(word完整版)初二数学分式方程练习题(含答案),推荐文档

合集下载

解分式方程50题八年级数学上册精选全文完整版

解分式方程50题八年级数学上册精选全文完整版

可编辑修改精选全文完整版【专题】解分式方程(50题)一、计算题1.解分式方程(1)3−x x−4+14−x=1(2)x+1x−1−4x 2−1=12.计算:15x+2x 2+x =31+x .3.解分式方程(1)3x x+2+2x−2=3;(2)1x−1−2x+1=4x 2−1.4.解方程:3+x x−4+1=34−x .5.解下列分式方程: (1)x 2x−5+55−2x =1(2)4x 2−4−1x−2=3x+26.解下列分式方程:(1)1x+2=1 3x(2)3x+1−x1−x=17.解方程:2x−2=6x2−4.8.解分式方程:xx+1+1=32x+2.9.解分式方程:1x−2=1−x2−x−410.解关于x的方程:xx+3=1+2x−1.11.解方程:4x2−1=x x+1−112.解方程:(1)3x=2x−2(2)2x 2x−1+51−2x=313.解分式方程:1+4x−5=2x5−x.14.解方程:x+1x−1−3x+1=1 .15.解方程:x−1x+1−2x 2−1=1.16.解分式方程: (1)21−x +1x =0.(2)x x−1+3(x−1)(x−4)=1.17.解分式方程:2x 2x−1+512x =3.18.解方程:xx−3−3(x−3)2=1.19.解分式方程:x−1x +3x+2=1.20.解方程:(1)x x−1=2x−1x−1(2)x x 2+x −3x+1=121.解分式方程:(1)x 2−8x 2−4=1+12−x ;(2)x−2x−3=2−16−2x.22.解分式方程: (1)2x−1=1x+1(2)1+6x 2−9=x x−323.1x−5=10x 2−25.24.解分式方程:x x−1−2x+1=1.25.解方程:2x−3x 2−1−1x+1=2x−1.26.解方程:5x−2−3x =027.解方程:x x−1−1=2x+128.解下列分式方程:(1)2−x x−3+4=13−x(2)x x−2−1=1x 2−429.解方程1x−2+1=2x 2x+1.30.解方程:(1)x x−2−1=1x 2−4(2)3x x+2+2x−2=331.解方程:(1)x−1x+1−3x 2−1=1 ;(2)x x−2−8x 2−2x =1 .32.解分式方程: (1)1x +11.5x =772(2)x−2x−3+13−x =533.解方程:(1)5x 2+x −1x 2−x =0(2)x−2x+2−16x 2−4=x+2x−234.解分式方程(1)x 2x−3+53−2x =4(2)1x−1−2x+1=4x 2−135.解方程:2x3+2x−1=39−4x2.36.解方程:2x3x+3+1=xx+1.37.解方程:xx−2−8x2−4=138.解方程:1−x2−x=1x−2+3.39.解方程:2−2yy+1=3y−1.40.解分式方程:3(x−1)(x+2)+1=xx−1.41.解方程:(1)x−8x−7−17−x=8;(2)xx−2+1x2−4=1.42.解方程: 2x+1−31−x =61−x 2.43.解方程:(1)1x−3−2=3x 3−x ;(2)x+1x−1−4x 2−1=1 .44.解方程(1)x−3x−2+1=32−x(2)x x−1−1=3(x+2)(x−1)45.解方程:(1)x x+3=1+2x−1(2)x−1x 2+x =43x+346.解方程: x x−1 = 2x 3x−3 +147.解分式方程:(1)2x−2+3=1−x 2−x(2)xx+3+6x2−9=x−2x−348.解方程:32−13x−1=56x−2.二、解答题49.阅读下面材料,解答后面的问题.解方程:x−1x -4xx−1=0.解:设y=x−1x,则原方程可化为y-4y=0,方程两边同时乘y,得y2-4=0,解得y1=2,y2=-2.经检验,y1=2,y2=-2都是方程y-4y=0的解.当y=2时,x−1x=2,解得x=-1;当y=-2时,x−1x=-2,解得x=13.经检验,x1=-1,x2=13都是原分式方程的解.所以原分式方程的解为x1=-1,x2=13.上述这种解分式方程的方法称为换元法.问题:(1)若在方程x−14x-x x−1=0中,设y=x−1x,则原方程可化为;(2)若在方程x−1x+1-4x+4x−1=0中,设y=x−1x+1,则原方程可化为;(3)模仿上述换元法解方程:x−1x+2-3x−1-1=0.50.已知a,b,c,d都是互不相等的正数.(1)若ab=2,cd=2,则badc,acbd(用“>”,“<”或“=”填空);(2)若ab=cd,请判断ba+b和dc+d的大小关系,并证明;(3)令ac=bd=t,若分式2a+ca−c−3b+db−d+2的值为3,求t的值.。

分式方程计算题100道及答案

分式方程计算题100道及答案

分式方程计算题100道及答案篇1:分式方程练习题及答案分式方程练习题及答案分式方程练习题及答案一选择1.下面是分式方程的是()a. b.c. d.2.若得值为-1,则x等于( )a. b. c. d.3.一列客车已晚点6分钟,如果将速度每小时加快10千米,那么继续行驶20千米便可正点运行,如果设客车原来行驶的速度是x千米/小时,可列出分式方程为()a. b.c. d.4.分式方程的解为()a.2b.1c.-1d.-25.若分式方程的解为2,则a的值为()a.4b.1c.0d.26.分式方程的解是()a.无解b.x=2c. x=-2d. x=2或x=-27.如果关于x的方程无解,则m等于()a.3b. 4c.-3d.58.解方程时,去分母得( )a.(x-1)(x-3)+2=x+5b. 1+2(x-3)=(x-5)(x-1)c. (x-1)(x-3)+2(x-3)=(x-5)(x-1)d.(x-3)+2(x-3)=x-5二、填空9.已知关于的分式方程的根大于零,那么a的取值范围是 .10.关于的分式方程有增根 =-2,那么k= .11.若关于的方程产生增根,那么m的值是 .12.当m= 时,方程的解与方程的解互为相反数.13.为改善生态环境,防止水土流失,某村拟定在荒坡地上种植960棵树,由于青年团员的支援,每日比原计划多种20课,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植x棵树,根据题意列方程为 .14.如果,则a= ;b= .三、解答题15.解分式方程16.已知关于的方程无解,求a的值?17.已知与的.解相同,求m的值?18.近年来,由于受国际石油市场的影响,汽油价格不断上涨.下面是小明与爸爸的对话:小明:“爸爸,听说今年5月份的汽油价格上涨了不少啊!”爸爸:“是啊,今年5月份每升汽油的价格是去年5月份的倍,用元给汽车加的油量比去年少升.”小明:“今年5月份每升汽油的价格是多少呢?”聪明的你,根据上面的对话帮小明计算一下今年5月份每升汽油的价格?19.武汉一桥维修工程中,拟由甲、乙两各工程队共同完成某项目,从两个工程队的资料可以知道,若两个工程队合作24天恰好完成,若两个工程队合作18天后,甲工程队再单独做10天,也恰好完成,请问:⑴甲、乙两工程队完成此项目各需多少天?⑵又已知甲工程队每天的施工费用是0.6万元,乙工程队每天的施工费用是0.35万元,要使该项目总的施工费用不超过22万元,则乙工程队至少施工多少天?参考答案一、选择1.d2.c3.b4.a5.a6.b7.a8.c二、填空9.a<2 10.1 11.1 12.m=-3 13. 14.3, 2三、解答题15.⑴ 解:方程变形为两边同时乘以(x2-9)得,x-3+2x+6=12,x=3,经检验x=3是原方程的增根,故原方程无解.⑵ 解:两边同时乘以(x2-4)得x(x+2)-(x+14)=2x(x-2)-(x2-4);整理得,5x=18, ,经检验是原方程的解.(3)解:方程两边同时乘以想x(x2-1)得,5x-2=3x,x=1,经检验x=1是原方程的增根,故原方程无解.(4).解:两边同乘以(2x+3)(2x-3)得2x(2x+3)-(2x-3)=(2x-3)(2x+3)整理得4x=-12,x=-3,经检验x=-3是原方程的根.16.解:因为原方程无解,所以最简公分母x(x-2)=0,x=2或x=0;原方程去分母并整理得a(x-2)-4=0;将x=0代入得a(0-2)-4=0,a=-2;将x=2代入得a0-4 =0,a无解,故综上所述a=-2.17. 解:,x=2,经检验x=2是原方程的解,由题意可知两个方程的解相同,所以把x=2代入第二个方程得,故m=10.18. 解:设去年5月份汽油的价格为x元/升,则今年5月份的价格为1.6x元/升,依题意可列方程为,解得x=3,经检验x=3是原方程的解也符合题意,所以1.6x=4.8,故今年5月份汽油的价格是4.8元/升.19.解:⑴设甲工程队单独完成该项目需要天,乙单独完成该项目需要天,依题意可列方程组为解得,经检验是原方程组的解,也符合题意.⑵设甲、乙两工程队分别施工a天、b天,由于总施工费用不超过22万元,可得,解得,b取最小值为40.故⑴甲、乙两工程队单独完成此项目分别需40天、60天.⑵乙工程度至少要施工40天.篇2:分式方程应用题及答案分式方程应用题及答案一、a、b两地相距48千米,一艘轮船从a地顺流航行至b 地,又立即从b地逆流返回a地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程求解。

(word完整版)八年级数学下册分式方程应用题专题训练(答案)

(word完整版)八年级数学下册分式方程应用题专题训练(答案)

1.(2018•哈尔滨模拟)某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?【解答】解:(1)设原计划每天修x米,由题意得﹣=5解得x=80,经检验x=80是原方程的解,则=25天,答:修这段路计划用20天。

(2)设甲工程队至少要修路a天,则乙工程队要修路20﹣a天,根据题意得120a+80(20﹣a)≥2000,解得a≥10,所以a最小等于10.答:甲工程队至少要修路10天.2.(2018•南岗区一模)某商店用640元钱购进水果销售,过了一段时间,又用1600元钱购进这种水果,所购数量是第一次购进数量的2倍,但每千克水果的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的50千克水果按标价的六折优惠销售.若两次购进水果全部售完,利润不低于400元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果x千克,根据题意得:﹣=2,解得:x=80,经检验,x=80是原方程的解,答:该商店第一次购进水果80千克.(2)设每千克水果的标价是y元,则(80+160﹣50)y+50×60%y﹣640﹣1600≥400,解得:y≥12,答:每千克水果的标价至少是12元.3.(2018•雨城区校级模拟)为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得:m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.设总利润为W,则W=(240﹣100)x+80(200﹣x)=60x+16000(95≤x≤105),所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.4.(2018•松北区一模)某学校九年级举行乒乓球比赛,准备发放一些奖品进行奖励,奖品设为一等奖和二等奖.已知购买一个一等奖奖品比购买一个二等奖奖品多用20元.若用400元购买一等奖奖品的个数是用160元购买二等奖奖品个数的一半.(1)求购买一个一等奖奖品和一个二等奖奖品各需多少元?(2)经商谈,商店决定给予该学校购买一个一等奖奖品即赠送一个二等奖奖品的优惠,如果该学校需要二等奖奖品的个数是一等奖奖品个数的2倍还多8个,且该学校购买两个奖项奖品的总费用不超过670元,那么该学校最多可购买多少个一等奖奖品?【解答】解:(1)设购买一个二等奖奖品需x元,则购买一个一等奖奖品需(x+20)元,根据题意得:=•,解得:x=5,经检验,x=5是原分式方程的解,∴x+20=25.答:购买一个二等奖奖品需5元,购买一个一等奖奖品需25元.(2)设该学校可购买a个一等奖奖品,则可购买(2a+8)个二等奖奖品,根据题意得:15a+5(2a+8﹣a)≤670,解得:a≤21.答:该学校最多可购买21个一等奖奖品.5.(2018•黄岛区一模)学校计划选购甲、乙两种图书作为校园图书节的奖品,已知甲种图书的单价是乙种图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,要使购买的甲种图书数量不少于乙种图书的数量的一半,如何购买使得所需费用最少?最少费用是多少?【解答】解:(1)设乙种图书的单价为x元/本,则甲种图书的单价为1.5x元/本,根据题意得:﹣=10,解得:x=20,经检验,x=20是原方程的根,且符合题意,∴1.5x=30.答:甲种图书的单价为30x元/本,乙种图书的单价为20元/本.(2)设购买甲种图书m本,则购买乙种图书(40﹣m)本,根据题意得:m≥(40﹣m),解得:m≥,∵m为整数,∴m≥14.设购书费用为y元,则y=30m+20(40﹣m)=10m+800,∵10>0,∴y随m的增大而增大,∴当m=14时,y取最小值,最小值=10×14+800=940.答:购买14本甲种图书、26本乙种图书费用最少,最少费用为940元.6.(2018•道外区一模)某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务.已知甲车间的加工能力是乙车间加工能力的1.5倍,并且加工240件需要的时间甲车间比乙车间少用2天.(1)求甲、乙每个车间的加工能力每天各是多少件?(2)甲、乙两个车间共同生产了若干天后,甲车间接到新任务,留下乙车间单独完成剩余工作,求甲、乙两车间至少合作多少天,才能保证完成任务.【解答】解:(1)设乙车间的加工能力每天是x件,则甲车间的加工能力每天是1.5x 件.根据题意得:﹣=2,解得:x=40.经检验x=40是方程的解,则1.5x=60.答:甲、乙每个车间的加工能力每天分别是60件和40件;(2)设甲、乙两车间合作m天,才能保证完成任务.根据题意得:m+[1200﹣(40+60)m]÷40≤15,解得m≥10.答:甲、乙两车间至少合作10天,才能保证完成任务.7.(2018•东莞市校级一模)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?【解答】解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,且符合实际意义,∴x﹣5=45.答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,解得:y=23,∴3y﹣5=64.答:该商场购进甲种牛奶64件,乙种牛奶23件.8.(2018•阿城区模拟)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?【解答】解:(1)设第一批每只文具盒的进价是x元,根据题意得:﹣=10,解得:x=15,经检验,x=15是方程的解,答:第一批文具盒的进价是15元/只;(2)设销售y只后开始打折,根据题意得:(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥1440×20%,解得:y≥40.答:至少销售40只后开始打折.9.(2018•铁西区模拟)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【解答】解:(1)设甲车速度为x千米/时,则乙车的速度是x千米/时,依题意得:=+,解得:x=60.经检验:x=60是原方程的解.答:设甲车速度为60千米/时;(2)设甲车提速y千米/时,依题意得:180﹣(×2+)(60+y)≤30,解得:y≥15.所以甲车至少提速15千米/时.10.(2018•长春模拟)甲乙两地相距72千米,李磊骑自行车往返两地一共用了7小时,已知他去时的平均速度比返回时的平均速度快,求李磊去时的平均速度是多少?小芸同学解法如下:解:设李磊去时的平均速度是x千米/时,则返回时的平均速度是(1﹣)x千米/时,由题意得:+=7,…你认为小芸同学的解法正确吗?若正确,请写出该方程所依据的等量关系,并完成剩下的步骤;若不正确,请说明原因,并完整地求解问题.【解答】解:小芸同学的解法不正确.理由为:“去时的平均速度比返回时的平均速度快”并不等于“返回时的平均速度比去时的平均速度慢”.正确的解法是:设返回时的平均速度为x千米/时,则去时的平均速度为(1+)x 千米/时,根据题意得:+=7,解得:x=18,经检验,x=18是原分式方程的解,∴(1+)x=(1+)×18=24.答:李磊去时的平均速度是24千米/时.11.(2017秋•福州期末)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)【解答】解:(Ⅰ)设这种篮球的标价为x元.由题意:﹣=5,解得:x=50,经检验:x=50是原方程的解.答:这种篮球的标价为50元.(Ⅱ)购买购买100个篮球,所需的最少费用为3850元.方案:在A超市分两次购买,每次45个,费用共为3450元,在B超市购买10个,费用400元,两超市购买100个篮球,所需的最少费用为3850元.12.(2017秋•青山区期末)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.(1)周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为米/分(直接用含m,n的式子表示).【解答】解:(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据题意得:=,解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=300.答:李强的速度为80米/分,张明的速度为300米/分.(2)①∵m=12,n=5,∴5÷(12﹣1)=(分钟).故李强跑了分钟;②李强跑了的时间:分钟,张明跑了的时间:+n=分钟,张明的跑步速度为:6000÷=米/分.故答案为:.13.(2017秋•汶上县期末)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.。

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析1.已知关于的方程的解是正数,则m的取值范围为.【答案】【解析】本题主要考查了分式方程的解. 先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.解:原方程整理得:2x+m=3x-6解得:x=m+6因为x>0,所以m+6>0,即m>-6.①又因为原式是分式方程,所以,x≠2,即m+6≠2,所以m≠-4.②由①②可得,则m的取值范围为m>-6且m≠-4.2.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳下,则可列关于的方程为.【答案】【解析】本题考查了分式方程的应用.如果设小林每分钟跳x下,那么小群每分钟跳(x+20)下.题中有等量关系:小林跳90下所用的时间=小群跳120下所用的时间,据此可列出方程.解:由于小林每分钟跳x下,所以小群每分钟跳(x+20)下.根据相同时间内小林跳了90下,小群跳了120下,可知3.甲、乙制作某种零配件,甲每天比乙多做5个,甲制作75个零件所用的天数与乙制作50个零件的天数相等,则甲、乙每天制作的零件数分别为________________.【答案】15个和10个【解析】本题考查了分式方程的应用.由甲每天做x个零件,甲每天比乙多做5个,可知乙每天做(x-5)个零件.根据关键描述语“甲做75个所用的天数与乙做50个所用的天数相等”得到等量关系:甲做75个零件所用的时间=乙做50个零件所用的时间,据此列出方程.解:设甲每天做x个零件,则乙每天做(x-5)个零件.由题意,有.解得:x=15则15-5=10(个)4.解方程:(1)(2)【答案】(1)(2)x=2是增根,原方程无解【解析】本题主要考查了解分式方程.根据方程两边都乘最简公分母,可把分式方程转换为整式方程.(1)方程两边都乘(x-2)(x+2),得x(x+2)+6(X-2)= (x-2)(x+2)解得:x=1经检验是原方程的解.∴方程的解为x=1(2)方程两边都乘3(x-2),得3(5x-4) = 4X+10-3(x-2)解得:x=2经检验x=2是增根.∴原方程无解5.某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?【答案】60米【解析】本题主要考查了分式方程的应用.求的是新工效,工作总量为3000,一定是根据工作时间来列等量关系.本题的关键描述语是:“一共用30天完成了任务”;等量关系为:600米所用时间+剩余米数所用时间=30.解:设引进新设备前平均每天修路x米.根据题意,得:解得:x=60.经检验:x=60是原方程的解,且符合题意.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)乙队单独完成该工程省钱【解析】本题主要考查了分式方程的应用. (1)根据甲、乙合做24天可完成列方程求解(2)分别求出各个条件的工程款进行比较.解:设乙队单独完成这项工程需要x天根据题意得:解得:x=90(2)甲队工程款:60 3.5=210万元, 乙队工程款:902=180万元设甲乙两队全程合作完成该工程需要y天解得:y=36合作工程款: (3.5+2) 36=198万元故乙队单独完成该工程省钱7.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【答案】(1)每个甲种零件的进价为8元,每个乙种零件的进价为10元(2)方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个【解析】本题主要考查了分式方程的应用.(1)关键语是“用80元购进甲种零件的数量与用100元购进乙种零件的数量相同”可根据此列出方程.(2)题中“根据进两种零件的总数量不超过95个”可得出关于数量的不等式方程,根据“使销售两种零件的总利润(利润=售价-进价)超过371元”看俄得出关于利润的不等式方程,组成方程组后得出未知数的取值范围,然后根据取值的不同情况,列出不同的方案解:(1)设每个乙种零件进价为x元,则每个甲种零件进价为(x-2)元.由题意得:解得:x=10.检验:当x=10时,x(x-2)≠0∴x=10是原分式方程的解.x-2=10-2=8∴每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件个,则购进甲种零件个由题意得解得.∵y为整数,或.共有2种方案.分别是:方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个8.当______时,的值等于.【答案】3【解析】本题主要考查了解分式方程. 由题意可得分式方程=,方程两边同乘以2(5+x),去分母,化为整式方程求解.解:由题意可得分式方程:=,方程两边同乘以2(5+x),得2(1+x)=5+x,整理得x=3,经检验,原方程的解为x=3.9.下列说法中错误的是()A.分式方程的解等于0,就说明这个分式方程无解B.解分式方程的基本思路是把分式方程转化为整式方程C.检验是解分式方程必不可少的步骤D.能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解.【答案】A【解析】本题考查对解分式方程基本思想的理解.去分母,转化为整式方程求解,检验是解分式方程的常规方法.而分式方程的解有可能是0.解:A、方程的解为0,不等于分母为0,所以说法是错误的.而B、C、D都围绕解分式的基本思想和步骤来说明的,所以是正确的.故选A.10.解分式方程,下列说法中错误的是()A.方程两边分式的最简公分母是B.方程两边乘以,得整式方程C.解这个整式方程,得D.原方程的解为【答案】D【解析】本题主要考查了解分式方程.本题的最简公分母是,方程两边都乘最简公分母,可把分式方程转换为整式方程.解:方程两边都乘,得解得:x=1经检验原方程无解.故选D11.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的13%给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(1)设购买电视机台,依题意填充下列表格:项目家电种类(2)列出方程(组)并解答.【答案】(1)见解析(2)冰箱、电视机分别购买20台、10台【解析】本题主要考查了分式方程的应用.首先依据题意得出等量关系即每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,列出方程为-从而解出方程,最后检验并作答.(1)或5200或或或(2)解:设购买电视机x台,则购买冰箱2x台依题意得-解得经检验是原分式方程的解则2x=20.12.某中学组织学生到离学校15千米的某景区旅游,活动组织人员和学生队伍同时出发,行进速度是学生队伍的1.2倍,以便提前半小时到达目的地做好准备工作.求组织人员和学生队伍的速度各是多少?设学生队伍的速度为x千米/小时,根据题意可列方程.【答案】【解析】本题考查了分式方程的应用.等量关系为路程=速度×时间.由题意可知学生队伍用的时间-组织人员用的时间=.解:设学生队伍的速度是x千米/时,组织人员的速度是1.2x千米/时,由题意得13.“十一”期间,某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900……根据上述促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?【答案】(1)优惠率为32.5%;(2)标价750元【解析】本题考查了分式方程的应用.(1)由800元×80%得出消费金额,再根据表中规定应享受100元优惠.则根据题目提供的优惠计算方法即可求出优惠额,从而得到优惠率;(2)因为西服标价低于850,所以其消费额最大为850×0.8=680(元),低于700元,因此获得的奖券金额为100元,设西服标价x元,根据题意可列出方程,解方程即可解:(1)消费金额为800×0.8=640(元),获得优惠额为:800×0.2+100=260(元),所以优惠率为:=0.325=32.5%;(2)设西服标价x元,根据题意得,解之得x=750经检验,x=750是原方程的根.∴该套西装的标价是750元14.小王做90个零件所需要的时间和小李做120个零件所用的时间相同,又知每小时小王与小李两人共做35个机器零件.求小王、小李每小时各做多少个零件?设小王每小时做x个零件,根据题意可列方程.【答案】【解析】本题主要考查了由实际问题抽象出分式方程.要求的未知量是工作效率,有工作总量,一定是根据时间来列等量关系的.关键描述语是:“甲做90个机器零件所用的时间和乙做120个所用的时间相等”;等量关系为:甲做90个机器零件所用的时间=乙做120个所用的时间.解:甲做90个机器零件所用的时间为:,乙做120个所用的时间为:所列方程为:15.“五一”期间,东方中学“动感数学”活动小组的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设“动感数学”活动小组有x人,则所列方程为()A. B.B. D.【答案】B【解析】本题主要考查了由实际问题抽象出分式方程.未知量是数量,有总价,一定是根据单价来列等量关系的.关键描述语是:“每个同学比原来少摊了3元车费”;等量关系为:原来每个同学需摊的车费-现在每个同学应摊的车费=3,根据等量关系列式.解:原来每个同学需摊的车费为:,现在每个同学应摊的车费为.所列方程为:故选B16.某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务.设原计划每天固沙造林公顷,根据题意列方程正确的是()A. B.B. D.【答案】B【解析】本题主要考查了由实际问题抽象出分式方程.有工作总量240,求的是工作效率,那么一定是根据工作时间来列等量关系的.关键描述语是:“提前5天完成任务”.等量关系为:原计划用的时间-实际用的时间=5.解:原计划用的时间为:时间用的时间为:那么根据等量关系方程为故选B17.如果的值与的值相等,则___________.【答案】-1【解析】本题主要考查了解分式方程.根据题意列方程得:=,去分母后化为整式方程求解.解:根据题意列方程得:=去分母得:4-2x=5-x,解得x=-1.经检验是原方程的解.∴x的值为为-1.18.若分式方程的解为,则的值为__________.【答案】5【解析】本题主要考查了解分式方程.根据题意把代入方程,求关于a的分式方程解:把x=3代入原方程得,,解得a=519.解分式方程,去分母后所得的方程是()A.B.C.D.【答案】C【解析】本题主要考查了解分式方程.本题的最简公分母是2x,方程两边都乘最简公分母,可把分式方程转换为整式方程.解:方程两边都乘2x,得1-2(3x+1)=6x.故选C20.下列说法中,错误的是()A.分式方程的解等于0,就说明这个分式方程无解B.解分式方程的基本思路是把分式方程转化为整式方程C.检验是解分式方程必不可少的步骤D.能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解【答案】A【解析】本题考查对解分式方程基本思想的理解.去分母,转化为整式方程求解,检验是解分式方程的常规方法.而分式方程的解有可能是0.解:A、方程的解为0,不等于分母为0,所以说法是错误的.而B、C、D都围绕解分式的基本思想和步骤来说明的,所以是正确的.故选A.。

(完整word版)初二数学分式习题(附答案)

(完整word版)初二数学分式习题(附答案)

第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a ba ba bA B a b a b a b a ba ba ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=g 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---g g =_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x= ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--g222132(2)(1).441x x x x x x x --+÷+-+-g2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=g 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b ++---g g 的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+g g g 解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--g g g 解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----g .当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--g . 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--g =12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,时,代数式的值都是12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.初中数学分式方程同步练习题一、选择题(每小题3分,共30分)1.下列式子是分式的是( )A .2xB .x 2C .πxD .2y x + 2.下列各式计算正确的是( )A .11--=b a b aB .ab b a b 2= C .()0,≠=a ma na m n D .am a n m n ++= 3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222y xy x y x +-- 4.化简2293mm m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则c b a +的值是( )A .54 B. 47 C.1 D.458.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析1.关于x的分式方程+3=有增根,则增根为()A.x=1B.x=﹣1C.x=3D.x=﹣3【答案】A【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣1)=0,得到x=1,然后代入化为整式方程的方程,检验是否符合题意.解:方程两边都乘(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.故选A.2.分式方程=有增根,则m的值为()A.0和3B.1C.1和﹣2D.3【答案】D【解析】根据分式方程有增根,得出x﹣1=0,x+2=0,求出即可.解:∵分式方程=有增根,∴x﹣1=0,x+2=0,∴x1=1,x2=﹣2.两边同时乘以(x﹣1)(x+2),原方程可化为x(x+2)﹣(x﹣1)(x+2)=m,整理得,m=x+2,当x=1时,m=1+2=3;当x=﹣2时,m=﹣2+2=0,当m=0,方程无解,∴m=3.故选D.3.若分式方程有增根,则m的值是()A.﹣1或1B.﹣1或2C.1或2D.1或﹣2【答案】D【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x(x+1)=0,所以增根是0或﹣1,把增根代入化为整式方程的方程即可求出未知字母的值.解:方程两边都乘x(x+1),得2x2﹣(m+1)=(x+1)2∵最简公分母x(x+1)=0,∴x=0或x=﹣1.当x=0时,m=﹣2;当x=﹣1时,m=1.故选D.4.如果方程有增根,那么m的值等于()A.﹣5B.4C.﹣3D.2【答案】A【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣4)=0,得到x=4,然后代入化为整式方程的方程算出m的值.解:方程两边都乘(x﹣4),得x+1+(x﹣4)=﹣m∵原方程有增根,∴最简公分母(x﹣4)=0,解得x=4,当x=4时,m=﹣5.故选A.5.分式方程会产生增根,则m=()A.﹣10B.﹣3C.﹣10或﹣4D.﹣4【答案】C【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x+1)(x﹣1)=0,得到x=1或﹣1,然后代入化为整式方程的方程算出未知字母的值.解:方程两边都乘(x﹣1)(x+1),得2(x﹣1)﹣5(x+1)=m∵原方程有增根,∴最简公分母(x+1)(x﹣1)=0,解得x=﹣1或1,当x=﹣1时,m=﹣4,当x=1时,m=﹣10,故选C.6.若解分式方程产生増根.则m等于()A.1B.0C.﹣4D.﹣5【答案】D【解析】首先去分母,进而得出x与m的关系,进而利用分式方程有增根,则x=﹣4,即可得出m的值.解:去分母得:x﹣1=m,∴x=1+m,∵解分式方程产生増根,∴x=﹣4,∴﹣4=1+m,解得:m=﹣5.故选:D.7.方程的增根可能是()A.﹣2B.﹣1C.1D.2【答案】D【解析】将方程右边第一项分母提取﹣1变形后,两边都乘以x﹣2去分母后,去括号移项,将x 系数化为1,求出x=2,可得出分式方程的增根为2.解:原方程变形得:,去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,解得:x=2,将x=2代入检验得到x﹣2=2﹣2=0,则x=2是分式方程的增根,原分式方程无解.故选D8.若解关于x的方程有增根,则m的值为()A.﹣5B.5C.﹣2D.任意实数【答案】A【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣5))=0,得到x=5,然后代入化为整式方程的方程算出m的值.解:方程两边都乘(x﹣5),得x=3(x﹣5)﹣m,∵原方程有增根,∴最简公分母x﹣5=0,解得x=5,当x=5时,m=﹣5,故m的值是﹣5.故选A.9.若解分式方程出现增根,则增根一定是()A.0B.0或2C.2D.1【答案】B【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,故分式方程的增根满足两个条件:使分式方程的分母为0;是分式方程化为整式方程后那个整式方程的根.解:方程两边都乘x(x﹣2),得x2=2(x﹣2)+m,∵原方程有增根,∴最简公分母x(x﹣2)=0,解得x=0或2,当x=0时,0=﹣4+m,m=4,符号题意,当x=2时,4=m,符合题意,故增根可能是0或2.故选B.10.若分式方程:有增根,则k=.【答案】1【解析】把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可.解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1.11.已知关于x的分式方程=1有增根,则a=.【答案】1【解析】方程两边都乘以最简公分母(x+2),把分式方程化为整式方程,再根据分式方程的最简公分母等于0求出方程有增根,然后代入求解即可得到a的值.解:方程两边都乘以(x+2)得,a﹣1=x+2,∵分式方程有增根,∴x+2=0,解得x=﹣2,∴a﹣1=﹣2+2,解得a=1.故答案为:1.12.已知关于x的分式方程=2有增根,则a=.【答案】-1【解析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x,然后代入进行计算即可得解.解:方程两边都乘以(x﹣3)得,a+1=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴a+1=2×(3﹣3),解得a=﹣1.故答案为:﹣1.13.已知方程有增根,则k=.【答案】-【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(2+x)(2﹣x)=0,所以增根是x=2或﹣2,把增根代入化为整式方程的方程即可求出k 的值.解:方程两边都乘(2+x)(2﹣x),得1+2×(2+x)(2﹣x)=﹣k(2+x)∵原方程有增根,∴最简公分母(2+x)(2﹣x)=0,∴增根是x=2或﹣2,当x=2时,k=﹣;当x=﹣2时,k无解.14.关于x的方程=0有增根,则m=.【答案】9【解析】首先将方程化为整式方程,求出方程的根,若方程有增根,则方程的根满足分母x2﹣m=0,由此求得m的值.解:方程两边都乘以(x2﹣m),得:x﹣3=0,即x=3;由于方程有增根,故当x=3时,x2﹣m=0,即9﹣m=0,解得m=9;故答案为:m=9.15.若关于x的方程有增根,则m的值是.【解析】方程两边都乘以最简公分母(x﹣2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.解:方程两边都乘以(x﹣2)得,2﹣x﹣m=2(x﹣2),∵分式方程有增根,∴x﹣2=0,解得x=2,∴2﹣2﹣m=2(2﹣2),解得m=0.故答案为:0.16.分式方程有增根x=1,则k的值为.【答案】-1【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.解:化为整式方程得:x(x+1)+k(x+1)﹣x(x﹣1)=0,当x=1时,k=﹣1.17.关于x的方程有增根,则m的值为.【答案】3【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入化为整式方程的方程算出m的值.解:方程两边都乘x﹣3,得x=2(x﹣3)+m,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,当x=3时,3=2×(3﹣3)+m,m=3.故答案为3.18.若关于x的方程产生增根,则m的值为.【答案】4【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出m的值.解:方程两边都乘(x﹣2),得x+1=m﹣1,∵原方程有增根,∴最简公分母x﹣2=0,即增根是x=2,把x=2代入整式方程,得m=4.19.当m=时,方程会产生增根.【答案】3【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x+3=0,所以增根是x=﹣3,把增根代入化为整式方程的方程即可求出未知字母的值.解:方程两边都乘(x+3),得x=2(x+3)﹣m,∵方程有增根,∴最简公分母x+3=0,即增根是x=﹣3,把x=﹣3代入整式方程,得m=3.20.若关于x的方程有增根,则k的值为.【答案】1【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程即可算出k的值.解:方程两边都乘(x﹣3),得k+2(x﹣3)=4﹣x,∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3,把x=3代入k+2(x﹣3)=4﹣x,得k=1.故答案为1.。

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?【答案】(1)4;(2)7.【解析】(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据两次购买的数量之间的关系建立方程求出其解即可;(2)先根据(1)的结论分别求出两次购买的数量,设该蔬菜每千克售价为y元,由销售问题的数量关系建立不等式求出其解即可.试题解析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据题意,得,解得:x=4.经检验x=4是原方程的根,答:第一次所购该蔬菜的进货价是每千克4元;(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100第二次所购该蔬菜数量为:100×2=200设该蔬菜每千克售价为y元,根据题意,得[100(1-2%)+200(1-3%)]y-400-700≥944.解得:y≥7.答:该蔬菜每千克售价至少为7元.【考点】1.分式方程的应用;2.一元一次不等式的应用.3.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.试题解析:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【考点】分式方程的应用.4.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?【答案】20.【解析】设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,则实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度为(1+25%)x千米/小时,根据实行潮汐车道前后的时间关系建立方程求出其解即可.试题解析:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴原分式方程的解是x=20.答:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶20千米.考点: 分式方程的应用.5. 2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?(列方程解应用题)【答案】原计划每天铺设10m管道【解析】设原计划每天铺设x米管道,根据实际施工时,每天的工效比原计划增加10%,表示出现在每天铺设的米数,根据现在比原计划提前5天,用全长除以每天铺设的米数分别表示出原计划及现在的时间,两时间相减等于5即可列出所求的方程, -=5,解方程x=10.试题解析:设原计划每天铺设xm的管道,则实际每天铺设(1+10%)xm的管道,由题意列方程:-=5,化简得1.1×550-550=5×1.1x,x =10,检验:当x=10时,1.1x≠0,∴ x=10是原方程的根,答:原计划每天铺设10m管道.【考点】由实际问题抽象出分式方程.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)甲、乙合作完成最省钱【解析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.若关于x的方程有正数解,则k的取值为A.k>1B.k>3C.k≠3D.k>1且k≠3【答案】D【解析】先解方程得到用含k的代数式表示x的形式,再结合方程有正数解及分式的分母不能为0求解即可.解方程得由题意得且解得且故选D.【考点】解分式方程点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.解方程:【答案】x="3"【解析】先去分母,再移项、合并同类项,化系数为1,注意解分式方程最后要写检验.经检验x=3是原方程的解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.9.某超市用5000元购进一批新品种的苹果试销,由于销售状况良好,超市决定再用11000元购进该种苹果,但这次进货价比试销时多了0.5元,购进苹果数量是试销时的两倍。

分式方程练习题及答案

分式方程练习题及答案

分式方程练习题及答案1. 问题描述分式方程是一种含有分数的方程,方程中包含有未知数,并且未知数是作为分式的存在。

解分式方程通常需要使用到一些分式方程的性质以及灵活运用运算法则。

本文将提供一些分式方程的练习题,并附上答案及解析,希望能帮助读者更好地掌握分式方程的解题方法。

2. 练习题题目 1解方程:$$\\frac{x}{2} + \\frac{x}{3} = 4$$题目 2解方程:$$\\frac{2}{x} + \\frac{3}{x+1} = \\frac{5}{x^2 + x}$$题目 3解方程:$$\\frac{x}{4} - \\frac{x+1}{3} = \\frac{x-2}{6}$$题目 4解方程:$$\\frac{1}{2x-1} + \\frac{1}{3} = \\frac{4x+1}{6x-3}$$ 题目 5解方程:$$\\frac{1}{x} + \\frac{1}{x-2} = \\frac{3}{x-1}$$3. 答案与解析题目 1解方程:$$\\frac{x}{2} + \\frac{x}{3} = 4$$解析:首先,我们可以将方程中的分数进行通分,得到$$\\frac{3x}{6} + \\frac{2x}{6} = 4$$。

将分数相加,得到$$\\frac{5x}{6} = 4$$接下来,我们可以将方程两边都乘以6,消去分母的值,得到5x=24。

最后,将方程两边都除以5,得到解$$x = \\frac{24}{5}$$。

所以,方程的解为$$x = \\frac{24}{5}$$。

题目 2解方程:$$\\frac{2}{x} + \\frac{3}{x+1} = \\frac{5}{x^2 + x}$$解析:首先,我们可以将方程中的分数进行通分,得到$$\\frac{2(x+1)}{x(x+1)} + \\frac{3x}{x(x+1)} = \\frac{5}{x^2 + x}$$将分数相加并合并同类项,得到$$\\frac{2(x+1) + 3x}{x(x+1)} = \\frac{5}{x^2 + x}$$。

(word完整版)初二数学分式方程练习题(含答案),推荐文档

(word完整版)初二数学分式方程练习题(含答案),推荐文档

分式方程 姓名——1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x .A.2个 B.3个 C.4个 D.5个 2.方程x x x-=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 3.,04412=+-x x 那么x 2的值是( )A.2 B.1 C.-2 D.-1 4下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 5 .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 6.关于x 的方程0111=----x x x m ,有增根,则m 的值是( )A3 B.2 C.1 D.-1 7若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-18如果,0,1≠≠=b b a x 那么=+-b a b a ( )A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 9使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二、填空题(每小题3分,共30分)10满足方程:2211-=-x x 的x 的值是________. 11 当x =________时,分式xx ++51的值等于21.12分式方程0222=--x x x 的增根是 . 13 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,可提前到达__小时. 14 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .15已知,54=y x 则=-+2222yx y x . 16=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 17飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 .18当=m 时,关于x 的方程313292-=++-x x x m 有增根. 19 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三、解答题(共5大题,共60分)20.解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.21 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?22小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?第一讲 分式的运算(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)xx 11- 题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式x -84为正; (2)当x 为何值时,分式2)1(35-+-x x 为负; (3)当x 为何值时,分式32+-x x 为非负数. 练习:1.当x 取何值时,下列分式有意义:(1)3||61-x (2)1)1(32++-x x(3)x 111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x (2)562522+--x x x3.解下列不等式(1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:M B M A M B M A B A ÷÷=⨯⨯= 2.分式的变号法则:ba b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x y x 41313221+- (2)b a b a +-04.003.02.0 题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x y x --+- (2)b a a --- (3)ba --- 题型三:化简求值题【例3】已知:511=+y x ,求yxy x y xy x +++-2232的值. 提示:整体代入,①5x y xy +=,②转化出yx 11+. 【例4】已知:21=-x x ,求221x x +的值. 【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)y x y x 5.008.02.003.0+- (2)b a b a 10141534.0-+ 2.已知:31=+x x ,求21x +的值. 3.已知:311=-b a ,求aab b b ab a ---+232的值. 4.若0106222=+-++b b a a ,求b a b a 532+-的值. 5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---. (三)分式的运算题型一:通分【例1】将下列各式分别通分.(1)c b a c a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x x x x x x ; (4)aa -+21,2 题型二:约分【例2】约分:(1)322016xy yx -;(3)n m m n --22;(3)6222---+x x x x . 题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-; (2)22233)()()3(x y x y y x y x a +-÷-⋅+; (3)m n m n m n m n n m ---+-+22; (4)112---a a a ; (5))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值; (2)已知:432z y x ==,求22232z y x xz yz xy ++-+的值; (3)已知:0132=+-a a ,试求)1)(1(22a a a a --的值. 题型五:求待定字母的值【例5】若111312-++=--x N x M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ; (2)ab ab b b a a ----222; (4)ba b b a ++-22; (5))4)(4(b a ab b a b a ab b a +-+-+-;2.先化简后求值 (1)1112421222-÷+--⋅+-a a a a a a ,其中13a = (2)已知3:2:=y x ,求2322])()[()(yx x y x y x xy y x ÷-⋅+÷-的值. 3.已知:121)12)(1(45---=---x B x A x x x ,试求A 、B 的值. (四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a(2)2322123)5()3(z xy z y x ---⋅ (3)24253])()()()([b a b a b a b a +--+--(4)6223)(])()[(--+⋅-⋅+y x y x y x 题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯.练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅--(2)322231)()3(-----⋅n m n m(3)23232222)()3()()2(--⋅⋅ab b a b a ab2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.二讲 分式方程题型一:用常规方法解分式方程【例1】解下列分式方程(1)x x 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根. 题型二:求待定字母的值【例4】若关于x 的分式方程3132--=-x m x 有增根,求m 的值. 【例5】若分式方程122-=-+x a x 的解是正数,求a 的取值范围. 提示:032>-=a x 且2≠x ,2<∴a 且4-≠a . 题型三:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dc x b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c .题型四:列分式方程解应用题(略)练习:1.解下列方程:(1)021211=-++-x x x x ;(2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x x x2.解关于x 的方程:(1)b x a 211+=)2(a b ≠;(2))(11b a xb b x a a ≠+=+. 3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值. 4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x k x x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值.。

初二数学分式方程经典应用题(含答案)(K12教育文档)

初二数学分式方程经典应用题(含答案)(K12教育文档)

(完整word)初二数学分式方程经典应用题(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)初二数学分式方程经典应用题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)初二数学分式方程经典应用题(含答案)(word版可编辑修改)的全部内容。

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0。

01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x=+ B .9001500300x x =-C .9001500300x x =+D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的错误!,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价) 12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3。

分式方程练习题精选(含答案)

分式方程练习题精选(含答案)

分式方程练习题精选(含答案)一、 选择题:1.以下是方程211x x x -=-去分母的结果,其中正确的是 . A .2(1)1x x --= B .2221x x --= C .2222x x x x --=- D .2222x x x x -+=-2.在下列方程中,关于x 的分式方程的个数有 . ①0432212=+-x x ②.4=a x ③;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-a x a x . A.2个 B.3个 C.4个 D.5个3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .34.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 . A .x=1 B .x=-1 C .x=3 D .x=-35.若关于x 的方程122x m x x +=++有增根,则m 的值为 . A .1 B .-1 C .-2 D .26.若分式x 2-12(x+1) 的值等于0,则x 的值为 .A 、1B 、±1C 、12D 、-17.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x xB 、1421280280=++x x B 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1B.3C.-2D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为 . A .32=x B .1=x C .32-=x 或1 D .32=x 或1- 10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A .32180180=+-x x B .31802180=-+x x C .32180180=--x x D .31802180=--x x 11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x 人挖土,其它人运土,列方程:①723x x -=②723x x -=③372x x +=④372x x=-上述所列方程,正确的有 .A .1个B .2个C .3个D .4个二、 填空题: 13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xm x x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天.16.阅读材料: 方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2, 方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 .三、 解答题:17.解方程)2)(1(311+-=--x x x x18.先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x a x 的解是正数,求a 的取值范围。

分式方程专项练习50题(有答案)

分式方程专项练习50题(有答案)

分式方程专项练习50题(有答案)1.$\frac{x}{x+2}=\frac{2}{x-1}$,改写为$x(x-1)=2(x+2)$。

2.$\frac{5x-3}{x^2}=0$,当 $5x-3=0$ 时成立,即$x=\frac{3}{5}$。

3.$\frac{x}{x}+\frac{1}{x}=1$,当 $x\neq 0$ 时成立。

4.$x^2+2x=0$,当 $x=0$ 或 $x=-2$ 时成立。

5.$\frac{13}{x(x-2)}=\frac{1}{x-1}$,改写为 $13(x-1)=x(x-2)$。

6.$\frac{1}{x-1}-\frac{2}{x+1}=\frac{1}{2}$,改写为$3x^2-2x-5=0$,当 $x=\frac{1}{3}$ 或 $x=-\frac{5}{3}$ 时成立。

7.$\frac{x+1}{x-1}=\frac{x}{x+1}$,改写为 $x^2-1=0$,当 $x=1$ 或 $x=-1$ 时成立。

8.$\frac{2x-5}{3-x}=\frac{2x-2}{x+1}$,改写为 $4x^2-13x+7=0$,当 $x=1$ 或 $x=\frac{7}{4}$ 时成立。

9.$\frac{2x-5}{x-2}-\frac{1}{x+2}=x$,改写为 $3x^2-4x-3=0$,当 $x=\frac{1\pm\sqrt{13}}{3}$ 时成立。

10.$\frac{2x-1}{x+1}=1-\frac{1}{x+1}$,改写为 $x^2+3x-2=0$,当 $x=-3+\sqrt{11}$ 或 $x=-3-\sqrt{11}$ 时成立。

11.$\frac{x}{x+1}+\frac{x}{x-1}=2$,改写为 $2x^2-2x-1=0$,当 $x=\frac{1\pm\sqrt{3}}{2}$ 时成立。

12.$\frac{1}{x-1}+\frac{1}{x+1}=\frac{4}{x^2-1}$,改写为 $3x^4-8x^2-5=0$,当 $x=\pm\sqrt{\frac{5}{3}}$ 或$x=\pm\sqrt{\frac{8}{3}}$ 时成立。

八上数学分式方程练习题及答案

八上数学分式方程练习题及答案

八上数学分式方程练习题及答案◆知能点分类训练知能点1 分式方程1.下列方程中分式方程有个.2D34x1?x22x?2?。

x?2x?5x?6x?35.解下列分式方程:67.解下列关于x的方程:a?b?1;x?amn=0. ?xx?18.解方程:?14?xx2ax3会产生错误? ?2?x?2x?4x?212.已知分式方程,2x?a=1的解为非负数,求a的取值范围. x?1,.x2?2x?21?a?1? 根据上面的规律,可将关于x的方程变x?1a?1 形为_______,方程的解是_________,?解决这个问题的数学思想是_________.◆中考真题实战14.解方程:x?3154; 15.解方程:?1??=0.4?xx?4x?1x14.解:方程两边同乘以x-2,得2x=x-2,解得x=-2.经检验,x=-2是原方程的解.方程两边同乘以x,得2+5x2=6x,即x2+2x+1+5x2=6x2+6x,解得x=.经检验,x=是原方程的解.1414分式方程精华练习题1.在下列方程中,关于x的分式方程的个数有122xa1x2?9?6; ?1;⑤①x?x?4?0②.? ③.?4;④.ax23x?2x?3⑥x?1x?1??2. aaA.2个B.3个C.4个D.5个m?1,下列说法正确的是 x?5A.方程的解是x?m?B.m??5时,方程的解是正数C.m??5时,方程的解为负数 D.无法确定153??3.方程的根是 1?x2x?11?x3A.x=1 B.x=-1C.x= D.x=24424.1??2?0,那么的值是 xxx2. 关于x的分式方程A.2B.1C.-D.-15.下列分式方程去分母后所得结果正确的是 1x?2??1 去分母得,x?1??1; x?1x?1x5??1,去分母得,x?5?2x?5; B.2x?55?2xx?2x?2x2?2?C.,去分母得,?x?2?x; x?2x?4x?221?, 去分母得,2?x?3; D.x?3x?1A.6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是 140140?=1xx?21140140?C.=1xx?21m?1?7.若关于x的方程x?1A.80280? =1xx?211010?D. =1 xx?21B.x?0,有增根,则m的值是 x?1A. B. C.1D.-18.若方程AB2x?1??,那么A、B的值为 x?3x?4A.2,1B.1,C.1,1D.-1,-1aa?b?1,b?0,那么? ba?b1x?111A.1- B.C.x? D.x? xx?1xx?1432?210.使分式2与2的值相等的x等于x?4x?x?6x?5x?69.如果x?A.-4B.-C.1D.10二、填空题11. 满足方程:12?的x的值是________. x?1x?212. 当x=________时,分式11?x的值等于.5?xx2?2x?0的增根是 . 13.分式方程x?214. 一汽车从甲地开往乙地,每小时行驶v1千米,t 小时可到达,如果每小时多行驶v2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x千米/时,则所列方程为 .x4x2?y216.已知?,则2?2y5x?y17.a?x的方程x?12a?3?的解为零. x?2a?518.飞机从A到B的速度是v1,,返回的速度是v2,往返一次的平均速度是19.当m?时,关于x的方程m21??有增根. x2?9x?3x?320. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m,则根据题意可得方程.三、解答题21. .解下列方程14?xx14x?3x?1?21?2 x= -1;方程两边同乘,得x-=1,化简,得2x=-3,x= ?2经检验,x=?是原方程的根.3 22.6天,24.解;x?5分式方程1.分式方程252?的解是________. =3的解是________;分式方程x3x?1x2.已知公式PP1?2,用P1、P2、V2表示V1=________. V2V13.已知y=4mx,则x=________.n?x4.一项工程,甲单独做需m小时完成,若与乙合作20小时可以完成,则乙单独完成需要的时间是A.20m20mm?20m?20小时 B.小时 C.小时 D.小时 m?20m?2020m20m5.我市要筑一水坝,需要规定日期内完成,如果由甲队去做,?恰能如期完成,如果由乙队去做,需超过规定日期三天,现由甲、乙两队合做2天后,?余下的工程由乙队独自做,恰好在规定日期内完成,求规定的日期x,下面所列方程错误的是22x3+=1B.= xx?3xx?31111xC.×2+=1 D.+=1 xx?3xx?3x?3A.6.物理学中,并联电路中总电阻R和各支路电阻R1、R2满足关系若R1=10,R2=15,求总电阻R.7.为改善环境,张村拟在荒山上种植960棵树,由于共青团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得方程________.8.某河两地相距s千米,船在静水中的速度为a千米/时,水流速度为b千米/时,船往返一次所用的时间为A.111=+,RR1R2ss2s2sss B.C.+ D.+ aba?ba?ba?ba?b拓展创新题9.用35克盐配制成含盐量为28%的盐水溶液,则需要加水多少克?10.某车间有甲、乙两个小组,?甲组的工作效率比乙组的工作效率高25%,因此,甲组加工000个零件所用的时间比乙组加工100?个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?11.甲、乙两工程队共同完成一项工程,乙队先单独做1?天后,再由两队合作两天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的2,求甲、乙两队单独完成各需多少天?12.大华商场买进一批运动衣用了10 000元,每件按100?元卖出,全部卖出后所得的利润刚好是买进200件所用的款,?试问这批运动衣有多少件?13.一批货物准备运往某地,有甲、乙、丙三辆卡车可以雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、?a次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨,?若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨,问:乙车每次所运货物是甲车所运货物的几倍?现甲、乙、丙合运相同次数把这批货物运完时,?货主应付车主运费各多少元?14.一小船由A港到B港顺流需行6h,由B港到A港逆流需行8h.一天,?小船早晨6点由A港出发顺流到B 港时,发现一救生圈在途中掉落在水中,立即返回,1h后找到救生圈,问:若小船按水流速度由A港到B港漂流多少小时??救生圈是何时掉入水中的?答案:1.x=2,x=232.V1=PV22P13.6ny4m?y960960-=.Dxx?204.A .D .67.9.90克 10.甲:500个/?时乙:400个/时11.甲队:4天乙队:6天 12.200件13.?乙车是甲车的2?倍,?甲2160元,乙、丙各420元.14.本题的关键是弄清顺流速度、?逆流速度和船在静水中速度与水速的关系;弄清问题中的过程和找出包含的相等关系.解:设小船由A港漂流到B港用xh,则水速为∴1. x1111-=+x8x解得x=48.经检验x=48是原方程的根.答:小船按水流速度由A港漂流到B港要48h.1,小船顺流由A港到481111B?港用6h,逆流走1h,同时救生圈又顺流向前漂了1h,依题意有=64884设救生圈y点钟落入水中,由问题可知水流速度为×1,解得y=11.答:救生圈在中午11点落水.分式方程练习题及答案一、选择题1.下列式子是分式的是A.x2xx?y B. C. D.x2?2.下列各式计算正确的是aa?1nnann?abb2,?a?0?D.?A.?B.?C.? mmabb?1mm?aaab3.下列各分式中,最简分式是m2?n2a2?b23?x?y?x2?y2A. B. C.2D.22m?n7x?yab?abx?2xy?ym2?3m4.化简的结果是?m2A.mmmmB.?C.D. m?3m?33?mm?3x?y中的x和y都扩大2倍,那么分式的值 xy5.若把分式A.扩大2倍 B.不变C.缩小2倍D.缩小4倍6.若分式方程1a?x?3?有增根,则a的值是 x?2a?x A.1B.0 C.—1 D.—2abca?b??,则的值是34c475A. B. C.1D.447.已知8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程1006010060?? B.x?3030?xx?30x?301006010060??C. D.0?x30?xx?30x?30A.9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

(完整)初二数学分式习题(附答案).doc

(完整)初二数学分式习题(附答案).doc

第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是()1x11 ( x 1) x 1A.xB.xxC.1 x2 x 1D.1 [ 1( x 1) 1] 1 10 xx322.如果分式 | x | 5 的值为 0,那么 x 的值是()x 25xA . 0B . 5C .- 5D .± 53.把分式 2x2 y中的 x , y 都扩大 2 倍,则分式的值()x yA .不变B .扩大 2 倍C .扩大 4 倍D .缩小 2 倍4.下列分式中,最简分式有()a 3 x y m 2 n 2 m 1 a 2 2ab b 23x 2,x2y 2 , m2n 2,m21 ,a 2 2ab b 2A .2 个B .3 个C .4 个D .5 个 5.分式方程114的解是()3x3 x 2x 9A . x=± 2B . x=2C . x= -2D .无解6.若 2x+y=0 ,则 x 2xy y 2)2xy x 2的值为(A .-1B. 3C .1D .无法确定55xk7.关于 x 的方程2化为整式方程后, 会产生一个解使得原分式方程的最简公分母为 0,则 k 的值为()3xx 3A . 3B . 0C .± 3D .无法确定8.使分式 x2等于 0 的 x 值为()x 24A . 2B .- 2C .± 2D .不存在9.下列各式中正确的是()a b a ba b a bA.babB.b a ba a ab a ba b a bC.babD.bb aa a10.下列计算结果正确的是( )A. b g a1 B.ab (a 2 ab)12a 2 b 2 2abaa 2C.mn nD .( 3xy ) 29xyxy xx m5a5a 2二、填空题1.若分式| y | 5的值等于 0,则 y= __________ .5y2.在比例式 9:5=4: 3x 中, x=_________________ .b 1 a 1 b 1 a1=_________________ .3.计算 :ga gabb2的值为正数. 4.当 x> __________ 时,分式1 11 3x=_______________ .5.计算 :x 11 x6.当分式x2 与分式 x23x2的值相等时, x 须满足 _______________ . x 1 x 2 1117.已知 x+ x =3 ,则 x 2+ x 2 = ________ .8.已知分式2x 1_时,分式没有意义; 当 x= _______ 时,分式的值为 0;当 x= -2 时,分式的值为 _______.x :当 x=29.当 a=____________ 时,关于 x 的方程2ax3 = 5的解是 x=1 .a x 410.一辆汽车往返于相距 akm 的甲、乙两地,去时每小时行mkm , ?返回时每小时行 nkm ,则往返一次所用的时间是_____________ . 三、解答题 1.计算题 :a 242 a 2 4a 4 (1)a 22a 8 ( a4)ga 2;x 2 1x 23x 2 (2)g.2 4x 4x x12.化简求值.(1)( 1+1)÷( 1- 1 ),其中 x= - 1;x 1 x 1 2(2)2 1 x ( x 23 ) ,其中 x= 1. x 2 xx 2 23.解方程 :( 1)10 5 =2 ; ( 2) 23x 3 .2x 1 1 2xx 1 x 1 x 2 14.课堂上,李老师给大家出了这样一道题:当x=3, 5- 2 2 ,7+ 3 时,求代数式 x22x 12x 2的值.小明x 2 1 x1一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗? ?请你写出具体的解题过程.5.对于试题: “先化简,再求值:x 3 1 ,其中 x=2.”小亮写出了如下解答过程:x 2 1 1 x∵ x 31 x 3 1①x 2 1 1 x (x 1)( x 1) x 1x 3x 1②( x 1)(x 1) ( x 1)( x1)=x - 3-( x+1) =2x - 2,③ ∴当 x=2 时,原式 =2× 2- 2=2.④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号) ;(2)从②到③是否正确:不正确 ;若不正确,错误的原因是 把分母去掉了;(3)请你写出正确的解答过程.6.小亮在购物中心用 12.5 元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5 元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14 元,买的饼干盒数比第一次买的盒数多2, ?5问他第一次在购物中心买了几盒饼干?答案一、选择题1.下列各式中,不是分式方程的是(D )1x111) x 1A.xB. ( xxxC.1 x2 x 1 D.1 [ 1( x 1) 1] 1 10 xx3 22.如果分式 | x |5的值为 0,那么 x 的值是( B )x 2 5xA . 0B . 5C .- 5D .± 53.把分式 2x2 y中的 x , y 都扩大 2 倍,则分式的值( A )x yA .不变B .扩大 2 倍C .扩大 4 倍D .缩小 2 倍4.下列分式中,最简分式有(C )a 3 x y m 2 n 2 m 1 a 2 2ab b 23x 2,x2y2,m 2 n 2 ,m 21 ,a 2 2ab b 2A .2 个B .3 个C .4 个D .5 个5.分式方程1 1x 2 4 的解是( B )3 x3x 9A . x=± 2B . x=2C . x= -2D .无解6.若 2x+y=0 ,则x 2xy y 2 的值为( B )2xy x 2A .-1B. 3C .1D .无法确定55xk7.关于 x 的方程2化为整式方程后, 会产生一个解使得原分式方程的最简公分母为0,则 k 的值为( A )3xx3A . 3B . 0C .± 3D .无法确定8.使分式 x2等于 0 的 x 值为( D )x 2 4A . 2B .- 2C .± 2D .不存在9.下列各式中正确的是(C )a b a ba b a bA.ba bB.b a ba a ab a ba b a bC.ba bD.bb aa a10.下列计算结果正确的是( B )A. b g a1 B.a b (a 2 ab)1 2a2 b 2 2abaa 2C.mn n D .(3xy) 2 9xy xy xx m5a 5a 2二、填空题1.若分式| y | 5的值等于 0,则 y= - 5 .5y2.在比例式 9: 5=4 : 3x 中, x=20.273.b 1g ab 1 b 1g a 1 的值是 2( a b) .aa bab4.当 x>1 时,分式 12 的值为正数. 13 12 3x=.5.1 x 1 x 21 x6.当分式x2 与分式 x 23x2的值相等时, x 须满足 x ≠± 1 .x1x 217.已知 x+ 1 =3 ,则 x 2+1 = 7 .x x 28.已知分式 2 x1,当 x= 2 时,分式没有意义; 当 x=-1时,分式的值为 0;当 x=- 2 时,分式的值为3 .x 2249.当 a= - 17 时,关于 x 的方程2ax3 = 5的解是 x=1 .3a x 410.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行 mkm , ?返回时每小时行 nkm ,则往返一次所用的时间是(a a)h . m n三、解答题1.计算题.a 2 4( a 2a 2 4a 4(1) 22a8 4)ga 2 ; a解: 原式a 2 4g 1 ( a 2) 21.ga 4( a 2)(a 4) a 24 a 2x 2 1x 2 3x 2(2)2(xg.4x 4 1)x 1 x解: 原式 ( x 1)(x 1)g 1 g (x 1)(x 2)x 1 .( x 2)2x 1 x 1x 22.化简求值.(1)( 1+1 )÷( 1- 1 1 ),其中 x=- 1;x 1 x2 解:原式 =x1 1 x 1 1 x g x 1 x .x 1 x 1x 1 x2 x 2当 x= -1时,原式 =1.25(2)x1 x ( x23 ) ,其中 x= 1.2 2 xx 2 2解:原式 =( x 1) ( x2)( x 2) 31 g x2 1 .( x 2)( x 1)x 2x 2 x 2 1x 2 1当 x=1时,原式 =4 .233.解方程.(1)10 5=2 ;2x 1 1 2x解: x= 7 .4(2)x 2 3x 3 .1 x 1x 2 1解:用( x+1)( x - 1)同时乘以方程的两边得,2( x+1)- 3( x - 1)=x+3 .解得 x=1.经检验, x=1 是增根. 所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3, 5- 2 2 ,7+ 3 时,求代数式 x22x 12x 2的值.小明x 2 1 x1一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗??请你写出具体的解题过程.解:原式 =(x 1)2g x1 = 1 .( x 1)(x 1) 2( x 1) 2由于化简后的代数中不含字母x ,故不论 x 取任何值,所求的代数式的值始终不变.所以当 x=3, 5- 2 2 ,7+ 3 时,代数式的值都是1 .x 3 125.对于试题: “先化简,再求值:,其中 x=2.”小亮写出了如下解答过程:x 2 1 1 x∵ x 31 x 3 1①x 2 1 1 x (x 1)( x 1) x 1x 3x 1②( x 1)(x 1) ( x 1)( x 1)=x - 3-( x+1) =2x - 2, ③ ∴当 x=2 时,原式 =2× 2- 2=2.④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号) ;(2)从②到③是否正确:不正确 ;若不正确,错误的原因是 把分母去掉了;(3)请你写出正确的解答过程.解:正确的应是:x 3 1x 3 x 1 2x 2 1 1 x=( x 1)(x 1)x 1( x 1)(x 1)当 x=2 时,原式 =2 .36.小亮在购物中心用 12.5 元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5 元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14 元,买的饼干盒数比第一次买的盒数多2, ?5问他第一次在购物中心买了几盒饼干?7 解:设他第一次在购物中心买了x 盒,则他在一分利超市买了x 盒.512.5 14由题意得:=0.5x7 x5解得x=5.经检验, x=5 是原方程的根.答:他第一次在购物中心买了5 盒饼干.初中数学分式方程同步练习题一、选择题(每小题 3 分,共 30 分) 1.下列式子是分式的是()x2xxyA .B .C .D .22x2.下列各式计算正确的是()A . a a 1B .bb2C .nna, a 0D .nn a bb 1aabmmamm a3.下列各分式中,最简分式是()3 x ym 2n 2C .a 2b 2D .x 2 y 2 A .B .a 2b ab 22xy y 27 x ym nx 2 m 2 3m )4.化简m 2 的结果是(9m B. mm D.mA.m 3C.33 mm 3m5.若把分式 xy中的 x 和 y 都扩大 2 倍,那么分式的值()xyA .扩大 2 倍B .不变C .缩小 2倍D .缩小 4 倍6.若分式方程1 3 a x有增根,则 a 的值是()x 2 axA . 1B . 0C .— 1D .— 2ab ca b7.已知2 34,则 c的值是( )475A .5B.4C.1D. 48.一艘轮船在静水中的最大航速为30 千米 /时,它沿江以最大航速顺流航行100 千米所用时间,与以最大航速逆流航行 60 千米所用时间相等,江水的流速为多少?设江水的流速为x 千米 /时,则可列方程()100 60100 60A .30 xB .x 30x 30x 30 100 60100 60C .30 xD .x3030 xx 309.某学校学生进行急行军训练,预计行60 千米的路程在下午 5 时到达,后来由于把速度加快20% ,结果于下午 4 时到达,求原计划行军的速度。

(word完整版)八年级上册数学分式方程应用题及答案

(word完整版)八年级上册数学分式方程应用题及答案

八年级上数学分式方程专项练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则120204020=++x解,得x =80 经检验:x =80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450 经检验:x =450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x 千米/时,则247197=-+xx 解,得x =5 经检验:x =5是原方程的解。

进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5 经检验:x =5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴ 求这种纪念品4月份的销售价格。

(完整版)初二数学《分式》练习题及答案

(完整版)初二数学《分式》练习题及答案

分式练习题一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列运算正确的是( ) A.x 10÷x 5=x 2 B.x -4·x=x -3 C.x 3·x 2=x 6 D.(2x -2)-3=-8x 62. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.11a b + B.1ab C.1a b + D.ab a b+ 3.化简a b a b a b --+等于( ) A.2222a b a b +- B.222()a b a b +- C.2222a b a b -+ D.222()a b a b+- 4.若分式2242x x x ---的值为零,则x 的值是( ) A.2或-2 B.2 C.-2 D.45.不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) A.2154x y x y -+ B.4523x y x y -+ C.61542x y x y-+ D.121546x y x y -+ 6.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( ) A.1个 B.2个 C.3个 D.4个7.计算4222x x x x x x ⎛⎫-÷⎪-+-⎝⎭的结果是( ) A. -12x + B. 12x + C.-1 D.1 8.若关于x 的方程x a c b x d-=- 有解,则必须满足条件( ) A. a ≠b ,c ≠d B. a ≠b ,c ≠-d C.a ≠-b , c ≠d C.a ≠-b , c ≠-d9.若关于x 的方程ax=3x-5有负数解,则a 的取值范围是( )A.a<3B.a>3C.a ≥3D.a ≤310.解分式方程2236111x x x +=+--,分以下四步,其中,错误的一步是( ) A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上 .(1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m . 12.当a 时,分式321+-a a 有意义.13.若-1,则x+x -1=__________.14.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.15.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________. 16.已知u=121s s t -- (u ≠0),则t=___________. 17.当m=______时,方程233x m x x =---会产生增根. 18.用科学记数法表示:12.5毫克=________吨.19.当x 时,分式xx --23的值为负数. 20.计算(x+y)·2222x y x y y x+-- =____________. 三、计算题:(每小题6分,共12分) 21.23651x x x x x+----; 22.2424422x y x y x x y x y x y x y ⋅-÷-+-+.四、解方程:(6分) 23.21212339x x x -=+--。

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前4天完成任务,原计划每天种树多少棵?【答案】原计划每天种树60棵.【解析】设原计划每天种树x棵,则实际每天种树为x棵,根据实际比原计划提前4天完成任务,列方程求解.试题解析:设原计划每天种树x棵,则实际每天种树为x棵,由题意得,,解得:x=60,经检验,x=60是原方程的解,且符合题意.答:原计划每天种树60棵.【考点】分式方程的应用.3.若关于的分式方程无解,则.【答案】a=1或a=-2【解析】该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.试题解析:去分母得:x(x-a)-3(x-1)=x(x-1),去括号得:x2-ax-3x+3=x2-x,移项合并得:(a+2)x=3.(1)把x=0代入(a+2)x=3,∴a无解;把x=1代入(a+2)x=3,解得a=1;(2)(a+2)x=3,当a+2=0时,0×x=3,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.【考点】解分式方程.4.一项工程要在限期内完成,若第一组单独做,则恰好在规定日期完成,若第二组单独做,则超过规定日期4天才能完成,若两组合做3天后剩下的工程由第二组单独做,则正好在规定日期内完成,问规定日期是多少天?【答案】12天【解析】设规定日期为x天,则第一组单独完成用x天,第二组单独完成用()天,根据“两组合做3天后剩下的工程由第二组单独做,则正好在规定日期内完成”即可列方程求解.解:设规定日期为x天,则第一组单独完成用x天,第二组单独完成用()天,由题意得解得:经检验:是原方程的解答:规定日期为12天。

分式方程练习题(含答案)

分式方程练习题(含答案)

分式方程精华练习题一.选择题1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程x x x-=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( )A.2,1B.1,2C.1,1D.-1,-19.如果,0,1≠≠=b b a x 那么=+-ba b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二.填空题11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式xx ++51的值等于21. 13.分式方程0222=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 .19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三.计算21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.四.解答题22.10年前父亲的年龄是女儿的7倍,15年后父亲的年龄是女儿的2倍,现在父亲的年龄有多大?23.两个人同走一段路,甲每小时走4250米,乙每小时走3000米,甲比乙少用2.5小时走完这段路,求这段路有多长?24.修一条公路,未修长度是已修长度的3倍,如果再修300米,未修长度就是已修的2倍,这条公路长多少米?、25.某制衣厂加工一批定货服装,按计划完成天数生产,如果每天均生产20套,就比定货任务少100套;如果每天生产23套服装,就可超过定货任务20套,问这批服装的订货任务是多少?原计划几天完成?25. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?26.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C9.B ,10.D ;二、11.0;12.3,13.2=x ;14. 212v v t v +;15. 3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20. ()240024008120%x x-=+; 三、21.(1)无解(2)x = -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x 2-4)=1, 化简,得2x=-3,x= 32- 经检验,x=32-是原方程的根. 22.6天,24.解;5=x。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(5)
x
1
1
x
题型三:考查分式的值为 0 的条件
【例 (1) x
3】1 当
x 取何(值2)时| x,| 下2列分式的值为
0. x 2 2x 3
x 3
x 2 4
(3) x 2 5x 6
题型四:考查分式的值为正、负的条件 【例 4】(1)当 x 为何值时,分式 4 为正; 8x
(2)当 x 为何值时,分式 5 x 为负; 3 (x 1)2
分式方程
姓名——
1.在下列方程中,关于 x 的分式方程的个数(a 为常数)有( )
① 1 x 2 2 x 4 0 ②. x 4
23
a
③. a 4; ④. x 2 9 1;⑤ 1 6;
x
x 3
x2
x 1 x 1

2 .A.2 个
aa
B.3 个
C.4 个
D.5 个
2. 方程
1 1 x2
1x2y
(1)1 2 x
1
3 y
(2) 0.2a 0.03b 0.04a b
34
题型二:分数的系数变号 【例 2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.
1 x 1
2 的 x 的值是
x 2
.
11 当 x=
1 x
1
时,分式
的值等于 .
5 x
2
1 C. x
x

1 D. x
x1
-1-
12 分式方程 x 2 2x 0 的增根是
.
x 2
13 一汽车从甲地开往乙地,每小时行驶 v1 千米,t 小时可到达,如果每小时多行驶 v2 千米,可提前到达 小时.
14 农机厂职工到距工厂 15 千米的某地检修农机,一部分人骑自行车先走 40 分钟后,其余人乘汽车出发,结果他
是( )
A. 140 140 =14 x x 21
C. 140 140 =14 x x 21
B. 280 280 =14 x x 21
D. 10 10 =1 x x 21
6.关于
x
的方程
m 1 x1
x x 1
0 ,有增根,则 m
的值是(
)A3
B.2
C.1
D.-1
AB
2x 1
7 若方程 x 3 x 4 (x 3)(x 4) , 那么 A、B 的值为(
5 x 1
1
3 x
的根是(

3
A. x =1 B. x =-1
C. x =
D. x =2
8
3.1 4 4 0, 那么 2 的值是(
)A.2
B.1 C.-2 D.-1
x x2
x
4 下列分式方程去分母后所得结果正确的是( )
A.
x
1
1xΒιβλιοθήκη 2 1 x1去分母得,x 1 (x 1)(x 2) 1;
们同时到达,已知汽车速度为自行车速度的 3 倍,若设自行车的速度为 x 千米/时,则所列方程为
.
x
15 已知
4 , 则 x2 y2
.
y 5 x2 y2
16 a
x 1 2a 3 时,关于 x 的方程 x 2 a 5 的解为零.
17 飞机从 A 到 B 的速度是 v1, ,返回的速度是 v2 ,往返一次的平均速度是
(3) 当 x 为何值时,分式 x 2 为非负数. x3
练习: 1. 当 x 取何值时,下列分式有意义:
(1) 1 6 | x | 3
(2) 3 x (x 1)2 1
(3)
1
1
1
x
2. 当 x 为何值时,下列分式的值为零:
(1) 5 | x 1 | x4
25 x2 (2)
x2 6x 5
(一)、分式定义及有关题型
题型一:考查分式的定义
1
x1 【例 1】下列代数式中: , x y,
a
b
,
x
2
y
2
x ,
y
,是分式的有:
.
2
ab xy xy
题型二:考查分式有意义的条件
【例 (1) x
2】4 当
x4
x 有何值时,下列分式有意义
(2) 3x (3) 2 (4) 6 x
x22
x 2 1
| x | 3
m,则根据题意可得方程
.
三、解答题(共 5 大题,共 60 分)
20.解下列方程
(1) 1 2 4 x
x 3
3 x
(2) 4 x 3 x 1 x2 4 x 2 x 2
(3) x 1 1 . x 2 x2 4
21 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期 3 天完成;现在先由甲、乙 两队合做 2 天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?
22 小兰的妈妈在供销大厦用 12.50 元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要 比供销大厦每瓶便宜 0.2 元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去 18.40 元钱,买的瓶数比
3
第一次买的瓶数多 倍,问她第一次在供销大厦买了几瓶酸奶?
5
-2-
第一讲 分式的运算

A.2,1
B.1,2 C.1,1 D.-1,-1
a
ab
1
8 如果 x 1,b 0, 那么

)A.1-
b
a b
x
4
3
2
x 1
B.
x 1
9 使分式

x2 4
x 2 x 6
x2
的值相等的 x 等于( 5x 6
A.-4
B.-3 C.1
D.10
二、填空题(每小题 3 分,共 30 分)
10
满足方程:
.
18 当 m
时,关于 x 的方程 m 2 1 有增根. x 2 9 x 3 x 3
19 某市在旧城改造过程中,需要整修一段全长 2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际
工作效率比原计划提高了 20%,结果提前 8 小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路 x
x
5
B.
2x
5
5
2x
1
,去分母得,
x
5
2x
5

x2
C.
x2
x
,去分母得, (x 2)2 x 2 x(x 2) ;
x2 x24 x2
21
D.
, 去分母得,2 (x 1) x 3 ;
x 3 x 1
5 .赵强同学借了一本书,共 280 页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读 21 页才能在借 期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读 x 页,则下面所列方程中,正确的
3(.1)解| x下| 列2 不 0等式 x1
(2) x 5 0 x 2 2x 3
(二)分式的基本性质及有关题型 1. 分式的基本性质: A A M A M
B BM BM 2. 分式的变号法则: a a a a
b b b b
题型一:化分数系数、小数系数为整数系数
【例 1】不改变分式的值,把分子、分母的系数化为整数.
相关文档
最新文档