第十五章基因工程现代遗传学优秀课件
合集下载
《基因工程》PPT教学 ppt课件
![《基因工程》PPT教学 ppt课件](https://img.taocdn.com/s3/m/8a1b6f95b0717fd5370cdc1f.png)
PPT课件
36
典型例子:抗烟草花叶病毒的转基因烟草、 抗病毒的转基因小麦、甜椒
PPT课件
37
转黄瓜抗青枯病基因的甜椒
3.抗逆转基因植物
PPT课件
38
4.利用转基因改良植物的品质
PPT课件
39
富含赖氨酸的转基因玉米
基转 因入 的荧 发光 荧素 光酶 烟蛋 草白
PPT课件 不会引起过敏的转基因大4豆0
原 理: 基因重组
表达水平: DNA分子水平
过程:
意义: 1、定向改造某些性状
2、克服远缘杂交
PPT课件
3
原核细胞的基因结构
非编码区 编码区上游 启动子
编码区
非编码区 编码区下游
终止子
RNA聚合酶结合位点
启动子:位于基因首端一段能与RNA聚合酶结合并能起 始mRNA合成的序列。没有启动子,基因就不能转录。
将目的基因导入 农杆菌介导的遗传转化法
植物细胞
基因枪法
方法
将目的基因导入 动物细胞
——显微注射法
将目的基因导入——感受态细胞吸收DNA分子
微生物细胞
(氯化钙法)
PPT课件
24
(四)目的基因的检测与鉴定 ——检查是否成功 ①形态检测
检测— ②分子检测
PPT课件
25
非目的基因片段 GACATAGCTACA CTGTATCGATGT
PPT课件
1
我们主要讨论4个问题:
1. 什么是基因工程——基因工程的概念。
2. 为什么能进行基因工程——基因工程的原理和技术。 3. 怎样进行基因工程——4大步骤 4. 基因工程的应用和前景
PPT课件
2
1、概念:又叫做基因拼接技术或DNA重组技术。
基因工程的概念和主要内容 ppt课件
![基因工程的概念和主要内容 ppt课件](https://img.taocdn.com/s3/m/ecb19626d5bbfd0a78567359.png)
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
三、基因工程的概念及主要内容
3.1 基因工程的概念 3.2 基因工程的主要内容
3.1 基因工程的概念
基因工程也就是DNA重组技术,是用人工的方法把 不同生物的遗传物质(基因)分离出来,在体外进行 剪切、拼接、重组,形成重组体,然后再把重组体引 入宿主细胞中得以高效表达,最终获得人们所需要的 基因产物。
是相同的
(6)基因可通过复制把遗传信息传递给下一代:经重组的基因一般来说是能传代的
3.2 基因工程的主要内容
与宏观的工程一样,基因工程 的操作也需要经过“切”、“接”、 “检查”等过程,只是各种操作的工 具不同,被操作的对象是肉眼难以直 接观察的核酸分子。
基因工程的概念和主要内容
1
• 一、基因研究的发展过程 • 二、DNA的组成、结构和功能 • 三、基因工程的概念及主要内容 • 四、工具酶和基因载体 • 五、基因工程的基本技术 • 六、基因工程在食品产业中的应用
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
• 基因工程研究的理论依据
(1)不同基因具有相同的物质基础:具有遗传功能的特定因彼此之间存在着间隔序列 (3)基因是可以转移的:基因可在不同生物之间转移,或在染色体DNA上移动
(4)多肽与基因之间存在对应关系:普遍认为,一种多肽就有一种相应的基因 (5)遗传密码是通用的:一系列三联密码子同氨基酸之间的对应关系,在所有生物中都
4
三、基因工程的概念及主要内容
3.1 基因工程的概念 3.2 基因工程的主要内容
3.1 基因工程的概念
基因工程也就是DNA重组技术,是用人工的方法把 不同生物的遗传物质(基因)分离出来,在体外进行 剪切、拼接、重组,形成重组体,然后再把重组体引 入宿主细胞中得以高效表达,最终获得人们所需要的 基因产物。
是相同的
(6)基因可通过复制把遗传信息传递给下一代:经重组的基因一般来说是能传代的
3.2 基因工程的主要内容
与宏观的工程一样,基因工程 的操作也需要经过“切”、“接”、 “检查”等过程,只是各种操作的工 具不同,被操作的对象是肉眼难以直 接观察的核酸分子。
基因工程的概念和主要内容
1
• 一、基因研究的发展过程 • 二、DNA的组成、结构和功能 • 三、基因工程的概念及主要内容 • 四、工具酶和基因载体 • 五、基因工程的基本技术 • 六、基因工程在食品产业中的应用
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
• 基因工程研究的理论依据
(1)不同基因具有相同的物质基础:具有遗传功能的特定因彼此之间存在着间隔序列 (3)基因是可以转移的:基因可在不同生物之间转移,或在染色体DNA上移动
(4)多肽与基因之间存在对应关系:普遍认为,一种多肽就有一种相应的基因 (5)遗传密码是通用的:一系列三联密码子同氨基酸之间的对应关系,在所有生物中都
高中生物基因工程课件
![高中生物基因工程课件](https://img.taocdn.com/s3/m/44a0719648649b6648d7c1c708a1284ac850053d.png)
毒性和提高免疫原性。
基因工程疫苗的应用
03
预防传染病,如乙型肝炎疫苗、人乳头瘤病毒疫苗等,降低人
群发病率。
基因工程抗体
基因工程抗体的种类
包括单克隆抗体、双特异性抗体、人源化抗体等。
基因工程抗体的制备
通过基因工程技术克隆和表达抗体的重链和轻链可变区基因,与适 当的恒定区基因融合,在哺乳动物细胞中表达。
公众参与与透明度
加强公众参与和透明度,促进利益相关方的对话 和协商,共同制定符合各方利益的决策。
3
国际合作与协调
加强国际合作与协调,共同制定国际性的伦理准 则和法律法规,促进全球范围内的公平和平等。
谢谢
THANKS
生物固氮
通过基因工程技术将固氮基因转入植物,提高植 物的固氮能力,减少化肥使用。
生物农药
通过基因工程技术生产具有杀虫、杀菌作用的生 物农药,减少化学农药的使用。
基因编辑技术
利用基因编辑技术如CRISPR-Cas9等对作物进行 精确的基因改造,提高作物的抗逆性和产量。
05 基因工程与环境保护
CHAPTER
生物的遗传性状。
基因工程原理
基因工程基于分子生物学和遗传学 原理,通过改变生物体的基因组, 实现对生物性状的遗传改良。
基因工程操作步骤
基因工程的操作步骤包括基因克隆 、载体构建、受体细胞转化、基因 表达和产物分离纯化等。
基因工程的历史与发展
基因工程的起源
基因工程的未来发展
基因工程起源于20世纪70年代,当时 科学家发现了限制性内切酶和DNA连 接酶,为基因操作提供了工具。
基因工程在土壤修复中的应用
土壤修复是指通过各种手段改善土壤质量,降低土壤污染 对环境和人体健康的影响。基因工程技术可以帮助我们培 育出具有特定功能的植物,用于土壤修复。
第十五章基因工程现代遗传学优秀课件
![第十五章基因工程现代遗传学优秀课件](https://img.taocdn.com/s3/m/4df3aabc9b6648d7c1c746f9.png)
、大小和反应条件,及切割DNA 的特点,可以将限制性内切酶分为三类:
Ⅰ型酶:分子量较大,反应需Mg++、S-腺苷酰-L-甲硫氨 酸(SAM)、ATP等。这类酶有特异的识别位点但没有特 异的切割位点,所以在基因工程中应用不大。
Ⅱ型酶:分子量较小(105Da),反应只需Mg++的存在, 并且具有以下两个特点,使这类酶在基因工程研究中,得 到广泛的应用。
Klenow片段:DNA pol I 用枯草杆菌蛋白酶水解成两个片 段,小片段(36KD)具有5’ 3’ 核酸外切酶活性,大片段 (76KD)称为Klenow片段,具有DNA链聚合及3’ 5’核酸 外切酶的活性。
Klenow
六、S1核酸酶:
来自于稻谷曲霉,该酶只水解单链DNA,用 于将粘性末端水解成平末端及cDNA发夹式结构的 处理。
七、碱性磷酸酶:
来自于大肠杆菌(bacterial alkaline phosphatase BAP)或小牛肠(calf intestinal alkaline phosphatase CIP),该酶用于脱去DNA(RNA)5’末端的磷酸 根,使5’-P成为5’-OH,该过程称核酸分子的脱磷 酸作用。当需要5’端同位素标记(脱P后利用T4多 核苷酸激酶磷酸化)或为了避免DNA片段自身连 接(或环化)时可进行脱磷反应。
五、DNA pol I及Klenow片段
该酶常用于制备放射性比度比活体标记高得多的DN A 探 针 , 探 针 的 制 备 方 法 是 采 用 所 谓 的 缺 口 平 移 ( nick translation)法制备的。
该酶还用于裂口(gap)修补、反转录第二条链的合成 ( Klenow )、隐蔽末端的填平反应( Klenow )等。
Ⅰ型酶:分子量较大,反应需Mg++、S-腺苷酰-L-甲硫氨 酸(SAM)、ATP等。这类酶有特异的识别位点但没有特 异的切割位点,所以在基因工程中应用不大。
Ⅱ型酶:分子量较小(105Da),反应只需Mg++的存在, 并且具有以下两个特点,使这类酶在基因工程研究中,得 到广泛的应用。
Klenow片段:DNA pol I 用枯草杆菌蛋白酶水解成两个片 段,小片段(36KD)具有5’ 3’ 核酸外切酶活性,大片段 (76KD)称为Klenow片段,具有DNA链聚合及3’ 5’核酸 外切酶的活性。
Klenow
六、S1核酸酶:
来自于稻谷曲霉,该酶只水解单链DNA,用 于将粘性末端水解成平末端及cDNA发夹式结构的 处理。
七、碱性磷酸酶:
来自于大肠杆菌(bacterial alkaline phosphatase BAP)或小牛肠(calf intestinal alkaline phosphatase CIP),该酶用于脱去DNA(RNA)5’末端的磷酸 根,使5’-P成为5’-OH,该过程称核酸分子的脱磷 酸作用。当需要5’端同位素标记(脱P后利用T4多 核苷酸激酶磷酸化)或为了避免DNA片段自身连 接(或环化)时可进行脱磷反应。
五、DNA pol I及Klenow片段
该酶常用于制备放射性比度比活体标记高得多的DN A 探 针 , 探 针 的 制 备 方 法 是 采 用 所 谓 的 缺 口 平 移 ( nick translation)法制备的。
该酶还用于裂口(gap)修补、反转录第二条链的合成 ( Klenow )、隐蔽末端的填平反应( Klenow )等。
基因工程ppt课件高三
![基因工程ppt课件高三](https://img.taocdn.com/s3/m/c6eb5d2b1fb91a37f111f18583d049649b660ea1.png)
03
基因工程在医学领域的应用
基因治疗
基因治疗是指通过改变人类基因来治疗遗传性疾病和获得性病变的方法 。
基因治疗可以分为直接基因治疗和间接基因治疗。直接基因治疗是将正 常的基因导入病变细胞,以取代异常基因;间接基因治疗则是通过调节
病变细胞的基因表达来达到治疗目的。
基因治疗在遗传性疾病、肿瘤、感染性疾病等领域具有广泛的应用前景 ,例如囊性纤维化、镰状细胞贫血、癌症等疾病的基因治疗研究已经取 得了一定的成果。
基因工程的发展历程
自20世纪80年代以来,基因工程技术不断发展 和完善,已经广泛应用于农业、工业、医学等领 域。
基因工程的未来发展
随着基因编辑技术的发展和应用,基因工程将在 未来发挥更加重要的作用,有望解决许多人类面 临的重大问题。
基因工程的应用领域
农业领域
基因工程在农业上的应用主要包 括抗虫、抗病、抗除草剂等转基 因作物的培育,以及提高农作物
合成生物学
通过设计和构建人工基因组和细胞系统,实现生物体的定制化,为工 业生产、环境保护等领域提供新的解决方案。
基因工程面临的挑战与问题
安全问题
基因工程操作可能引发不可预测的后果,如基因突变、生态失衡等,需要建立严格的安 全评估和监管机制。
伦理问题
基因工程涉及到人类和动物的遗传信息,可能引发隐私、公平和尊严等方面的伦理问题 ,需要制定相应的伦理准则和法规。
开展基因工程伦理
教育
在学校、社区、企事业单位等各 个层面开展基因工程伦理教育, 引导人们正确看待基因工程技术 的利与弊,树立正确的科技伦理 观念。
05
未来展望与挑战
基因工程的未来发展趋势
基因治疗
利用基因工程技术治疗遗传性疾病和癌症等严重疾病,提高患者的 生活质量和生存率。
《基因工程》课件
![《基因工程》课件](https://img.taocdn.com/s3/m/e9f036c5cd22bcd126fff705cc17552707225e35.png)
人类基因编辑
基因工程在人类胚胎编辑方面的应用引发了关于人类尊严和生命 伦理的争议。
基因歧视
基因信息可能被用于歧视某些人群,如保险、就业等方面的不公平 对待。
生物种族灭绝
基因工程可能导致某些物种灭绝或生态失衡,违背了生态伦理原则 。
基因工程的法规与监管
国际法规
国际社会制定了一系列关于基因工程的法规 和伦理准则,如联合国《生物多样性公约》 等。
国家法规
各国政府根据国情制定了相应的基因工程法规和监 管措施,以确保安全和伦理问题得到有效监管。
行业自律
相关行业组织和研究机构也制定了自律规范 ,要求研究人员遵守伦理准则和法律法规。
05
未来展望与挑战
基因工程的未来发展趋势
基因治疗
利用基因工程技术修复或替换病变基因,治疗遗传性疾病和癌症 等严重疾病。
2000年代至今
基因治疗、基因编辑等技术的 出现和应用,为人类疾病治疗 和生物产业的发展带来了新的
机遇和挑战。
基因工程的应用领域
农业
培育抗虫、抗病、抗逆等性状的转基 因作物,提高农业生产效率和粮食安 全。
医学
用于基因治疗、药物研发、疾病诊断 和治疗等领域,为人类健康事业提供 有力支持。
工业
利用基因工程生产各种酶、蛋白质和 有机酸等生物制品,促进工业生产技 术的发展。
基因表达调控应用
通过对基因表达的调控,可以实 现对生物体的遗传特性和表型特 征的精细调控,为生物工程和医 学研究提供重要的理论基础和技 术手段。
基因敲除与编辑
01 02
基因敲除与编辑定义
基因敲除是指通过同源重组技术将外源致死基因或特定基因敲除或灭活 的遗传工程技术;基因编辑则是指通过修改生物体的基因组,实现对特 定基因进行敲除、插入或突变的遗传工程技术。
基因工程[可修改版ppt]
![基因工程[可修改版ppt]](https://img.taocdn.com/s3/m/2166df4b7375a417866f8fb2.png)
打破了常规育种难以突破的物种之间的界限
可以使原核生物与真核生物之间的遗传信息进行 相互重组和转移 可以使动物与植物之间的遗传信息进行相互重组 和转移 可以使人与其他生物间的遗传信息进行相互重组 和转移
2.2 DNA重组
2.2.1 DNA的一般性质 2.2.1.1 DNA的组成和结构
腺嘌呤脱氧核苷酸(A) 鸟嘌呤脱氧核苷酸(G) 胞嘧啶脱氧核苷酸(C) 胸腺嘧啶脱氧核苷酸(T)
主要途径: 限制性内切核酸酶酶切法 PCR扩增法 化学合成法
2.2.2 获得DNA片段的主要途径
2.2.2.1 限制性内切核酸酶和DNA片段化 限制性内切核酸酶(restriction endonuclease) 功能:能识别双链DNA中特殊核苷酸序列, 并在合适的 反应条件下,使每条链的一个磷酸二酯键断开,产生具有 3´OH和5´P的DNA片段。 识别序列规律:旋转对称或左右互补对称。 切割位点:在识别序列上使磷酸二酯键断开的位置。
这些酶的普遍缺点: 热稳定性差,DNA热变性后即被灭活。
Taq酶
来自水生嗜热菌Thermus aquaticus YT-1,该菌是 1969年从美国黄石国家森林公园火山温泉中分离得 到。生长在70~75℃极富矿物质的环境中。
Taq聚合酶的特点及浓度:
具有良好的热稳定性。在70~75℃时生物学活性最 高;92.5℃时半衰期为130 min。
人类DNA的长度相当于3200公里
2 nm
11 nm
30 nm
DNA双螺旋短区域 染色质节段
由紧密包装的核小体组 成的30nm的染色质纤维
染色体节段的一部分 中期染色体的凝缩节段
染色体
300 nm
700 nm
1400 nm
可以使原核生物与真核生物之间的遗传信息进行 相互重组和转移 可以使动物与植物之间的遗传信息进行相互重组 和转移 可以使人与其他生物间的遗传信息进行相互重组 和转移
2.2 DNA重组
2.2.1 DNA的一般性质 2.2.1.1 DNA的组成和结构
腺嘌呤脱氧核苷酸(A) 鸟嘌呤脱氧核苷酸(G) 胞嘧啶脱氧核苷酸(C) 胸腺嘧啶脱氧核苷酸(T)
主要途径: 限制性内切核酸酶酶切法 PCR扩增法 化学合成法
2.2.2 获得DNA片段的主要途径
2.2.2.1 限制性内切核酸酶和DNA片段化 限制性内切核酸酶(restriction endonuclease) 功能:能识别双链DNA中特殊核苷酸序列, 并在合适的 反应条件下,使每条链的一个磷酸二酯键断开,产生具有 3´OH和5´P的DNA片段。 识别序列规律:旋转对称或左右互补对称。 切割位点:在识别序列上使磷酸二酯键断开的位置。
这些酶的普遍缺点: 热稳定性差,DNA热变性后即被灭活。
Taq酶
来自水生嗜热菌Thermus aquaticus YT-1,该菌是 1969年从美国黄石国家森林公园火山温泉中分离得 到。生长在70~75℃极富矿物质的环境中。
Taq聚合酶的特点及浓度:
具有良好的热稳定性。在70~75℃时生物学活性最 高;92.5℃时半衰期为130 min。
人类DNA的长度相当于3200公里
2 nm
11 nm
30 nm
DNA双螺旋短区域 染色质节段
由紧密包装的核小体组 成的30nm的染色质纤维
染色体节段的一部分 中期染色体的凝缩节段
染色体
300 nm
700 nm
1400 nm
基因工程的基本内容优秀课件
![基因工程的基本内容优秀课件](https://img.taocdn.com/s3/m/941f3333ae1ffc4ffe4733687e21af45b307fe2e.png)
限制性内切酶是在生物体(主要是微生 物)内的一种酶,能将外来的DNA切断,由 于这种切割作用是在DNA分子内部进行的, 故名限制性内切酶。
特点:特异性。
即一种限制性内切酶只能识别一种特定 的脱氧核苷酸序列,并且能在特定的切点上 切割DNA分子。
基因工程的基本内容优秀课件
(二)基因操作的工具
• 基因的剪刀——限制性内切酶(简称限制酶) 大肠杆菌(E.coli)的一种限制酶能识别
2)用同一种限制酶切断目的基因,使其 产生相同的黏性末端。
3)将切下的目的基因片段插入质粒的切 口处,再加入适量DNA连接酶,形成 了一个重组DNA分子(重组质粒)
目的基因与运载体的结合过程,实际 上是不同来源的基因重组的过程。
基因工程的基本内容优秀课件
• 步骤二:目的基因与运载体结合
基因工程的基本内容优秀课件
1)反转录法:
目的基因的mRNA
以目的基因转录成的信 使RNA为模板,反转录 成互补的单链DNA,然 后在酶的作用下合成双 链DNA,从而获得所需 的基因。
反转录
单链DNA(cDNA)
合成
双链DNA (即目的基因)
基因工程的基本内容优秀课件
3)根据已知的氨基酸序列合成DNA法 :
根据已知蛋白质的氨 蛋白质的氨基酸序列
基因工程的基本内容优秀课件
(二)基因操作的工具
• 解决培育抗虫棉的关键步骤需要哪些工具? 关键步骤一的工具:基因的剪刀——限制性内切酶 关键步骤二的工具:基因的针线——DNA连接酶 关键步骤三的工具:基因的运载工具——运载体
基因工程的基本内容优秀课件
(二)基因操作的工具
• 基因的剪刀——限制性内切酶(简称限制酶)
2)植物细胞: 农杆菌转化法、基因枪法、花粉管
特点:特异性。
即一种限制性内切酶只能识别一种特定 的脱氧核苷酸序列,并且能在特定的切点上 切割DNA分子。
基因工程的基本内容优秀课件
(二)基因操作的工具
• 基因的剪刀——限制性内切酶(简称限制酶) 大肠杆菌(E.coli)的一种限制酶能识别
2)用同一种限制酶切断目的基因,使其 产生相同的黏性末端。
3)将切下的目的基因片段插入质粒的切 口处,再加入适量DNA连接酶,形成 了一个重组DNA分子(重组质粒)
目的基因与运载体的结合过程,实际 上是不同来源的基因重组的过程。
基因工程的基本内容优秀课件
• 步骤二:目的基因与运载体结合
基因工程的基本内容优秀课件
1)反转录法:
目的基因的mRNA
以目的基因转录成的信 使RNA为模板,反转录 成互补的单链DNA,然 后在酶的作用下合成双 链DNA,从而获得所需 的基因。
反转录
单链DNA(cDNA)
合成
双链DNA (即目的基因)
基因工程的基本内容优秀课件
3)根据已知的氨基酸序列合成DNA法 :
根据已知蛋白质的氨 蛋白质的氨基酸序列
基因工程的基本内容优秀课件
(二)基因操作的工具
• 解决培育抗虫棉的关键步骤需要哪些工具? 关键步骤一的工具:基因的剪刀——限制性内切酶 关键步骤二的工具:基因的针线——DNA连接酶 关键步骤三的工具:基因的运载工具——运载体
基因工程的基本内容优秀课件
(二)基因操作的工具
• 基因的剪刀——限制性内切酶(简称限制酶)
2)植物细胞: 农杆菌转化法、基因枪法、花粉管
高中生物基因工程课件
![高中生物基因工程课件](https://img.taocdn.com/s3/m/5a2142bcc9d376eeaeaad1f34693daef5ef71304.png)
斯坦利·科恩和赫伯特·伯洛克首次成功进行基因重组实验。
2
1983年
库里和米尔斯获得第一个成功的重组疫苗——乙肝疫苗。
3
1990年代
人类基因组计划的启动,标志着基因工程进入全基因组时代。
基因工程的应用
医学研究
基因工程在疾病诊断、药物 研发和治疗方面有着广泛的 应用,为医学领域带来革命 性变革。
农业改良
个体化疾病诊断 精准医学 基因药物研发
通过基因检测,实现对个体疾病易感性和风险的 准确评估。
利用基因工程技术,制定个性化治疗方案,提高 疗效和降低药物不良反应。
基因工程为创新药物的研发提供了新的方向,有 望开发更有效的药物来治疗疾病。
高中生物基ቤተ መጻሕፍቲ ባይዱ工程ppt课件
欢迎来到高中生物基因工程的PPT课件。让我们一起探索基因工程的定义、历 史、应用、基因组编辑技术、优势与风险、伦理问题以及医学领域的前景。
基因工程的定义
基因工程是一种利用人工手段对生物体的基因进行改造和调控的技术,以实 现特定目的的生物工艺过程。
基因工程的历史
1
1973年
TALEN技术
TALEN是另一种基因组编辑技术, 具有高度的精确性和特异性。
基因工程的优势与风险
1 优势
基因工程能够提供潜在的医学和农业解决方案,推动科技进步和经济发展。
2 风险
基因工程可能带来伦理问题、生态风险和技术滥用的风险,需要谨慎使用和监管。
基因工程的伦理问题
隐私保护
个人基因信息的收集和使用如 何保护隐私和数据安全是一个 重要的伦理问题。
公平分配
基因治疗等高技术手段的费用 和资源如何公平分配,涉及社 会正义和公共利益问题。
人教版生物必修基因工程及其应用教学课件(ppt)
![人教版生物必修基因工程及其应用教学课件(ppt)](https://img.taocdn.com/s3/m/bc48a86c581b6bd97e19ea0d.png)
人教版生物必修基 因工程及其应用教
学课件(ppt)
(优选)人教版生物必修基因 工程及其应用教学课件
青霉菌产生青霉素、蚕吐蚕丝的根本原因是什么?
有相应的基因! 基因决定性状!
能否让蜘蛛“吐出”蚕丝? 能否让细菌“吐出”蛛丝?
设想
“嫁接”了人胰岛 素基因的工程菌。
能发荧光的热带斑马鱼 普通热带斑马鱼是不发荧光的
抗虫转基因水稻
2、基因工程与药物研制
许多药品的生产是从生物组织中提 取的。受材料来源限制产量有限,其价 格往往十分昂贵。
微生物生长迅速,容易控制,适于大规模工 业化生产。若将生物合成相应药物成分的基因导 入微生物细胞内,让它们产生相应的药物,不但 能解决产量问题,还能大大降低生产成本。
在猴子的未受精卵中加入 附加基因,并利用它成功培育 出健康活泼的小猴“安迪”。
基因工程的第一步,取得人们所需要的特定基因, 即目的基因。
(如抗虫基因,抗病基因、以及人的胰岛素基因、干扰素基因等)
两条途径: 1)从供体细胞的DNA中直接分离基因 2)人工合成基因。
2、目的基因与运载体结合
细菌
取出质 粒
供体细 胞取出
DNA
用限制酶切断 DNA
ቤተ መጻሕፍቲ ባይዱ
用连接 酶连接 目的基 因
用与提取目的基因相 同的限制酶切割质粒使之 出现一个切口,将目的基 因插入切口处,让目的基 因的黏性末端与切口上的 黏性末端互补配对后,在 连接酶的作用下连接形成 重组DNA分子。
2、基因的“针线” ——DNA连接酶
作用:将互补配对的两个黏性末 端连接起来,使之成为一个完 整的DNA分子。
3、基因的运载体 ——质粒或病毒
作用:将外源基因送入受体细胞。
学课件(ppt)
(优选)人教版生物必修基因 工程及其应用教学课件
青霉菌产生青霉素、蚕吐蚕丝的根本原因是什么?
有相应的基因! 基因决定性状!
能否让蜘蛛“吐出”蚕丝? 能否让细菌“吐出”蛛丝?
设想
“嫁接”了人胰岛 素基因的工程菌。
能发荧光的热带斑马鱼 普通热带斑马鱼是不发荧光的
抗虫转基因水稻
2、基因工程与药物研制
许多药品的生产是从生物组织中提 取的。受材料来源限制产量有限,其价 格往往十分昂贵。
微生物生长迅速,容易控制,适于大规模工 业化生产。若将生物合成相应药物成分的基因导 入微生物细胞内,让它们产生相应的药物,不但 能解决产量问题,还能大大降低生产成本。
在猴子的未受精卵中加入 附加基因,并利用它成功培育 出健康活泼的小猴“安迪”。
基因工程的第一步,取得人们所需要的特定基因, 即目的基因。
(如抗虫基因,抗病基因、以及人的胰岛素基因、干扰素基因等)
两条途径: 1)从供体细胞的DNA中直接分离基因 2)人工合成基因。
2、目的基因与运载体结合
细菌
取出质 粒
供体细 胞取出
DNA
用限制酶切断 DNA
ቤተ መጻሕፍቲ ባይዱ
用连接 酶连接 目的基 因
用与提取目的基因相 同的限制酶切割质粒使之 出现一个切口,将目的基 因插入切口处,让目的基 因的黏性末端与切口上的 黏性末端互补配对后,在 连接酶的作用下连接形成 重组DNA分子。
2、基因的“针线” ——DNA连接酶
作用:将互补配对的两个黏性末 端连接起来,使之成为一个完 整的DNA分子。
3、基因的运载体 ——质粒或病毒
作用:将外源基因送入受体细胞。
现代基因工程-PowerPoint演示文稿
![现代基因工程-PowerPoint演示文稿](https://img.taocdn.com/s3/m/ddff7dfbcfc789eb162dc8d4.png)
腺嘌呤 (A)、鸟嘌呤(G)、胞嘧啶 (C)、胸腺嘧啶 (T)
由氢键连接的碱基组合称为碱基配对,即腺嘌呤A必与胸腺嘧 啶T配对,胞嘧啶C必与鸟嘌呤G配对。
A=T 氢键 G≡C
1972年 ,美国的Berg和Jackson等人将猿猴病毒基因组SV40DNA、 噬菌体基因以及大肠杆菌半乳糖操纵子在体外重组获得成功。
•
每天都是美好的一天,新的一天开启 。21.1.1 921.1.1 904:35 04:35:0 204:35:02Jan-2 1
ห้องสมุดไป่ตู้
•
相信命运,让自己成长,慢慢的长大 。2021 年1月19 日星期 二4时3 5分2秒 Tuesday , January 19, 2021
•
爱情,亲情,友情,让人无法割舍。2 1.1.192 021年1 月19日 星期二 4时35 分2秒21 .1.19
基因工程的应用及其安全管理
一、基因工程的研究进展: 二、基因工程的基本操作程序: 三、基因工程的巨大贡献: 四、基因工程的危险性: 五、基因工程安全管理法规:
基因工程的研究进展
DNA的结构 :
DNA是一种高分子化合物,它是由4种核苷酸组成 ,4种核苷酸 的差异仅仅在于碱基不同,4种碱基分别是 :
谢谢大家!
1997年7月,中华人民共和国农业部颁布了《农业生 物基因工程安全管理实施办法》。1998年,农业部农业生 物基因工程安全管理办公室和农业部生物基因工程安全委 员会共对2批68项申请进行了评审,同意商品化申请2项、 同意环境释放10项,同意和认可中间试验39项,暂不同意 或不认可16项。
•
生活中的辛苦阻挠不了我对生活的热 爱。21. 1.1921. 1.19Tu esday , January 19, 2021
由氢键连接的碱基组合称为碱基配对,即腺嘌呤A必与胸腺嘧 啶T配对,胞嘧啶C必与鸟嘌呤G配对。
A=T 氢键 G≡C
1972年 ,美国的Berg和Jackson等人将猿猴病毒基因组SV40DNA、 噬菌体基因以及大肠杆菌半乳糖操纵子在体外重组获得成功。
•
每天都是美好的一天,新的一天开启 。21.1.1 921.1.1 904:35 04:35:0 204:35:02Jan-2 1
ห้องสมุดไป่ตู้
•
相信命运,让自己成长,慢慢的长大 。2021 年1月19 日星期 二4时3 5分2秒 Tuesday , January 19, 2021
•
爱情,亲情,友情,让人无法割舍。2 1.1.192 021年1 月19日 星期二 4时35 分2秒21 .1.19
基因工程的应用及其安全管理
一、基因工程的研究进展: 二、基因工程的基本操作程序: 三、基因工程的巨大贡献: 四、基因工程的危险性: 五、基因工程安全管理法规:
基因工程的研究进展
DNA的结构 :
DNA是一种高分子化合物,它是由4种核苷酸组成 ,4种核苷酸 的差异仅仅在于碱基不同,4种碱基分别是 :
谢谢大家!
1997年7月,中华人民共和国农业部颁布了《农业生 物基因工程安全管理实施办法》。1998年,农业部农业生 物基因工程安全管理办公室和农业部生物基因工程安全委 员会共对2批68项申请进行了评审,同意商品化申请2项、 同意环境释放10项,同意和认可中间试验39项,暂不同意 或不认可16项。
•
生活中的辛苦阻挠不了我对生活的热 爱。21. 1.1921. 1.19Tu esday , January 19, 2021
教学课件基因工程课件
![教学课件基因工程课件](https://img.taocdn.com/s3/m/49051901dc36a32d7375a417866fb84ae45cc38a.png)
57
步骤三: 转化将目的基因导入受体细胞
▲什么叫转化 将目的基因进入受体细胞内;并且在受体细
胞内维持稳定如复制和表达即转录 翻译为特定 蛋白质及表现特定性状等的过程 ▲受体细胞是指什么 它包括哪些细胞
见课文P5
名称 来源
E Coli DNA连接酶
大肠杆菌
T4DNA连接酶 T4噬菌体
功同 能
异
形成磷酸二酯键
只能:互补的 黏性末端
黏性末端和平末 端均可
22
显然;若将上述两者的黏性末端黏合连接起 来;就似乎可以合成新的DNA分子重组DNA分子 了
用什么工具连接呢 这个工具是怎样将两者连 接起来的
23
54
▲基因表达载体的构建步骤 见课文
1用一定的限制酶切割质粒;使其出现一个切 口;露出黏性末端;
2用同一种限制酶切取目的基因;使其产生相 同的黏性末端;
3将切下的目的基因片段插入质粒的切口处; 再加入适量DNA连接酶;形成了一个重组DNA分 子重组质粒
▲目的基因与载体的结合过程;实际上是不同来 源的基因重组的过程
蛋白质的氨基酸序列
推测
mRNA的核苷酸序列
推测
结构基因的核苷酸序列
化学合成
目的基因
51
在获取目的基因后;如何将目的基 因导入受体细胞呢
能直接导入吗
必须借助载体
52
怎样借助载体将目的 基因导入受体细胞呢
必须把目的基因装到 载体上
如何装
53
步骤二:基因表达载体的构建
▲什么是基因表达载体 就是已经装上了含有目的基因的载体
5
▲基因工程的若干问题:
基因工程的别名 基因拼接技术或DNA重组技术
操作环境
步骤三: 转化将目的基因导入受体细胞
▲什么叫转化 将目的基因进入受体细胞内;并且在受体细
胞内维持稳定如复制和表达即转录 翻译为特定 蛋白质及表现特定性状等的过程 ▲受体细胞是指什么 它包括哪些细胞
见课文P5
名称 来源
E Coli DNA连接酶
大肠杆菌
T4DNA连接酶 T4噬菌体
功同 能
异
形成磷酸二酯键
只能:互补的 黏性末端
黏性末端和平末 端均可
22
显然;若将上述两者的黏性末端黏合连接起 来;就似乎可以合成新的DNA分子重组DNA分子 了
用什么工具连接呢 这个工具是怎样将两者连 接起来的
23
54
▲基因表达载体的构建步骤 见课文
1用一定的限制酶切割质粒;使其出现一个切 口;露出黏性末端;
2用同一种限制酶切取目的基因;使其产生相 同的黏性末端;
3将切下的目的基因片段插入质粒的切口处; 再加入适量DNA连接酶;形成了一个重组DNA分 子重组质粒
▲目的基因与载体的结合过程;实际上是不同来 源的基因重组的过程
蛋白质的氨基酸序列
推测
mRNA的核苷酸序列
推测
结构基因的核苷酸序列
化学合成
目的基因
51
在获取目的基因后;如何将目的基 因导入受体细胞呢
能直接导入吗
必须借助载体
52
怎样借助载体将目的 基因导入受体细胞呢
必须把目的基因装到 载体上
如何装
53
步骤二:基因表达载体的构建
▲什么是基因表达载体 就是已经装上了含有目的基因的载体
5
▲基因工程的若干问题:
基因工程的别名 基因拼接技术或DNA重组技术
操作环境
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 目的基因的制备
一、化学合成法:
1979年Khorana首先成功地合成了tRNA基因。
在体外,可以合成一系列长约几百bp的寡聚 核苷酸链,然后按照基因的顺序将这些短的核苷酸 链连接起来。
第十五章基因工程 现代遗传学
所谓的遗传工程就是在分子水平上,用人工方法提取 (或合成)不同生物的遗传物质,在体外切割、拼接和重 新组合。然后通过载体把重组DNA分子引入受体细胞, 使外源DNA在受体细胞中进行复制和表达。按人们的需 要生产不同的产物或定向地创造生物的新性状,并使之稳 定地遗传给下一代。所以基因工程(gene engineering)也 称为遗传工程(genetic engineering)、基因操作(gene manipulation ) 、 D N A 重 组 技 术 ( recombination DNA techniques)。有时人们还称它为基因克隆(gene cloning) 或分子克隆(molecular cloning)。
同裂酶(isoschizomers):
指来源不同但识别相同靶序列的核酸内切酶。 同裂酶进行切割,产生同样或不同的末端(视切割 位点而定)。但有些同裂酶对甲基化位点的敏感性 不同。
同尾酶(isocaudamer):
指来源不同、识别靶序列不同但产生相同的粘 性末端的核酸内切酶。利用同尾酶可使切割位点的 选择余地更大。
七、碱性磷酸酶:
来自于大肠杆菌(bacterial alkaline phosphatase BAP)或小牛肠(calf intestinal alkaline phosphatase CIP),该酶用于脱去DNA(RNA)5’末端的磷酸 根,使5’-P成为5’-OH,该过程称核酸分子的脱磷 酸作用。当需要5’端同位素标记(脱P后利用T4多 核苷酸激酶磷酸化)或为了避免DNA片段自身连 接(或环化)时可进行脱磷反应。
二、末端转移酶(terminal transferase)
( terminal deoxynucleotidyl transferase),它所催化的反应与 DNA pol I 相似,所不同的是它不需要模板,它可 以含有3’-OH的DNA片段为引物,在3’- OH端加入核苷酸达几百个。末端转移酶常用于在 平头DNA上合成一段寡聚核苷酸,从而形成粘性 末端。
遗传工程的基本操作程序大致包括:目的基因的制备, 载体的选择,体外DNA重组,重组DNA引入受体细胞, 克隆转化子的筛选,重组DNA的检测等。
第一节 基因工程的酶学基础
一、限制性核酸内切酸(restriction endonuclease):
( restriction enzyme)。限制性内切酶本来是微生 物细胞中用于专门水解外源DNA的一类酶,其功 能是避免外源DNA的干扰或噬菌体的感染,是细 胞中的一种防御机制。
、大小和反应条件,及切割DNA 的特点,可以将限制性内切酶分为三类:
Ⅰ型酶:分子量较大,反应需Mg++、S-腺苷酰-L-甲硫氨 酸(SAM)、ATP等。这类酶有特异的识别位点但没有特 异的切割位点,所以在基因工程中应用不大。
Ⅱ型酶:分子量较小(105Da),反应只需Mg++的存在, 并且具有以下两个特点,使这类酶在基因工程研究中,得 到广泛的应用。
限制性核酸内切酶的命名原则:
第一个字母:大写,表示所来自的微生物的属名的 第一个字母。
第二、三字母:小写,表示所来自的微生物种名的 第一、二个字母。
其它字母:大写或小写,表示所来自的微生物的菌 株号。
罗马数字:表示该菌株发现的限制酶的编号。
例:EcoR I: 来自于Escheria coli RY13的第一个限 制酶。
Klenow片段:DNA pol I 用枯草杆菌蛋白酶水解成两个片 段,小片段(36KD)具有5’ 3’ 核酸外切酶活性,大片段 (76KD)称为Klenow片段,具有DNA链聚合及3’ 5’核酸 外切酶的活性。
Kl谷曲霉,该酶只水解单链DNA,用 于将粘性末端水解成平末端及cDNA发夹式结构的 处理。
平末端的另一种处理方式是利用衔接物(linker) 进行处理,人工加上粘性末端。衔接物是一种人工 合成的小分子DNA,约10~20个核苷酸,其结构特 征是含有多种限制性核酸内切酶的酶切位点的回文 结构。如: BamH I 或Sau3A
Hpa II
Hpa II
CCGGATCCGG GGCCTAGGCC
将衔接物分子与平末端DNA分子连接,再用限 制性核酸内切酶酶切,便可产生粘性末端。
这种方法的优点是克隆位点具有限制酶的酶切位点。
三、DNA连接酶(DNA ligase)
该酶常从T4噬菌体的受感细胞中提取,是由 T4噬菌体基因组所编码的,所以基因工程中常用 的连接酶是T4连接酶。它可催化DNA中磷酸二 脂键的形成,从而使两个片段以共价键的形式结合 起来。
五、DNA pol I及Klenow片段
该酶常用于制备放射性比度比活体标记高得多的DN A 探 针 , 探 针 的 制 备 方 法 是 采 用 所 谓 的 缺 口 平 移 ( nick translation)法制备的。
该酶还用于裂口(gap)修补、反转录第二条链的合成 ( Klenow )、隐蔽末端的填平反应( Klenow )等。
•识别位点是一个回文对称结构,并且切割位点也在这一 回文对称结构上。
•许多Ⅱ型酶切割DNA后,可在DNA上形成粘性末端, 有利于DNA片段的重组。
Ⅲ 型 酶 : 这 类 酶 可 识 别 特 定 顺 序 , 并 在 这 一 顺 序 的 3’ 端 24~26bp处切开DNA,所以它的切割位点也是没有特异 性的。
DNA连接酶对具有粘性末端的DNA分子经退 火后能很好地连接,对平末端的DNA分子也可以 进行连接,但连接效率较低,必须加大酶的用量。
四、反转录酶(reverse transcriptase)
这类酶来自于反转录病毒,它可以RNA为模板,催 化合成DNA。目前常用的有禽源(AMV)及鼠源(MMLV)反转录酶两种。