸡只数=兔只数基本原理:总头数x2如果=总脚数,说明全是鸡,如果<总脚数,说明其中有兔,每少2只脚就有1只兔。
总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。
2,公式法:总脚数÷2--总头数=兔只数总只数--兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。
用脚总数÷2是按全是鸡来计算的,如果商=总头数,说明全是鸡,如果商>总头数,说明其中有兔。
每多1个头就是1只兔。
因为1只兔有4只脚,前面÷的是2,1只兔就变成2个头,也就多了1个头,所以总脚数÷2--总头数的差是多少就有多少只兔。
3,排除法:(脚总量--总头数x2)÷2=兔只数:总只数--兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。
前面 抬起2只脚,现在每只兔还剩下2只脚。
所以用总脚数--总头数×2的差再÷2就是兔的只数。
4,分组法(1)鸡兔共有100只,鸡脚比兔脚多20只,问鸡兔各有多少只?20÷2=10只100--10=90只兔:90÷(1+2)=30只100--30=70只验算:70×2--30×4=20(2)鸡兔共有90只,鸡的脚比兔的脚少60只,问有鸡兔各几只? 60÷4=15只90--15=75只免:75÷(1+2)=25只鸡:75--25=50 只验算:50×2=100(25+15)x4=160160--100=60 只5,方程法可用一元一次和二元一次方程直接解题。
等量关系:(1)设鸡为X,则兔为总头数--X2Ⅹ+4(总头数--X)=总脚数(2)X+y=总头数2X+4y=总脚数。
鸡兔同笼假设法讲解
鸡兔同笼假设法讲解鸡兔同笼是一个经典的数学问题,它通过解决鸡兔总数和腿的总数之间的关系,来求解鸡和兔的数量。
这个问题常常被用来培养学生的逻辑思维和数学推理能力。
下面我们就来详细讲解一下鸡兔同笼假设法。
我们假设鸡和兔的总数为N,腿的总数为M。
根据鸡兔的特点,鸡和兔都是有腿的动物,而且鸡有两只腿,兔有四只腿。
所以我们可以得到以下两个方程:2x + 4y = M (1)x + y = N (2)其中,x表示鸡的数量,y表示兔的数量。
根据这两个方程,我们可以通过解方程组来求解鸡和兔的数量。
我们可以通过方程(2)将x表示出来,得到x = N - y。
然后将x 的值代入方程(1)中,得到2(N - y) + 4y = M。
化简后得到2N + 2y = M,再进一步化简得到y = (M - 2N) / 2。
通过这个公式,我们可以得到兔的数量y。
然后再将y的值代入方程(2)中,即可得到鸡的数量x = N - y。
需要注意的是,为了得到整数解,M - 2N必须为偶数。
因为如果M - 2N为奇数,那么y的值就会出现小数,而动物的数量是不能出现小数的。
所以在解鸡兔同笼问题时,我们需要注意这一点。
接下来,我们用一个具体的例子来说明鸡兔同笼假设法的运用。
假设一个农场里有鸡和兔共20只,腿的总数为56只。
我们可以根据上述公式计算出鸡和兔的具体数量。
根据公式y = (M - 2N) / 2,代入M = 56,N = 20,计算得到y = (56 - 2 * 20) / 2 = 8。
然后将y的值代入方程(2)中,得到x = 20 - 8 = 12。
所以鸡的数量为12只,兔的数量为8只。
通过这个例子,我们可以看到鸡兔同笼假设法是一种简单而有效的解决鸡兔问题的方法。
它通过假设鸡和兔的总数和腿的总数,然后利用方程组的解来求解鸡和兔的具体数量。
这种方法不仅能够培养学生的逻辑思维和数学推理能力,还可以帮助他们理解和掌握数学知识。
总结起来,鸡兔同笼假设法是一种解决鸡兔问题的有效方法。
人教版数学四年级下册:鸡兔同笼经典例题与解析(经典)
鸡兔同笼经典试题【例一】小芳家养了一些鸡和兔子,同时养在一个笼子里,小芳数了数,它们共有35个头,94只脚.问:小芳家养的鸡和兔各有多少只?(基本假设法)【解析】方法一:抬腿法。
每只动物都抬起2条腿,剩下94-35×2=24.剩下的每只兔子两条腿,所以共有12只兔子。
方法二:假设35只都是兔子,那么就有35×4=140(只)脚,假设的比实际的多了140-94=46(只).多46只的原因是35只里不全是兔子,现在我们得把鸡给换回来,一只兔子换一只鸡会少2条腿,所以得换46÷2=23只鸡回来。
方法三:还可以假设35只都是鸡,那么共有脚2×35=70(只),比94只脚少了94-70=24(只)脚,每只鸡比兔子少2只脚,那么共有兔子24÷2=12(只).要点:“抬腿”法简单易操作,但适用范围较小;“假设法“稍有难度,但必须掌握,因为假设法在以后很多题目中都会用到,比如工程问题和行程问题等。
一般假设法总结:假设兔子,得出鸡;假设鸡,得出兔子。
(方便孩子做题,但千万不能单纯记忆)【例题2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?(变型假设法)【解析】方法一:假设鸵鸟数跟梅花鹿一样多,那么总脚数就得减去多出来20只鸵鸟的40 只脚,新的总脚数就是168只。
鸵鸟和梅花鹿一样多,所以梅花鹿的腿数是鸵鸟的两倍。
那么168只就是3倍,所以梅花鹿的腿数是112条,就由28只,鸵鸟是48只。
方法二:假设梅花鹿数跟鸵鸟一样多,那么总脚数就得增加80只脚,新的总脚数就是288只。
梅花鹿和鸵鸟一样多,所以梅花鹿的腿数是鸵鸟的两倍。
那么288只就是3倍,所以鸵鸟有96条腿,就有48只,梅花鹿有28只。
要点:和倍问题与鸡兔同笼【例题3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?(变型题)【解析】假设都是三轮摩托车,应有3×41=123轮子,少了127-123=4(个)轮子.每把一辆汽车假设为三轮摩托车,会减少4-3=1(个)轮子.汽车有4÷1=4(辆);从而求出三轮摩托车有37辆.同理,可假设都是汽车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题与假设法
鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。
许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?
分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只),
有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),
有兔16——10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?
分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有
100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
问:两种文化用品各买了多少套?
分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。
这样,就将买文化用品问题转换成鸡兔同笼问题了。
假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以
买普通文化用品 24÷8=3(套),
买彩色文化用品 16-3=13(套)。
例4 鸡、兔共100只,鸡脚比兔脚多20只。
问:鸡、兔各多少只?
分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。
这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。
现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。
解:有兔(2×100——20)÷(2+4)=30(只),
有鸡100——30=70(只)。
答:有鸡70只,兔30只。
例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。
问:大、小瓶各有多少个?
分析:本题与例4非常类似,仿照例4的解法即可。
解:小瓶有(4×50-20)÷(4+2)=30(个),
大瓶有50-30=20(个)。
答:有大瓶20个,小瓶30个。
例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。
已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?
分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。
利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。
根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。
这样每辆小卡车能装144÷9=16(吨)。
由此可求出这批钢材有多少吨。
解:4×36÷(45-36)×45=720(吨)。
答:这批钢材有720吨。
例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。
问:搬运过程中共打破了几只花瓶?
分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。
实际上只得到115.5元,少得120-115.5=4.5(元)。
搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。
因此共打破花瓶4.5÷1.5=3(只)。
解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
答:共打破3只花瓶。
例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。
已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?
分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了
12×(2+3)=60(下)。
可求出小乐每分钟跳
(780——60)÷(2+3+3)=90(下),
小乐一共跳了90×3=270(下),因此小喜比小乐共多跳
780——270×2=240(下)。