大学物理2习题问题详解
大学物理(二)练习册答案
1 大学物理(二)练习册参考解答第12章真空中的静电场一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B),二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aaò×==00d /(U 0=0). (2). ()042e /q q+,q 1、q 2、q 3、q 4 ;(3). 0,l / (2e 0);(4). s R / (2e 0) ;(5). 0 ;(6). ÷÷øöççèæ-p 00114r r qe ;(7). -2³103 V ;(8). ÷÷øöççèæ-p a br r q q 11400e (9). 0,pE sin a ;(10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为l =q / L ,在x 处取一电荷元d q = l d x = q d x / L ,它在P 点的场强:()204d d x d L qE -+p =e ()204d x d L L xq -+p =e 总场强为ò+p =Lx d L x Lq E 020)(d 4-e ()d L d q +p =04e 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在q 处取微小电荷d q = l d l = 2Q d q / p 它在O 处产生场强Ldq P +Q-QROxyPLdd qx (L+d -x ) d ExOq e e d 24d d 20220RQRq E p =p =按q 角变化,将d E 分解成二个分量:分解成二个分量:q q e q d sin 2sin d d 202RQE E x p ==q q e q d cos 2cos d d 202RQE E y p -=-=对各分量分别积分,积分时考虑到一半是负电荷对各分量分别积分,积分时考虑到一半是负电荷úûùêëé-p =òòpp p q q q q e 2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R Q R QE y e q q q q e pp p p -=úûùêëé-p -=òò所以所以j R Q j E i E E y x202e p -=+=3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为l ,试求轴线上一点的电场强度.,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为荷线密度为q l l l d d d p=p =l R取q 位置处的一条,它在轴线上一点产生的场强为位置处的一条,它在轴线上一点产生的场强为q e l e l d 22d d 020RR E p =p =如图所示. 它在x 、y 轴上的二个分量为:轴上的二个分量为:d E x =d E sin q , d E y =-d E cos q 对各分量分别积分对各分量分别积分 R R E x 02002d sin 2e lq q e l pp =p =ò 0d c o s 202=p -=òp q q e lRE y场强场强 i Rj E i E E y x02e lp =+=4. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;体密度;(2) 假设地表面内电场强度为零,假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0e =8.85³10-12 C 2²N -1²m -2) d qR Oxyqd qqq d E y y d l d q R q O d E xx d EOR’O'解:(1) 设电荷的平均体密度为r ,取圆柱形高斯面如图(1)(侧面垂直底面,底面D S 平行地面)上下底面处的上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:,则通过高斯面的电场强度通量为:òòE²S d =E 2D S -E 1D S =(E 2-E 1) D S 高斯面S 包围的电荷∑q i =h D S r由高斯定理(E 2-E 1) D S =h D S r /e∴ () E Eh121-=er =4.43³10-13 C/m 3(2) 设地面面电荷密度为s .由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理由高斯定理òòE ²S d =åi 01q e-E D S =SD se1∴ s=-e 0 E =-8.9³10-10 C/m 35. 一半径为R 的带电球体,其电荷体密度分布为的带电球体,其电荷体密度分布为r =Ar (r ≤R ) , r =0 (r >R ), A 为一常量.试求球体内外的场强分布.为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为的薄球壳,该壳内所包含的电荷为 r r Ar V q d 4d d 2p ×==r在半径为r 的球面内包含的总电荷为的球面内包含的总电荷为 403d 4Ar r Ar dV q rV p =p ==òòr (r ≤R) 以该球面为高斯面,按高斯定理有以该球面为高斯面,按高斯定理有 0421/4e Ar r E p =p ×得到得到 ()0214/e ArE =, (r ≤R ) 方向沿径向,A >0时向外, A <0时向里.时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有的同心高斯球面,按高斯定理有0422/4e AR r E p =p ×得到得到 ()20424/rAR E e =, (r >R ) 方向沿径向,A >0时向外,A <0时向里.时向里.6. 如图所示,一厚为b 的“无限大”带电平板的“无限大”带电平板 , 其电荷体密度分布为r =kx (0≤x ≤b ),式中,式中k 为一正的常量.求:为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;处的电场强度大小;(2) 平板内任一点P 处的电场强度;处的电场强度; (3) 场强为零的点在何处?场强为零的点在何处?解:解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.,如图所示.E(2)xbP 1 P 2Px OSE 2D SE 1(1) h按高斯定理åò=×0e /d q S E S ,即,即 020002d d 12e e r e kSbx x kSxS SEb b ===òò得到得到 E = k b kb 2 / (4e 0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ¢,如图所示.按高斯定理有定理有()022ee k S bx d x kSSE Ex==+¢ò得到得到 ÷÷øöççèæ-=¢22220b x k E e (0≤x ≤b ) (3) E ¢=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为s .如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为s 的大平面和面密度为-s 的圆盘叠加的的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为处产生的场强为 i xx E012e σ=圆盘在该处的场强为圆盘在该处的场强为i x R x x E÷÷øöççèæ+--=2202112e σ ∴ i xR xE E E 220212+=+=e σ 该点电势为该点电势为()22222d 2xRR xR xx U x+-=+=òe se s8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为r =Ar (r ≤R ),式中A 为常量.试求:求:(1) 圆柱体内、外各点场强大小分布;圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:面.则穿过该柱面的电场强度通量为:xS P SE ESSEd xb E ¢sOROxPòp =×SrhE S E2d 为求高斯面内的电荷,r <R 时,取一半径为r ¢,厚d r ¢、高h 的圆筒,其电荷为的圆筒,其电荷为r r Ah V ¢¢p =d 2d 2r则包围在高斯面内的总电荷为则包围在高斯面内的总电荷为3/2d 2d 32Ahrr r Ah V rVp =¢¢p =òòr由高斯定理得由高斯定理得 ()033/22e Ahr rhE p =p 解出解出 ()023/e Ar E = (r ≤R ) r >R 时,包围在高斯面内总电荷为:时,包围在高斯面内总电荷为:3/2d 2d 32AhRrrAh VRVp=¢¢p=òòr由高斯定理由高斯定理 ()033/22e A h R r h E p =p 解出解出 ()r AR E 033/e = (r >R ) (2) 计算电势分布计算电势分布r ≤R 时 òòò×+==lRRrlrrr AR r r A r E U d 3d 3d 0320e e()Rl AR rR A ln 3903330e e +-=r >R 时 rl AR rr AR rE Ulrl rln3d 3d 033e e =×==òò9.一真空二极管,其主要构件是一个半径R 1=5³10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 300 VV ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19 C) 解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为l .按高斯定理有.按高斯定理有 2p rE = l / e 0 得到得到 E = l / (2p e 0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差方向沿半径指向轴线.两极之间电势差òòp -=×=-21d 2d 0R R BAB A rr r E U U el120ln 2R R elp -=得到得到()120/ln 2R R UUAB-=p e l, 所以所以 ()rR R UUE AB1/ln 12×-=在阴极表面处电子受电场力的大小为在阴极表面处电子受电场力的大小为 ()()11211/c R RR UUeReE F AB×-===4.37³10-14 N 方向沿半径指向阳极.方向沿半径指向阳极.RrhABR 2 R 1四 研讨题1. 真空中点电荷q 的静电场场强大小为的静电场场强大小为 241rq E pe=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?何解释?参考解答:参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而同)而路径相等.因而d d d ¹×¢-×=×òòòc ba d l E l E l E 按静电场环路定理应有0d =×òl E , 此场不满足静电场环路定理,所以不可能是静电场.此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?能否求出该点的场强?为什么?参考解答:参考解答:由电势的定义:由电势的定义: ò×=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
大学物理二习题答案与详解第01章 质点运动学习题详解.
习题一一、选择题1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C[ ]错误!(A) (B) (C) (D) 答案:C解:加速度方向只能在运动轨迹内侧,只有[B]、[C]符合;又由于是减速运动,所以加速度的切向分量与速度方向相反,故选(C )。
2. 一质点沿x 轴运动的规律是245x t t =-+(SI 制)。
则前三秒内它的 [ ] (A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。
答案:D 解:3253t t x xx==∆=-=-=-24dx t dt =-,令0dxdt=,得2t =。
即2t =时x 取极值而返回。
所以: 022*********|||||||||15||21|5t t t t S S S x x x x x x ----=====+=+=-+-=-+-=3. 一质点的运动方程是cos sin r R ti R tj ωω=+,R 、ω为正常数。
从t =/πω到t =2/πω时间内(1)该质点的位移是 [ ](A ) -2R i ; (B )2R i; (C ) -2j ; (D )0。
(2)该质点经过的路程是 [ ](A )2R ; (B )R π; (C )0; (D )R πω。
答案:B ;B 。
解:(1)122,t t ππωω==,21()()2r r t r t Ri ∆=-=; (2)∆t 内质点沿圆周运动了半周,故所走路程为πR 。
或者:,x y dx dy v v dt dt==,21,t t v R S vdt R ωπ====⎰4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 [ ](A )大小为/2v ,方向与B 端运动方向相同;(B)大小为/2v ,方向与A 端运动方向相同; (C )大小为/2v , 方向沿杆身方向;(D )大小为/(2cos )v θ ,方向与水平方向成θ角。
大学物理2各章节测试解答重点
大学物理
大学物理
6、 如图所示,任一闭合曲面S内有一点电荷q,O为S面 上任一点,若将q由闭合曲面内的P点移到T点,且 OP=OT,那么 ( ) (A) 穿过S面的电通量改变,O点的场强大小不变; (B) 穿过S面的电通量改变,O点的场强大小改变; (C) 穿过S面的电通量不变,O点的场强大小改变; (D) 穿过S面的电通量不变,O点的场强大小不变。
r R1 R2
R2 dr ln 20 r 20 R1
大学物理
②
R1 r R2
U2
R2 r R r
R2 R E dr E2 dr E3 dr
r R2
R2 dr ln 20 r 20 r
y
40cm
b 30cm e
B
a
30cm
o
50cm
f
x
z
d
大学物理
2. 真空中一载有电流I的长直螺线管,单位长度的 线圈匝数为n,管内中段部分的磁感应强度为 ________ ,端点部分的磁感应强度为________ 1 。 0
nI
( I I ) B d l 0 2 1 __________ 。
9 109 5 109 0.15 E 675N/C 0.05 (0.15 0.05)
dx
大学物理
dq du 40 (l R x)
l
o
A
dx
B
. P
du
lR u ln 40 (l R x) 40 R 0
0.2 u 9 10 5 10 ln 90 ln 2 62.4V 0.05
L2
0 ( I 2 I, ____________ B d l 1)
大学物理2习题参考答案
题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。
(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。
(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。
A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。
3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。
(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。
5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。
一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。
不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。
10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。
221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。
大学物理(二)答案
大学物理(二)练习册 参考解答第12章 真空中的静电场一、选择题1(A),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ; (5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r qε ; (7). -2³103V ; (8).⎪⎪⎭⎫ ⎝⎛-πb a r r q q 11400ε(9). 0,pE sin α ; (10). ()()j y x i xy40122482+-+-- (SI) ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示. 半无限长直线A ∞在O 点产生的场强:()j i R E -π=014ελ半无限长直线B ∞在O 点产生的场强:()j i R E +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i R E +π=034ελ由场强叠加原理,O 点合场强为: ()j i RE E E E +π=++=03214ελBA∞O BA∞∞2. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C .(1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85³10-12 C 2²N -1²m -2)解:(1) 设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S 平行地面)上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E²S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S高斯面S 包围的电荷∑q i =h ∆S ρ由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴() E E h1201-=ερ=4.43³10-13C/m 3(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理⎰⎰E²S d =∑i1qε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9³10-10C/m 33. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R R qE 00204d sin 4d d εφφλεπ=π= 在x 、y 轴上的二个分量d E x =-d E cos φ, d E y =-d E sin φ 对各分量分别求和⎰ππ=000d cos sin 4φφφελR E x =0 RRE y 000208d sin 4ελφφελ-=π=⎰π∴ j Rj E i E E y x008ελ-=+=(2)2(1)4. 一“无限长”圆柱面,其电荷面密度为: σ = σ0cos φ ,式中φ 为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ = σ0cos φ R d φ, 它在O 点产生的场强为:φφεσελd s co 22d 000π=π=R E它沿x 、y 轴上的二个分量为: d E x =-d E cos φ =φφεσd s co 220π-d E y =-d E sin φ =φφφεσd s co sin 20π 积分:⎰ππ-=2020d s co 2φφεσx E =2εσ0)d(sin sin 2200=π-=⎰πφφεσy E∴ i i E E x02εσ-==5. 一半径为R 的带电球体,其电荷体密度分布为4πRqr =ρ (r ≤R ) (q 为一正的常量)ρ = 0 (r >R )试求:(1) 带电球体的总电荷;(2) 球内、外各点的电场强度;(3) 球内、外各点的电势.解:(1) 在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 d q = ρd V = qr 4πr 2d r /(πR 4) = 4qr 3d r/R 4 则球体所带的总电荷为 ()q r r Rq V Q rV===⎰⎰34d /4d ρ(2) 在球内作一半径为r 1的高斯球面,按高斯定理有4041241211d 414Rqr r r Rqr E r r εε=π⋅π=π⎰得402114R qr E επ=(r 1≤R),1E方向沿半径向外.在球体外作半径为r 2的高斯球面,按高斯定理有 0222/4εq E r =π得22024r q E επ=(r 2 >R ),2E方向沿半径向外.(3) 球内电势⎰⎰∞⋅+⋅=RR r r E r E U d d 2111⎰⎰∞π+π=RRr r rq r Rqrd 4d 4204021εε40310123Rqr R qεεπ-π=⎪⎪⎭⎫ ⎝⎛-π=3310412R r R qε ()R r ≤1 球外电势 2020224d 4d 22r q r rq r E U r Rr εεπ=π=⋅=⎰⎰∞()R r >26. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2/ (4ε0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεk S b x d x kSSE E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为i xx E012εσ='圆盘在该处的场强为i x R x x E⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i xR xE E E 220212+=+=εσ该点电势为 ()220222d 2xR R xR x x U x+-=+=⎰εσεσ8.一真空二极管,其主要构件是一个半径R 1=5³10-4m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B A B A rr r E U U ελ120ln 2R R ελπ-= 得到()120/ln 2R R UUAB-=πελ, 所以 ()rR R UUE AB1/ln 12⋅-=在阴极表面处电子受电场力的大小为()()11211/c R R R U U e R eE F A B ⋅-===4.37³10-14N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 241rq E πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
大学物理第2章课后答案
大学物理第2章课后答案(总34页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章 质点动力学四、习题选解2-1 光滑的水平桌面上放有三个相互接触的物体,它们的质量分别为.4,2,1321kg m kg m kg m ===(1)如图a 所示,如果用一个大小等于N 98的水平力作用于1m 的左方,求此时2m 和3m 的左边所受的力各等于多少?(2)如图b 所示,如果用同样大小的力作用于3m 的右方。
求此时2m 和3m 的左边所受的力各等于多少?(3)如图c 所示,施力情况如(1),但3m 的右方紧靠墙壁(不能动)。
求此时2m 和3m 左边所受的力各等 于多少?解:(1)三个物体受到一个水平力的作用,产生的加速度为a()a m m m F321++=232114-⋅=++=s m m m m Fa用隔离法分别画出32,m m 在水平方向的受力图(a ),题2-1(a )图由a m F =a m f f23212=- a m f323= 2332f f =N f 5623= N f 8412=(2)由()a m m m F321++=232114-⋅=++=s m m m m Fa用隔离法画出321m m m 、、在水平方向的受力图(b )由a m F = 得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧====-=-3223122112121232323f f f f am f a m f f a m f F解得: N f 1412= N f 4223=题2-1(b )图(3)由于321m m m 、、都不运动,加速度0=a ,三个物体彼此的作用力都相等,都等于FN f f 982312==2-2 如图所示,一轻质弹簧连接着1m 和2m 两个物体,1m 由细线拉着在外力作用下以加速a 竖直上升。
问作用在细线上的张力是多大?在加速上升的过程中,若将线剪断,该瞬时1m 、2m 的加速度各是多大?解:(1)分别画出1m 、2m 受力的隔离体如图(a ),题2-2(a )图取向上为正方向,由牛顿第二定律⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f T 2211故 ()()a g m m g m g m a m a m T ++=+++=212121 (2)将线剪断,画出21m m 、的隔离体图,如图(b )题2-2(b )图取竖直向上为正方向,由牛顿第二定律得⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f 222111 得⎪⎩⎪⎨⎧+--==-=)(/)'(121222a g m m g a a m g m f a1a 的方向向下,2a的方向向上。
《大学物理》第二章答案解析
* *(1)题2-2图由①、②式消去t ,得1 2 g sin2v 2当t = 2 s 时质点的 ⑴位矢;(2)速度.7aym 16m习题二1 一个质量为P 的质点,在光滑的固定斜面(倾角为 )上以初速度V o 运动, 斜面底边的水平线 AB 平行,如图所示,求这质点的运动轨道. 解:物体置于斜面上受到重力 mg ,斜面支持力N .建立坐标:取V 0方向为X v 0的方向与,平行斜面与X 轴垂直方向为Y 轴•如图2-2. X 方向: F x x V o t Y 方向:F ymg sinma yv yy ^gsint 2x 22 质量为16 kg 的质点在 xOy 平面内运动,受一恒力作用,力的分量为6 N , f y =-7 N ,当 t = 0 时,x y0 , v x = -2 m s -1V y = 0 .解:a xm6 16* *1⑶质点停止运动时速度为零,即 t *,23v xv x0 0 a x dt2 8 227 7v yv y00 a y dt2 —168于是质点在2s 时的速度5 7 .v i j m s 4 8(v °t 1 a x t 2)i1 a.2 .y t J 221 31 7 (2 2 — —4)i -()4J2 82 1613.7 .i j m48v v 0ex vdt: v 0e^dt3 质点在流体中作直线运动,受与速度成正比的阻力 kv (k 为常数)作用,t =0时质点的速度为v o ,证明(1) t 时刻的速度为v = v 0e m ; (2) 由0到t 的时间内经过的距离为d )tx =(一二)[1- e m ]; (3)停止运动前经过的距离为 k mv o 代);⑷证明当t mk 时速答:⑴••• kv amdvdt分离变量,得 dv kdt v vdv v 0vm t kdtln — v °In kte扁故有xkt mv0v0e m dt0k⑷当t= m时,其速度为kV k mv°e m^ v°e 1v e1即速度减至V。
大学物理习题答案02质点动力学
大学物理练习题二一、选择题1. 质量为m的小球在向心力作用下,在水平面内作半径为R、速率为v的匀速圆周运动,如下左图所示。
小球自A点逆时针运动到B点的半周内,动量的增量应为:(A )mv 2j (B )jmv2 (C )i mv 2 (D )i mv 2 [ B ]解: j mv j mv v m v m p A B)(j mv 2 ; 另解:取y 轴为运动正向,mv mv mv p 2)( , pj mv 22. 如图所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A ).2mv (B )22/2v R mg mv(C )v Rmg / (D )0。
[ C ]解: v /R 2T ,2/T t ,t mgd I T 20v /R mg(注)不能用0v m v m p I,因为它是合力的冲量。
3. 一质点在力)25(5t m F (SI )(式中m 为质点的质量,t 为时间)的作用下,0 t 时从静止开始作直线运动,则当s t 5 时,质点的速率为(A )s m /50 (B )s m /25 (C )0 (D )s m /50 [ C ]mvR解:F 为合力,00 v ,0525)25(5525t tt mt mt dt t m Fdt由mv mv mv Fdt tt 00可得0 v解2:由知)25(5t m F 知)25(5t a ,550)25(5dt t adt v v0)5(5520 t t v v , (00 v )4. 质量分别为m和4m的两个质点分别以动能E和4E沿一直线相向运动,它们的总动量大小为(A ),22mE (B )mE 23, (C )mE 25, (D ) mE 2122 。
[ B ]解:由M p Mv E k 22122,有k ME p 2 ,mE 2p 1 ,12p 4)E 4)(m 4(2p ,1123)(p p p p 总m E 235. 一个质点同时在几个力作用下的位移为:k j i r654 (SI ) 其中一个力为恒力k j i F953 (SI ),则此力在该位移过程中所作的功为 (A) 67J (B) 91J (C) 17J (D) –67J [ A ]解:恒力作功,z F y F x F r F A z y x69)5()5(4)3()(67J6. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加。
大学物理2习题答案汇总上课讲义
一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。
已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C )(A) eL P π; (B) eL P π4; (C) eLP π2; (D) 0。
2. 在磁感应强度为B ρ的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
3.半径为R 的长直圆柱体载流为I , 电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B )(A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202r I B πμ=; (D) 202RI B πμ=。
4.单色光从空气射入水中,下面哪种说法是正确的 ( A )(A) 频率不变,光速变小; (B) 波长不变,频率变大;(C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变;(C) 通过S 面的电通量和P 点的电场强度都不变;(D) 通过S 面的电通量不变,但P 点的电场强度改变。
6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂A C直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动;(B) 干涉条纹间距减小,并向B 方向移动;(C) 干涉条纹间距减小,并向O 方向移动;(D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E u r ,其大小和方向为 ( D )(A) E = B ,E u r 沿z 轴正向; (B) E =v B ,E u r 沿y 轴正向; (C) E =B ν,E u r 沿z 轴正向; (D) E =B ν,E u r 沿z 轴负向。
大学物理2-习题详解
’
O'
[详解]本题的解答以电荷线密度为λ的无限长带电直线周围的场强分布结果为基础
1
《大学物理 2》习题详解
西南科技大学城市学院
1 ������
0
数理教研室
吴壮
电荷线密度为λ的无限长带电直线周围的场强分布:������ = 2�方向划分成许多窄条,每一条的宽度为������������,则每一条都可 以看作一根无限长带电直线,称为一个线元。 这样每个线元的电荷线密度 ������′ =
2
《大学物理 2》习题详解
西南科技大学城市学院
数理教研室
吴壮
二、电势
判断题 在均匀带电的球壳内部, 电场强度为零, 但电势不为零。 [场强为零的区域, 电势不变。 答案:√] 电势为零的地方,电场强度一定为零。[如同高度一样,电势没有绝对量,可以将任意 一点规定为电势零点。电场强度大小和电势高低没有任何关系。只能说,电场强度越大的地 方,沿场强方向,电势变化越快。答案:×] 在点电荷+q 的电场中,若取图中 P 点处为电势零点,则 M 点的电势为[ ]
详解:外球壳接地后会均匀带上等量异号电荷-Q. 均匀带电球面内部场强处处为零,因此������������ = 0 均匀带电球面外部的场强分布,等同于电荷集中于球心时的点电荷的场强分布. 场强分布为:������1 = 0,(r ≤ ������1 );������2 = 4������������
1
������������ =
1
4������������0 ������1
(
1
−
1 ������2
)
3
《大学物理 2》习题详解
西南科技大学城市学院
数理教研室
《大学物理学》第二版下册习题解答
大学物理学第二版下册习题解答第一章:力学1.1 力学基本概念1.1.1 力的概念问题:什么是力?力的种类有哪些?解答:力是物体之间相互作用导致的物体运动或形变的原因。
力可以分为以下几种:•接触力:当两个物体接触时产生的力,如弹簧力、摩擦力等。
•引力:天体之间由于引力而产生的力,如地球引力、行星引力等。
•重力:地球上物体受到的引力,是一种特殊的引力。
•弹力:当物体被弹性体拉伸或压缩时,物体回复原状所产生的力。
•阻力:物体在流体中运动时受到的阻碍力,如空气阻力、水阻力等。
1.1.2 力的合成与分解问题:什么是力的合成与分解?如何进行力的合成与分解?解答:力的合成是指将多个力按照一定的规律合成为一个力的过程。
力的分解是指将一个力按照一定的规律分解为多个力的过程。
力的合成可以使用力的三角法进行。
假设有两个力F₁、F₂,其方向分别为α₁、α₂,大小分别为|F₁|、|F₂|,则合力F的大小可以通过以下公式计算:F = √(F₁² + F₂² + 2F₁F₂cos(α₁-α₂))合力F的方向则可以通过以下公式计算:tan(θ) = (F₂sin(α₁-α₂))/(F₁+F₂cos(α₁-α₂))力的分解可以使用力的正弦法和余弦法进行。
假设有一个力F,其大小为|F|,方向为α,要将该力分解为水平方向的力F x和竖直方向的力F x,可以通过以下公式计算:Fₓ = |F|cosα, Fᵧ = |F|sinα1.2 牛顿定律与惯性1.2.1 牛顿第一定律问题:什么是牛顿第一定律?牛顿第一定律适用于哪些情况?解答:牛顿第一定律,也称为惯性定律,指的是:物体在没有受到外力或受到的合外力为零时,物体保持静止或匀速直线运动的状态。
牛顿第一定律适用于只有一个物体或多个物体之间相互独立运动的情况。
当物体受到外力时,按照该定律,物体会发生运动或停止运动。
1.2.2 牛顿第二定律问题:什么是牛顿第二定律?如何计算物体所受合外力和加速度的关系?解答:牛顿第二定律指的是:物体所受合外力等于物体的质量乘以加速度。
大学物理教程第2章习题答案
⼤学物理教程第2章习题答案思考题2.1 从运动学的⾓度看,什么是简谐振动?从动⼒学的⾓度看,什么是简谐振动?答:从运动学的⾓度看,弹簧振⼦相对平衡位置的位移随时间按余弦函数的规律变化,所作的运动就是简谐振动。
从动⼒学的⾓度看,如果物体受到的⼒的⼤⼩总是与物体对其平衡位置的位移成正⽐,⽽⽅向相反,那么该物体的运动就是简谐振动。
2.2 弹簧振⼦的振幅增⼤到2倍时,其振动周期、振动能量、最⼤速度和最⼤加速度等物理量将如何变化?答:弹簧振⼦的运动⽅程为0cos()x A t ω?=+,速度为0sin()v A t ωω?=-+,加速度的为)cos(02?ωω+-=t A a ,振动周期2T =221kA E =。
所以,弹簧振⼦的振幅A 增⼤到2倍时,其振动周期不变,振动能量为原来的4倍,最⼤速度为原来的2倍,最⼤加速度为原来的2倍。
2.3 下列运动是否为简谐振动?(1)⼩球在地⾯上作完全弹性的上下跳动;(2)⼩球在半径很⼤的光滑凹球⾯底部作⼩幅度的摆动;(3)曲柄连杆机构使活塞作往复运动;(4)⼩磁针在地磁的南北⽅向附近摆动。
答:(2)、(4)为简谐振动,(1)、(3)、不是简谐振动。
2.4 三只相同的弹簧(质量忽略不计)都⼀端固定,另⼀端连接质量为m 的物体,它们放置情况不同,其中⼀个平放,⼀个斜放,另⼀个竖直放。
如果它们振动起来,则三者是否均为简谐振动,它们振动的周期是否相同?答:三者均为简谐振动,它们振动的周期也相同。
2.5 当谐振⼦作简谐振动的振幅增⼤为原来的2倍时,谐振⼦的什么量也增⼤为原来的2倍?答:最⼤速度和最⼤加速度。
2.6 ⼀弹簧振⼦作简谐振动,其振动的总能量为E 1。
如果我们将弹簧振⼦的振动振幅增加为原来的2倍,⽽将重物的质量增加为原来的4倍,则新的振⼦系统的总能量是否发⽣变化?答:弹簧振⼦212E kA = ,所以新的振⼦系统的总能量增加为原来的4倍。
2.7 ⼀质点作简谐振动,振动频率为n,则该质点动能的变化频率是多少?答:该质点动能的变化频率是2n。
大学物理第2章 质点动力学习题(含解答)
第2章质点动力学习题解答2-1 如图所示,电梯作加速度大小为a 运动。
物体质量为m ,弹簧的弹性系数为k ,•求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。
解:(a )ma mg N =- )(a g m N += (b )ma N mg =- )(a g m N -= (c )ma mg F =- )(a g m F +=2-2 如图所示,质量为10kg 物体,•所受拉力为变力2132+=t F (SI ),0=t 时物体静止。
该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2,求1=t s 时,物体的速度和加速度。
解:最大静摩擦力)(20max N mg f s ==μmax f F >,0=t 时物体开始运动。
ma mg F =-μ,1.13.02+=-=t mmgF a μ 1=t s 时,)/(4.12s m a =dtdv a =Θ,adt dv =,⎰⎰+=t v dt t dv 0201.13.0t t v 1.11.03+=1=t s 时,)/(2.1s m v =2-3 一质点质量为2.0kg ,在Oxy 平面内运动,•其所受合力j t i t F ρρρ232+=(SI ),0=t 时,速度j v ρρ20=(SI ),位矢i r ρρ20=。
求:(1)1=t s 时,质点加速度的大小及方向;(2)1=t s 时质点的速度和位矢。
解:j t i t m Fa ρρρρ+==223 223t a x =,00=x v ,20=x ⎰⎰=tv x dt t dv x0223,23t v x =⎰⎰⎰==txtx dt t dt v dx 03202,284+=t xt a y =,20=y v ,00=y⎰⎰=tv y tdt dv y02,222+=t v y⎰⎰⎰+==tyty dt t dt v dy 020)22(,t t y 263+=(1)1=t s 时,)/(232s m j i a ρρρ+=(2)j t i t v ρρρ)22(223++=,1=t s 时,j i v ρρρ2521+= j t t i t r ρρρ)26()28(34+++=,1=t s 时,j i r ρρρ613817+=2-4 质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。
大学物理2练习册答案
大学物理2练习册答案问题1:简谐振子的周期公式是什么?答案:简谐振子的周期 \( T \) 可以通过公式 \( T =2\pi\sqrt{\frac{m}{k}} \) 来计算,其中 \( m \) 是振子的质量,\( k \) 是弹簧的劲度系数。
问题2:描述牛顿第二定律的表达式,并给出一个应用实例。
答案:牛顿第二定律的表达式是 \( F = ma \),其中 \( F \) 是作用在物体上的合力,\( m \) 是物体的质量,\( a \) 是物体的加速度。
应用实例:当一个质量为2kg的物体受到10N的力作用时,它的加速度将是 \( 5 m/s^2 \)。
问题3:解释什么是角动量守恒定律,并给出一个例子。
答案:角动量守恒定律指的是,如果没有外力矩作用于一个系统,那么这个系统的总角动量保持不变。
例如,一个旋转的冰上舞者在收缩手臂时,由于半径减小,角速度会增加,以保持角动量守恒。
问题4:解释什么是电场强度,并给出其计算公式。
答案:电场强度是一个矢量量,表示在电场中某一点单位正电荷所受到的电场力。
其计算公式是 \( E = \frac{F}{q} \),其中 \( E \) 是电场强度,\( F \) 是电荷 \( q \) 所受的电场力。
问题5:什么是电流的微观表达式?答案:电流的微观表达式是 \( I = nqAv \),其中 \( I \) 是电流,\( n \) 是单位体积内的电荷数,\( q \) 是单个电荷的电荷量,\( A \) 是导体的横截面积,\( v \) 是电荷的漂移速度。
问题6:解释什么是磁感应强度,并给出其单位。
答案:磁感应强度是一个矢量量,表示磁场在空间某点的强度和方向。
其单位是特斯拉(T)。
问题7:什么是电磁波?描述其基本特性。
答案:电磁波是由变化的电场和磁场相互作用产生的波动现象。
电磁波的基本特性包括:它们可以在真空中传播,具有波长、频率和速度,且电磁波的速度在真空中等于光速 \( c \)。
大学物理(二)课程总复习题及参考解答
大学物理(二)B 课程总复习题及参考解答1. 若()f v 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则2121()d 2⎰v v v v v m Nf 的物理意义是( )。
A . 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之差B . 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之和C . 速率处在速率间隔1~2v v 之内的分子平动动能之和D . 速率处在速率间隔1~2v v 之内的分子的平均平动动能2. 在一容积不变的容器中贮有一定量的理想气体,温度为0T 时,气体分子的平均速率为0v ,平均碰撞频率为0Z ,平均自由程为0λ,当气体温度升高到04T 时,其分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为( )。
A . v =40v ,Z =40Z ,λ=40λB . v =20v ,Z =20Z ,λ=0λC . v =20v ,Z =20Z ,λ= 40λD . v =20v ,Z =20Z ,λ=0λ3. “气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功”对此结论,有如下几种评论中正确的是( )。
A . 不违反热力学第一定律,但违反热力学第二定律B . 不违反热力学第二定律,但违反热力学第一定律C . 不违反热力学第一定律,也不违反热力学第二定律D . 既违反热力学第一定律,也违反热力学第二定律4. 设有以下一些过程:(1)液体在等温下汽化;(2)理想气体在定体下降温;(3)两种不同气体在等温下互相混合;(4)理想气体在等温下压缩;(5)理想气体绝热自由膨胀。
在这些过程中,使系统的熵增加的过程是( )。
A . (1)、(2)、(3)B . (1)、(3)、(5)C . (3)、(4)、(5)D . (2)、(3)、(4)5. 热力学第二定律指出了热力学过程进行的方向性和条件,下列表述中正确的是( )。
A . 功可以全部转化为热量,但热量不能全部转化为功B . 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体C . 不可逆过程就是不能向相反方向进行的过程D . 一切自发过程都是不可逆的6. 设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,21/2()v 代表气体分子运动的方均根速率。
大学物理学第二版 习题解答
大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等 (2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么 (4) 质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) r ∆v 和r ∆v 有区别吗v ∆v 和v ∆v有区别吗0dv dt =v 和0d v dt=v 各代表什么运动 (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变 (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。
大学物理(二)习题参考答案
大学物理(二)习题参考答案14-2、若理想气体的体积为v,压强为p,温度为t,一个分子的质量为m,k为玻耳兹曼常量,r为普适气体常量,则该理想气体的分子数为多少?解:由理想气体状态方程p?nkt?得理想气体的分子数n?nktvpvkt14-8、温度为0oc和100oc时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1ev,气体的温度需是多少?33kt1??1.38? 10? 23? 273j?5.65? 10? 21j2233?23? 21(2)w2?kt2??1.38? 10? (273?100)j?7.72? 10j22解:(1)w1?32w2?1.60?10?19?k?7.73?103k?7.46?103℃(3)w?kt?t??2323k3?1.38?1014-9、某些恒星的温度可达到约1.0×10k,这是发生聚变反应(也称热核反应)所需的温度。
通常在这个温度下,恒星可以被认为是由质子组成的。
发现:(1)质子的平均动能是多少?(2)质子的均方根速度是多少?解:(1)质子的平均动能是w?八33kt??1.38?10?23?1.0?108j?2.07?10?15j22(2)质子的方均根速率是W12mv22w2?2.07?10?16?1?m?s?1.57?10m?sm1.67?10?27?15VRP?还是vrps3kt3?1.38? 10? 23? 1.0? 108? 16? 1.Ms1.57? 10米?s27m1。
67? 10ekn14-12。
解决方案:(1)EK?西北?WNMNammolekmol4。
14? 105? 32? 10? 3.21?WJ8.27? 10j23mna2。
66? 6.02? 十132w2?8.27? 10? 21? K400k(2)w?kt?T23k3?1.38? 10? 2314-17. 解决方案:(1)m1m?rt?p?rt?mmolvmmol2e2e??pmiiv5v?e?rtmmol2?2.6.75? 1025便士?帕1.35? 10帕?35? 2.0? 10pv?3?kt?3e3e3?6.75?102?2?21?j?7.5?10j(2)??w22eiin5n5?5.4?10kt?n2??w?2w2?7.5?10?212t??k?3.62?10k?233k3?1.38? 1014-18、解:已知,v,p,iE惯性矩?rt?mmol2i??Epv?m2pv?rt??mmol?15-2解:已知q,?e由,q??EWWQE2.66? 10j?4.18? 10j??1.52? 10j555,外部世界确实在这个系统上起作用。
大学物理课后习题答案(上下册全)武汉大学出版社 习题2详解
2-1 如题2-1图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为[ ]A. 3mg .B. 2mg .C. 1mg .D. 8mg / 3.答案: D题 2-1图 2-2 一质点作匀速率圆周运动时,[ ] A.它的动量不变,对圆心的角动量也不变。
B.它的动量不变,对圆心的角动量不断改变。
C.它的动量不断改变,对圆心的角动量不变。
D.它的动量不断改变,对圆心的角动量也不断改变。
答案: C2-3 质点系的内力可以改变[ ] A.系统的总质量。
B.系统的总动量。
C.系统的总动能。
D.系统的总角动量。
答案: C2-4 一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头。
不计水和空气阻力,则在此过程中船将:[ ] A.不动 B.后退LC.后退L 21 D.后退L 31答案: C2-5 对功的概念有以下几种说法:[ ]①保守力作正功时,系统内相应的势能增加。
②质点运动经一闭合路径,保守力对质点作的功为零。
③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:A.①、②是正确的。
B.②、③是正确的。
C.只有②是正确的。
D.只有③是正确的。
答案: C2-6 某质点在力(45)F x i =+(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m的过程中,力F所做功为 。
答案: 290J2-7 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最小加速度 。
< < < < <m 2m答案: ()cos sin g μθθ-2-8 一质量为1Kg 的球A ,以5m /s 的速率与原来静止的另一球B 作弹性碰撞,碰后A 球以4m /s 的速率垂直于它原来的运动方向,则B 球的动量大小为 。
练习2大学物理习题及答案
的损失为
4 17
m02r
2
。
J1
1 2
mr
2
J2
1 2
mr 2
8mr 2
B A
角动量守恒 J10 J2
E1
1 2
J102
又:
E2
1 2
J
2
2
E E2 E1
0 r 2r
6题图
三、计算题:
1.以30N·m的恒力矩作用在有固定轴的飞轮上,在10s内飞轮的转速 由零增大到5rad/s,此时移去该力矩,飞轮因摩擦力矩的作用经90s 而停止,试计算此飞轮对其固定轴的轴)转动。开始 时棒与水平成60°角并处于静止状态。无初转速地
l o•
60
释放以后,棒、球组成的系统绕O轴转动,系统
2题图
绕O轴转动惯量J=
3 4
ml
2,释放后,当棒转到水
m
J miri2
平位置时,系统受到的合外力矩M=
1 2
mgl,角
2g
m(
l 2
)2
解:
N1
1
T3
a1
T1' T1
M1g
m1 g
T3'
2 N2
M2g
T2'
T2 a2
m2 g
分析受力,设定各物的加速 度方向,如图
物块: m2g T2 m2a2 T1 m1g m1a1
滑轮: T3r T1'r J1
T2'r T3'r J1
N1
1
T3
a1
大学物理第二册习题答案详解 (修复的)
习题八8-1 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强E →∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-2 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-3 一个点电荷q 放在球形高斯面的中心,试问在下列情况下,穿过这高斯面的E 通量是否改变?高斯面上各点的场强E 是否改变?(1) 另放一点电荷在高斯球面外附近. (2) 另放一点电荷在高斯球面内某处.(3) 将原来的点电荷q 移离高斯面的球心,但仍在高斯面内.(4) 将原来的点电荷q 移到高斯面外.答:根据高斯定理,穿过高斯面的电通量仅取决于面内电量的代数和,而与面内电荷的分布情况及面外电荷无关,但各点的场强E 与空间所有分布电荷有关,故:(1) 电通量不变, Φ1=q 1 / ε0,高斯面上各点的场强E 改变(2) 电通量改变,由Φ1变为Φ2=(q 1+q 2 ) /ε 0,高斯面上各点的场强E 也变(3) 电通量不变,仍为Φ1.但高斯面上的场强E 会变 。
(4) 电通量变为0,高斯面上的场强E 会变.8-4 以下各种说法是否正确,并说明理由.(1) 场强为零的地方,电势一定为零;电势为零的地方,场强也一定为零.(2) 在电势不变的空间内,场强一定为零.(3) 电势较高的地方,场强一定较大;场强较小的地方,电势也一定较低.(4) 场强大小相等的地方,电势相同;电势相同的地方,场强大小也一定相等.(5) 带正电的带电体,电势一定为正;带负电的带电体,电势一定为负.(6) 不带电的物体,电势一定为零;电势为零的物体,一定不带电.答:场强与电势的微分关系是, U E -∇=.场强的大小为电势沿等势面法线方向的变化率,方向为电势降落的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 单项选择题: 1. 正负电子对撞机中电子在周长为L 的储存环中作轨道运动。
已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C )(A) eL Pπ; (B)eL P π4; (C) eLP π2; (D) 0。
2. 在磁感应强度为B 的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
3.半径为R 的长直圆柱体载流为I , 电流I 均匀分布在横截面上,则圆柱体(R r 〈)的一点P 的磁感应强度的大小为 ( B )(A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202r I B πμ=; (D) 202RI B πμ=。
4.单色光从空气射入水中,下面哪种说法是正确的 ( A )(A) 频率不变,光速变小; (B) 波长不变,频率变大;(C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变;(C) 通过S 面的电通量和P 点的电场强度都不变;(D) 通过S 面的电通量不变,但P 点的电场强度改变。
6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂A C直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动;(B) 干涉条纹间距减小,并向B 方向移动;(C) 干涉条纹间距减小,并向O 方向移动;(D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E = B ,E 沿z 轴正向; (B) E =v B ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。
9.三根长直载流导线A ,B ,C 平行地置于同一平面,分别载有稳恒电流I ,2I ,3I ,电流流向如图所示,导线A 与C的距离为d ,若要使导线B 受力为零,则导线B 与A 的距离应为( A )(A) 41d ; (B) 43d ; (C) d 31; (D) d 32. 10.为了增加照相机镜头的透射光强度,常在镜头上镀有一层介质薄膜,假定该介质的折射率为n ,且小于镜头玻璃的折射率,当波长为λ的光线垂直入射时,该介质薄膜的最小厚度应为 ( D )(A)2λ; (B) n 2λ; (C) 4λ; (D) n 4λ. 11. 对于安培环路定理的正确理解是 ( C )(A) 若0L B dr ⋅=⎰,则必定L 上B 处处为零;(B) 若0L B dr ⋅=⎰,则必定L 不包围电流;(C) 若0L B dr ⋅=⎰,则必定L 包围的电流的代数和为零;(D) 若0L B dr ⋅=⎰,则必定L 上各点的B 仅与L 的电流有关。
12.半径为R 的长直圆柱体载流为I , 电流I 均匀分布在横截面上,则圆柱体外(R r >)的一点P 的磁感应强度的大小为 ( A )(A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202r I B πμ=; (D) 202RI B πμ=。
13.如图所示,两导线中的电流I 1=4 A ,I 2=1 A ,根据安培环路定律,对图中所示的闭合曲线C 有 C B d r ⋅⎰= ( A )(A) 3μ0; (B )0;(C) -3μ0; (D )5μ0。
14. 在磁感应强度为B 的均匀磁场中,垂直磁场方向上取一边长为a 的立方形面,则通过该面的磁通量的大小为: ( A )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
15.静电场的环路定理L E dr ⋅⎰=0,表明静电场是( A )。
(A) 保守力场; (B) 非保守力场; (C) 均匀场; (D) 非均匀场。
16. 一半径为R 的均匀带电圆环,电荷总量为q, 环心处的电场强度为( B ) (A) 204qR πε; (B) 0; (C) 04q R πε; (D) 2204q R πε.17. 以下说确的是 ( D )(A) 如果高斯面上E 处处为零,则高斯面必无电荷;(B) 如果高斯面上E 处处不为零,则高斯面必有电荷;(C) 如果高斯面电荷的代数和为零,则高斯面上的E 必处处为零;(D) 如果高斯面电荷的代数和为零,则此高斯面的电通量ΦE 等于零。
18. 真空中两块相互平行的无限大均匀带电平板,其中一块电荷密度为σ,另一块电荷密度为2σ,两平板间的电场强度大小为 ( D ) (A)032σε; (B) 0σε; (C) 0; (D) 02σε。
二、填空题:1. 法拉第电磁感应定律一般表达式为 dtd Φ-=ε 。
2. 从微观上来说, 产生动生电动势的非静电力是 洛仑兹力 。
3. 如图,一电子经过A 点时,具有速率v 0=1×107m /s 。
欲使这电子沿半圆自A 至C 运动,所需的磁场大小为1.13×10-3T ,方向为 垂直纸面向里 。
(电子质量=9.1×10-31 kg, 电子电量=-1.6×10-19 C )4.如图所示,当通过线圈包围面的磁感线(即磁场)增加时,用法拉第电磁感应定律判断,线圈中感应电动势的方向为 顺时针方向 (从上往下看)。
5.如图所示,在长直电流I 的磁场中,有两个矩形线圈①和②,它们分别以速度ν平行和垂直于长直电流I 运动,如图所示。
试述这两个线圈中有无感应电动势:线圈①中 没有 感应电动势,线圈②中 有 感应电动势。
6. 相干光的相干条件为(1) 频率相同 ;(2) 振动方向相同 ;(3) 相位差恒定 。
7. 电流为I 的长直导线周围的磁感应强度为 02I rμπ 。
8. 两平行直导线相距为d ,每根导线载有电流I 1=I 2=I ,则两导线所在平面与该两导线等距离的一点处的磁感应强度B= 02I dμπ或0 。
9. 如图A I I 821==, I 1的方向垂直纸面向外,I 2反之。
对于三条闭合回路有:a B dl ⋅⎰= -8μ0 ;b B dl ⋅⎰ 8μ0 ;cB dl ⋅⎰= 0 。
10. 图示导体ab 置于螺线管的直径位置上,当螺线管接通电源一瞬间,管的磁场如图所示,那么涡旋电场沿 逆时针 方向,=ab ε 0 。
11. 若匀强电场的场强为E ,方向平行于半球面的轴线,如图所示,若半球面的半径为R ,则通过此半球面的电场强度通量Φe = πR 2E 。
12.两个无限长同轴圆筒半径分别为R 1和R 2(R 1< R 2),单位长度带电量分别为+λ和-λ。
则筒(r<R 1)处的电场大小为 0 、两筒间的电场大小为 E=02rλπε 、外筒外的电场大小为 0 。
13.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距变小;在单缝衍射中,衍射角越大,所对应的明条纹亮度越小。
14.两个平行的无限大均匀带电平板,其电荷面密度分别为+σ和+2σ,如图所示。
则B 、C 两个区域的电场强度分别为E B =0(2)σε-;E C = 03(2)σε。
(设方向向右为正)。
15.一个捕蝴蝶的网袋放在均匀的电场E 中,网袋的边框是半径为a 的圆,且垂直于电场,则通过此网袋的电场通量为 2e E a πΦ=。
16.导体处于静电平衡的条件是int 导体内部场强处处为零(或者E =0)和 E ⊥导体表面紧邻处的场强必定和导体表面垂直(或者表面)。
三、简答题:1. 一矩形线圈在均匀磁场中平动,磁感应强度的方向与线圈平面垂直,如图所示。
问:(1)整个线圈中的感应电动势是多少?(2)a 点与b 点间有没有电势差?参考解答: (1)因为磁场是均匀的,且线圈匀速运动,由法拉弟电磁感应定律知, =d dtΦ-【1分】,且Φ不变【1分】,所以 =0。
【1分】 (2)但线圈与运动速度v 垂直的两条边则产生动生电动势,其大小均为ε′=B l v 【1分】,故a 、b 两点之间存在电势差,a 点电势高于b 点【1分】。
在整个线圈回路中,两条边的电动势方向相反,相互抵消,对整个线圈的电动势为零不影响。
【1分】2. 把同一光源发的光分成两部分而成为相干光的方法有哪几种?这几种方法分别有什么特点并举例?参考解答:把同一光源发的光分成两部分而成为相干光的方法有两种:分波阵面法和分振幅法【2分】。
分波阵面法是指把原光源发出的同一波阵面上的两部分作为两子光源而取得相干光的方法,如氏双缝干涉实验等【2分】;分振幅法是指将一普通光源同一点发出的光,利用反射、折射等方法把它“一分为二”,从而获得相干光的方法,如薄膜干涉等【2分】。
3. 将尺寸完全相同的铜环和铝环适当放置,使通过两环的磁通量的变化率相等。
问:(1)这两个环中的感应电流是否相同?(2)这两个环中的感生电场是否相同?参考解答:感应电流不同【1.5分】,感生电场相同。
【1.5分】(1)根据电磁感应定律,若两环磁通量的变化率相等,则两环感应电动势相等,但两环的电阻率不同,因而感应电流不相等。
铝的电阻率比铜的大,因而铝部的感应电流较小。
【1分】(2)感生电场与磁感应强度的变化率有关,因而与磁通量的变化率有关,与导体的材料无关。
故在两环感生电场是相同的。
【1分】4. 同一条电场线上任意两点的电势是否相等? 为什么? (5分)参考解答:同一条电场线上任意两点的电势不可能相等【3分】,因为在同一条电场线上任意两点(例如a ,b 两点)之间移动电荷(可取沿电场线的路径)的过程中,电场力做功不等于零,即U a -U b =ba E d r ⋅⎰≠0【2分】也可这样说明,因电场线总是由高电势处指向低电势处,故同一条电场线上任意两点的电势不会相等。
四、计算题:1. 两平行直导线相距d=40cm ,每根导线载有电流I 1=I 2=20A ,如图所示。
求:(1)两导线所在平面与该两导线等距离的一点处的磁感应强度;(2)通过图中斜线所示面积的磁通量。