聚类分析
聚类分析
聚类分析聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。
聚类分析内容非常丰富,按照分类对象的不同可分为样品分类(Q-型聚类分析)和指标或变量分类(R-型聚类分析);按照分类方法可分为系统聚类法和快速聚类法。
1. 系统聚类分析先将n 个样品各自看成一类,然后规定样品之间的“距离”和类与类之间的距离。
选择距离最近的两类合并成一个新类,计算新类和其它类(各当前类)的距离,再将距离最近的两类合并。
这样,每次合并减少一类,直至所有的样品都归成一类为止。
系统聚类法直观易懂。
1.1系统聚类法的基本步骤:第一,计算n 个样品两两间的距离 ,记作D= 。
第二,构造n 个类,每个类只包含一个样品。
第三,合并距离最近的两类为一新类。
第四,计算新类与各当前类的距离。
第五,重复步骤3、4,合并距离最近的两类为新类,直到所有的类并为一类为止。
第六,画聚类谱系图。
第七,确定类的个数和类。
1.2 系统聚类方法:1.2.1最短距离法1.2.2最长距离法1.2.3中间距离法1.2.4重心法1.2.5类平均法1.2.6离差平方和法(Ward 法)上述6种方法归类的基本步骤一致,只是类与类之间的距离有不同的定义。
最常用的就是最短距离法。
1.3 最短距离法以下用ij d 表示样品i X 与j X 之间距离,用ij D 表示类i G 与j G 之间的距离。
定义类i G 与j G 之间的距离为两类最近样品的距离,即ij G G G G ij d D j J i i ∈∈=,min设类p G 与q G 合并成一个新类记为r G ,则任一类k G 与r G 的距离是:ij G X G X kr d D j j i i ∈∈=,min ⎭⎬⎫⎩⎨⎧=∈∈∈∈ij G X G X ij G X G X d d q j k i p j k i ,,min ,min min {}kq kp D D ,min = 最短距离法聚类的步骤如下:ij d {}ij d(1)定义样品之间距离,计算样品两两距离,得一距离阵记为)0(D ,开始每个样品自成一类,显然这时ij ij d D =。
聚类分析的类型与选择
聚类分析的类型与选择聚类分析是一种常用的数据挖掘技术,可以将数据按照某种相似性进行分组。
通过聚类分析,我们可以发现数据中的潜在规律和结构,帮助我们更好地理解数据,并做出相应的决策。
本文将介绍聚类分析的常见类型,并讨论如何选择适合的聚类方法。
1.聚类分析的类型聚类分析有多种类型,常见的包括层次聚类分析和k均值聚类分析。
下面将分别介绍这两种聚类方法。
1.1层次聚类分析层次聚类分析是一种自下而上的聚类方法,它通过计算数据之间的相似度或距离,将相似的数据逐步合并成簇。
这种方法对数据的层次结构有较好的表示,能够发现不同层次的聚类结构。
层次聚类分析的优点之一是不需要预先指定聚类的个数,但计算复杂度较高,对大规模数据处理存在困难。
另外,它对异常值敏感,若存在异常值可能影响聚类结果。
1.2k均值聚类分析k均值聚类分析是一种基于划分的聚类方法,它将数据划分成k个互不重叠的簇,使得簇内的数据相似度较高,簇间的数据相似度较低。
该方法通过迭代计算簇的中心和重新分配数据来实现聚类。
k均值聚类分析的优点在于计算简单、效果较好,适用于大规模数据集。
但该方法对初始簇中心的选择较为敏感,容易收敛于局部最优解。
2.选择合适的聚类方法在选择聚类方法时,应根据数据的特点和目标进行判断。
下面列举几个常见的选择因素,供参考:2.1数据特点需要考虑数据的特点,如数据的维度、规模、密度等。
对于高维度数据,层次聚类分析可能更适用;而对于大规模数据,k均值聚类分析常常更为合适。
2.2聚类目标需要考虑聚类的目标。
如果希望发现层次结构、发现数据的内在关联性,层次聚类分析是一个不错的选择。
而如果目标是将数据划分成互不重叠的簇,并且希望聚类结果能较好地解释数据的差异性,k均值聚类分析更为合适。
2.3数据质量数据质量也是选择聚类方法的重要因素。
层次聚类分析对异常值比较敏感,如果数据中存在异常值,使用k均值聚类分析可能更好。
选择合适的聚类方法需要综合考虑数据特点、聚类目标和数据质量等因素。
聚类分析的基本
聚类分析的基本1、聚类分析(cluster analysis):又被称为群集分析,是一种对多维数据进行分析和探索的统计技术,目的是将许多观测值分类至具有相同特征的聚类,这些观测值之间差别较大,但内部观测差别较小。
聚类分析是一种目的性数据分析,它能够将没有标签分类(unsupervised classification)的不等来源的数据,分组至具有相似性特征的群体中,即对对象或事情按共有特征(feature)将他们分成几个类。
以此弥补“同属一个类别,但又个别有异的”的不足。
2、聚类分析的用途:(1)聚类分析用于数据挖掘,帮助系统提取未知信息,比如通过分析客户购买组合,把客户分成相关性很大的群体,以此帮助商业内容的定位;(2)帮助系统估算和识别多变量的变化趋势;(3)帮助用户从数据大海中获取价值信息,快速实现有效的数据查询;(4)帮助提升机器学习的精度,以及数据挖掘的价值,以此改善系统的性能;(5)可用于新闻分类,通常将同类型或相关性较大的新闻放在一起,进行分类。
3、聚类分析的原理:(1)根据定义与要求来制定聚类算法;(2)构造数据库,合理编码解决聚类分析问题;(3)根据构造好的数据库,提取其中的特征并进行度量,确定分类间的相似程度;(4)建立类内类间的关系,使用hierarchical clustering方法;(5)根据设定的特征度量准则,确定聚类分析后的结果;(6)对结果进行评定,检验聚类的正确性、有效性。
4、聚类分析的类型:(1)层次聚类:hierarchical clustering;(2)partitioning-clustering:将聚类中的各个群体将看作划分问题进行处理;(3)基于密度的聚类:density-based clustering;(4)基于模型的聚类:model-based clustering。
聚类分析也有许多优点,例如:(1)可以将相似的数据聚类在一起,细节化的数据可以表达地更清楚;(2)可以减少错误判断甚至盲目判断的几率,从而提高把握性;(3)可以改进数据查询速度;(4)可以识别数据之间的关联,从而实现对数据的有效分析利用。
聚类分析的基本概念与方法
聚类分析的基本概念与方法聚类分析(Cluster Analysis)是一种将数据分组或分类的统计学方法,通过将相似的对象归为同一组,使得组内的对象之间更加相似,而不同组之间的对象则差异较大。
它是数据挖掘和机器学习领域中常用的技术之一,被广泛应用于市场分析、生物信息学、图像处理等领域。
一、聚类分析的基本概念聚类分析基于相似性的概念,即认为具有相似特征的对象更有可能属于同一类别。
在聚类分析中,每个对象都被视为一个数据点,而聚类则是将这些数据点分组。
基本概念包括以下几点:1. 数据点:数据集中的每个样本或对象都被看作是一个数据点,它具有多个特征或属性。
2. 相似性度量:聚类分析的关键是如何计算数据点之间的相似性或距离。
常用的相似性度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。
3. 簇/类别:将相似的数据点归为一组,这个组被称为簇或类别。
簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。
4. 聚类算法:聚类分析依赖于具体的算法来实现数据点的分组。
常见的聚类算法有K均值聚类、层次聚类、密度聚类等。
二、聚类分析的方法1. K均值聚类(K-means Clustering):K均值聚类是一种迭代的聚类方法,它将数据点分成K个簇,每个簇代表一个样本集。
算法的基本思想是通过最小化簇内数据点与簇中心之间的平方误差来确定最优的簇中心位置。
2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于树状结构的聚类算法,它根据数据点之间的相似性逐步合并或分割簇。
层次聚类分为凝聚型和分裂型两种方法,其中凝聚型方法从单个数据点开始,逐步合并最相似的簇;分裂型方法从所有数据点开始,逐步分割最不相似的簇。
3. 密度聚类(Density-Based Clustering):密度聚类基于密度可达的概念,将具有足够高密度的数据点归为一簇。
核心思想是在数据空间中通过密度连通性来确定簇的边界,相对于K均值聚类和层次聚类,密度聚类能够有效处理不规则形状和噪声数据。
聚类分析
实验报告2:聚类分析一、简要给出聚类分析的数学模型(1) 聚类分析的基本思想聚类分析是根据研究对象的特征,对研究对象进行分类的多元分析技术的总称。
聚类分析的基本思想是:采用定量统计分析方法,对所研究的样品或变量,找出一些能够度量样品(或变量)之间亲疏程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品(或变量)聚合为一类,把另外一些彼此之间相似程度较大的样品(或变量)又聚合为另一类,关系密切的聚合到一个小的分类单位,关系疏远的聚合到一个大的分类单位。
因而,聚类分析的基本工作有两大项:一时解决相近或相似的变量问题即分类的统计量;二是选用某种方式作为规则来归类的问题,即聚类方式。
(2) 系统聚类法的基本思想系统聚类方法的基本思想是首先定义样品间的距离(或相似系数)和类与类之间的距离。
初始将n 个样品看成n 类(每一类包含一个样品),这是类间的距离与样品间的距离是等价的,然后将距离最近的两类合并成为新类,并计算新类与其他类的类间距离,再按最小距离准则并类。
这样每侧缩小一类,直到所有的样品都并成一类为止。
常用的类间距离定义及递推公式:①最短距离法A. 类与类之间的距离定义为两类中相距最近的样品之间的距离,即列为p G 和q G 之间的距离pq D 定义为pq D =ijd Q P G j G i min ,∈∈B. 当某步骤类p G 和类q G 合并为和r G 后,按最短距离法计算新类r G 与其他类k G 的类间距离,其递推公式为:{}()q p k D D D qk pk rk ,,,min ≠= ②最长距离法A . 类与类之间的距离定义为两类中相距最远的样品之间的距离,即列为p G 和q G 之间的距离pq D 定义为pq D =ijd Q P G j G i max ,∈∈B . 当某步骤类p G 和类q G 合并为和r G 后,按最长距离法计算新类r G 与其他类k G 的类间距离,其递推公式为:{}()q p k D D D qk pk rk ,,,max ≠= ③中间距离法A. 如果类与类之间的距离既不采用两同类之间的最近距离,也不采用最远的距离,而是采用介于这两者间的距离,这种方法称为中间距离法。
什么是聚类分析,它有哪些应用?
什么是聚类分析,它有哪些应用?
一、聚类分析的实现方式
聚类分析的实现方式有很多种,如下面几种:
1. 基于距离的聚类:
这种方法将数据点之间的距离作为相似性的度量,然后将距离最近的数据点聚在一起,并逐渐地将距离较远的数据点加入到不同的簇中。
2. 基于密度的聚类:
这种方法通过计算数据点的密度来确定簇边界,而不是使用距离来度量相似性。
将密度较高的数据点聚集在一起,而将密度较低的数据点单独作为一个簇。
3. 基于层次的聚类:
这种方法将数据点逐层进行聚合,每一层都是由多个子层组成的。
聚类过程一直持续到所有数据点都被分配到一个簇中,或者簇的数量达到预设的值。
二、聚类分析的应用领域
聚类分析作为一种重要的数据挖掘技术,在多个领域中都有着广泛的应用,下面介绍一些主要应用领域:
1. 市场细分:
聚类分析可以帮助企业将市场分割成不同的细分市场,然后根据每个细分市场的特点定制相应的市场策略。
2. 生物分类:
聚类分析在生物学领域中应用非常广泛,例如,可以用于分类分子或组分、成本分析以及微生物学等方面。
3. 网络流量分析:
聚类分析可以帮助网络管理员对网络流量进行分类,以便更好地了解网络中流动的数据类型,从而更好地优化网络性能。
4. 风险评估:
聚类分析可以用于对风险进行分类和评估,例如,可以将客户分类成高风险、中风险和低风险客户,以快速响应某些意外事件。
结论
聚类分析是一种非常有用的技术,可以用于许多不同的领域。
以上只是聚类分析的一些基本理解和应用,随着技术的不断发展,聚类分析在未来也将有着更广泛的应用。
聚类分析
聚类分析也是一种分类技术。
与多元分析的其他方法相比,该方法较为粗糙,理论上还不完善,但应用方面取得了很大成功。
与回归分析、判别分析一起被称为多元分析的三大方法。
聚类的目的。
根据已知数据,计算各观察个体或变量之间亲疏关系的统计量(距离或相关系数)。
根据某种准则(最短距离法、最长距离法、中间距离法、重心法),使同一类内的差别较小,而类与类之间的差别较大,最终将观察个体或变量分为若干类。
聚类分析又叫群分析、点群分析或者簇分析,是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。
1、聚类分析聚类分析也称群分析、点群分析。
例如,我们可以根据各个银行网点的储蓄量、人力资源状况、营业面积、特色功能、网点级别、所处功能区域等因素情况,将网点分为几个等级,再比较各银行之间不同等级网点数量对比状况。
1、基本思想:我们所研究的样品(网点)或指标(变量)之间存在程度不同的相似性(亲疏关系——以样品间距离衡量)。
于是根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间相似程度的统计量,以这些统计量为划分类型的依据。
把一些相似程度较大的样品(或指标)聚合为一类,把另外一些彼此之间相似程度较大的样品(或指标)又聚合为另一类,直到把所有的样品(或指标)聚合完毕,这就是分类的基本思想。
在聚类分析中,通常我们将根据分类对象的不同分为Q型聚类分析和R型聚类分析两大类。
R型聚类分析是对变量进行分类处理,Q型聚类分析是对样本进行分类处理。
R型聚类分析的主要作用是:1、不但可以了解个别变量之间的关系的亲疏程度,而且可以了解各个变量组合之间的亲疏程度。
2、根据变量的分类结果以及它们之间的关系,可以选择主要变量进行回归分析或Q型聚类分析。
Q型聚类分析的优点是:1、可以综合利用多个变量的信息对样本进行分类;2、分类结果是直观的,聚类谱系图非常清楚地表现其数值分类结果;3、聚类分析所得到的结果比传统分类方法更细致、全面、合理。
聚类分析原理及步骤
聚类分析原理及步骤
一,聚类分析概述
聚类分析是一种常用的数据挖掘方法,它将具有相似特征的样本归为
一类,根据彼此间的相似性(相似度)将样本准确地分组为多个类簇,其中
每个类簇都具有一定的相似性。
聚类分析是半监督学习(semi-supervised learning)的一种,半监督学习的核心思想是使用未标记的数据,即在训
练样本中搜集的数据,以及有限的标记数据,来学习模型。
聚类分析是实际应用中最为常用的数据挖掘算法之一,因为它可以根
据历史或当前的数据状况,帮助组织做出决策,如商业分析,市场分析,
决策支持,客户分类,医学诊断,质量控制等等,都可以使用它。
二,聚类分析原理
聚类分析的本质是用其中一种相似性度量方法将客户的属性连接起来,从而将客户分组,划分出几个客户类型,这样就可以进行客户分类、客户
细分、客户关系管理等,更好地实现客户管理。
聚类分析的原理是建立在相似性和距离等度量概念之上:通过对比一
组数据中不同对象之间的距离或相似性,从而将它们分成不同的类簇,类
簇之间的距离越近,则它们之间的相似性越大;类簇之间的距离越远,则
它们之间的相似性越小。
聚类分析的原理分为两类,一类是基于距离的聚类。
聚类分析
步骤:
• • • • • • • 1、对数据进行变换处理,消除量纲 2、构造n个类,每个类只包含一个样本计算 3、n个样本两两间的距离{dij} 4、合并距离最近的两类为一新类 5、计算新类与当前各类的距离,重复(4) 6、画聚类图 7、决定类的个数和类
12
类与类间距离的确定
一、最短距离法 二、最长距离法 三、中间距离法 四、重心距离法 五、类平均法 六、离差平方和
聚类分析
(Cluster Analysis)
1
聚类分析(Cluster Analysis)
• 一、聚类分析基本原理 • 二、层次聚类法(Hierarchical Cluster) • 三、K-均值聚类法(K-means cluster)
2
一、聚类分析(Cluster analysis)基本原理 • 聚类分析又称群分析或点群分析,它是研
G8={G1,G2}
17
d78=min{d71,d72}=12.80 7 D4= 7 8 河南3 甘肃4 青海5 辽宁1 浙江2 0 12.8 0 8
18
最长距离法(furthest neighbor)
• 用两类之间最远点 的距离代表两类之 间的距离。
例2:对例1的数据以最长距离法聚类。
19
d13=13.80 d14=13.12 d15=12.80 d23=24.63 d24=24.06 d25=23.54 d34=2.2 d35=3.51 d45=2.21 1 D1= 1 2 3 4 5 0 11.67 0 13.80 24.63 0 13.12 24.06 2.20 0 0 12.80 23.54 3.51 2.21 2 3 4 5 河南与甘肃的距离最近, 先将二者(3和4)合 为一类G6={G3,G4}
聚类分析法ppt课件全
8/21/2024
25
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(3)分类函数
按照修改原则不同,动态聚类方法有按批修改法、逐个修改法、混合法等。 这里主要介绍逐步聚类法中按批修改法。按批修改法分类的原则是,每一步修 改都将使对应的分类函数缩小,趋于合理,并且分类函数最终趋于定值,即计 算过程是收敛的。
8/21/2024
23
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(2)初始分类 有了凝聚点以后接下来就要进行初始分类,同样获得初始分类也有不同的
方法。需要说明的是,初始分类不一定非通过凝聚点确定不可,也可以依据其 他原则分类。
以下是其他几种初始分类方法: ①人为分类,凭经验进行初始分类。 ②选择一批凝聚点后,每个样品按与其距离最近的凝聚点归类。 ③选择一批凝聚点后,每个凝聚点自成一类,将样品依次归入与其距离
8/21/2024
14
1.2 聚类分析的种类
(2)系统聚类分析的一般步骤 ①对数据进行变换处理; ②计算各样品之间的距离,并将距离最近的两个样品合并成一类; ③选择并计算类与类之间的距离,并将距离最ቤተ መጻሕፍቲ ባይዱ的两类合并,如果累的个
数大于1,则继续并类,直至所有样品归为一类为止; ④最后绘制系统聚类谱系图,按不同的分类标准,得出不同的分类结果。
8/21/2024
18
1.2 聚类分析的种类
(7)可变法
1 2 D kr
2 (8)离差平方和法
(D k 2 pD k 2 q)D p 2q
D k 2 rn n ir n n p i D i2 pn n ir n n q iD i2 qn rn in iD p 2 q
8/21/2024
聚类分析
1聚类分析内涵1.1聚类分析定义聚类分析(Cluster Analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术. 也叫分类分析(classification analysis)或数值分类(numerical taxonomy),它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。
聚类分析有关变量类型:定类变量,定量(离散和连续)变量聚类分析的原则是同一类中的个体有较大的相似性,不同类中的个体差异很大。
1.2聚类分析分类聚类分析的功能是建立一种分类方法,它将一批样品或变量,按照它们在性质上的亲疏、相似程度进行分类.聚类分析的内容十分丰富,按其聚类的方法可分为以下几种:(1)系统聚类法:开始每个对象自成一类,然后每次将最相似的两类合并,合并后重新计算新类与其他类的距离或相近性测度.这一过程一直继续直到所有对象归为一类为止.并类的过程可用一张谱系聚类图描述.(2)调优法(动态聚类法):首先对n个对象初步分类,然后根据分类的损失函数尽可能小的原则对其进行调整,直到分类合理为止.(3)最优分割法(有序样品聚类法):开始将所有样品看成一类,然后根据某种最优准则将它们分割为二类、三类,一直分割到所需的K类为止.这种方法适用于有序样品的分类问题,也称为有序样品的聚类法.(4)模糊聚类法:利用模糊集理论来处理分类问题,它对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果.(5)图论聚类法:利用图论中最小支撑树的概念来处理分类问题,创造了独具风格的方法.(6)聚类预报法:利用聚类方法处理预报问题,在多元统计分析中,可用来作预报的方法很多,如回归分析和判别分析.但对一些异常数据,如气象中的灾害性天气的预报,使用回归分析或判别分析处理的效果都不好,而聚类预报弥补了这一不足,这是一个值得重视的方法。
聚类分析根据分类对象的不同又分为R型和Q型两大类,R型是对变量(指标)进行分类,Q 型是对样品进行分类。
聚类分析
聚类分析聚类分析作为一种数据分析的方法,在许多领域中都得到了广泛应用。
它是一种无监督学习的技术,通过对数据进行分组或分类,寻找其中的内在结构和规律。
聚类分析的目的是将相似的数据点分配到同一组,而不同组之间的数据点则具有较大的差异性。
聚类分析可以用于各种各样的问题,比如市场细分、社交网络分析、客户行为分析等。
它可以帮助我们理解数据之间的相似性和差异性,发现潜在特征和趋势,并指导我们做出更好的决策。
聚类分析的基本思想是通过计算数据之间的相似度或距离,将相似的数据点归为一类。
常用的相似度度量方法有欧氏距离、曼哈顿距离、余弦相似度等。
根据具体应用的需求,我们可以选择不同的相似度度量方法。
聚类分析有许多不同的算法,常见的有K均值算法、层次聚类算法、DBSCAN算法等。
不同的算法适用于不同类型的数据和问题。
其中,K均值算法是最常用的一种算法,它通过迭代的方式找到数据点的最佳分组。
K均值算法是一种迭代算法,首先随机选择k个初始中心点,然后将所有的数据点根据与中心点的距离归类。
然后,计算每个类别的均值点,并将均值点作为新的中心点。
不断迭代这个过程,直到中心点的位置不再变化,或达到设定的迭代次数。
聚类分析的结果可以通过可视化的方式呈现出来,比如散点图、热力图等。
通过观察这些可视化结果,我们可以快速地了解数据的分布和聚类的效果。
聚类分析还可以与其他数据分析技术结合起来,以获得更深入的洞察。
比如,我们可以在进行聚类分析的同时,应用主成分分析(PCA)降维技术,以提高聚类的效果和可解释性。
最后,聚类分析也存在一些限制和挑战。
首先,聚类分析是一种无监督学习方法,对数据的预处理和特征选择十分关键。
其次,选择合适的聚类算法和参数也需要一定的经验和领域知识。
此外,聚类分析对于异常值和噪声敏感,在处理这些问题时需要额外的注意。
总而言之,聚类分析作为一种无监督学习方法,可以帮助我们理解数据之间的相似性和差异性,发现内在的结构和规律。
聚类分析
1
n 1 i 1
n
( x ij x j )
2
25
3、标准化变换
经过标准化变换处理后:
• 每个变量即数据矩阵中每列数据的平均值为0,方
差为1,且也不再具有量纲,同样也便于不同变量 之间的比较; • 数据短阵中任何两列数据乘积之和是两个变量相 关系数的(n-1)倍,所以这是一种很方便地计
算相关矩阵的变换。
28
• 变量之间的聚类即R型聚类分析,常用相似系 数来测度变量之间的亲疏程度。 • 而样品之间的聚类即Q型聚类分析,则常用 距离来测度样品之间的亲疏程度。
29
1、定义距离的准则
定义距离要求满足第i个和第j个样品之间的距离如下四 个条件(距离可以自己定义,只要满足距离的条件)
d ij 0 对一切的 i 和 j 成立 ; d ij 0当且仅当 i j 成立 ;
24
3、标准化变换 标准化变换也是对变量的数值和量纲进行类似于规
格化变换的一种数据处理方法。首先对每个变量进行中心
化变换,然后用该变量的标准差进行标准化。即有:
x ij
*
x ij x j Sj
( i 1, 2 , 3 , , n ; j 1, 2 , 3 , , p )
Sj
19
(2)顺序尺度。指标度量时没有明确的数量表示,只 有次序关系,或虽用数量表示,但相邻两数值之间的差距 并不相等,它只表示一个有序状态序列。如评价酒的味道, 分成好、中、次三等,三等有次序关系,但没有数量表示。 (3)名义尺度。指标度量时既没有数量表示也没有次 序关系,只有一些特性状态,如眼睛的颜色,化学中催化 剂的种类等。在名义尺度中只取两种特性状态的变量是很 重要的,如电路的开和关,天气的有雨和无雨,人口性别 的男和女,医疗诊断中的“十”和“一”,市场交易中的 买和卖等都是此类变量。
聚类分析
第三节 系统聚类分析方法
系统聚类分析的涵义及步骤 系统聚类方法 系统聚类分析方法的统一公式 剩余信息的剔除 谱系分类的确定 系统聚类分析方法的性质
系统聚类分析的涵义及步骤
涵义:是在样品距离的基础上,定义类与 类之间的距离,首先将几个样品自成一类, 然后每次将具有最小距离的两类合并,合 并后重新计算类与类之间的距离,这个过 程一直继续到所有样品归为一类为止。把 这个过程作成一个聚类谱系图。这种方法 即系统聚类。
实际意义原则 数据性质原则
实际意义原则
即所选择的距离或者相似系数应该具有明 确的实际意义。比如经济指标之间的相关 应该是具有现实的经济联系的。
数据性质原则
根据原始数据的各自特点,选择不同的数据变换,再根据不同的数据 变换选择不同的距离或者相似系数。 1、若数据进行了标准化,则相关系数与夹角余弦是一致。 2、若聚类分析前已经对变量的相关性作了处理,则通常采用欧 氏距离,而不必选用斜交空间距离。 3、所选距离应与所选聚类分析方法一致 (1)若聚类方法为离差平方和法时,距离只能选用欧氏距离; (2)工作量大小原则。斜交空间距离的计算量一般很大。 总之,在一般情况下,有以下的经验可以借鉴。相关系数的稳定 性要强于相似系数,而分辨力却弱于相似系数;使用距离和使用 相似系数进行聚类的结果对比,相似系数的计算数值由大到小单 调地减少,所以聚类谱系图能够比较明显地反映分群的情况,而 使用距离的数据有时呈现非单调性增加,聚类谱系图反映的分群 情况就不够明显。
系统聚类分析的涵义及步骤
具体步骤:
数据变换处理;
计算各样品之间的距离,并将距离最近的两个
样品并成一类; 选择并计算类与类之间的距离,并将距离最近 的两类合并,如果类的个数大于1,则继续并 类直到所有样品归为一类; 绘制系统聚类谱系图,按不同的分类标准或不 同的分类原则得出不同的分类结果。
聚类分析数据
聚类分析数据引言概述:聚类分析是一种常用的数据分析方法,通过对数据进行分组,将相似的数据归为一类,不相似的数据归为不同的类别。
聚类分析可以帮助我们发现数据中的隐藏模式和结构,从而更好地理解数据。
本文将介绍聚类分析的基本概念和步骤,并详细阐述聚类分析数据的四个方面。
一、数据预处理1.1 数据清洗:在进行聚类分析之前,需要对数据进行清洗,包括处理缺失值、异常值和重复值等。
缺失值可以通过插值方法进行填充,异常值可以通过统计方法或者专业知识进行识别和处理,重复值可以通过数据去重操作进行处理。
1.2 数据标准化:为了消除数据之间的量纲差异,需要对数据进行标准化处理。
常用的标准化方法包括Z-score标准化和Min-Max标准化。
Z-score标准化将数据转化为均值为0,标准差为1的分布,Min-Max标准化将数据转化为0到1之间的范围。
1.3 特征选择:在聚类分析中,选择合适的特征对于结果的准确性和可解释性至关重要。
可以通过相关性分析、主成分分析等方法进行特征选择,选取与聚类目标相关性较高的特征进行分析。
二、聚类算法选择2.1 K-means聚类算法:K-means是最常用的聚类算法之一,它将数据分为K个簇,每个簇的中心代表该簇的平均值。
K-means算法通过最小化数据点与所属簇中心的距离来确定最佳的簇划分。
2.2 层次聚类算法:层次聚类将数据点逐步合并成簇,形成一个层次结构。
层次聚类算法可以通过自底向上的凝聚聚类或者自顶向下的分裂聚类来实现。
凝聚聚类将每个数据点作为一个初始簇,然后逐步合并相似的簇,直到达到预设的簇数目。
分裂聚类则从一个包含所有数据点的簇开始,逐步将簇分裂成更小的簇,直到达到预设的簇数目。
2.3 密度聚类算法:密度聚类算法通过计算数据点周围的密度来确定簇的边界。
常用的密度聚类算法包括DBSCAN和OPTICS。
DBSCAN算法通过定义邻域半径和最小邻居数目来确定核心对象和边界对象,从而划分簇。
聚类分析方法及其应用
聚类分析方法及其应用聚类分析是一种通过寻找数据中相似模式并将其组织成群集的方法。
它在许多领域中得到广泛应用,如数据挖掘、机器学习、图像处理等。
本文将介绍聚类分析的基本概念和常用方法,并讨论其在实际应用中的一些案例。
一、聚类分析的基本概念聚类分析是一种无监督学习方法,它将数据集中的样本根据相似性进行分组。
相似的样本被分配到同一个群集中,而不相似的样本则分配到不同的群集。
聚类分析的目标是从数据中发现隐藏的结构和模式,并为进一步的分析和决策提供基础。
二、常用的聚类分析方法1. K-means聚类K-means聚类是最常用的聚类算法之一。
它将样本分为K个群集,其中K是用户定义的参数。
算法的核心思想是通过迭代优化,将样本逐步分配到最近的群集中心。
K-means聚类对于处理大规模数据集时具有较高的效率和可伸缩性。
2. 层次聚类层次聚类是一种基于距离和相似性的分层方法。
它从一个群集开始,然后逐步合并或划分群集,直到满足预定义的停止条件。
层次聚类的优势在于不需要预先指定聚类的数量,并且可以生成树状的聚类图谱。
3. 密度聚类密度聚类算法将样本分配到高密度区域,并将低密度区域作为噪声或离群点。
其中最著名的方法是DBSCAN(Density-Based Spatial Clustering of Applications with Noise),它通过定义样本之间的距离和邻域密度来确定聚类。
三、聚类分析的应用案例1. 客户细分聚类分析可以帮助企业将客户分为不同的细分市场。
通过分析客户的购买行为、兴趣偏好等因素,可以发现潜在的市场需求和消费习惯。
2. 社交网络分析聚类分析可以帮助社交媒体平台挖掘用户之间的关系和兴趣群体。
通过聚类分析,可以将用户分为相似的群集,并提供个性化的推荐和广告。
3. 医学图像处理在医学领域,聚类分析可以帮助医生对疾病进行分类和诊断。
通过分析医学图像中的不同特征,可以将病灶分为不同的类型,并辅助医生做出准确的诊断。
《多元统计分析》第三章聚类分析
图像处理
聚类分析可用于图像分割、目 标检测等任务,提高图像处理 的效率和准确性。
社交网络
通过聚类分析,可以发现社交 网络中的社区结构,揭示用户 之间的关联和互动模式。
聚类分析的常用方法
K-均值聚类
一种迭代算法,通过最小化每个簇内对象与簇质 心的距离之和来实现聚类。需要预先指定簇的数 量K。
DBSCAN
感谢聆听
聚类结果的优化方法
层次聚类法
通过不断合并或分裂簇来优化聚类结果,可以灵活处理不同形状 和大小的簇,但计算复杂度较高。
基于密度的聚类法
通过寻找被低密度区域分隔的高密度区域来形成簇,可以发现任意 形状的簇,但对参数敏感。
基于网格的聚类法
将数据空间划分为网格单元,然后在网格单元上进行聚类,处理速 度较快,但聚类精度受网格粒度影响。
一种基于密度的聚类方法,通过寻找被低密度区 域分隔的高密度区域来实现聚类。可以识别任意 形状的簇,且对噪声数据具有较强的鲁棒性。
层次聚类
通过计算对象之间的距离,逐步将数据集构建成 一个层次结构的聚类树。可以分为凝聚法和分裂 法两种。
谱聚类
利用图论中的谱理论进行聚类分析,将数据集中 的对象表示为图中的节点,节点之间的相似度表 示为边的权重。通过求解图的拉普拉斯矩阵的特 征向量来实现聚类。
药物发现
通过对化合物库进行聚类分析,研究人员可以发现具有相 似化学结构和生物活性的化合物,从而加速新药的发现和 开发过程。
生物信息学
在基因表达谱、蛋白质互作网络等生物信息学研究中,聚 类分析可以帮助研究人员发现基因或蛋白质之间的功能模 块和调控网络。
在社交网络中的应用案例
社区发现
聚类分析可用于识别社交网络中的社区结构,即具有相似兴趣、行为或属性的用户群体。 这有助于社交网络运营商为用户提供更加个性化的推荐和服务。
聚类分析
聚类分析:是将样品置入聚类空间,通 过比较样品间的类似程度,即样品间的 距离进行聚类的。 聚类分析是基于多变量数据,对n个样品 进行分类的一种方法。这种方法是将那 些相似的样品归为一类,不同的样品分 别归到各自不同的类别中。聚类分析是 以样品的分类为基本目的的。
聚类分析的分类
1、基于相同率的聚类分析 2、基于相关系数的聚类分析 3、基于主因子的聚类分析 4、基于主成分的聚类分析 5、基于距离的聚类分析
ຫໍສະໝຸດ 小组实验步骤
一:讨论选定实验题目 二:选定问卷调查法; 三:进行问卷设计; 四:发放问卷; 五:录入数据; 六:数据分析; 七:得出结论; 八:小结。
聚类分析的实验
首先我们确定需要的调查的相关内容: 调查对象:瑞京公寓周边餐厅 调查目的:对瑞京公寓周边餐厅进行聚类 分类得出同学们选择餐厅的情况,对其 进行分类。帮助同学们更有效的选择餐 厅。 调查方式:问卷调查
基于相关系数的聚类分析
课本所讲的例子是对某教育局对所属六所中学 根据七项指标A~G进行教学评估,每项指标评 分范围为1~10分。
通过公式:y= ∑(yi -y)(xi-x) (∑σ:西格玛 Sigma ) √ ∑ (yi -y)2 ∑(xi-x)2 计算出六所学校每两所间的相关系数。 再将相关的系数进行聚类分析。 最后根据相关系数及其有关的平均数可作出聚 类分析的树状图。
我们的问卷
我们发放问卷总数40份,废卷4份,有效 问卷36份。
我们将36份问卷的数据一一录入到电脑 中,再利用spss软件对数据进行相关的 聚类分析。 利用公式: 计算出瑞京周边的6间餐厅的相关系数, 对其进行聚类分析。
树状图
聚类分析ppt课件
第一节 引言 第二节 相似性的量度 第三节 系统聚类分析法 第四节 K均值聚类分析 第五节 两步聚类分析
1
第一节 引言
什么是聚类分析? ❖ 聚类分析是根据“物以类聚”的道理,对样本或指
标进行分类的一种多元统计分析方法,它们讨论的 对象是大量的样本,要求能合理地按各自的特性进 行合理的分类,没有任何模式可供参考或依循,即 在没有先验知识的情况下进行的。
1.明考夫斯基距离
p
dij (q) (
X ik X jk )q 1/ q
k 1
明考夫斯基距离简称明氏距离。
(7.1)
13
按q的取值不同又可分成下面的几个式子
(1)绝对距离( q 1)
p
dij (1) X ik X jk k 1
பைடு நூலகம்
(7.2)
(2)欧氏距离( q 2)
p
dij (2) (
X ik X jk )2 1/ 2
22
第三节 系统聚类分析法
一 系统聚类的基本思想 二 类间距离与系统聚类法
23
一、系统聚类的基本思想
❖ 系统聚类的基本思想是:距离相近的样品(或变量)先聚成 类,距离相远的后聚成类,过程一直进行下去,每个样品( 或变量)总能聚到合适的类中。系统聚类过程是:假设总共 有n个样品(或变量),第一步将每个样品(或变量)独自 聚成一类,共有n类;第二步根据所确定的样品(或变量) “距离”公式,把距离较近的两个样品(或变量)聚合为一 类,其它的样品(或变量)仍各自聚为一类,共聚成n 1类 ;第三步将“距离”最近的两个类进一步聚成一类,共聚成 n 2类;……,以上步骤一直进行下去,最后将所有的样品 (或变量)全聚成一类。为了直观地反映以上的系统聚类过 程,可以把整个分类系统画成一张谱系图。所以有时系统聚 类也称为谱系分析。除系统聚类法外,还有有序聚类法、动 态聚类法、图论聚类法、模糊聚类法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
E
A
F B
重心距离
D
4.中间距离法(Median clustering )
如果类与类之间的距离既不采用两类之间最近的距离,也 不采用两类之间最远的距离,而是采用两者之间的距离, 则称为中间距离法.当两类 G p 和 Gq 合并成新类 Gr Gp Gq 时, Gr 与任一类 Gk 的距离如何决定呢? Gkq 、 G pq 为边作三角形,可设 Gkq Gkp ,按最短 以Gkp、 距离法核算类间距离;若 Gkq Gkp ,按最远距离法核 算类间距离;若 Gkq Gkp 取其中线,由初等几何知这 个中线的平方等于任一类 Gk 与 Gr 间的距离。计算公式 如下: 1 2 1 2 1 2 2 Gkr Gkp Gkq G pq 2 2 4
得到新矩阵
G6 G1 G 2 G 5 G 6 0 D1 G1 13.12 0 G 2 24.06 11.67 0 G 5 2.21 12.80 23.54 0
合并类6和类5,得到新类7
类7与剩余的1、2之间的距离分别为:
d(5,6)1=min(d51,d61)=min(12.80,13.12)=12.80 d(5,6)2=min(d52,d62)=min(23.54,24.06)=23.54
0 2.20 3.51
因此将3.4合并为一类,为类6,替代了3、4两类 类6与剩余的1、2、5之间的距离分别为:
d(3,4)1=min(d31,d41)=min(13.80,13.12)=13.12 d(3,4)2=min(d32,d42)=min(24.63,24.06)=24.06 d(3,4)5=min(d35,d45)=min(3.51,2.21)=2.21
1.最短距离法(Nearest neighbor )
2.最长距离法(Furthest neighbor )
C
E
最短距离
A
F
最长距离
B
D
例
为了研究辽宁等5省1991年城镇居民生活消费情况 的分布规律,根据调查资料做类型分类,类内距 离用欧氏距离,用最短距离做类间分类。数据如 下: x1 x2 x3 x4 x5 x6 x7 x8
2
squared
euclidean distance 平方欧式距离 distance 切比雪夫距离 distance 明考斯基距离 (明氏距离)
d Max
t
d xit x jt
p t 1
2
chebychev minkowski
x x
it
jt
1
d
p q xit x jt t 1
得到矩阵
G 7 G 8 D3 G 7 0 G8 12.80 0
最后合并为一个大类。这就是按最短距离定义类间距离的 系统聚类方法。最长距离法类似!
3.重心法(Centroid Cl给出重心法。 两类间的距离为两类重心的距离。 一般重心选定为该类样品的均值。 合并后重新计算新类的重心。
第二节
聚类分析
聚类分析(Cluster Analysis) 是研究“物以类聚”的一种多元 统计方法。国内有人称它为群分 析、点群分析、簇群分析等。
如:市场营销中的客户细分 (性别、年龄、学历、职业、 收入、喜好、消费习惯) 关系密切的同学
一、聚类分析的基本概念及基本数学原理
研究对样品或指标进行分类的一种多元统 计方法,是依据研究对象的个体的特征进行 分类的方法。 聚类分析把分类对象按一定规则分成若干 类,这些类非事先给定的,而是根据数据 特征确定的。在同一类中这些对象在某种 意义上趋向于彼此相似,而在不同类中趋 向于不相似。 职能是建立一种能按照样品或变量的相似 程度进行分类的方法。
p
Mahalanobis 马氏距离
指标协方差 阵的逆矩阵
1 dij (M ) ( X (i ) X ( j ) ) S ( X (i ) X ( j ) )
以上都是样本间距离的定义。
明氏距离的缺点:(1)与各指标量纲有关; (2)没有考虑指标间的相关性;(3)没有考 虑各指标可能具有不同的方差。 兰氏距离消除了量纲影响,但没考虑指标间的 相关性。 马氏距离客服了量纲的影响,其的优点有: (1)不受各指标量纲的影响;(2)排除了各 指标间相关性的干扰;(3)将数据做线性变 换后马氏距离不变。 马氏距离例子计算
从一组复杂数据产生一个相当简单的类结构, 必然要求进行“相关性”或“相似性”的度量。 在相似性度量的选择中,常常包含许多主观上 的考虑,但最重要的考虑是指标的性质或观测 的尺度(名义、次序、间隔)以及相关知识。 课堂上主要讨论的指标测量为间隔尺度的情况。
⒈距离
每个样本有p个指标,因此每个样本可以看成p维 空间中的一个点,n个样本就组成p维空间中的n个 点,这时很自然想到用距离来度量n个样本间的接 近程度。 用dij 表示第i个样本与第j个样本之间的距离。一切 距离应满足以下条件:
聚类分析的基本思想是认为我们所研究的样本或变量 之间存在着程度不同的相似性(亲疏关系)。于是根据 一批样本的多个观测指标,具体找出一些彼此之间相似 程度较大的样本(或变量)聚合为一类,把另外一些彼 此之间相似程度较大的样本(或变量)又聚合为另一类, 关系密切的聚合到一个小的分类单位,关系疏远的聚合 到一个大的分类单位,直到把所有样本(或变量)都聚 合完毕,把不同的类型一一划分出来,形成一个由小到 大的分类系统。最后把整个分类系统画成一张谱系图, 用它把所有样本(或变量)间的亲疏关系表示出来。这 种方法是最常用的、最基本的一种,称为系统聚类分析 (层次聚类)。
x x y s
i i
x 100 % y x
i
i
0
2.归一化法
4.阈值法
y x x
i i n j 1
j
y
ij
x
ij
min xij
max xij min xij
(二)距离和相似系数——类内距离
在进行聚类分析时,样本间的相似系数和距 离有多种不同的定义,通常按特性来划分。变量 特征的测度尺度有三种类型: 间隔尺度(由连续的实值变量表示)定距 有序尺度(没有明确的数量表示,只有次序 关系,如产品等级、学历层次)定序 名义尺度(具有某种特性,如性别)定类
青海5 10.06 28.64 10.52 10.05 16.18 8.39
将每一个省区视为一个样本,先计算5个省区之间 的欧式距离,用D0表示距离矩阵(对称阵,故给 出下三角阵)类间距离使用最短距离法.
辽宁 浙江 D0 河南 甘肃 青海 1 1 0 2 11.67 3 13.80 4 13.12 5 12.80 2 0 24.63 24.06 23.54 3 5 0 2.21 0 4
6.离差平方和法(WARD)
除此以外,还有动态聚类法、图论聚类法、模 糊聚类法、有序聚类法、k-Means聚类、两步 聚类法等。 根据聚类分析使用数据的角度可以将它分为R 型聚类(对变量进行聚类)和Q型聚类(对样 本进行聚类),既能用于探测性研究,也能用 于证实性研究。
R型聚类分析的主要作用:
⒈不但可以了解个别变量之间的亲疏程度,而且可以了解 各个变量组合之间的亲疏程度。 ⒉根据变量的分类结果以及它们之间的关系,可以选择主 要变量进行Q型聚类分析或回归分析。(R2为选择标准)
中间距离
5.类平均法(AVErage method)
1.Between-groups linkage 类间平均法 两类距离为两类元素两两之间平均平方距离 2.Within-groups linkage 类内平均法 两类距离为合并后类中可能元素两两之间平均 平方距离 举例:A、 B与 C、 D
q
当q=1,2时,为绝对值、欧式距离; 若趋近无穷时,则为切比雪夫距离
计算举例
明氏距离在实际的运用很多,但有一些缺点。 例如观测值的单位问题;指标间的相关问题, 因此改进得到以下两种距离:
Lanberra 兰氏距离
1 | xit x jt | dij ( L) p t 1 ( xit x jt )
⒉相似系数 ① 夹角余弦
两变量的夹角余弦定义为:
② 相关系数
两变量的相关系数定义为:
(三)常用的聚类法——类间距离
系统聚类法的聚类原则决定于样品间的距离 以及类间距离的定义,类间距离的不同定义 就产生了不同的系统聚类分析方法。 以下用dij表示样品X(i)和X(j)之间的距离,当样 品间的亲疏关系采用相似系数Cij时, 2 2 令 dij ; 1 Cij 以下用D(p,q)表示类Gp和Gq之间的距离。
Q型聚类分析的主要作用:
⒈可以综合利用多个变量的信息对样本进行分析。 ⒉分类结果直观,聚类谱系图清楚地表现数值分类结果。 ⒊聚类分析所得到的结果比传统分类方法更细致、全面、 合理。 在课堂上主要讨论Q型聚类分析, Q型聚类常用的统计量是距 离.
那么系统聚类法则基本数学原理: 建立一种方法,将一批样本(Q型)或变量(R型)按 照它们在性质上的紧密程度进行分类.一般有两种方 法,一种是把样本看成m维空间的点,在m维坐标中, 定义点与点之间的某种距离;另一种是用某种相似系 数来描述样本点之间的紧密程度. 当确定了样本或变量的距离和相似系数后,就要 对样本或变量进行分类.首先,将m个样本开始时自成 看成一类,然后规定各类(点)之间的距离,将距离最 小的一对并成一类,然后考虑合并后的类与其他类之 间的距离,再进行合并,逐次重复后,直到所有单位全部 合并为止。