假设法教案(鸡兔同笼问题)
鸡兔同笼教学设计范文(通用6篇)
鸡兔同笼教学设计范文(通用6篇)鸡兔同笼教学设计1教学目标:1.了解鸡兔同笼问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决鸡兔同笼问题,使学生体会假设和代数方法的一般性。
3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
教学重点:用假设法解决鸡兔同笼问题。
教学具准备:课件。
教学过程:一、创设情境,激情导入1.出示原题师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题(课件出示《孙子算经》中的原题):今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?2.理解题意师:同学们知道这道题的意思吗?请试着说一说。
生:这道题的意思是现在,鸡和兔在一个笼子里,从上面数有35个头,从下面数有94只脚,问鸡和兔各有多少只?师:这道题的意思正如同学们所想的一样,也就是:(课件出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?3.揭示课题师:这就是著名的鸡兔同笼问题,也正是这节课要研究的问题。
[评析:教学即对文化的传承与弘扬,数学教学也不例外。
课初,教师利用我国古代数学名著中的数学趣题直接导入新课学习,让学生感受到了数学文化的悠久与魅力,激发了探究的兴趣和动机,明确了本节课学习的目的与要求。
导入新课的方式多种多样,惟有适合学生学习所需的才是最佳。
]二、合作探索,主动构建1.出示例1师:为便于研究,我们可先从简单问题入手,把题中的35个头和94只脚分别换成8个头和26只脚,就变成了例1:笼子里有若干只鸡兔。
从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?2.理解题意师:从上面数,有8个头;从下面数,有26只脚分别是什么意思?生:从上面数,有8个头是说鸡和兔一共有8只;从下面数,有26只脚是说鸡脚和兔脚数共是26只。
鸡兔同笼教案3篇
鸡兔同笼教案3篇鸡兔同笼教案1【教学目标】1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
【重点难点】用假设法和列方程的方法解决“鸡兔同笼”问题。
【教学指导】1.要注重解题策略的多样化教学中,教师通过组织学生采取讨论,自主探索等方式,多手段、多层面、多角度地探索问题,引导学生运用列表法、画图法、假设法、代数法等方法分析和解决问题,从而使学生获得分析问题和解决问题的基本方法,体验解决问题策略的多样性,发展创新意识。
在注重解决问题策略多样化的同时,教师还应注重解决问题策略的自主优化(如列表法中的从两边开始,从中间开始,依据数据跳跃猜测等),并注重不同策略间的相互联系和影响,注重解决问题策略的局限性和一般性。
2.要注重逻辑思维能力的培养让学生在参与观察、猜想、证明、归纳等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。
从课初随意、无序的猜想到表格中的有序、有目的的猜想;从一般验证到表格中数据变化规律的发现;从列表法(8只兔0只鸡或8只鸡0只兔这两种情况中)很快自然联想到假设法(通过假设——计算——推理——解答的过程,掌握假设法的独特的特点)、代数法。
学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。
3.要注重数学思想的渗透“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。
本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。
如:用容易探究的小数据替代《孙子算经》原题中的大数据的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,既渗透了函数的思想和方法又强调了解题策略的优化;用“假设法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。
鸡兔同笼教案(精选5篇)
鸡兔同笼教案(精选5篇)《鸡兔同笼》教案篇一教学内容:人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。
教材分析:“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。
教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。
“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。
通过两种方法的探究让学生感知解决问题的多样性。
因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。
教学重点:1、理解掌握解决问题的不同思路和方法。
2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学难点:理解掌握假设法,能运用假设法解决数学问题。
教学具准备:表格教学过程:一、导入师生谈话导入新知(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。
)二、探究新知1、质疑:提问:(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?(2)鸡和兔相比:什么比什么多?多多少?(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?(4)尝试解决,交流想法;(5)出示交换已知条件以后的题目。
(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。
鸡兔同笼教案汇编7篇
鸡兔同笼教案汇编7篇鸡兔同笼教案篇1【教学目标】1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
【重点难点】用假设法和列方程的方法解决“鸡兔同笼”问题。
【教学指导】1.要注重解题策略的多样化教学中,教师通过组织学生采取讨论,自主探索等方式,多手段、多层面、多角度地探索问题,引导学生运用列表法、画图法、假设法、代数法等方法分析和解决问题,从而使学生获得分析问题和解决问题的基本方法,体验解决问题策略的多样性,发展创新意识。
在注重解决问题策略多样化的同时,教师还应注重解决问题策略的自主优化(如列表法中的从两边开始,从中间开始,依据数据跳跃猜测等),并注重不同策略间的相互联系和影响,注重解决问题策略的局限性和一般性。
2.要注重逻辑思维能力的培养让学生在参与观察、猜想、证明、归纳等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。
从课初随意、无序的猜想到表格中的有序、有目的的猜想;从一般验证到表格中数据变化规律的发现;从列表法(8只兔0只鸡或8只鸡0只兔这两种情况中)很快自然联想到假设法(通过假设——计算——推理——解答的过程,掌握假设法的独特的特点)、代数法。
学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。
3.要注重数学思想的渗透“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。
本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。
如:用容易探究的小数据替代《孙子算经》原题中的大数据的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,既渗透了函数的思想和方法又强调了解题策略的优化;用“假设法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。
鸡兔同笼教案
鸡兔同笼教案鸡兔同笼教案4篇鸡兔同笼教案篇1教学目标:1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。
2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。
在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。
3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。
教学重点:会用假设法和方程法解答“鸡兔同笼”问题。
教学难点:明白用假设法解决“鸡兔同笼”问题的算理。
教学用具:多媒体课件。
教学过程:一、创设情境,引入新课。
1、引入:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。
你们想看一看吗?今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。
鸡和兔共有35个头,94只脚。
鸡和兔各有多少只?这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。
板书课题:“鸡兔同笼”。
为便于研究,我们先从简单的生活问题入手,请看下面问题。
●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。
两种票各买来了多少张?【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。
二、自主学习、小组探究对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。
温馨提示:①用列举法怎样解决问题?②你能用画图的方法解答吗?③如果把这些票都看成学生票或都看成成人票如何解答?④回顾列方程解决问题的经验,怎样用方程解决问题?学生自己根据提示用自己喜欢的方法解决问题。
鸡兔同笼教案(精选5篇)
鸡兔同笼教案(精选5篇)鸡兔同笼教案(精选5篇)作为一名老师,常常要根据教学需要编写教案,编写教案助于积累教学经验,不断提高教学质量。
来参考自己需要的教案吧!以下是小编为大家整理的鸡兔同笼教案(精选5篇),欢迎阅读,希望大家能够喜欢。
鸡兔同笼教案篇1教学内容:教科书数学六年级上册P112-115。
教学目标:1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。
2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。
3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。
教学难点:理解假设法中各步的算理教具准备:多媒体课件教学过程:一、解读原题,直奔主题。
1、谈话,激情导入师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。
(1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(2)揭示课题(3)原题解读师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?课件出示:笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?[设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的欲望。
]二、合作探究,寻找策略。
1、改变原题师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。
(1)出示例1:笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数有26只脚。
鸡和兔各有几只?(2)理解题意:从题中你获得哪些信息?让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。
鸡兔同笼教案优秀6篇
鸡兔同笼教案优秀6篇鸡兔同笼教学设计篇一教学目标:1 、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。
2 、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。
3 、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。
教学重点:从不同的角度分析,掌握解题的策略与方法。
教学流程:一、创设情境,明确目标1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。
2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。
在我国古代就有许多有趣的数学名题,你们了解吗?今天,。
老师就向你们推荐一种有趣的问题------鸡兔同笼。
二、自主探索,合作交流1 出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”(1)你从中获取什么信息?……(2)请你们猜一猜将鸡、兔可能是几只?(……)(3)把你猜的过程给大家说一说(4)板书学生的过程鸡1 2 3兔4 3 2腿18 16 14(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。
看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”(1)自己先想一想如何利用列表来解决?(2)小组内交流一下自己的想法。
(3)独立完成列表。
(4)汇报想法和过程小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。
鸡兔同笼5篇教案实例
鸡兔同笼5篇教案实例由于生活中有很多的数学实际问题与“鸡兔同笼”的数量关系相类似,而这些问题都可以通过“鸡兔同笼”的解题思路得到有效地解决,下面给大家带来一些关于鸡兔同笼心得,希望对大家有所帮助。
鸡兔同笼心得1在磨课中我上的是鸡兔同笼问题,本节课我安排用三种方法解决鸡兔同笼问题,通过本节课的教学,不仅让学生感受到了先辈们的聪明才智,而且体会到解题策略的多样性以及其中蕴含的丰富的数学思想方法,培养了学生的学习兴趣和数学能力。
如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,渗透了函数的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法等等。
总之,本节课以数形结合为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。
反思这节课的教学,我有如下一些感受: 第一,先“猜想”再“列表”是探究“鸡兔同笼”问题的有效方法。
让学生自己先独立完成,采用探究法,探究的目的不只是为了得到探究的结果,更是为了强调过程,因此对学生进行合适的引导对于在有限的时间内确保探究的顺利展开非常重要。
第二,用数形结合的方法探究假设法是理解算法算理的重要手段。
数形结合是把问题中的数量关系与形象直观的几何图形有机地结合起来,在解题方法上相互转化,使问题化难为易,化繁为简,从而达到解决问题的目的。
由于“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材六年级上册中,对学生尤其是基础不好的学生来说有一定的难度,特别是用假设法解答,学生理解起来更是不容易,为了帮助学生理解算法算理,我将抽象的算式溶入到直观形象的图形之中,并通过数形结合一步一步地引导进行推理,帮助学生理解假设法的思维过程,由于非常直观形象,所以学生理解得比较透彻,真正达到了知其然又知其所以然的目的。
2023鸡兔同笼教案五篇
2023鸡兔同笼教案五篇鸡兔同笼教案篇1一、教学目标:1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。
二、教材分析本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。
学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
三、学校及学生状况分析五年级学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。
因此,教学在这一内容时,学生的程度参差不齐。
本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。
四、教学设计(一)创设情境师:今天这一节课,我们要共同研究鸡兔同笼问题。
(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?生:鸡兔同笼就是鸡兔在一个笼子里。
(媒体出示课本第80页的情景图)师:请你猜一猜,图中大约有几只兔子,几只鸡?生1:我猜大约是7只,兔子5只鸡。
生2:不一定。
因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。
(二)探求新知师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。
师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。
师:哪个小组说说你们的想法?小组1:我们采用列表法得出的答案。
鸡兔同笼教学设计范文(通用6篇)
鸡兔同笼教学设计范文(通用6篇)鸡兔同笼教学设计1教学目标:1、在解决鸡兔同笼的活动中,通过列表枚举解决鸡兔的数量问题。
2、在解决鸡兔同笼的活动中,通过列表尝试和不断调整的过程从中体会解决问题的一般策略——列表,让学生学会从不同角度分析,掌握解题的策略与方法。
3、运用学到的解题策略——列表解决生活中的实际问题。
4、培养学生分析问题的能力,渗透假设的数学思想。
教学重点让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。
教学难点运用学到的解题策略解决生活中的实际问题。
教学过程:一、情境引入,激发兴趣今天老师给同学们带来一本书《孙子算经》,其中有这样一道题目今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?谁来读一读,你见过这类题吗?今天我们就来研究这类问题(板书鸡兔同笼)二、探索问题1、课件出示:(教材中的情景图)鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?从图中你能知道哪些数学信息:(有鸡、有兔、20个头、54只腿,鸡有2条腿、兔有4条腿)现在同学们就来猜一猜鸡、兔各有多少只?把你猜想的结果跟你的同桌同学交流交流。
学生交流后:请学生汇报猜想的情况教师随机板书看到这么多种猜测,你知道哪种答案是正确的吗?你又想说什么生:可以按照一定的顺序把他们排列起来看就很清楚师:对,按照一定的顺序把他们排列在表格里那会看得更清楚那么列表先做什么生:(1)画表(2)填写第一行师:请你们把猜测的结果按一定的顺序填在表格中,并验证,哪种猜测正确。
出示学习要求1、先独立尝试猜测2、把尝试的数据在表格中表达出来3、在小组内交流自己的想法生:尝试列表展示学生的表格请学生说一说是怎样做的师:一共尝试了几次生:13次,尝试出了这道题的答案师:我发现刚才同学们在写腿的.只数时特别快,观察这张表格,你发现了什么生:在头数相同的情况下,增加一只鸡,减少一只兔,腿就少2只。
师:给这种列表法起个名字生:起名字师:在数学上也有一个名字逐一列表师:观察这张表格,你有什么发现生:一一列出,肯定能找出答案,但有些麻烦师:那还有什么列表方法展示学生第二种列表方法出示表格生:说这种列表的方法师:观察这个表格,你又发现了什么生:这种列表,先几个几个的数,再逐渐调整师:先几个几个数,再往回调,在数学上也有个名字跳跃式列表展示学生第三种列表方法出示表格生:说这种列表的方法师:观察这个表格,你又发现了什么生:这种列表,先假设鸡兔各占一半,再调整师:这种列表有直接特点,我们称这种列表方法为取中列表想一想,为什么用列表法解决这个问题生:简单,能准确计算结果师:你更喜欢哪种列表方法,你们在不知不觉中找到解决问题策略,是什么生:列表师:首先根据信息尝试猜测,再计算验证,最后合理调整。
鸡兔同笼教案8篇
鸡兔同笼教案鸡兔同笼教案8篇作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。
教案应该怎么写呢?以下是小编收集整理的鸡兔同笼教案8篇,希望对大家有所帮助。
鸡兔同笼教案篇1一、教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。
3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
二、教材分析:(一)设计意图:通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。
学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
(二)设计思路:遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。
通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。
通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。
在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。
教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
三、教学设计:<一>、提出问题师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。
鸡兔同笼教案4篇【完整版】
鸡兔同笼教案4篇【完整版】【必备】鸡兔同笼教案4篇鸡兔同笼教案篇1鸡兔同笼问题最早出现在中国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。
问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。
鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。
我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。
真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:一、关注每位孩子的成长是成功的前提鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。
课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。
二、关注课堂的互动、生成是取得良好效果的基础课堂是师生双边的交换活动,是教师与学生交流的活动。
课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。
从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。
再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。
四年级数学上册 假设法求 鸡兔同笼问题
假设法三步骤:①求总差(假设与实际的差)②求出单个的差③总差+单个差(设鸡得兔,设兔得鸡)1、鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?解:假设全是鸡,共有脚:30×2=60只;比实际少:84-60=24只;这是因为把4只脚的兔子都按2只脚的鸡计算了。
每把一只兔子算作一只鸡,少算:4-2=2只脚,现在共少算了24只脚,说明把:24÷2=12只兔子按鸡算了。
所以,共有兔子12只,有鸡30-12=18只。
2、鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?解:因为鸡比兔多30只,则可以把30只鸡的脚从总数中去掉,剩下的鸡兔就同样多了。
每一对鸡和兔共4+2=6只脚,用6去除剩下的鸡兔总脚数,就可求出兔的只数。
兔的只数:(168-2×30)÷(4+2)=18只:鸡的只数:18+30=48只。
3、某学校举行数学竟赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?解:若全做对,应得9×12=108分,现在少了108-84=24分。
为什么会少24分,因为做错一题,不但得不到9分,反而需要倒扣3分,里外少了12分,所以错了24÷12=2题。
4、学校买来8张办公桌和6把椅子,共花去1650元。
每张办公桌的价钱是每把椅子的2倍,每张办公桌和每把椅子各多少元?解:假设学校买的全部是办公桌,根据“每张办公桌的价钱是每把椅子的2倍”,则买6把椅子的价钱只能买6÷2=3张办公桌,那么1650元就相当于8+3=11张办公桌的价钱。
所以,每张办公桌:1650÷11=150元每把椅子:150÷2=75元5、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
问:两种文化用品各买了多少套?解:假设买了16套彩色文化用品则共需19×16=304(元),比实际多304-280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19-11=8(元)所以买普通文化用品24÷8=3(套)买彩色文化用品16-3=13(套)。
小学数学《鸡兔同笼》教案【精选5篇】
小学数学《鸡兔同笼》教案【精选5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!小学数学《鸡兔同笼》教案【精选5篇】鸡兔同笼,是中国古代著名典型趣题之一、记载于《孙子算经》之中。
四年级数学下册鸡兔同笼教案大全6篇
四年级数学下册鸡兔同笼教案大全6篇四年级数学下册鸡兔同笼教案大全6篇教案可以增加教师的信心和教学热情,让教师更自信地面对教学工作。
可以帮助教师节省教学准备时间,提高自己的教学效率和工作效能。
这里给大家分享一些关于四年级数学下册鸡兔同笼教案,供大家参考学习。
四年级数学下册鸡兔同笼教案篇1教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。
3、在解决问题的过程中培养学生的逻辑推理能力。
教学重点:理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。
教学难点:理解用假设法的算理并能运用不同的方法解决实际问题。
教学方法:1、采取直观形象的方式,让学生探讨不同的方法。
2、适当把握教学要求。
一、历史激趣,导入新课今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(出示以下情境图)师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的问题。
(板书课题)结合谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。
二、探究交流,尝试解决问题。
1.为了研究方便,我们把题目里的数字改小一点。
“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。
鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”出示)2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?让学生理解:①鸡和兔共8只。
②鸡和兔共有26条腿。
③鸡有2条腿。
④兔有4条腿。
(出示)3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?学生猜测,老师板书4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。
人教版数学四年级下册鸡兔同笼优秀教案(推荐3篇)
人教版数学四年级下册鸡兔同笼优秀教案(推荐3篇)人教版数学四年级下册鸡兔同笼优秀教案【第1篇】校内公开课 课题:“鸡兔同笼”问题教学设计教学内容:人教版数学四年级下册数学广角《鸡兔同笼》。
教学目标:1、了解“鸡兔同笼”问题的结构特点,渗透化繁为简的思想,掌握用列表法、假设法解决问题,初步形成解决此类问题的一般性策略。
2、经历猜测的过程,尝试用列表法、假设法解决“鸡兔同笼”问题,引导学生有序思考,体会解题策略的多样性。
3、在解决问题的过程中,培养学生的迁移思维能力,感受古代数学问题的趣味性。
教学重点:经历自主探究解决问题的过程,掌握运用列表法、假设法解决“鸡兔同笼”问题。
教学难点:理解掌握假设法,能运用假设法解决数学问题。
教学准备:多媒体课件教学过程:一、出示问题,化繁为简1、师:同学们喜欢画画吗?请同学们猜一猜老师画的是什么动物。
生:鸡和兔子。
师:我们今天就来研究有关鸡和兔的问题。
2、出示问题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:谁来模仿私塾先生读读这道题。
这就是著名的“鸡兔同笼”。
我们中国作为四大文明古国,除了让我们引以为傲的四大发明外,我们在数学研究领域的成果也是显著的。
《孙子算经》就是我们数学界的瑰宝,“鸡兔同笼”问题就是一个非常经典的数学问题,今天我们就来研究它。
(板书:鸡兔同笼)3、出示问题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:怎么理解这几句话?生:笼子里有若干只鸡和兔。
从上面数,有35个头;从下面数,有94条腿。
鸡和兔各有几只?4、师:从题目中,你能知道哪些信息?师:除了直接从题目中看出鸡兔共有35只,共有94条腿外,还能知道哪些隐藏在题目背后的信息?师:那这道题该怎么解决呢(停顿)看来,这么大的数字,我们有困难。
我们可以借助数学中“化繁为简”的方法,把复杂的问题简单化,让我们先从简单问题入手吧!【设计意图】渗透化繁为简的思想,引导学生理解题意,找出隐藏条件,帮学生初步理解“鸡兔同笼”问题的结构特点。
鸡兔同笼问题(教师版)
鸡兔同笼问题(教师版) work Information Technology Company.2020YEAR鸡兔同笼问题(假设法)(第一讲)我国古代数学名著《孙子算经》中有这样的一道应用题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何意思是说:鸡和兔同关在一个笼子里,已知鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只这就是著名的鸡兔同笼问题。
怎样解决这个问题呢?我们通常把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”,这种解决问题的方法就是假设法。
鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置出来。
解鸡兔同笼问题的基本关系式是:解法1:鸡的只数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔的只数=总只数-鸡的只数解法2:兔的只数=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)鸡的只数=总只数-兔的只数例1 、鸡兔同笼,头共46,足共128,鸡兔各几只?分析:假设 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚。
如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚。
那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了。
所以,鸡的只数就是28,兔的只数是46-28=18。
例2、小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。
六年级数学《鸡兔同笼》教案
六年级数学《鸡兔同笼》教案•相关推荐六年级数学《鸡兔同笼》教案(精选9篇)作为一无名无私奉献的教育工作者,时常要开展教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。
教案要怎么写呢?下面是小编收集整理的六年级数学《鸡兔同笼》教案,仅供参考,大家一起来看看吧。
六年级数学《鸡兔同笼》教案篇1教学目标1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。
3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。
教学过程一、故事引入教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。
这个问题早在1500多年前人们就已经开始探讨了。
出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。
上面数,有35个头,下面数,有94只脚。
鸡和兔各有几只?)二、探究新知1、教学例1:笼子里若干只鸡和兔。
从上面数有8个头,从下面数有26只脚。
鸡和兔各有几只?让学生以两人为一组讨论。
汇报讨论的结果。
(1)、列表:鸡876543兔012345脚161820222426(2)、假设法:假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。
因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。
因此,鸡就有:8-5=3(只)(3)、用方程解:解:设鸡有x只,那么兔就有(8-x)只。
根据鸡兔共有26只脚来列方程式2x+(8-x)4=262x+84-4x=2632-26=4x-2x2x=6x=38-3=5(只)2、小结解题方法:教师:以上三种解法,哪一种更方便?小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。
用方程解更直接。
3、独立解决书中的趣题。
(1)、方程解:解:设鸡有x只,那么兔就有(35-x)只。
根据鸡兔共有94只脚来列方程式2x+(35-x)4=942x+354-4x=94140-94=4x-2x2x=46x=2335-23=12(只)答:鸡有23只,兔有12只。
小学数学鸡兔同笼教案5篇
小学数学鸡兔同笼教案5篇小学数学鸡兔同笼教案篇1教学目标:1了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设法和代数法德一般性。
3在解决问题的过程中培养学生的逻辑思维能力。
教学重点:感受古代数学问题的趣味性。
教学难点:用不同的方法解决问题。
教学准备:课件教学程序:一、激趣导入师:咱班同学家里有养鸡的吗有养兔的吗既养鸡又养兔的有吗把鸡和兔放在同一个笼子里养的有吗在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢你们想知道吗这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。
师:关于“鸡兔同笼”问题以前你们有过一些了解吗流传至今有一千五百多年的问题,是什么样呢想知道吗二、探索新知1.(课件示:书中112页情境图)师:同学们看这就是《孙子算经》中的鸡兔同笼问题。
这里的“雉”指的是什么,你们知道吗这道题是什么意思呢谁能试着说一说生:试述题意。
(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。
问鸡兔各几只)师:正像同学们说的,这道题的意思是笼子里有若干只鸡和兔,从上面数有35各头,从下面数有94只脚。
问鸡和兔各有几只师:从题中你发现了那些数学信息生:笼子里有鸡和兔共35只,脚一共有94只。
生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。
师:根据这些数学信息你们能解决这个问题吗这道题的数据是不是太大了咱们把它换成数据小一点的相信同学们就能解决了。
2.出示例一(课件示例一)题目:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,鸡和兔各有几只师:谁来读读这个问题。
谁能流利的读一遍请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题生:读题师:现在就请你来解决这个问题,你想怎样解决把你的想法和小组内的同学说一说。
生:我想我能猜出来。
一次猜不对,多猜几次就能猜对。
人教版数学四年级下册鸡兔同笼教学设计(推荐3篇)
人教版数学四年级下册鸡兔同笼教学设计(推荐3篇)人教版数学四年级下册鸡兔同笼教学设计【第1篇】“鸡兔同笼”是我国古代数学的经典趣题,教材借助这个问题向学生提供了有趣、富有挑战性的学习素材,旨在让学生通过合作交流学习,积累解决问题的经验,掌握解决问题的策略。
以下是鸡兔同笼教案:教学内容:教科书数学六年级上册P112-115。
教学目标:1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。
2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。
3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。
教学难点:理解假设法中各步的算理教具准备:多媒体课件教学过程:一、解读原题,直奔主题。
1、谈话,激情导入师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《《孙子算经》中的一道古老的数学趣题。
(1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何(2)揭示课题(3)原题解读师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍课件出示:笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只[设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的.欲望。
]二、合作探究,寻找策略。
1、改变原题师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。
(1)出示例1:笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数有26只脚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二课次教学方案第十 二 Nhomakorabea次教学方案
教学内容
假设法解题2
上课时间
7月24日
教学目标
1.根据题目中的已知条件或者结论作出某种假设;
2.由假设导出矛盾;
3.分析产生矛盾的原因,原因找到后,问题也就迎刃而解了。
教学过程
例1、一次知识竞赛共20题,答对一题得5分,答错一题倒扣3分,(不答按答错计算)芳芳得了84分,她答对了多少题?
教学内容
假设法解题1
上课时间
7月21日
教学目标
1.根据题目中的已知条件或者结论作出某种假设;
2.由假设导出矛盾;
3.分析产生矛盾的原因,原因找到后,问题也就迎刃而解了。
教学过程
例1、1班同学为了希望工程捐款,中队长数了数,发现面值5元、10元的人民币共40张,喝酒325元,面值5元、10元的人民币各多少张?
思考:假设40张全是5元,那么捐款总数应是5×40=200元,比实际少了125元,为什么会少呢?因为这40张人民币里面有的是10元的,只要把1张10元的假设成5元的,就少了5元,一共少了
125÷5=25(张),也就是把25张10元的假设成了5元的。
假设全是5元的人民币5×40=200(元)
比实际少了:325-200=125(元)
10元人民币:125÷(10-5)=25(张)
5元人民币:40-25=15(张)
例2:师徒二人轮流加工一批零件,师傅每小时加工60个,徒弟每小时加工50个,他们一共加工了280个,平均每小时加工56个,师徒二人各加工几小时?
280÷56=5(小时)
假设全是师傅做的:
徒弟:(60×5-280)÷(60-50)=2(小时)
假设兔只有2只脚
兔:(2×14-12)÷(4-2)=8(只)
鸡:8+14=22(只)
思考:如果全部答对,一共得到100分,而答错一题不得分,还倒扣3分,也就是少了8分,芳芳得了84分,被扣了16分,也就是答错了2题。
假设全部答对:5×20=100(分)
相差:100-84=16(分)
答错:16÷(5+3)=2(题)
答对:20-2=18(题)
例2、生物小组养的鸡比兔多14只,鸡的脚比兔的脚多12只,生物小组养多少只鸡多少只兔?