电子感应加速器
加速器简介
回转频率f 将随m 回转频率f0将随m(或v)而变,破坏了谐振 而变, 条件, 便难于加速。 但是, 条件 , 便难于加速 。 但是 , 我们可以调节高 压电源的频率f 使之与变化的f 同步, 压电源的频率 f , 使之与变化的 f0 同步 , 这样 改进的回旋加速器称为同步回旋加速器 同步回旋加速器。 改进的回旋加速器称为同步回旋加速器。
回旋加速器
回旋加速器是一种粒子沿圆弧轨道运动的 谐振加速器,离子在恒定的强磁场中, 谐振加速器,离子在恒定的强磁场中,被固定 频率的高频电场多次加速,获得足够高的能量。 频率的高频电场多次加速,获得足够高的能量。 1930年 劳伦斯提出了回旋加速器的工作原理 1930年,劳伦斯提出了回旋加速器的工作原理, 提出了回旋加速器的工作原理, 1932年 第一台直径为27厘米的回旋回速器投 1932年,第一台直径为27厘米的回旋回速器投 入运行,它能将质子加速到1兆电子伏。 入运行,它能将质子加速到1兆电子伏。带电粒 子加速器自30年代问世以来 年代问世以来, 子加速器自30年代问世以来,主要是朝更高能 量的方向发展。在这个过程中, 量的方向发展。在这个过程中,任何一种加速 器都经过了发生、 器都经过了发生、发展和加速能力或经济效益 30日 受到限制的三个阶段。1958年 受到限制的三个阶段。1958年6月30日,新华 社正式公布,中国第一台回旋加速器建成。 社正式公布,中国第一台回旋加速器建成。
北京正负电子对撞机
这是北京正负电子对撞机鸟瞰图(资料照片) 这是北京正负电子对撞机鸟瞰图(资料照片)
北京正负电子对撞机改造后的直线加速器
这是北京正负电子对撞机改造前的存储环(资料照片) 这是北京正负电子对撞机改造前的存储环(资料照片)
北京正负电子对撞机
电子感应加速器
轨道半径为84cm,电子运行的路程是多少?
dB dt
电子轨道
真空 室
ev B
解(1) 在磁场变化一个周期中,只有 1/4的周期内才能满
v
Ei
足磁场力为电子提供向心力和电子在圆轨道上被加速这
样两个基本要求。
(2) 要维持电子在环形真空室的恒定圆形轨道上加速,应该
使向心力随电子的速率增加而相应增加,由此可以推导出磁 场分布情况所满足的条件。 设半径为r的圆周内磁感应强度平均值为 B 则由电磁感应定律可知
电子轨道
真空 室
ev B
v
Ei
(1)电子感应加速器中,在磁场变化一个周期中,电子被加 速的时间有多久?
(2)要使电子维持在恒定的圆形轨道上加速,磁场的分布应
该满足什么条件? ( 3 )若电子加速的时间是 4.2ms ,电子轨道内最大磁通量为 1.8Wb ,试求电子沿轨道绕行一周平均获得的能量。如果电 子最后获得的能量为 100MeV,电子绕行了多少周?如果电子
dB dt
dB Ei 2 r r dt
2
ev B
感生电场强度为
r dB Ei 2 dt
v
Ei
另一方面,由动量定理 ,在dt时间内,电子动量增量为
r d ( mv ) eE i dt edB 2
积分得
B mv er 2
v2 evB m r
( 2)
d d i B dS dt dt S
B L EK dl S t dS
感生电场与变化磁场 的关系
结 论
(1)变化的磁场能够激发电场 (2)感生电场的环流不等于零,表明感生电场为涡旋场
加速器原理-第4章
在电子感应加速器中,磁 场的分布是轴对称的,所以涡 旋电场的形状是封闭圆。根据 楞茨定律,电场的方向应与磁 感应强度增长方向的右手螺旋 方向相反。 符合一定条件的电子,被 涡旋电场连续地加速,经过多 次的积累得到了较高的能量。 如果在整个加速过程中,电子 能围绕祸旋电场的封闭圆运动 达百万圈,那么即使电子每转 一圈只获得数十ev的能量,其 最终能量也能达到数十Mev。
现在常采用的偏移方法是围绕加速器中心垫片绕 几匝导线,并通以不同方向的脉冲电流,使中心加速 磁通突然地增大或减小,而轨道磁场仍按常规上升。 这将导致平衡轨道收缩或扩张,使电子进入引出装置 或打内靶。这种偏移方法的优点是: 1)调节脉冲电流的时间,就可以改变电子偏离平衡 轨道的时刻,因而改变引出电子或γ射线的能量。 2)选择脉冲电流的方向,使中心加速磁通突然地增 大,引起平衡轨道扩张。这样,可以把引出电子的装 置或内靶放在平衡轨道的外侧以便于电子的引出。 3)调节脉冲电流的大小,可以改变电子的偏移速度。 如配上合适的引出装置,可使引出电子束的脉宽延长 到300 μs 。
3.电子的注入、俘获与偏移、引出
(1)电子感应加速器的工作状态 电子感应加速器磁铁的励磁绕组由交流电源供电。 磁场随时间是交变的。另一方面,要使电子能围绕平 衡轨道多次稳定地加速,要求产生加速电场的中心磁 通和控制轨道的轨道磁场都随时间增大,所以电子感 应加速器的整个加速过程只能在磁场上升的1/4周期 内完成。 在交变磁场的第一个1/4周期开始后,就把电子 注入到加速轨道。被俘获的电子随磁场的上升而加速, 磁场相位上升到80°左右时将电子引出。引出束流的 脉冲宽度与引出方法有关,一般为1μs。可见,从电 子感应加速器个引出的电子束流是脉冲的。脉冲重复 频率就是励磁绕组供电电源的频率,一般为每秒 50次。
11-3电子感应加速器
涡电流的热效应 利用涡电流进行加热 1、冶炼难熔金属及特种合金 、 2、家用 如:电磁灶 、 3、 3、电磁阻尼 利弊 热效应过强、温度过高, 热效应过强、温度过高, 易破坏绝缘,损耗电能, 易破坏绝缘,损耗电能,还可能造成事故
涡流线 交 流 电 源 铁芯
减少涡流: 、 减少涡流: 1、选择高阻值材料
11-3 电子感应加速器
一、 电子感应加速器 利用涡旋电场对电子进行加速
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •f• • • • • • • • • • • • • • • • • • • • • • • • • • •
ห้องสมุดไป่ตู้
电子束
• • • • •
F涡
• • • •
E涡
靶
电子枪
涡电流(涡流) 二、 涡电流(涡流) Vortex Current
大块的金属在磁场中运动, 大块的金属在磁场中运动,或处在变化的磁 场中,金属内部也要产生感应电流, 场中,金属内部也要产生感应电流,这种电流在 金属内部自成闭合回路,称为涡电流或涡流 涡电流或涡流。 金属内部自成闭合回路,称为涡电流或涡流。 涡流线 交 流 电 源 铁芯 趋肤效应——涡电流或涡流这种交变电流集中 涡电流或涡流这种交变电流集中 趋肤效应 于导体表面的效应。 于导体表面的效应。
电子感应加速器
电子感应加速器电子感应加速器是应用感生电场加速电子的装置。
在电磁铁的两极之间安置一个环形真空室,当用交变电流激励电磁铁时,在环形室内就会感生出很强的、同心环状的感生电场。
用电子枪将电子注入环形室,电子在有旋电场的作用下被加速,并在洛仑兹力的作用下,沿圆形轨道运动。
电子感应加速器设在以r为半径的圆形区域中的磁场的空间平均值为,则所在处的感生电场强度大小为电子受切向电场力而加速,在圆环内的运动方程为电子还受到指向环心的磁场洛仑兹力将上式微分并与电子运动方程比较,得到这是使电子维持在恒定的圆形轨道上加速磁场必须满足的条件。
在电子感应加速器的设计中,两极间的空隙从中心向外逐渐增加,为的是使磁场的分布能满足这一要求。
由于电子感应加速器的电磁铁是用交流电激励,所以磁场是交变的,从而导致有旋电场的方向也是交变的,而且电子受到的洛仑兹力也并非总是指向圆心。
因此,在电流交变的一个周期中,不是所有的时间内电子都可以得到加速。
左图表示了一个周期内磁场、感生电场及电子受到的洛仑兹力的变化。
我们可以看到,只有在第一个四分之一周期内,电子才受到感生电场的加速,并且洛仑兹力的方向指向圆心。
实际上,若交流电的周期为50Hz,则在磁场变化的第一个四分之一周期(约5ms的时间)内,电子就能在感生电场的作用下,在圆形轨道上经历回旋数十万圈的持续加速,从而获得足够高的能量,并在第一个四分之一周期结束时被引出加速器至靶室。
加速器的种类很多,用途也不同,有静电加速器、电子回旋加速器、电子感应加速器、同步辐射加速器……等等。
电子感应加速器主要用于核物理的研究,用被加速的电子轰击各种靶时,将发出穿透力很强的电磁辐射。
另外电子感应加速器还应用于工业探伤或医疗癌症。
目前,我国最大的三个加速器是北京的高能粒子加速器、合肥的同步辐射加速器、兰州的重离子加速器。
北京正负电子对撞机的储存环直径2km的美国费米国立加速器鸟瞰图应用加速器的种类很多,用途也不同,静电加速器、电子回旋加速器、器、同步辐射加速器……等等。
9医用直线加速器的检测
浙江省肿瘤医院放射物理室 狄小云
加速器的发展历史
1895年伦琴发现X线 1899年在瑞典首次使用电离辐射治疗癌症 1940年美国Keirt 发明电子感应加速器 1944年苏联Vekslert提出电子回旋加速器原理 1949年美国用电子感应加速器进行放射治疗 1972年中国开展医用电子感应加速器的研究 1977年北京、南京、上海先后研制成医用电子直线加速 器 1987年北京研制成驻波医用电子直线加速器 1975年中国引进医用电子直线加速器 1977年浙江省肿瘤医院引进医用电子直线加速器进行放
剂量比法(D20/D10)
测量方法:源至水模表面距离SSD=100cm, 模体表面的辐射野10cm×10cm,射线束 轴与模体垂直。若用圆柱形电离室,电 离室轴线与束轴垂直;若用平行板电离 室,束轴垂直于平行板电离室的入射面。 电离室的有效测量点沿束轴移动,分别测 出水深为10cm与20cm处的吸收剂量D10 与 D20,并确定D20/D10的比值。
式中的M是经温度、气压修正后的仪表读数;Sw,air为水对空气的阻止本 领比(其值见表11);Pu为扰动因子(图16), 校正电离室物质非水物质的等效性;Pcel为电离室中心电极的修正,仅 仅考虑室壁与平衡帽的非空气等效引起的修正是不够的,中心电极的非 空气等效性也可引起测量的误差。 当电离室壁材料是石墨,中心电极材料为铝时,Pcel=1.000。
组织模体比、剂量比与能量的相应关系
TPR2010 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.75 0.76 0.77 0.78 0.79 (0.57 D20/D10 0.520 0.535 0.550 0.570 0.585 0.600 0.615 0.630 0.640 0.645 0.655 0.660 0.675 0.500 MV 3.5 3.9 4.4 5.0 5.8 7.0 8.0 9.5 10.5 12.0 14.0 20.0 25.0 60Coγ 射线 )
流量传感器及其仪表的应用案例
流量传感器及其仪表的应用—电子感应加速器1.课程案例基本信息课程案例名称流量传感器及其仪表的应用—电子感应加速器课程案例编号0505301CE 关键词电子感应加速器对应知识点法拉第电磁感应定律2.课程案例图1是电子感应加速器。
在现代科学研究中,经常用到一种设备——电子感应加速器。
电子感应加速器是利用感生电场使电子得以加速的设备。
它的基本工作原理如图1所示,S 和N 分别为电磁铁的两个磁极,两磁极之间有一个环形真空室,电子在真空室中做圆周运动。
依据电磁铁线圈电流的大小、方向的变化,产生的感生电场使电子得以加速。
图1电子感应加速器的工作原理流量传感器及其仪表的应用—电磁式流量计1.课程案例基本信息课程案例名称流量传感器及其仪表的应用—电磁式流量计课程案例编号0505302CE 关键词电磁式流量计对应知识点电磁式流量计测量导电液体体积流量2.课程案例电磁式流量计是一种测量导电液体体积流量的仪表,通常由传感器、转换器和显示仪表组成,其结构如图2所示。
根据传感器和转换器是否连接在一体,电磁式流量计分为一体型电磁式流量计和分离型电磁式流量计。
传感器一般安装在被测管道上,分离型的电磁流量计的转换器安装在离传感器30—100米的地方,两者之间用屏蔽电缆连接。
测量管道通过不导电的内衬(橡胶、特氟隆等)实现与流体和测量电极的电磁隔离。
图2电磁式流量计流量传感器及其仪表的应用—电磁式流量计在油田中的应用1.课程案例基本信息课程案例名称流量传感器及其仪表的应用—电磁式流量计在油田中的应用课程案例编号0505303CE 关键词电磁式流量计井下对应知识点电磁式流量计测井2.课程案例在油田中,对于注水井的分层测试采用的是井下存储式电磁流量计测井技术。
电磁流量计测井技术主要包括井下流量计、测量数据地面回放、处理设备、测试井口密封装置和绞车。
流量计从井口下入,通过注水管柱到达测量段。
在保持注入压力不变的情况下,通过改变仪器的位置完成对各个测量点的测试。
电子直线加速器与电子感应加速器的比较_刘雨婷
条件: 1)为便于比较,直线加速器焦距取1.8m,回旋加 速器焦距取1.0m; 2)以200mm钢为例计算; 3)采用柯达AA400底片; 4 )根据我们拍片经验,底片吸收剂量按3.1cGy计算; 5)本计算仅供参考。 根据公式可得出表3所示结果。
式中, I为底片吸收剂量,取3.1cGy; I0为距加速器焦点1米处,出束剂量率cGy/min.m; d为焦距,取1.8m; D为工件厚度,取200mm; D 1/2为 半 价 层 , 对 4 M e V 电 子 直 线 加 速 器 约 为 25mm;对7.5MeV电子感应加速器约为28mm; 根据上述公式可推出透照时间t的计算公式:
2 透照时间对比
以下是两种加速器具体的计算比较。由于目前普遍 工业所需用X射线进行检测的工件厚度一般在250mm左 右,因此下面对4MeV电子直线加速器和7.5MeV电子感 应加速器就透照时间、工作性能、防护墙厚度、造价等 方面进行比较。 计算公式说明如下:
4 防护墙厚度对比
计算方法 在厅外距靶点r(m)处的辐射剂量率为(单位rad/ min):
表3 电子直线加速器和电子感应加速器工作效率对比 D/D1/2 6 5.17 最大剂量率 (cGy/m.min) 500 5 透照时间 4.98分 84.79分
能量(MeV) 4MeV电子直线加速器 7.5MeV电子感应加速器
0.2×3 0.2×3 0.2×3 0.2×3 0.3×3 150 1% 200 1% 250 1% 250 1% 350 1%
电子感应加速器高中物理
电子感应加速器高中物理
电子感应加速器是一种电子器件,其主要功能是以感应方式测量物体的加速度。
它利用电磁原理,将目标物体表面上磁场中对电流加速度的变化变成电信号,然后将该信号送入电子计算机,进而计算出物体的加速度。
电子感应加速器是由一个有两个芯子的电感元件和一个加速度计连接组成。
当目标物体表面的磁场与加速计中的磁场相互作用时,它会产生一个电信号,这个信号就是物体的加速度。
这个电信号能够被电子计算机精确捕捉出来,从而可以用来测量物体的加速度。
电子感应加速器在日常生活中应用较为广泛,比如在制造高速转轮的时候,此类电子器件可以用来实时测量转轮的转速,从而将其调节到特定值。
此外,它还可以用来检测安全带的紧固度,为空中机器的安全操作提供依据;或者用于汽车中的安全系统,实时检测汽车的行车状态,决定开关灯等。
电子感应加速器
电子感应加速器简介电子感应加速器是一种物理实验装置,用于研究和测量带电粒子的运动和相互作用。
它利用电磁感应的原理将带电粒子加速到高速,并将其引导到特定的目标或探测器上。
原理电子感应加速器的工作原理基于洛伦兹力和电磁感应的相互作用。
当带电粒子穿过磁场或电场时,会受到洛伦兹力的作用,从而改变其运动方向和速度。
根据这个原理,电子感应加速器利用磁场和电场的组合来加速和引导带电粒子。
组成电子感应加速器一般由以下几个主要部分组成:1.加速区(Acceleration Region):加速区是电子感应加速器的核心部分,它由一组电磁铁和电极组成。
这些电磁铁和电极产生的磁场和电场可以加速和引导带电粒子。
2.控制系统(Control System):控制系统用于调节和控制加速器中的电场和磁场,以确保带电粒子获得适当的加速和引导。
3.目标/探测器(Target/Detector):目标或探测器用于接收和测量带电粒子在加速器中的运动和相互作用。
根据实验的需要,目标或探测器可能具有不同的结构和功能。
工作流程电子感应加速器的工作流程可以简单概括为以下几个步骤:1.初始状态:带电粒子进入加速区之前,控制系统将设置电场和磁场的初始值。
这些初始值将决定带电粒子的加速和引导路径。
2.加速:一旦带电粒子进入加速区,控制系统将调节电场和磁场的强度,以使带电粒子获得适当的加速。
带电粒子将沿着预定的轨道加速并改变其速度和方向。
3.目标/探测器:当带电粒子达到所需的速度或能量时,它们将进入目标或探测器。
目标或探测器将接收和测量带电粒子的性质和相互作用。
4.数据分析:通过对目标或探测器上得到的数据进行分析,研究人员可以了解带电粒子经过加速器时的运动和相互作用。
这些数据有助于理解粒子物理学和相关研究。
应用领域电子感应加速器在科学研究和工业应用中具有广泛的应用。
以下是一些常见的应用领域:•粒子物理学:电子感应加速器可以用来研究原子核和基本粒子的结构和相互作用。
电子感应加速器为何不能加速质子
电子 感应 加速 器 只能加 速 电子不 能加 速质 子 、 a 粒子 等 , 不 是因为质子 、 a粒 子 带 了 正 电 而 不 能 加
速. 在原 理上 它们 同样 可 以加速 , 只 是 因 为 这 些 粒 子
按 照 以上原 理 , 如果 让此 加速 器加 速质 子 , 只 要 让质 子 沿顺 时针 方 向运 动 即可. 而 事 实上 , 电 子 感 应
由
B 一
‘
r
得
一
电子 感应 加速 器是 利 用感 生 电场使 电子 加速 的
仪器 , 在 人教 版高 中《 物理 ・ 选修 3 — 2 》 第 四章第 5 节
中介绍 了它 的原理 , 如图 1 所示 , 上 图 为侧 视 图 , 下 图为真 空 室 的俯 视 图. 侧 视 图 的上 下 为 电磁 铁 的 两 个磁极 , 磁 极之 间 有一 个环 形真 空室 . 电磁 铁 线 圈电 流 的方 向按 图示方 向逐 渐增 加 , 根据 楞次 定律 , 产 生 顺 时针 方 向的感 生 电 场 . 使 电子 沿 逆 时 针 方 向加 速
场方 向改 变前 的 短短 时 间 内 , 电子 束 已经 在 环 内绕
子轨迹
行 几十 万圈 , 并且 一直 受 到 电 场 加 速 , 所 以, 可 以 获
得能 量 相 当高 的 电子. 例如 一个 l 0 0 Me V 的 电子感
应加 速器 , 能 使 电子 速 度 加 速 到 光 速 的 0 . 9 9 9 9 8 6 倍, 即0 . 9 9 9 9 8 6
电 子 感 应 加 速 器 为 何 不 能 加 速 质 子
范 军
第二章 3 涡流、电磁阻尼和电磁驱动
3涡流、电磁阻尼和电磁驱动[学习目标] 1.了解感生电场的概念,了解电子感应加速器的工作原理.2.理解涡流的产生原理,了解涡流在生产和生活中的应用.3.理解电磁阻尼和电磁驱动的原理,了解其在生产和生活中的应用.一、电磁感应现象中的感生电场1.感生电场麦克斯韦认为,磁场变化时会在空间激发一种电场,这种电场叫作感生电场.2.感生电动势由感生电场产生的电动势叫感生电动势.3.电子感应加速器电子感应加速器是利用感生电场使电子加速的设备,当电磁铁线圈中电流的大小、方向发生变化时,产生的感生电场使电子加速.二、涡流1.涡流:当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,用图表示这样的感应电流,就像水中的漩涡,所以把它叫作涡电流,简称涡流.2.金属块中的涡流会产生热量,利用涡流产生的热量可以冶炼金属.三、电磁阻尼当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼.四、电磁驱动若磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力的作用,安培力使导体运动起来,这种作用常常称为电磁驱动.判断下列说法的正误.(1)只要磁场变化,即使没有电路,在空间也将产生感生电场.(√)(2)处于变化磁场中的导体,其内部自由电荷定向移动,是由于受到感生电场的作用.(√)(3)涡流跟其他感应电流一样,都是因为穿过导体的磁通量变化而产生的.(√)(4)导体中有涡流时,导体没有和其他元件组成闭合回路,故导体不会发热.(×)(5)电磁阻尼和电磁驱动均遵循楞次定律.( √ )(6)电磁阻尼发生的过程,存在机械能向内能的转化.( √ )(7)电磁驱动中有感应电流产生,电磁阻尼中没有感应电流产生.( × )一、电磁感应现象中的感生电场 导学探究如图所示,B 增强时,就会在空间激发一个感生电场E .如果E 处空间存在闭合导体,导体中的自由电荷就会在感生电场的作用下做定向移动,产生感应电流.(1)感生电场的方向与感应电流的方向有什么关系?如何判断感生电场的方向?(2)上述情况下,哪种作用扮演了非静电力的角色?答案 (1)感应电流的方向与正电荷定向移动的方向相同.感生电场的方向与正电荷受力的方向相同,因此,感生电场的方向与感应电流的方向相同,感生电场的方向可以用楞次定律来判定.(2)感生电场对自由电荷的作用. 知识深化1.变化的磁场周围产生感生电场,与闭合电路是否存在无关.如果在变化的磁场中放一个闭合电路,自由电荷在感生电场的作用下发生定向移动.2.感生电场可用电场线形象描述.感生电场是一种涡旋电场,电场线是闭合的,而静电场的电场线不闭合.3.感生电场的方向根据楞次定律用右手螺旋定则判断,感生电动势的大小由法拉第电磁感应定律E =n ΔΦΔt计算. 例1 (多选)某空间出现了如图所示的磁场,当磁感应强度变化时,在垂直于磁场的方向上会产生感生电场,有关磁感应强度的变化与感生电场方向的关系,下列描述正确的是( )A .当磁感应强度均匀增大时,感生电场的电场线从上向下看应为顺时针方向B .当磁感应强度均匀增大时,感生电场的电场线从上向下看应为逆时针方向C .当磁感应强度均匀减小时,感生电场的电场线从上向下看应为顺时针方向D .当磁感应强度均匀减小时,感生电场的电场线从上向下看应为逆时针方向答案 AD解析 感生电场中磁场的方向用楞次定律来判定,原磁场向上且磁感应强度在增大,在周围有闭合导线的情况下,感应电流的磁场方向应与原磁场方向相反,即感应电流的磁场方向向下,再由右手螺旋定则知感应电流的方向即感生电场的方向从上向下看应为顺时针方向;同理可知,原磁场方向向上且磁感应强度减小时,感生电场的方向从上向下看应为逆时针方向,所以A 、D 正确.针对训练1 如图所示,在内壁光滑、水平放置的玻璃圆环内,有一直径略小于圆环口径的带正电的小球,正以速率v 0沿逆时针方向匀速转动.若在此空间突然加上方向竖直向上、磁感应强度B 随时间成正比例增加的变化磁场,若运动过程中小球的带电荷量不变,那么( )A .磁场力对小球一直做正功B .小球受到的磁场力不断增大C .小球先沿逆时针方向做减速运动,过一段时间后,沿顺时针方向做加速运动D .小球仍做匀速圆周运动答案 C解析 因为玻璃圆环所在处有均匀变化的磁场,在周围产生稳定的感应电场,电场力对带正电的小球做功,由楞次定律可判断感生电场方向为顺时针方向,在电场力作用下,小球先沿逆时针方向做减速运动,后沿顺时针方向做加速运动,选项C 正确,D 错误;磁场力方向始终与小球做圆周运动的线速度方向垂直,所以磁场力对小球不做功,选项A 错误;小球的速率先减小到零后增大,开始时B =0,F =0,小球速率为零时,F =0,可知小球受到的磁场力不是不断增大的,选项B 错误.闭合回路(假定其存在)的感应电流方向就表示感生电场的方向.判断思路如下: 假设存在垂直磁场方向的闭合回路→回路中的磁通量变化―――→楞次定律安培定则回路中感应电流的方向―→感生电场的方向二、涡流导学探究如图所示,线圈中的电流随时间变化时,导体中有感应电流吗?如果有,它的形状像什么?答案有.变化的电流产生变化的磁场,变化的磁场产生感生电场,使导体中的自由电子发生定向移动,产生感应电流,它的形状像水中的漩涡,所以把它叫作涡电流,简称涡流.知识深化1.产生涡流的两种情况(1)块状金属放在变化的磁场中.(2)块状金属进出磁场或在非匀强磁场中运动.2.产生涡流时的能量转化(1)金属块在变化的磁场中,磁场能转化为电能,最终转化为内能.(2)金属块进出磁场或在非匀强磁场中运动,由于克服安培力做功,金属块的机械能转化为电能,最终转化为内能.3.涡流的应用与防止(1)应用:真空冶炼炉、探雷器、安检门等.(2)防止:为了减小电动机、变压器铁芯上的涡流,常用电阻率较大的硅钢做材料,而且用相互绝缘的硅钢片叠成铁芯来代替整块硅钢铁芯.例2(多选)金属探测器已经广泛应用在考场检测、车站安检等领域,其利用的是电磁感应原理:探测器内的线圈中通以大小与方向快速变化的电流从而产生快速变化的磁场,该磁场会在金属物体内部感应出“涡流”.“涡流”会产生磁场,从而影响原始磁场,导致检测器发出蜂鸣声而报警.下列说法正确的是()A.欲使待检测物内部产生“涡流”,探测器需在待检测物上方不停地晃动B.探测器静止在待检测物上方,待检测物内部仍然可以产生“涡流”C.若待检测物为塑料则不能报警,因为检测区域内没有磁通量变化D.若待检测物为塑料则不能报警,因为待检测物中没有能够自由移动的带电粒子或很少解析因为金属探测器中通的是大小与方向快速变化的电流,以致产生快速变化的磁场,故即使探测器静止在待检测物的上方,待检测物中依然有感应电流产生,A错误,B正确;因为塑料制品近乎于绝缘体,导电性能极差,所以检测区域中并非没有磁通量变化,而是因为塑料内部没有可自由移动的带电粒子或极少,而使得待检测物中无感应电流或电流太小不能引起报警,故C错误,D正确.针对训练2(多选)下列哪些措施是为了防止涡流的危害()A.电磁炉所用的锅要用平厚底金属锅B.探雷器的线圈中要通变化着的电流C.变压器的铁芯不做成整块,而是用许多电阻率很大的硅钢片叠合而成D.变压器的铁芯每片硅钢片表面有不导电的氧化层答案CD解析电磁炉是采用电磁感应原理,在金属锅上产生涡流,使锅体发热从而加热食物,属于涡流的应用,故A错误;探雷器的线圈中有变化的电流,如果地下埋着金属物品,金属中会感应出涡流,使仪器报警,这属于涡流的应用,故B错误;变压器的铁芯不做成整块,而是用许多电阻率很大的硅钢片叠合而成,是为了减小变压器铁芯内产生的涡流,属于涡流的防止,故C正确;变压器的铁芯每片硅钢片表面有不导电的氧化层,是为了减小变压器铁芯内产生的涡流,属于涡流的防止,故D正确.三、电磁阻尼和电磁驱动导学探究弹簧上端固定,下端悬挂一个磁体.将磁体托起到某一高度后放开,磁体能上下振动较长时间才停下来.如果在磁体下端放一个固定的闭合线圈,使磁体上下振动时穿过它(如图所示),磁体就会很快停下来,解释这个现象.答案当磁体穿过固定的闭合线圈时,在闭合线圈中会产生感应电流,感应电流的磁场会阻碍磁体靠近或离开线圈,也就使磁体振动时除了受空气阻力外,还要受到线圈的磁场阻力,克服阻力需要做的功较多,机械能损失较快,因而会很快停下来.电磁阻尼和电磁驱动的比较电磁阻尼电磁驱动不同点成因由导体在磁场中运动形成的由磁场运动而形成的效果安培力方向与导体运动方向相反,为阻力安培力方向与导体运动方向相同,为动力能量转化克服安培力做功,其他形式的能转化为电能,最终转化为内能磁场能转化为电能,通过安培力做功,电能转化为导体的机械能共同点两者都是电磁感应现象,导体受到的安培力都是阻碍导体与磁场间的相对运动例3(2017·全国卷Ⅰ)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是()答案 A解析感应电流产生的条件是闭合回路中的磁通量发生变化.在A图中,系统振动时,紫铜薄板随之上下及左右振动,都会使穿过紫铜薄板的磁通量发生变化,产生感应电流,受到安培力,阻碍系统的振动,故A正确;在B、D图中,只有紫铜薄板左右振动才产生感应电流,而上下振动无感应电流产生,故B、D错误;在C图中,无论紫铜薄板上下振动还是左右振动,都不会产生感应电流,故C错误.例4如图所示,蹄形磁体和矩形线圈均可绕竖直轴OO′转动.从上向下看,当蹄形磁体逆时针转动时()A.线圈将逆时针转动,转速与磁体相同B.线圈将逆时针转动,转速比磁体小C.线圈将逆时针转动,转速比磁体大D.线圈静止不动答案 B解析当蹄形磁体转动时,线圈的磁通量发生变化,从而产生感应电流,产生安培力,故线圈一定会转动,由楞次定律可知,线圈将与磁体同向转动,但转速一定小于磁体的转速,如两者的转速相同,磁感线与线圈处于相对静止状态,线圈不切割磁感线,无感应电流产生,B正确,A、C、D错误.电磁阻尼、电磁驱动都是楞次定律“阻碍”的体现.阻碍磁通量的变化,阻碍导体与磁场的相对运动.考点一感生电场1.(多选)如图所示,一个闭合线圈静止于磁场中,由于磁场强弱的变化,而使线圈中产生了感应电动势,下列说法中正确的是()A.使电荷定向移动形成电流的力是磁场力B.磁场变化时,会在空间激发一个电场C.从上往下看,当磁场增强时,线圈中有逆时针方向的感应电流D.使电荷定向移动形成电流的力是电场力答案 BD2.英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r 的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场,环上套一带电荷量为+q 的小球,已知磁感应强度B 随时间均匀增加,其变化率为k ,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是( )A .0 B.12r 2qk C .2πr 2qk D .πr 2qk 答案 D解析 根据法拉第电磁感应定律可知,该磁场变化产生的感生电动势为E =ΔB Δt·S =k πr 2,小球在环上运动一周,则感生电场对小球的作用力所做功的大小W =qE =πr 2qk ,故选项D 正确.考点二 涡流3.(多选)(2022·苏州市期末)图中的四个图都与涡流有关,下列说法正确的是( )A .真空冶炼炉是利用涡流来熔化金属的装置B .金属探测器是利用被测金属中产生的涡流来进行探测的C .电磁炉工作时在它的面板上产生涡流加热食物D .变压器的铁芯用相互绝缘的硅钢片叠合而成是为了减小涡流答案 ABD解析 真空冶炼炉是利用线圈中的电流做周期性变化,在金属中产生涡流,从而产生大量的热量,熔化金属的,故A 正确;金属探测器中通有变化的电流,遇到金属物体时,被测金属中产生涡流,涡流产生的磁场反过来影响探测器中的电流,从而进行探测,故B 正确;电磁炉工作时,在锅体中产生涡流,加热食物,故C 错误;当变压器中的电流变化时,在其铁芯中将产生涡流,使用硅钢片制成的铁芯可以减小涡流,从而减小能量损失,故D 正确.4.(多选)如图所示是用涡流金属探测器探测地下金属物的示意图,下列说法正确的是( )A.探测器内的探测线圈会产生变化的磁场B.只有有磁性的金属物才会被探测器探测到C.探测到地下的金属物是因为探头中产生了涡流D.探测到地下的金属物是因为金属物中产生了涡流答案AD解析探测器内探测线圈产生变化的磁场,使金属物中产生涡流,A、D正确.5.安检门是一个用于安全检查的“门”,“门框”内有线圈,线圈中通有变化的电流.如果金属物品通过安检门,金属中会被感应出涡流,涡流的磁场又反过来影响线圈中的电流,从而引起报警,关于安检门的说法正确的是()A.安检门能检查出毒贩携带的毒品B.安检门能检查出旅客携带的金属水果刀C.如果“门框”的线圈中通上恒定电流,安检门也能正常工作D.安检门工作时,主要利用了电流的热效应原理答案 B解析安检门利用涡流探测人身上携带的金属物品的原理:线圈中的变化的电流产生变化的磁场,会在金属物品中产生涡流,而金属物品中涡流产生的磁场会在线圈中产生感应电流,引起线圈中电流发生变化,从而被探测到,则安检门不能检查出毒贩携带的毒品,选项A、C错误,B正确;安检门工作时,主要利用了电磁感应原理,选项D错误.6.(多选)(2022·洛阳市期中)电磁炉为新一代炊具,无烟、无明火、无污染、不产生有害气体、无微波辐射、高效节能等是电磁炉的优势所在.电磁炉的工作原理是利用电流通过线圈产生磁场,当磁场通过含铁质锅底部时,会产生无数小涡流,使锅体本身快速发热,然后再加热锅内食物,如图所示.下列相关说法正确的是()A.锅体中的涡流是由恒定的磁场产生的B.锅体中的涡流是由变化的磁场产生的C.磁场越强,电磁炉的加热效果越好D.提高磁场变化的频率,可提高电磁炉的加热效果答案BD解析电磁炉接交流电,其锅体中的涡流是由变化的磁场产生的,故A错误,B正确;电磁炉的加热效果与磁场的强弱无关,只与磁场的变化快慢有关,根据发热原理可知,提高磁场变化的频率,可增强涡流,提高电磁炉的加热效果,故C错误,D正确.考点三电磁阻尼与电磁驱动7.(2022·徐州市高二期末)如图所示,磁电式电流表的线圈常用铝框做骨架,把线圈绕在铝框上,铝框的两端装有转轴,转轴的两边各有一个螺旋弹簧(绕制方向相反),关于磁电式电流表,下列说法正确的是()A.线圈通电后,由于螺旋弹簧的弹力作用,可以使指针尽快稳定下来B.线圈通电后,由于铝框中的电磁阻尼作用,可以使指针尽快稳定下来C.线圈骨架换成塑料,通电后也可以使指针尽快稳定下来D.在运输时要把正、负接线柱用导线连在一起,主要是为了增强铝框中的电磁阻尼作用答案 B解析铝框做骨架,当线圈在磁场中转动时,导致通过铝框的磁通量变化,从而产生感应电流,出现安培阻力,使其很快停止摆动,利用了电磁阻尼原理,故A错误,B正确;塑料做骨架因不能导电则起不到电磁阻尼的作用,故C错误;在运输时要把正、负接线柱用导线连在一起,是为了接通回路能在铝框中产生电磁阻尼作用,而不能增强,故D错误.8.甲、乙两个完全相同的铜环均可绕竖直固定轴O1O2旋转,现让它们以相同角速度同时开始转动,由于阻力作用,经相同的时间后停止,若将圆环置于如图所示的匀强磁场中,甲环的转轴与磁场方向垂直,乙环的转轴与磁场方向平行,现让甲、乙两环同时以相同的初始角速度开始转动后,下列判断正确的是()A.甲环先停下B.乙环先停下C.两环同时停下D.两环都不会停下答案 A解析当铜环转动时,乙环一直与磁场方向平行,穿过乙环的磁通量为零,穿过甲环的磁通量不断变化,不断有感应电流产生,甲环受到安培力,安培力阻碍甲环与磁场间的相对运动,故甲环先停止运动,A正确.9.如图所示,使一个铜盘绕其竖直的轴OO′转动,且假设摩擦等阻力不计,转动是匀速的.现把一个蹄形磁体移近铜盘,则()A.铜盘的转动将变慢B.铜盘的转动将变快C.铜盘仍以原来的转速转动D.铜盘的转动速度是否变化,由磁体上下两端的极性决定答案 A10.(多选)位于光滑水平面上的小车上放置一螺线管,一个比螺线管长的条形磁体沿着螺线管的轴线以初速度v水平穿过,如图所示,在此过程中()A.磁体做匀速直线运动B.磁体做减速运动C.小车向右做加速运动D.小车先加速后减速答案BC解析磁体水平穿入螺线管时,管中将产生感应电流,由楞次定律知该电流产生的磁场阻碍磁体的运动.同理,磁体穿出时该电流产生的磁场也阻碍磁体的运动,故整个过程中,磁体做减速运动,A项错,B项对;而对于小车上的螺线管来说,在此过程中,螺线管受到的安培力都是水平向右,这个安培力使小车向右一直做加速运动,C项对,D项错.11.如图所示,矩形线圈放置在水平薄木板上,有两块相同的蹄形磁体,四个磁极之间的距离相等,当两块磁体以相同的速度匀速向右通过线圈时,线圈始终静止不动,那么线圈受到木板的摩擦力方向是()A.先向左、后向右B.先向左、后向右、再向左C.一直向右D.一直向左答案 D解析根据楞次定律的“来拒去留”结论可知,当两磁体靠近线圈时,线圈要阻碍其靠近,线圈有向右移动的趋势,受到木板的摩擦力向左,当磁体远离时,线圈要阻碍其远离,仍有向右移动的趋势,受到木板的摩擦力方向仍是向左的,故选项D正确.。
粒子加速器2
二、击碎原子核的“大炮”棗几种加速器的单原理1.静电加速器在很久以前,人们就注意到静电现象。
大约在二千年前,我国学者王充(公元27~97年)在《论衡》中就记载了“顿牟掇芥”,顿牟就是琥珀,掇芥就是吸引轻小物体的意思。
琥珀是非常好的绝缘体,当它受摩擦之后就产生静电效应,能吸小小的纸屑等东西。
在日常生活中我们也许都有这样一种经验,如果从手中向泥地落下一块石头,会把泥地面撞得凹进去一点,如果石头从几层楼上落下去,那将会把泥地砸得更深,离地面越高,就相当于获得的势能越大,势能就转变成动能与泥地相撞。
所以人们就设想让一个带电的粒子相对于零电位获得较高的静电势能,它也就可以从一个高电位向低电位加速地跑去,直到撞到被阻挡的靶原子核上。
这就是人们用静电起电的办法,造成一个高电位差,从而让它加速带电粒子去轰击原子核的办法。
图5-2 静电加速器原理左面是静电加速器的示意图。
B是输电带,用绝缘的材料如橡胶、丝绸、亚麻布做成。
P1、P2是带动输电带的滑轮,P1是由电动机带动, P2在球电极里面。
A是电源与喷电的排针。
S是金属薄壳球形电极,它通过用玻璃、有机玻璃、聚氟乙烯、塑料王等做的绝缘支柱支持起来。
当高压喷电电源向P1喷电时,由于输电带高速地向上移动,电荷就由绝缘带携带到上端,通过电晕放电,由一排金属针尖做刷子,吸取输电带上电荷并传递到金属球S上。
当金属球壳上电荷不断增加时,它的电势就不断增高,直到周围的气体和支持这高压球极的绝缘支柱被击穿为止。
当然,通常是控制在这击穿电压以下工作。
早期的静电加速器整个装置暴露在空气之中,这样受到周围环境如潮湿等的影响很大,容易击穿,电压不能升到很高,后来改进为把整个装置外面套了一个大钢桶,里面充有惰性气体。
一般充几个大气压的氮气或者氟里昂(CCl2F2)气体,这样可以提高击穿电压。
在形成高电压之后,就要进一步考虑怎样让带电粒子在这高电压下均匀地加速。
所以在这装置里有一个加速管G,它是由很多段陶瓷或玻璃等做成的绝缘圈和一片片金属加速电极相间封接构成。
电子感应加速器
电子感应加速器1. 简介电子感应加速器(Electron Induction Accelerator)是一种用于产生高能电子束的装置。
它利用电磁感应原理和电子束的加速作用,将电子通过磁场加速到高能量状态,从而实现电子束的产生和加速。
电子感应加速器具有结构简单、加速效率高和能量可调整等优点,在科研、医疗和工业等领域都有广泛的应用。
2. 原理2.1 电磁感应原理电子感应加速器利用电磁感应原理实现电子束的加速。
当磁场中的磁力线发生变化时,会在空间中产生电场。
电子在这个电场中受到作用力,从而被加速。
根据法拉第电磁感应定律,变化的磁场产生的电场的大小和方向与变化率成正比。
2.2 加速器结构电子感应加速器的结构包括磁场产生器、电子源、加速腔和能量调控系统等部分。
磁场产生器产生强磁场,用于产生电磁感应。
电子源产生电子流,经过磁场产生的电场加速电子。
加速腔提供稳定的电场,保证电子束的加速。
能量调控系统用于调整电子束的能量。
3. 应用领域3.1 科学研究电子感应加速器在科学研究领域做出了重要贡献。
它可以产生高能电子束,用于研究原子核结构、粒子物理学和核物理学等领域。
通过加速器产生的高能电子束,科学家可以深入研究微观粒子的性质和相互作用规律,对于揭示物质的基本结构和宇宙的起源具有重要意义。
3.2 医疗应用电子感应加速器在医疗应用领域也有广泛的用途。
它可以产生高能电子束和X射线,用于肿瘤治疗、放射性同位素疗法和医学成像等。
高能电子束可以精确定位和杀灭肿瘤细胞,减少对正常组织的损伤。
X射线可以用于诊断和监测疾病,为医生提供准确的诊断结果。
3.3 工业应用在工业领域,电子感应加速器可以用于材料表面改性、材料表面清洁和沉积薄膜等工艺。
高能电子束可以改变材料表面的性质,提高材料的硬度、耐腐蚀性和抗磨损性。
此外,电子感应加速器还可以用于辐照食品、杀菌和杀虫等处理,保持食品的新鲜和延长货架期。
4. 发展前景随着科学技术的不断进步,电子感应加速器的发展前景十分广阔。
经典洛伦兹磁力和广义洛伦兹磁力解释电子感应加速器的本质
关
键
词: 电子感应加速器 ; 法拉第定律 ; 广义洛伦兹磁力
文献标志码 : A
中图分类号 : 0 4 4 1
在1 8 3 6  ̄1 8 8 8年 间 , 法拉 第和 麦克斯 韦不 认 识 电荷 的 物 理 概 念 , 更不认识 电流的物理本质。 1 8 9 7年 洛伦 兹诞 生 电子 论 ( 此 时法 拉第 和 麦 克斯 韦 已经去 世 ) , 即在 1 8 9 7年之 前 , 人 们没 有发 现 电 子, 所 以人们 不 认 识 电荷 和 电流 的 物理 概 念 。当 时人们 流行 以太 e t h e r i c , 在 此 之前 没 有 洛伦 兹 电 子论 , 也没有 洛 伦 兹 磁 力 。虽然 爱 因斯 坦 与 洛伦
第2 6 卷
第lБайду номын сангаас期
大
学
物
理
实
验
Vo 1 . 2 6 No .1
Fe b. 2 01 3
2 0 1 3年 2月
P H YS I CAI EXPERI M ENT 0F COLLE GE
文章编号 : 1 0 0 7 — 2 9 3 4 ( 2 0 1 3 ) 0 1 — 0 0 1 4 — 0 3
经 典 洛 伦 兹磁 力 和广 义洛 伦 兹磁 力解 释 电子 感应 加 速 器 的本 质
曾清平
( 空军 ( 雷达) 预警 学院, 湖北 武汉 4 3 0 0 1 0 )
摘
要: 介绍 了虚构 的法拉第定律与 电子感应 加速器 不合理 , 用完 整洛伦兹 磁力解 释 电子感应 加
速器合理有效。
收稿 日期: 2 0 1 2 — 1 0 — 1 6
本质, 其余定律或理论仅仅是个别感应现象 的粗 略虚构 ; 完整洛伦兹磁力能解决法拉第定律与楞 次 定律 之间 的 因果关 系之 哲 学 争 议 问题 , 它 能 证 明楞次 电流定 律 , 能证 明法拉 第 电动势 是虚构 , 并 用 实验证 明漩 度 场 及 爱 因斯 坦 的协 变 场不 存 在 。 本 项 目用实 验来 证 明完 整 洛仑 兹 磁 力 的准 确 性 , 揭 示 电磁感 应 的物 理 本 质 问题 , 把 一 切 电磁感 应 问题统 一 到完洛 伦兹 磁力这 个物 理本 质上来 。完 整洛 伦兹磁 力 : 经典 洛伦 兹磁 力 F 一 q v ×B 和 广 义洛伦 兹磁 力 Fz = = = ×V B 是 一切 电磁感 应 的 物理 本质 和原 因 ; 其余 的法 拉 第定 律 和爱 因斯 坦 协 变场都 是虚 构 的 , 它们 与实 验不符 。
电子感应加速器的原理
电子感应加速器的原理电子感应加速器是一种物理学实验设备,通常用于研究电子在磁场中的运动和相互作用。
它基于法拉第电磁感应定律和洛伦兹力定律,可以用来加速电子以产生高能电子束,并用于各种科学研究和工业应用。
法拉第电磁感应定律法拉第电磁感应定律是电磁学中的基本定律之一,它描述了磁场通过导体环路时产生的电动势。
当导体中的电流发生变化时,它会产生一个磁场,而这个磁场会引起导体中的电荷移动,从而产生电动势。
洛伦兹力定律洛伦兹力定律是描述电荷在电场和磁场中受到的作用力的定律。
当电子在磁场中运动时,它会受到一个横向的洛伦兹力,这个力会使得电子向弯曲处运动,并最终形成一个环状电子束。
电子感应加速器的结构电子感应加速器的结构通常由三部分组成:电子枪、磁场和收集器。
电子枪电子枪是产生电子束的关键部分,它通常由阴极、阳极和加速电极组成。
电子从阴极发射出,然后通过加速电极和阳极,最后形成一束高能电子束。
通常使用热发射电子枪或冷阴极电子枪。
磁场磁场是电子感应加速器的核心部分,它用来控制电子束的运动。
磁场通过一个线圈产生,根据电磁感应定律,当电子在线圈内运动时,它会引起线圈内的电场变化,从而产生电动势。
收集器收集器用来收集电子束,通常是一个环形金属轨道,它通过磁场控制电子束的运动,并将电子束引导到特定位置。
电子感应加速器的工作原理电子感应加速器通过磁场的作用,将电子束加速到高能状态,并通过收集器来收集电子束。
通常的工作原理可以分为以下几步:1.电子枪发射电子2.电子经过加速电极和阳极,形成一束高能电子束3.将电子束引入磁场内,使电子束受到洛伦兹力,从而形成一个环形电子束4.调整磁场的强度和方向,使电子束继续加速5.将电子束引导到收集器中,收集高能电子应用电子感应加速器的应用十分广泛。
其中,最常见的应用是在核物理学中进行实验研究。
同时,电子感应加速器也可以用于工业应用,如材料表面改性、核工业等领域。
结论电子感应加速器基于法拉第电磁感应定律和洛伦兹力定律,通过磁场控制电子束的运动,从而提高电子束的能量,并用于各种科学研究和工业应用。
探究电磁感应对电子加速器的影响
电磁感应技术的未来发展机遇
新能源领域 的机遇
利用电磁感应技 术开发新能源, 实现可持续发展
科学研究中 的应用前景
电磁感应技术为 科学研究提供了 新的可能性和工
具
智能制造中 的发展前景
电磁感应技术在 智能制造中的应 用将带来革命性
变革
电磁感应技术在国家战略中的地位
国家战略意 义
电磁感应技术对 国家安全和发展
具有重要意义
政策支持
国家在电磁感应 技术领域加大政 策支持,推动技
术创新
国家经济发 展的贡献
电磁感应技术促
对人类社会 的影响
电磁感应技术改 变了人类社会的 生产方式和生活
方式
人类社会的 期待
人类社会期待电 磁感应技术为社 会带来更多福祉
和便利
在社会进步 中的作用
● 06
第六章 总结与展望
电磁感应的定义 及原理
电磁感应是指导致电 场和磁场相互转换的 物理现象。根据法拉 第电磁感应定律,当 磁场发生变化时,会 感应出电场。而根据 洛伦兹力定律,电场 中的电荷在磁场中也 会受到力的作用。这 些原理是电磁感应现 象的基础。
电磁感应在不同领域的应用
工业领域
用于感应加热、 电动机等
电磁感应与电子加速器
电子加速器 的基本原理
加速器结构和工 作原理
电子加速器 中电磁感应
的作用
电磁感应对加速 效果的影响
电子加速器 中的电磁场
调控
磁场和电场的协 同作用
电磁感应对电子加速器的影响
性能提升
优化电子束的稳定性 提高加速效率 减少能量损耗
实时监测
监测加速过程中的电磁场 变化 调整参数以优化加速效果
麦克斯韦方程组的推导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ⅰ.基本原理
Ⅱ.加速电子的条件
Ⅲ.实例应用
基本原理 带电粒子在交变的非均匀磁场中运动时,将受到 两方面的作用力: (一)感生电场的切向加速作用力
(二)指向环心的洛仑兹力。
电子感应加速器的核心问题是如何保证带电粒子 在要求的圆周上作圆周运动。分析带电离子的受力: 设带电粒子在半径为r的轨道上运动时感受到的磁感 应强度为,而在半径为r的圆周内的平均磁感应强度 为,确保带电粒子在希望的圆周轨道上运动的问题转 化为讨论上述两个磁场之间的数量关系。
Back!!!
加速电子的条件
由于电子感应加速器的电磁铁是用交流 电励磁,所以磁场是交变的,从而导致有旋 电场的方向也是交变的。
那在励磁电流交变的一个 周期中,是不是在所有的时间 内电子都可以得到加速呢?
第一个1/4周期
磁场增强,故感生 电场的方向为顺 时针方向,因而电 子受到的加速电 场的方向为逆时 针方向,而此时洛 仑兹力也是使电 子作逆时针方向 的圆周运动,故第 一个1/4周期可用 来加速电子.
北京的高能粒子加速器
合肥的同步辐射加速器
兰州的重离子加速器
• 切向的感生电场力:
d(mv ) E i 1 dB F eE i e dB e dB 2r dt 2r dt 2r dt dt
• 径向的洛伦兹力:
2 dB d(mv ) f Bqv B r qv B r qv m v mv erBr er r r dt dt
Back!!!
实例应用 加速器的种类很多,用途也不同,有静 电加速器、电子回旋加速器、电子感应加速 器、同步辐射加速器……等等。 电子感应加速器主要用于核物理的研究, 用被加速的电子轰击各种靶时,将发出穿透 力很强的电磁辐射。 另外电子感应加速器还应用于工业探伤 或医疗癌症。 目前,我国最大的三个加速器是 北京的高能粒子加速器、合肥的同步辐射加 速器、兰州的重离子加速器。
第二个1/4周期
磁场减弱,故感生电 场的方向为逆时针 方向,电子受到的加 速电场力的方向为 顺时针方向,此时电 场力的作用能使电 子减速运动故第二 个1/4周期不能加速 电子.
第三个1/4周期
磁场反向增强,故感生 电场的方向为逆时针方 向,电子受到的加速电 场力的方向为顺时针方 向,作用使电子减速运 动,另外洛仑兹力的方 向也不能使电子在规定 的圆形轨道运ຫໍສະໝຸດ . 第三 个1/4周期不能加速电子.
第四个1/4周期
磁场反向减弱, 故感生电场的方 向为顺时针方向, 电子的运动得到 加速,但洛仑兹 力的方向不能使 电子在规定的圆 形轨道上运动, 故第四个1/4周期 亦不能加速电子.
实际上
若以每秒50周的交流电励磁,则在磁场变 化的第一个1/4周期(既约5ms的时间)内, 电子就能在有旋电场的作用下,在圆形轨 道上经历回旋数十万圈的持续加速,从而 获得足够高的能量,并在第一个1/4周期结 束时被引至靶室进行实验。
• 于是: B B • • 即:电子运动处的磁感应强度应等于该路径
r 1 2
所围面积内磁感应强度的一半。
直流电激励电磁铁: 此时环行真空室中只有恒定的磁场,电子 在室内只做匀速圆周运动。
交流电激励电磁铁: 当激励电流增加时,真空室中既有磁场又 有有旋电场,电子在其中得到加速。磁场 变化越快,电子的加速越明显。