结构陶瓷PPT课件
合集下载
《结构陶瓷ch》PPT课件

Ch.3 非氧化物陶瓷 Non-oxidation Ceramics
3.1 概述
• 非氧化陶瓷包括金属的碳化物陶瓷、氮化物、硅 化物和硼化物等陶瓷的总称。它们和氧化物陶瓷 的区别在于:
①非氧化物陶瓷一般为共价键结构,因此难熔、难 烧结;
②非氧化物陶瓷在自然界存在很少,需要人工合;
③非氧化物陶瓷的发展历史相对较短;
• 坯体在隔绝空气条件下用电炉在2400℃以上高温 下进行烧结,经“蒸发和凝聚”使SiC颗粒再结晶 而形成的一种高温结构陶瓷材料。
• 烧前和最终密度保持不变, 在晶体之间形成固态 SiC 结合(α- SiC结合类 ) 。
• 特点:纯度高、无中间结合相,良好的导电导热 和高温性能(≥1900℃ )。缺点:气孔率高(20 ℃ )、强度低。
14
液相烧结
• 加入一定数量的烧结助剂,在较低的温度下实现 SiC的致密化;
• 采用Y2O3、Al2O3为烧结助剂,选熔点较低的YAG (Y3Al5O12)为基本的配方组元,1850℃就可烧 成高性能SiC陶瓷。
2021/3/19
非氧化物陶瓷
15
再结晶SiC
• 将高纯度(≥99.5%)碳化硅粗粉和高活性碳化硅 微粉混合,注浆成型制成坯体密度很高的SiC 成 型件,
• 这种方法需要加入过量碳以确保SiO2的完全反应, 但反应在≥1550℃时生成SiC。残留的C在氮化后 600 ℃煅烧可排除。
2021/3/19
非氧化物陶瓷
40
起始原料SiO2和C →混合 →氮化烧成→脱碳处理→ Si3N4粉末
• 本工艺方法的特点:
– 高纯、超细原料SiO2和C 来源丰富,易于廉价获得; – 反应产物是疏松的粉末,无须像硅粉氮化那样经过粉碎处理,从而避免
3.1 概述
• 非氧化陶瓷包括金属的碳化物陶瓷、氮化物、硅 化物和硼化物等陶瓷的总称。它们和氧化物陶瓷 的区别在于:
①非氧化物陶瓷一般为共价键结构,因此难熔、难 烧结;
②非氧化物陶瓷在自然界存在很少,需要人工合;
③非氧化物陶瓷的发展历史相对较短;
• 坯体在隔绝空气条件下用电炉在2400℃以上高温 下进行烧结,经“蒸发和凝聚”使SiC颗粒再结晶 而形成的一种高温结构陶瓷材料。
• 烧前和最终密度保持不变, 在晶体之间形成固态 SiC 结合(α- SiC结合类 ) 。
• 特点:纯度高、无中间结合相,良好的导电导热 和高温性能(≥1900℃ )。缺点:气孔率高(20 ℃ )、强度低。
14
液相烧结
• 加入一定数量的烧结助剂,在较低的温度下实现 SiC的致密化;
• 采用Y2O3、Al2O3为烧结助剂,选熔点较低的YAG (Y3Al5O12)为基本的配方组元,1850℃就可烧 成高性能SiC陶瓷。
2021/3/19
非氧化物陶瓷
15
再结晶SiC
• 将高纯度(≥99.5%)碳化硅粗粉和高活性碳化硅 微粉混合,注浆成型制成坯体密度很高的SiC 成 型件,
• 这种方法需要加入过量碳以确保SiO2的完全反应, 但反应在≥1550℃时生成SiC。残留的C在氮化后 600 ℃煅烧可排除。
2021/3/19
非氧化物陶瓷
40
起始原料SiO2和C →混合 →氮化烧成→脱碳处理→ Si3N4粉末
• 本工艺方法的特点:
– 高纯、超细原料SiO2和C 来源丰富,易于廉价获得; – 反应产物是疏松的粉末,无须像硅粉氮化那样经过粉碎处理,从而避免
陶瓷工艺学显微结构与性质.pptx

第13页/共20页
五、机械强度
提高釉面强度的有效方法是使釉面承受压应力,釉面承 受压应力的能力是其承受张应力能力的数十倍。
通常用下述两种方法使釉面承受压应力: 一是通过调整釉料组成,烧成后让釉面的热膨胀系数比 坯体的小,冷却时坯体收缩大于釉面收缩,釉面承受 压应力。 二是釉烧至成熟温度后,迅速冷却,结果是釉表层首先 冷却凝固,而内部还是塑性状态,内外存在温差,外 部收缩小,内部收缩大,形成釉面表层处于压应力, 内层处于张应力。
❖ 一般情况下,瓷坯中的残留石英的量会多于方石英的 量,因石英的热膨胀系数与玻璃体的热膨胀系数相差 较大,冷却时会在瓷坯中形成应力,对瓷坯的强度造 成影响。合理的石英颗粒能大大提高瓷坯的强度,同 时石英能使瓷坯的透光度和白度得到改善。
第4页/共20页
4、气孔 ❖ 气孔在瓷坯中的多少、大小、形状、分布、位置对
多孔性陶瓷吸湿膨胀的原因是气孔吸收水分,吸收水分 与构成气孔壁的物质形成水和吸附而使胎体膨胀。
改善措施:1)烧成温度的提高将降低气孔率,从而减弱 吸湿膨胀性;2)减少碱金属氧化物含量,引入碱土金属 氧化物,如加入石灰石、白云石或滑石等原料,可以提 高玻璃相的化学稳定性,减小吸湿膨胀性。3)引入氧化 铝粉,对降低吸湿膨胀也有效。
第14页/共20页
六、表面硬度 陶瓷表面硬度是指瓷胎表面或釉面抵抗外来压缩、摩
擦与刻划作用的能力。它是材料的一种重要力学性能。 陶瓷表面硬度测定的方法有莫氏硬度法、维氏显微硬
度法、流砂法以及玛尔登划痕法等四种。 前两种属静载压痕法,是目前陶瓷常用方法。它们都
是将一硬的物体在静载下压入被测物体表面,表面被 压入一凹面,以凹面单位面积上的荷载表示被测物体 硬度或者以凹面单位对角线长度的负荷表示被测物体 硬度。
五、机械强度
提高釉面强度的有效方法是使釉面承受压应力,釉面承 受压应力的能力是其承受张应力能力的数十倍。
通常用下述两种方法使釉面承受压应力: 一是通过调整釉料组成,烧成后让釉面的热膨胀系数比 坯体的小,冷却时坯体收缩大于釉面收缩,釉面承受 压应力。 二是釉烧至成熟温度后,迅速冷却,结果是釉表层首先 冷却凝固,而内部还是塑性状态,内外存在温差,外 部收缩小,内部收缩大,形成釉面表层处于压应力, 内层处于张应力。
❖ 一般情况下,瓷坯中的残留石英的量会多于方石英的 量,因石英的热膨胀系数与玻璃体的热膨胀系数相差 较大,冷却时会在瓷坯中形成应力,对瓷坯的强度造 成影响。合理的石英颗粒能大大提高瓷坯的强度,同 时石英能使瓷坯的透光度和白度得到改善。
第4页/共20页
4、气孔 ❖ 气孔在瓷坯中的多少、大小、形状、分布、位置对
多孔性陶瓷吸湿膨胀的原因是气孔吸收水分,吸收水分 与构成气孔壁的物质形成水和吸附而使胎体膨胀。
改善措施:1)烧成温度的提高将降低气孔率,从而减弱 吸湿膨胀性;2)减少碱金属氧化物含量,引入碱土金属 氧化物,如加入石灰石、白云石或滑石等原料,可以提 高玻璃相的化学稳定性,减小吸湿膨胀性。3)引入氧化 铝粉,对降低吸湿膨胀也有效。
第14页/共20页
六、表面硬度 陶瓷表面硬度是指瓷胎表面或釉面抵抗外来压缩、摩
擦与刻划作用的能力。它是材料的一种重要力学性能。 陶瓷表面硬度测定的方法有莫氏硬度法、维氏显微硬
度法、流砂法以及玛尔登划痕法等四种。 前两种属静载压痕法,是目前陶瓷常用方法。它们都
是将一硬的物体在静载下压入被测物体表面,表面被 压入一凹面,以凹面单位面积上的荷载表示被测物体 硬度或者以凹面单位对角线长度的负荷表示被测物体 硬度。
四、隧道窑的原理与结构PPT课件

热工制度是按制品加热的工艺要求决定 的,为了保证热工制度的实现,须有相 适应的工作系统,也就决定了窑体结构、 附属设备和管路布置。 Nhomakorabea.
12
传统明焰隧道窑的工作流程
1、封闭气幕送风 2、搅拌气幕 3、排烟机 4、搅拌气幕送风 5、重油或
煤气 6、烧嘴 7、雾化或助燃风机 8、急冷送风 9、热风送干燥 10、热风
.
31
平窑顶的构造有棚板式、吊挂式和平拱顶。 1)棚板式 棚板式受材料限制窑宽较小,窑温也不能太
高,一般多用在窑头窑尾低温部位。 2)吊挂式 吊挂式窑顶需要钢架和吊钩,金属用量大,
但窑宽可不受限制,而且适宜于模块装配式 窑,因此在现代隧道窑上用得较广。 3)平拱顶 它实际上是拱顶窑,只不过是中部拱顶砖加 长形成的平拱。因横推力大,只能用于现场 砌筑。其分析计算,可参照单心拱顶。
.
32
平顶窑
平拱顶
.
33
吊挂式窑顶
(2)拱顶
拱顶的优点是,结构严密、 坚固,节约钢材,投资少。 缺点是,窑顶要用重质耐 火砖砌筑,蓄热大,且窑 顶下空隙高度大,易造成 气流分层。拱顶窑一般均 为现场砌筑。
拱顶有单心拱、双心拱和 三心拱几种型式。
.
34
五)窑体膨胀缝与密封构造
(1)窑体膨胀缝
因此,一般认为隧道窑适宜的长度为70~80米左右。
.
22
有效内宽和有效内高尺寸主要决定于制品的 品种、规格(外形尺寸)、单窑产量、装载 方法和窑内温度均匀性等。
一般说来,当窑长和制品装窑密度一定时, 增加内宽和内高,可提高窑的产量(即产量 与有效断面积成正比)。
但窑的高度增大时,窑内几何压力随高度成 正比增大,窑内上下温差亦随之增大。而且 装窑难度大,窑具用量多,故现代隧道窑趋 向于降低内高,增大内宽(即所谓扁口窑、 宽体窑),单层码放卫生瓷制品。
12
传统明焰隧道窑的工作流程
1、封闭气幕送风 2、搅拌气幕 3、排烟机 4、搅拌气幕送风 5、重油或
煤气 6、烧嘴 7、雾化或助燃风机 8、急冷送风 9、热风送干燥 10、热风
.
31
平窑顶的构造有棚板式、吊挂式和平拱顶。 1)棚板式 棚板式受材料限制窑宽较小,窑温也不能太
高,一般多用在窑头窑尾低温部位。 2)吊挂式 吊挂式窑顶需要钢架和吊钩,金属用量大,
但窑宽可不受限制,而且适宜于模块装配式 窑,因此在现代隧道窑上用得较广。 3)平拱顶 它实际上是拱顶窑,只不过是中部拱顶砖加 长形成的平拱。因横推力大,只能用于现场 砌筑。其分析计算,可参照单心拱顶。
.
32
平顶窑
平拱顶
.
33
吊挂式窑顶
(2)拱顶
拱顶的优点是,结构严密、 坚固,节约钢材,投资少。 缺点是,窑顶要用重质耐 火砖砌筑,蓄热大,且窑 顶下空隙高度大,易造成 气流分层。拱顶窑一般均 为现场砌筑。
拱顶有单心拱、双心拱和 三心拱几种型式。
.
34
五)窑体膨胀缝与密封构造
(1)窑体膨胀缝
因此,一般认为隧道窑适宜的长度为70~80米左右。
.
22
有效内宽和有效内高尺寸主要决定于制品的 品种、规格(外形尺寸)、单窑产量、装载 方法和窑内温度均匀性等。
一般说来,当窑长和制品装窑密度一定时, 增加内宽和内高,可提高窑的产量(即产量 与有效断面积成正比)。
但窑的高度增大时,窑内几何压力随高度成 正比增大,窑内上下温差亦随之增大。而且 装窑难度大,窑具用量多,故现代隧道窑趋 向于降低内高,增大内宽(即所谓扁口窑、 宽体窑),单层码放卫生瓷制品。
陶瓷材料-3-结构陶瓷

当从高温冷却到四方相转变温度,由于存在相变滞后现象, 大约要在1050oC左右,即偏低100oC,才由四方相转变为单斜 相,这一转变为马氏体相变。
②氧化锆陶瓷
由于氧化锆的三种不同晶型间存在密度差,升降温过程伴 随着相变,产生较大的体积变化。如四方氧化锆与单斜氧化 锆之间的转变伴随有7%~9%的体积变化。
具备多种相变的陶瓷材料,很难抵抗热冲击
①氧化铝陶瓷
普通氧化铝陶瓷:
是以Al2O3为主要成份的陶瓷。按Al2O3 含量不同可分为99瓷、 95瓷、 90瓷、 85瓷 。有时也将Al2O3 含量为80 wt.%和75 wt.%也列入普通氧化铝陶瓷。
99氧化铝陶瓷常用作坩埚、耐火炉管及特殊用途的耐磨材料 如轴承、密封件、水阀片等; 95氧化铝陶瓷主要用作各种要求中等的耐腐蚀、耐磨部件; 85氧化铝陶瓷组份中通常加入部分滑石,形成与硅酸镁共溶 所组成的以刚玉瓷为主晶相的高铝瓷。是电真空装臵器件中 采用最广泛的瓷料。
ZrO2
1700
MgO作为助烧剂的作用机制 MgO的作用与其加入量有关:
当加入量不超过MgO在Al2O3中的固溶度(<0.3wt%)时, 固溶反应: 2MgO →2MgAl '+2O0x+V0••
生成氧空位,有利于氧的固相扩散传质,从而促进烧结
当MgO的加入量大于固溶度时,未溶解部分与Al2O3反应: MgO +Al2O3→MgO•Al2O3(尖晶石) 尖晶石是新的化合物。尖晶石颗粒分布于Al 2O3主晶相的 晶界上,阻碍晶界移动(称之为钉扎晶界),从而阻碍由于 晶界移动过快导致的气孔进入晶粒内部的情形发生。 气孔在晶界上通过晶界扩散更容易排除。钉扎晶界的结果 还可以细化晶粒。
陶瓷的显微结构及性能课件

多功能陶瓷 随着科技的发展,对陶瓷材料的功能性要求越来越高,如 压电陶瓷、磁性陶瓷、光学陶瓷等,这些多功能陶瓷在电 子、通信、医疗等领域有广泛应用。
生物陶瓷 生物陶瓷具有良好的生物相容性和耐腐蚀性,在生物医疗 领域有广泛应用,如人工关节、牙齿等。
环保与可持续发展
1 2 3
降低能耗 陶瓷产业是高能耗产业,通过技术进步和产业升 级,降低陶瓷产业的能耗,有利于环境保护和可 持续发展。
陶瓷在医疗领域中用于制造人工关节、牙 科材料等,如人工关节置换材料、牙齿修 复材料等。
CHAPTER 02
陶瓷的显微结构
陶瓷的晶体结构
01
02
03
晶体结构定义
陶瓷的晶体结构是指陶瓷 内部质点的排列方式,包 括原子、分子的位置和排 列顺序。
晶体结构的分类
根据原子排列的规律性, 陶瓷的晶体结构可分为晶 体和玻璃相两大类。
原料处理
对原料进行破碎、混合、干燥等处 理,以保证其均匀性和稳定性。
成型工 艺
塑性成型
利用黏土的可塑性,通过压滤、 挤压、注浆等工艺成型。
干压成型
将粉末状原料在模具中加压成型, 适用于形状复杂的陶瓷部件。
热压成型
在加热条件下加压成型,适用于 热塑性陶瓷材料。
烧成工艺
烧成温度
控制烧成温度,以实现陶瓷的完全烧结和性能优化。
晶体结构的稳定性
晶体结构的稳定性决定了 陶瓷的力学性能、热学性 能和化学稳定性等。
陶瓷的显微组织
显微组织的定义
陶瓷的显微组织是指陶瓷中晶粒的大 小、形状、分布和晶界特征等。
显微组织与性能关系
陶瓷的显微组织对其力学性能、热学 性能、电学性能和磁学性能等均有影 响。
显微组织的影响因素
生物陶瓷 生物陶瓷具有良好的生物相容性和耐腐蚀性,在生物医疗 领域有广泛应用,如人工关节、牙齿等。
环保与可持续发展
1 2 3
降低能耗 陶瓷产业是高能耗产业,通过技术进步和产业升 级,降低陶瓷产业的能耗,有利于环境保护和可 持续发展。
陶瓷在医疗领域中用于制造人工关节、牙 科材料等,如人工关节置换材料、牙齿修 复材料等。
CHAPTER 02
陶瓷的显微结构
陶瓷的晶体结构
01
02
03
晶体结构定义
陶瓷的晶体结构是指陶瓷 内部质点的排列方式,包 括原子、分子的位置和排 列顺序。
晶体结构的分类
根据原子排列的规律性, 陶瓷的晶体结构可分为晶 体和玻璃相两大类。
原料处理
对原料进行破碎、混合、干燥等处 理,以保证其均匀性和稳定性。
成型工 艺
塑性成型
利用黏土的可塑性,通过压滤、 挤压、注浆等工艺成型。
干压成型
将粉末状原料在模具中加压成型, 适用于形状复杂的陶瓷部件。
热压成型
在加热条件下加压成型,适用于 热塑性陶瓷材料。
烧成工艺
烧成温度
控制烧成温度,以实现陶瓷的完全烧结和性能优化。
晶体结构的稳定性
晶体结构的稳定性决定了 陶瓷的力学性能、热学性 能和化学稳定性等。
陶瓷的显微组织
显微组织的定义
陶瓷的显微组织是指陶瓷中晶粒的大 小、形状、分布和晶界特征等。
显微组织与性能关系
陶瓷的显微组织对其力学性能、热学 性能、电学性能和磁学性能等均有影 响。
显微组织的影响因素
结构仿生多孔羟基磷灰石陶瓷的制备工艺及研究进展PPT课件

术后病例观察发现,材料与机体组织 亲和性好。在材料与骨面接触部位, 骨组织
向孔内生长, 与骨面构成愈合状态。
结构仿生 HAP多孔 陶瓷优势
4
2 HAP多孔陶瓷的研究意义
耳小骨替换
牙周袋填补
牙槽脊增高
颌面骨 缺损修复
口腔种植
脊椎骨修复
生物硬组织 的修复和替换
药物载体
图2-1 羟基磷灰石生物陶瓷5
2 HAP多孔陶瓷的研究意义
快速成型 技术(RP)
将数字信息传给造型机,通过原料逐层添加法制造出多孔材料。
能够制备出传统工艺不能形成的200~300μm以上的可控孔隙结构;
能够保证孔隙之间的完全贯通;
不需要工具、模具;目前仍处于研究阶段。
8
3.1 基于有机泡沫浸渍法的制备工艺
实验结合浸渍法和注浆成型工艺制备具有内疏外密 天然骨结构仿生羟基磷灰石多孔陶瓷。
制备工艺简单,孔隙率高,孔径大小容易调控; 具有开孔三维网状骨架结构。
模板法
无机物前体在模板剂的作用下,借助有机超分子/无机物的 界面作用,形成具有一定结构和形貌的无机材料。
是制备有序多孔材料的有效手段; 已成为目前制备多孔羟基磷灰石最常用的方法之一。
三维设计 基于离散堆积原理的数字化成型技术,利用软件分切实体,然后
下燃尽或挥发而在陶瓷体中留下孔隙。
可以制备气孔结构不同、形状复杂的多孔材料。 但所制得的多孔羟基磷灰石孔隙率不高,且孔径范围分布较宽。
7
3 HAP多孔陶瓷的制备工艺
有机泡沫 将在较高温度或发生化学反应产生气体的化学物质与羟基磷灰石粉 浸渍法 体浆料混合成形,在一定温度下加热处理发泡,烧结产生多孔陶瓷。
3.1 基于有机泡沫浸渍法的制备工艺
向孔内生长, 与骨面构成愈合状态。
结构仿生 HAP多孔 陶瓷优势
4
2 HAP多孔陶瓷的研究意义
耳小骨替换
牙周袋填补
牙槽脊增高
颌面骨 缺损修复
口腔种植
脊椎骨修复
生物硬组织 的修复和替换
药物载体
图2-1 羟基磷灰石生物陶瓷5
2 HAP多孔陶瓷的研究意义
快速成型 技术(RP)
将数字信息传给造型机,通过原料逐层添加法制造出多孔材料。
能够制备出传统工艺不能形成的200~300μm以上的可控孔隙结构;
能够保证孔隙之间的完全贯通;
不需要工具、模具;目前仍处于研究阶段。
8
3.1 基于有机泡沫浸渍法的制备工艺
实验结合浸渍法和注浆成型工艺制备具有内疏外密 天然骨结构仿生羟基磷灰石多孔陶瓷。
制备工艺简单,孔隙率高,孔径大小容易调控; 具有开孔三维网状骨架结构。
模板法
无机物前体在模板剂的作用下,借助有机超分子/无机物的 界面作用,形成具有一定结构和形貌的无机材料。
是制备有序多孔材料的有效手段; 已成为目前制备多孔羟基磷灰石最常用的方法之一。
三维设计 基于离散堆积原理的数字化成型技术,利用软件分切实体,然后
下燃尽或挥发而在陶瓷体中留下孔隙。
可以制备气孔结构不同、形状复杂的多孔材料。 但所制得的多孔羟基磷灰石孔隙率不高,且孔径范围分布较宽。
7
3 HAP多孔陶瓷的制备工艺
有机泡沫 将在较高温度或发生化学反应产生气体的化学物质与羟基磷灰石粉 浸渍法 体浆料混合成形,在一定温度下加热处理发泡,烧结产生多孔陶瓷。
3.1 基于有机泡沫浸渍法的制备工艺
陶瓷材料的显微结构PPT课件

m-ZrO2
1150℃ 950℃
t-ZrO2
2370℃ c-ZrO2
➢ t-ZrO2 到 m-ZrO2 马 氏 体 相 变 伴 随 有 相 当 大 的 剪 切 应 变 ( 约 8%) 和体积增加(3%~5%)
➢ 施加压应力可抑止t-ZrO2的相变; ➢ 添加Y2O3、MgO和CeO2等稳定剂以降低相变温度,而使t-ZrO2
细孔
与
分
布
微孔
粒状
柱状
晶 柱粒状
粒 形
针状
态 网络状
特 征
斑状
树枝状
放射状 片状
对
陶 反应结构
瓷 中
定向结构
某 缺陷结构
些
特 欠烧或过烧结构
殊
结 壳芯结构
构 的
分相结构
综 复合结构
合
分 电(磁)畴结构
析
晶界与晶界相
§4.2 含缺陷陶瓷材料的显微结构
一、制备过程产生的缺陷
1、大孔径的孔隙 2、不纯原料 3、异常大晶粒 4、团聚 5、第二相夹杂物
由表面,直到材料断裂,从而提高了陶瓷的断裂韧性与强度。
②微裂纹分支增韧
主裂纹沿最大张应力的垂直方 向扩展,由于相变而受阻中断,裂 纹只能在偏离45o方向产生分支,也 相当于在剪应力方向再度扩展。
③微裂纹增韧
材料制备过程中,由高温降至 低 温 时 , 一 些 晶 粒 的 t-ZrO2 自 发 地 相变到m-ZrO2,产生微裂纹,使材 料增韧。
99%瓷→1700℃。
二次重结晶,导致局部晶粒 易于长大。
原料本身不均匀; 成型时的压力因素; 烧成温度偏高; 局部不均匀的液相存在。
异常显微结构,晶粒大小分 布显著不均匀。
先进陶瓷材料第二讲 结构陶瓷材料(I)

工艺过程:
金属无机盐 金属有机盐
水解
溶胶
凝胶化 凝胶
煅烧、分散
超微粉体
块体
干燥
陶瓷粉体的制备
基本特点: 均匀性好 纯度高 颗粒较小(凝胶颗粒<0.1µm) 易烧结
是制备纳米粉体的一种常用方法
微乳液法
原理
利用双亲性物 质稳定后得到 的水包油或油 包水型分散系
陶瓷粉体的制备
陶瓷粉体的制备
结构陶瓷材料的制备科学
(一)陶瓷粉体的制备
结构陶瓷材料的制备科学
制备科学的内涵及其重要性
可“靠为性了,实陶现瓷具制有备均科匀学性是和必重使需复用的性效”的能(无60缺年代陷美显国微材料结顾构问,委员提会高材
料领域调研报告)
先进陶瓷材料涉及学科
凝合聚成态与物制理备 固态化学
结晶化学
性能 组成与结构
LiCoPO4 粉体的显微形貌
Bi4Ti3O12 粉体的显微形貌
特点: 产物纯度高 结晶状态好 工艺相对简单 适合于产业化
陶瓷粉体的制备
陶瓷粉体的制备
沉淀法
基本思路 :
添加沉淀剂
金属盐溶液
盐或氢氧化物 热分解 氧化物粉末
分离
陶瓷粉体的制备
(1)直接沉淀法 BaTiO3制备 将Ba(OC3H7)2和Ti(OC5H11)4溶解在异丙 醇或苯中,加水分解(水解)就能得到 颗粒直径为5-15nm的高纯BaTiO3粉末
胶体化先学进陶瓷材料科学与工程四面体
合成与制备-组成与结构-性能-使用效能
结构陶瓷的制备 原料制备
结构陶瓷材料的制备科学
烧结
坯料制备
后处理
坯体成型
陶瓷粉体的制备
超微粉体的制备方法 结构陶瓷——由晶粒和晶界构成的多晶体 粉体——成型——烧结——多晶体 粉体性质——陶瓷材料性能 粉体制备方法: 固相法 液相法 气相法
金属无机盐 金属有机盐
水解
溶胶
凝胶化 凝胶
煅烧、分散
超微粉体
块体
干燥
陶瓷粉体的制备
基本特点: 均匀性好 纯度高 颗粒较小(凝胶颗粒<0.1µm) 易烧结
是制备纳米粉体的一种常用方法
微乳液法
原理
利用双亲性物 质稳定后得到 的水包油或油 包水型分散系
陶瓷粉体的制备
陶瓷粉体的制备
结构陶瓷材料的制备科学
(一)陶瓷粉体的制备
结构陶瓷材料的制备科学
制备科学的内涵及其重要性
可“靠为性了,实陶现瓷具制有备均科匀学性是和必重使需复用的性效”的能(无60缺年代陷美显国微材料结顾构问,委员提会高材
料领域调研报告)
先进陶瓷材料涉及学科
凝合聚成态与物制理备 固态化学
结晶化学
性能 组成与结构
LiCoPO4 粉体的显微形貌
Bi4Ti3O12 粉体的显微形貌
特点: 产物纯度高 结晶状态好 工艺相对简单 适合于产业化
陶瓷粉体的制备
陶瓷粉体的制备
沉淀法
基本思路 :
添加沉淀剂
金属盐溶液
盐或氢氧化物 热分解 氧化物粉末
分离
陶瓷粉体的制备
(1)直接沉淀法 BaTiO3制备 将Ba(OC3H7)2和Ti(OC5H11)4溶解在异丙 醇或苯中,加水分解(水解)就能得到 颗粒直径为5-15nm的高纯BaTiO3粉末
胶体化先学进陶瓷材料科学与工程四面体
合成与制备-组成与结构-性能-使用效能
结构陶瓷的制备 原料制备
结构陶瓷材料的制备科学
烧结
坯料制备
后处理
坯体成型
陶瓷粉体的制备
超微粉体的制备方法 结构陶瓷——由晶粒和晶界构成的多晶体 粉体——成型——烧结——多晶体 粉体性质——陶瓷材料性能 粉体制备方法: 固相法 液相法 气相法
陶瓷材料的结构.pptx

能
综上所述,金
属材料的成分、 工艺、组织结构 和性能之间有着 密切的关系。
图2-11 两种晶粒大小不同的纯铁示意图
第12页/共35页
2.2 高分子材料的结构与性能
• 2.2.1 高分子材料的结构 • 1.大分子链的构成 • (1)化学组成 • 组成大分子链的化学元素,主要是碳、氢、氧,
另外还有氮、氯、氟、硼、硅、硫等,其中碳 是形成大分子链的主要元素。 • 大分子链根据组成元素不同可分为三类,即碳 链大分子、杂链大第13分页/共子35和页 元素链大分子。
2.晶面与晶向
图2-2 立方晶格中的一些晶面
第2页/共35页
3.金属晶体的类 (型1)体心立方晶格 (2)面心立方晶格 (3)密排六方晶格
图2-3 体心立方晶胞
图2-4 面心立方晶胞
第3页/共35页
图2-5 密排六方晶胞
2.1.2 金属的实际晶体结构
1.单晶体和多晶体
图2-6 单晶体和多晶体结构示意图
图2-20 蠕变前、后分子构象变化示意图 ●应力松弛 如图2-21所示。
图2-21 应力松弛过程中分子构象变化示意图
第22页/共35页
●滞后与内耗 高聚物受周期性载荷时,产生 伸-缩的循环应变,如图2-22所示。
图2-22 橡胶在一个承载周期中的应力-应变曲线
第23页/共35页
图2-23可以看出高聚物的变形特点。A点为 初始状态,B点为屈服点,C点为断裂点。
第25页/共35页
陶瓷的典型组织结构包括: 晶体相(莫来石和石英) 玻璃相 气相
1.晶体相
(1)硅酸盐
硅酸盐基本结构具有以下特点: ①构成硅酸盐的基本单元为硅氧四面 体结构,如图2-24所示; ②硅氧四面体只能通过共用顶角而相 互结合; ③ Si4+通过 O2-结合, Si—O—Si 的结合键在氧上的键角接近于145° ; ④稳定的硅酸盐结构中,硅氧四面体 采取最高空 间维数互相结合; ⑤硅氧四面体采取比较紧密的结构结 合; ⑥同一结构中硅氧四面体最多只相差 1个氧原子。
综上所述,金
属材料的成分、 工艺、组织结构 和性能之间有着 密切的关系。
图2-11 两种晶粒大小不同的纯铁示意图
第12页/共35页
2.2 高分子材料的结构与性能
• 2.2.1 高分子材料的结构 • 1.大分子链的构成 • (1)化学组成 • 组成大分子链的化学元素,主要是碳、氢、氧,
另外还有氮、氯、氟、硼、硅、硫等,其中碳 是形成大分子链的主要元素。 • 大分子链根据组成元素不同可分为三类,即碳 链大分子、杂链大第13分页/共子35和页 元素链大分子。
2.晶面与晶向
图2-2 立方晶格中的一些晶面
第2页/共35页
3.金属晶体的类 (型1)体心立方晶格 (2)面心立方晶格 (3)密排六方晶格
图2-3 体心立方晶胞
图2-4 面心立方晶胞
第3页/共35页
图2-5 密排六方晶胞
2.1.2 金属的实际晶体结构
1.单晶体和多晶体
图2-6 单晶体和多晶体结构示意图
图2-20 蠕变前、后分子构象变化示意图 ●应力松弛 如图2-21所示。
图2-21 应力松弛过程中分子构象变化示意图
第22页/共35页
●滞后与内耗 高聚物受周期性载荷时,产生 伸-缩的循环应变,如图2-22所示。
图2-22 橡胶在一个承载周期中的应力-应变曲线
第23页/共35页
图2-23可以看出高聚物的变形特点。A点为 初始状态,B点为屈服点,C点为断裂点。
第25页/共35页
陶瓷的典型组织结构包括: 晶体相(莫来石和石英) 玻璃相 气相
1.晶体相
(1)硅酸盐
硅酸盐基本结构具有以下特点: ①构成硅酸盐的基本单元为硅氧四面 体结构,如图2-24所示; ②硅氧四面体只能通过共用顶角而相 互结合; ③ Si4+通过 O2-结合, Si—O—Si 的结合键在氧上的键角接近于145° ; ④稳定的硅酸盐结构中,硅氧四面体 采取最高空 间维数互相结合; ⑤硅氧四面体采取比较紧密的结构结 合; ⑥同一结构中硅氧四面体最多只相差 1个氧原子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车尾气净化器载体、高温过滤器、窑具
一般烧结致密的结构陶瓷具有高硬度、低韧性的特点, 难以机加工
添加具有层状晶体结构的软质相:六方氮化硼、云母、 LaPO4等
MAX相三元化合物陶瓷
通式:
M n1 AX n
M:过渡金属 A:主要是Ⅲ 、Ⅳ主族元素 X:C或N n:1,2,3,5
X占据6个M形成的8面体中心,共价
>1260oC
• 过渡金属硼化物(ZrB2,HfB2,TaB2)、碳化物 (ZrC、HfC)和氮化物(HfN)
课题:
◦ 烧结 ◦ 高温氧化 ◦ 抗热震
复相陶瓷:ZrO2增韧陶瓷 金属陶瓷 层状结构
SiO2f/SiO2 C/C, C/SiC, SiC/SiC
热障涂层(ZrO2) 陶瓷型芯(Al2O3,SiO2) 高温陶瓷基复合材料(Cf/SiC,SiCf/SiC)
按氧化铝的纯度分为99瓷、97瓷和95瓷 硬度高、耐磨性好、机械强度高 电绝缘好,特别是高温绝缘和抗高压性好 化学稳定性好 透光性好
耐磨件:纺织瓷、切削刀具、拉丝模、研磨介质、耐 磨衬、喷嘴、阀片等
高温:高温炉管、坩埚、热电偶护管 绝缘:电路基板、电真空器件绝缘管壳等 耐腐蚀:化工设备部件、高压钠灯管(透明) 生物瓷
有10余种同质异构晶体,α相是唯一的热力学稳定相。
矿物名:刚玉;熔点:2050、密度:3.99、化学稳定 性极好
0.2~5.5μm透光性好,纯氧化铝无色透明;含微量Cr 的氧化铝单晶俗称红宝石;含微量Ti的氧化铝单晶俗 称蓝宝石
为了在较低温度下烧结,添加烧结助剂高岭土、滑石、 SiO2等
热压烧结:添加剂Al2O3, AlN,B,C,B4等;2000 ℃/40MPa;相对密度>95%
无压烧结:添加C+B,2020℃,相对密度98%
低密度、高模量 高温强度高、高温蠕变小 高硬度、低摩擦系数 低热膨胀、高热导,抗热冲击好 化学稳定性好
堇青石( 2MgO· 2Al2O3· 5SiO2)0.6~1.2 ×10-6 ℃-1 热膨胀系数各向异性、烧成温度范围窄
m ZrO2
1170o C 950o C
t ZrO2
2370o C
C ZrO2
2680o C
熔融
其中,t→m的相变为马氏体相变,产生3~4%体积膨胀。
ZrO2能与CaO、MgO、Y2O3、CeO2形成
固溶体,该固溶体的相变温度降低,甚至在
室温下t和C相可以存在。因此,这些氧化物
FSZ
被称作稳定剂。该相变温度与稳定剂含量、
键成分高
A在[XM6]8面体层之间,较弱的金属
M
键
Xபைடு நூலகம்
A
金属性
◦ 高导热、高导电、低硬度、高损伤容限、高抗热震性、可加 工性
陶瓷性 ◦ 高弹性模量、高温强度高、抗氧化、抗腐蚀
可加工陶瓷 发热体、电刷材料
能够长时间在超高温(>1600)有氧环境下使用的陶瓷材料
>1930oC
>2760oC
高温升华分解:Si3N4(1900)、AlN(2450)、BN (3000)
高熔点:TiN(2950)、ZrN(2980)、HfN(3310), Si3N4固溶体:SiAlON(塞隆) 高硬、高强 高温抗氧化性能差
反应烧结(RBSN):Si粉成形体氮化 热压烧结(HPSN):Si3N4加氧化物烧结助剂,热压 无压烧结(SSN):在埋粉中常压N2气氛下 气压烧结(GPSSN):在0.5-20MPa N2或Ar气压下
晶粒尺寸以及晶粒所受到的束缚有关
1975年Garvie等在《Nature》发表 “Ceramic Steel”
PSZ强度250MPa提高到600MPa;KIC达 到10MPam1/2
1977年出现了四方氧化锆多晶体TZP陶 瓷
现在TZP力学性能:2GPa,20MPam1/2
耐磨零件、研磨介质 陶瓷轴承、 光纤连接器接插件 陶瓷弹簧、陶瓷刀 高级手表
氧化物陶瓷 非氧化物陶瓷 低膨胀陶瓷 可加工陶瓷 超高温陶瓷 陶瓷基复合材料 结构/功能一体化材料
氧化物结构陶瓷是发展较早、应用广泛、成本较低的 一类陶瓷材料。
一般是指熔点高于SiO2(1730℃)的氧化物 高强度、耐磨损、耐高温、抗氧化、耐腐蚀、电绝缘
SiO2, Al2O3, MgO, ZrO2, TiO2,莫来石 (3Al2O3•2SiO2),尖晶石(MgAl2O4),堇青石 (2MgO•2Al2O3•5SiO2)等
烧结
切削刀具 发动机高温部件 陶瓷轴承 冶金、化工部件 航空航天
SiC, B4C; TiC, ZrC, HfC 高熔点(3000 ℃ ,HfC:3887 ℃ ) 高硬度,B4C仅次于金刚石和立方氮化硼 高温抗氧化 脆
反应结合SiC:α-SiC和C为原料,成型后在1500 ℃渗 Si,Si与C反应生成β -SiC,使原有的SiC烧结
高温透波材料(SiO2, Si3N4) 高温、超高温热防护材料(ZrB2/SiC)
一般烧结致密的结构陶瓷具有高硬度、低韧性的特点, 难以机加工
添加具有层状晶体结构的软质相:六方氮化硼、云母、 LaPO4等
MAX相三元化合物陶瓷
通式:
M n1 AX n
M:过渡金属 A:主要是Ⅲ 、Ⅳ主族元素 X:C或N n:1,2,3,5
X占据6个M形成的8面体中心,共价
>1260oC
• 过渡金属硼化物(ZrB2,HfB2,TaB2)、碳化物 (ZrC、HfC)和氮化物(HfN)
课题:
◦ 烧结 ◦ 高温氧化 ◦ 抗热震
复相陶瓷:ZrO2增韧陶瓷 金属陶瓷 层状结构
SiO2f/SiO2 C/C, C/SiC, SiC/SiC
热障涂层(ZrO2) 陶瓷型芯(Al2O3,SiO2) 高温陶瓷基复合材料(Cf/SiC,SiCf/SiC)
按氧化铝的纯度分为99瓷、97瓷和95瓷 硬度高、耐磨性好、机械强度高 电绝缘好,特别是高温绝缘和抗高压性好 化学稳定性好 透光性好
耐磨件:纺织瓷、切削刀具、拉丝模、研磨介质、耐 磨衬、喷嘴、阀片等
高温:高温炉管、坩埚、热电偶护管 绝缘:电路基板、电真空器件绝缘管壳等 耐腐蚀:化工设备部件、高压钠灯管(透明) 生物瓷
有10余种同质异构晶体,α相是唯一的热力学稳定相。
矿物名:刚玉;熔点:2050、密度:3.99、化学稳定 性极好
0.2~5.5μm透光性好,纯氧化铝无色透明;含微量Cr 的氧化铝单晶俗称红宝石;含微量Ti的氧化铝单晶俗 称蓝宝石
为了在较低温度下烧结,添加烧结助剂高岭土、滑石、 SiO2等
热压烧结:添加剂Al2O3, AlN,B,C,B4等;2000 ℃/40MPa;相对密度>95%
无压烧结:添加C+B,2020℃,相对密度98%
低密度、高模量 高温强度高、高温蠕变小 高硬度、低摩擦系数 低热膨胀、高热导,抗热冲击好 化学稳定性好
堇青石( 2MgO· 2Al2O3· 5SiO2)0.6~1.2 ×10-6 ℃-1 热膨胀系数各向异性、烧成温度范围窄
m ZrO2
1170o C 950o C
t ZrO2
2370o C
C ZrO2
2680o C
熔融
其中,t→m的相变为马氏体相变,产生3~4%体积膨胀。
ZrO2能与CaO、MgO、Y2O3、CeO2形成
固溶体,该固溶体的相变温度降低,甚至在
室温下t和C相可以存在。因此,这些氧化物
FSZ
被称作稳定剂。该相变温度与稳定剂含量、
键成分高
A在[XM6]8面体层之间,较弱的金属
M
键
Xபைடு நூலகம்
A
金属性
◦ 高导热、高导电、低硬度、高损伤容限、高抗热震性、可加 工性
陶瓷性 ◦ 高弹性模量、高温强度高、抗氧化、抗腐蚀
可加工陶瓷 发热体、电刷材料
能够长时间在超高温(>1600)有氧环境下使用的陶瓷材料
>1930oC
>2760oC
高温升华分解:Si3N4(1900)、AlN(2450)、BN (3000)
高熔点:TiN(2950)、ZrN(2980)、HfN(3310), Si3N4固溶体:SiAlON(塞隆) 高硬、高强 高温抗氧化性能差
反应烧结(RBSN):Si粉成形体氮化 热压烧结(HPSN):Si3N4加氧化物烧结助剂,热压 无压烧结(SSN):在埋粉中常压N2气氛下 气压烧结(GPSSN):在0.5-20MPa N2或Ar气压下
晶粒尺寸以及晶粒所受到的束缚有关
1975年Garvie等在《Nature》发表 “Ceramic Steel”
PSZ强度250MPa提高到600MPa;KIC达 到10MPam1/2
1977年出现了四方氧化锆多晶体TZP陶 瓷
现在TZP力学性能:2GPa,20MPam1/2
耐磨零件、研磨介质 陶瓷轴承、 光纤连接器接插件 陶瓷弹簧、陶瓷刀 高级手表
氧化物陶瓷 非氧化物陶瓷 低膨胀陶瓷 可加工陶瓷 超高温陶瓷 陶瓷基复合材料 结构/功能一体化材料
氧化物结构陶瓷是发展较早、应用广泛、成本较低的 一类陶瓷材料。
一般是指熔点高于SiO2(1730℃)的氧化物 高强度、耐磨损、耐高温、抗氧化、耐腐蚀、电绝缘
SiO2, Al2O3, MgO, ZrO2, TiO2,莫来石 (3Al2O3•2SiO2),尖晶石(MgAl2O4),堇青石 (2MgO•2Al2O3•5SiO2)等
烧结
切削刀具 发动机高温部件 陶瓷轴承 冶金、化工部件 航空航天
SiC, B4C; TiC, ZrC, HfC 高熔点(3000 ℃ ,HfC:3887 ℃ ) 高硬度,B4C仅次于金刚石和立方氮化硼 高温抗氧化 脆
反应结合SiC:α-SiC和C为原料,成型后在1500 ℃渗 Si,Si与C反应生成β -SiC,使原有的SiC烧结
高温透波材料(SiO2, Si3N4) 高温、超高温热防护材料(ZrB2/SiC)