1.线性规划

合集下载

1-线性规划的基本性质

1-线性规划的基本性质
对于n 维空间的一组向量 P1, P2 , , Pm ,若在数
域 F中有一组不全为 0的数 ai (i 1,2, , m) 使 a1P1 a2P2 L amPm 0
成立,则称这组向量在 F上线性相关,否则称 这组向量在 F上线性无关。
37
基本概念与基本定理
2. 秩:
设A是m n矩阵。若A的n个列向量中有r个线
日销量
产品
B1=3
A1=5
4
A2=7
1
A3=8
7
B2=4
11 9 4
B3=5 B4=8
3
10
2
8
10
5
6
线性规划的数学模型
设从生产点i到销售点j的调运数量为 xij 吨,
则目标函mi数n z为: 4x11 11x12 3xm13inz10x41x41111x12 3x13 10x14
min z x42x111911xx2212 23xx1233108xx1244x721x391 x224x232x23 8x24 7x31 4x32
39
基本概念与基本定理
线性规划的基本概念:
1. 可行解:满足上述约束条件(1.3.1)和 (1.3.2)的解。
2. 最优解:满足上述约束条件(1.3.3)的
可行解。 AX b
(1.3.1)
X 0
(1.3.2)
min z CX (1.3.3)
40
基本概念与基本定理
3. 基:已知A是约束条件的m n 系数矩阵, 其秩为m。若B是A中 mm非奇异子矩阵 (即可逆矩阵,有 B 0 ),则称B是线性 规划问题的一个基,B是由A中m个线性 无关的系数列向量组成的。
2. 若原模型中约束条件为不等式,如何化为 等式:

第一章 线性规划

第一章 线性规划
(1-8)
例 1.5 (汽油混合问题) 一种汽油的特性可用两个指标描述:其点火性用“辛烷数” 描述,其挥发性用“蒸汽压力”描述,某炼油厂有四种标准汽油,设其标号分别为 1,2, 3,4,其特性及库存量见表 1.5,将上述标准汽油适量混合,可得到两种飞机汽油,其标 号分别为 1,2,这两种飞机汽油的性能指标及产量需求见表 1.6,问应如何根据库存情况 适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
注:前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了 12 个变量,10 个约束条件。
表 1.2 资源 住宅体系 砖混住宅 壁板住宅 大模住宅 资源限量 造价 (元/m2) 105 135 120 110000 (千元 钢材 (公斤/m2) 12 30 25 20000 (吨) 例 1.2 的数据表 水泥 (公斤/m2) 110 190 180 150000 (吨) 砖 (块/m2) 210 —— —— 147000 (千块) 人工 (工日/m2) 4.5 3.0 3.5 4000 (千工日)
3.线性规划模型的一般形式 以 MAX 型、≤约束为例 决策变量: x1 ,
(1-4)
, xn
目标函数: Maxz = c1 x1 +
+ cn x n
⎧a11 x1 + + a1n x n ≤ b1 ⎪ ⎪ 约束条件: s.t.⎨ ⎪a m1 x1 + + a mn x n ≤ bm ⎪ ⎩ x1 , , x n ≥ 0
2
Maxz = x1 + x 2 + x3 ⎧0.105 x1 + 0.135 x 2 + 0.120 x3 ≤ 110000 ⎪0.012 x1 + 0.030 x 2 + 0.025 x3 ≤ 20000 数学模型为: ⎪0.110 x1 + 0.190 x 2 + 0.180 x 3 ≤ 150000 (1-3) s.t ⎨ 0.210 x ≤ 147000 ⎪0.00451 x + 0.003x 2 + 0.0035 x 3 ≤ 4000 ⎪x , x , x 1 ≥ 0 ⎩ 1 2 3

1.线性规划

1.线性规划
其特征是: 1.解决问题的目标函数是多个决策变量的线性函数,
通常是求最大值或 最小值;
2.解决问题的约束条件是一组多个决策变量的线性不
等式或等式。
【例1.2】某商场决定:营业员每周连续工作5天后连续休息2天, 轮流休息。根据统计,商场每天至少需要的营业员如表1.2所示。
表1.2 营业员需要量统计表
min f (x), s.t. x∈.
约束条件
可行解域
线性规划(Linear Programming,缩写为LP) 是运筹学的重要分支之一,在实际中应用得较广 泛,其方法也较成熟,借助计算机,使得计算更方便, 应用领域更广泛和深入。 线性规划通常研究资源的最优利用、设备最佳运 行等问题。例如,当任务或目标确定后,如何统筹兼 顾,合理安排,用最少的资源(如资金、设备、原标 材料、人工、时间等)去完成确定的任务或目标;企 业在一定的资源条件限制下,如何组织安排生产获得 最好的经济效益(如产品量最多 、利润最大)。
运筹学的主要内容
数 学 规 划 组 合 优 化 随 机 优 化
线性规划 非线性规划 整数规划 动态规划 多目标规划 双层规划 最优计数问题 网络优化 排序问题 统筹图 对策论 排队论 库存论 决策分析 可靠性分析
学 科


许多生产计划与管理问题都可以归纳为最优 化问题, 最优化模型是数学建模中应用最广泛的 模型之一,其内容包括线性规划、整数线性规划、 非线性规划、动态规划、变分法、最优控制等. 近几年来的全国大学生数学建模竞赛中,几 乎每次都有一道题要用到此方法. 此类问题的一般形式为: 目标函数
星 期 需要 人数 星 期 需要 人数

二 三 四
300
300 350 400

1-线性规划基本概念

1-线性规划基本概念
n
aij x j y j = bi
=
yi 0是非负的松驰变量
若约束条件是“”不等式
n
aij x j z j = bi
=
zi 0是非负的松驰变量
3.若约束条件右面的某一常数项 bi<0; 这时只要在bi相对应的约束方程两边乘
上-1。
4.若变量 xj无非负限制
引进两个非负变量xj xj 0 令xj= xj- xj(可正可负)
x2=生产椅子的数量 2.确定目标函数:家具厂的目标是销售收入最大
max z=50x1+30x2 3.确定约束条件:
4x1+3x2120(木工工时限制) 2x1+x2 50 (油漆工工时限制) 4.变量取值限制: 一般情况,决策变量只取正值(非负值) x1 0, x2 0
数学模型
max z=50x1+30x2
桌子售价50元/个,椅子销售价格30元/个, 生产桌子和椅子要求需要木工和油漆工两种 工种。生产一个桌子需要木工4小时,油漆工 2小时。生产一个椅子需要木工3小时,油漆 工1小时。该厂每个月可用木工工时为120小 时,油漆工工时为50小时。问该厂如何组织 生产才能使每月的销售收入最大?
解:将一个实际问题转化为线性规划模型有以下几 个步骤: 1.确定决策变量:x1=生产桌子的数量
•确定性假定:线性规划问题中的所有参数都是确定 的参数。线性规划问题不包含随机因素。
练习
某公司通过市场调研,决定生产高中档新型拉杆箱。某分 销商决定买进该公司3个月内的全部产品。拉杆箱生产需经过 原材料剪裁、缝合、定型、检验和包装4过程。
通过分析生产过程,得出:生产中档拉杆箱需要用7/10小 时剪裁、5/10小时缝合、1小时定型、1/10小时检验包装;生产 高档拉杆箱则需用1小时剪裁、5/6小时缝合、2/3小时定型、 1/4小时检验包装。由于公司生产能力有限,3月内各部的最大 生产时间为剪裁部630小时、缝合部600小时、定型部708小时、 检验包装部135小时。

第一章 线性规划

第一章 线性规划

第1章线性规划Chapter 1 Linear Programming本章内容提要线性规划是运筹学的重要内容。

本章介绍线性规划数学模型、线性规划的基本概念以及求解线性规划数学模型的基本算法——单纯形法。

学习本章要求掌握以下内容:⏹线性规划模型的结构⏹线性规划的标准形式,非标准形式转化为标准形式⏹线性规划的图解以及相应的概念。

包括:约束直线,可行半空间,可行解,可行域,凸集,极点,目标函数等值线,最优解⏹线性规划的基本概念。

包括:基,基础解,基础可行解,基变量,非基变量,进基变量,离基变量,基变换⏹单纯形法原理。

包括:基变量和目标函数用非基变量表出,检验数,选择进基变量的原则,确定离基变量的方法,主元,旋转运算⏹单纯形表。

包括初始单纯形表的构成,单纯形表运算方法⏹初始基础可行解,两阶段法⏹退化的基础可行解§1.1 运筹学和线性规划1.1.1 运筹学运筹学(Operations Research)是二十世纪三十年代二次大战期间由于战争的需要发展起来的一门学科。

当时,英国组织了一批自然科学和工程科学的学者,和军队指挥员一起,研究大规模战争提出的一些问题。

如轰炸战术的评价和改进、反潜艇作战研究等,研究结果在战争实践中取得了明显得效果。

这些研究当时在英国称为Operational Research,直译为作战研究。

战争结束以后,这些研究方法不断发展完善,并逐步形成学科理论体系,其中一些主要的理论和方法包括:线性规划,网络流,整数规划,动态规划,非线性规划,排队论,决策分析,对策论,计算机模拟等。

这些理论和方法在经济管理领域也得到了广泛应用,Operations Research也转义成为“作业研究”。

我国将Operations Research译成“运筹学”,非常贴切地将Operations Research这一英文术语所包含的作战研究和作业研究两方面的涵义都体现了出来。

现在,运筹学已经成为管理科学重要的基础理论和应用方法,是管理科学专业基本的必修课程之一。

运筹学第1章-线性规划

运筹学第1章-线性规划
凸集的数学定义:设K为n维欧氏空间的一个点集,若K中任意两个 点X1和X2连线上的所有点都属于K,即“X =αX1+(1-α) X2 ∈ K(0≤a ≤ 1)”,则称K为凸集。设X(x1,x2,…,xn),X1(u1, u2,...,un),X2(v1,v2,…,vn),如图1一5所示,“X =αX1+(1α) X2 ∈ K(0≤a ≤ 1)”的证明思路如下:
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。

1、线性规划(数学建模)

1、线性规划(数学建模)

⎧2 x1 + x2 ≤ 10 ⎪x + x ≤ 8 ⎪ 1 2 s.t.(约束条件) ⎨ ⎪ x2 ≤ 7 ⎪ ⎩ x1 , x2 ≥ 0
(2)
(1)式被称为问题的目标函数, (2)中的几个不等式 这里变量 x1 , x 2 称之为决策变量, 是问题的约束条件,记为 s.t.(即 subject to)。由于上面的目标函数及约束条件均为线性 函数,故被称为线性规划问题。 总之, 线性规划问题是在一组线性约束条件的限制下, 求一线性目标函数最大或最 小的问题。 在解决实际问题时, 把问题归结成一个线性规划数学模型是很重要的一步, 但往往 也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我 们建立有效模型的关键之一。 1.2 线性规划的 Matlab 标准形式 线性规划的目标函数可以是求最大值, 也可以是求最小值, 约束条件的不等号可以 是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性 规划的标准形式为
max z = 2 x1 + 3x2 − 5 x3 s.t. x1 + x2 + x3 = 7 2 x1 − 5 x2 + x3 ≥ 10 x1 + 3 x2 + x3 ≤ 12 x1 , x2 , x3 ≥ 0
-3-
解 (i)编写 M 文件 c=[2;3;-5]; a=[-2,5,-1;1,3,1]; b=[-10;12]; aeq=[1,1,1]; beq=7; x=linprog(-c,a,b,aeq,beq,zeros(3,1)) value=c'*x (ii)将M文件存盘,并命名为example1.m。 (iii)在Matlab指令窗运行example1即可得所求结果。 例3 求解线性规划问题

运筹学-1、线性规划

运筹学-1、线性规划

则:
x1 x2 100
x1 ( x3 ) x4 x2 2
设x3为第二年新的投资; x4为第二年的保留资金;
则:
18
•设x5为第三年新的投资;x6为第三年的保留资金;
则:
x3 ( x5 ) x6 x4 2 x1 2
•设x7为第四年新的投资;第四年的保留资金为x8;
max Z 2 x7 x9 x1 x2 100 x 2x 2x 2x 0 2 3 4 1 4 x1 x3 2 x4 2 x5 2 x6 0 s.t 4 x3 x5 2 x6 2 x7 2 x8 0 4 x5 x7 2 x 8 2 x9 0 x 0, j 1, 2, , 9 j
13
例3:(运输问题)设有两个砖厂A1 、A2 ,产 量分别为23万块、27万块,现将其产品联合供应三 个施工现场B1 、 B2 、 B3 ,其需要量分别为17万 块、18万块、15万块。各产地到各施工现场的单位 运价如下表: 现场 砖厂 B1 B2 B3
A1 A2
5 6
14 18
7 9
问如何调运才能使总运费最省?
20
例5:(下料问题) 某一机床需要用甲、乙、 丙三种规格的钢轴各一根,这些轴的规格分别是 2.9,2.1, 1.5(m),这些钢轴需要用同一种圆钢来做,圆 钢长度为7.4m。现在要制造100台机床,最少要用多 少根圆钢来生产这些钢轴?
解:第一步:设一根圆钢切割成甲、乙、丙三 种钢轴的根数分别为y1,y2,y3,则切割方式可用不等 式2.9y1+2.1y2+1.5y3≤7.4 表示,求这个不等式的有实 际意义的非负整数解共有8组,也就是有8种不同的 下料方式,如下表所示:

第1章 线性规划

第1章 线性规划

第1章线性规划本章介绍了什么是线性规划,线性规划数学模型的概念及其建立数学模型方法;阐述了线性规划的图解法、解的概念及解的形式;详细介绍了普通单纯形法、人工变量单纯形法及单纯形法计算公式。

1.考核知识点(1) 基本概念:数学模型、决策变量、目标函数、约束条件、标准型、图解法、基矩阵、基变量、非基变量、可行解、基解、基可行解、最优解、基最优解、唯一解、多重解、无界解、无可行解、单纯形法、最小比值、入基变量、出基变量、解的判断、大M法、两阶段法、改进单纯形法。

(2) 建立简单的线性规划数学模型。

(3) 求解线性规划的图解法。

(4) 基、可行基及最优基的定义。

(5) 可行解、基本解、基可行解、最优解、基本最优解的定义及其相互关系。

(6) 有唯一解、有无穷多解、无界解、无可行解的判断。

(7) 求解线性规划的单纯形法。

(8) 求解线性规划的人工变量法。

(9) 单纯形法中的5个计算公式。

2.学习要求(1) 深刻领会线性规划的各种基与解的基本概念,它们之间的相互关系。

(2)掌握图解法的计算步骤,注意怎样将目标函数表达成一条直线,这条直线如何平移使得目标函数值上升或下降。

(3) 熟练掌握单纯形法计算的全过程,特别应注意如何列出单纯形表,如何由一个基可行解换到另一个基可行解,基可行解是最优解、无界解或多重解的判断准则。

(4) 理解在什么情况下加入人工变量,人工变量起何作用,用大M法计算时目标函数的变化,两阶段法计算时目标函数的构成,掌握这两种计算方法的全过程,在什么情形下线性规划无可行解。

(5) 理解用矩阵形式代替单纯形表,并用矩阵公式求解线性规划。

3.重点建立线性规划数学模型,有关线性规划解的概念、解的形式,单纯形法计算、大M法、两阶段法。

4.难点解析(1)建立线性规划数学模型建立数学模型是学习线性规划的第一步也是关键的一步。

建立正确的数学模型要掌握3个要素:研究的问题是求什么,即设置决策变量;问题要达到的目标是什么即建立目标函数,目标函数一定是决策变量的线性函数并且求最大值或求最小值;限制达到目标的条件是什么,即建立约束条件。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结标题:线性规划知识点总结引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

在实际应用中,线性规划被广泛应用于生产计划、资源分配、运输优化等方面。

本文将对线性规划的基本概念、解法、应用等知识点进行总结,帮助读者更深入了解线性规划的相关内容。

一、线性规划的基本概念1.1 线性规划的定义:线性规划是一种数学优化方法,其目标是在一组线性约束条件下,找到使目标函数取得最大(最小)值的变量取值。

1.2 线性规划的标准形式:线性规划的标准形式包括一个目标函数和一组线性约束条件,目标函数是要最大化或最小化的线性函数,约束条件是一组线性不等式或等式。

1.3 线性规划的解的存在性:线性规划问题存在解的条件是可行域非空,即约束条件构成的可行域至少包含一个可行解。

二、线性规划的解法2.1 单纯形法:单纯形法是解决线性规划问题最常用的方法之一,通过不断移动顶点来搜索最优解。

2.2 对偶理论:对偶理论是线性规划的另一种解法,通过构建原问题和对偶问题之间的关系,可以得到原问题的最优解。

2.3 整数规划:整数规划是线性规划的一个扩展,要求变量的取值必须是整数,通常使用分支定界法等方法求解。

三、线性规划的应用3.1 生产计划:线性规划可以用于优化生产计划,确定生产量和资源分配,以最大化利润或降低成本。

3.2 运输优化:线性规划可以用于解决运输问题,确定最优的运输方案和运输成本,提高运输效率。

3.3 资源分配:线性规划可以用于优化资源分配,如人力、物资等资源的合理分配,以达到最佳利用效果。

四、线性规划的局限性4.1 非线性问题:线性规划只适用于线性约束条件下的最优化问题,对于非线性问题无法直接求解。

4.2 大规模问题:对于大规模线性规划问题,传统的求解方法可能会面临计算复杂度高、求解时间长的问题。

4.3 离散变量:线性规划无法直接处理离散变量,对于包含离散变量的问题需要转化为整数规划或混合整数规划来求解。

线性规划与目标规划的异同和作用

线性规划与目标规划的异同和作用

线性规划与目标规划的异同和作用一、线性规划与目标规划(1)线性规划线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。

线性规划模型的一般形式如下:在线性规划的数学模型中,方程(1)称为目标函数;(2)称为约束条件。

满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。

决策变量、约束条件、目标函数是线性规划的三要素。

在生产管理和经营活动中经常提出一类问题,即如何合理利用有限的人力、物力、财力等资源,以便达到最好的经济效果。

例. [生产计划安排问题]某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的生产,已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,单位产品的获利,如下表所示:产品Ⅰ产品Ⅱ资源限制设备 1 1 300台时原料A 2 1 400千克原料B 0 1 250千克单位产品获利50元100元问题:计划期内工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?解:设工厂在计划期内应安排生产产品ⅠX1件, 产品ⅡX2件。

所获利润为z元。

由题意得:Max z = 50 x1 + 100 x2x1 + x2 ≤ 300s.t. 2 x1 + x2 ≤ 400x2 ≤ 250x1 , x2 ≥ 0上例有这样的特征:(1)用一组变量表示某个方案,一般这些变量取值是非负的;(2)存在一定的约束条件,可以用线性等式或线性不等式来表示;(3)都有一个要达到的目标,可以用决策变量的线性函数来表示。

(2)目标规划目标规划(Goal programming)目标规划是线性规划的一种特殊应用,能够处理单个主目标与多个目标并存,以及多个主目标与多个次目标并存的问题。

目标规划的模型分为以下两大类: 1.多目标并列模型。

2.优先顺序模型。

目标规划在企业人力资源需求预测中的应用企业人力资源需求预测是人力资源管理是的一项重要工作,它可以帮助企业明确未来人力需求趋势,做好人才储备工作;同时也可以帮助企业合理预测未来各部门、各类职位人员的需求情况,做好企业的定岗定编工作。

线性规划

线性规划
Байду номын сангаас步骤
线性规划在 实际生活中 的应用案例
投资决策
投资目标:最大化收益或最小化风险 投资策略:选择投资项目、分配投资资金、设定投资期限等
投资风险:市场风险、利率风险、汇率风险等 投资评估:使用线性规划模型评估投资方案,比较不同方案的优劣
B
题转化为几何问题,从而找到最
优解。
C
图解法的基本步骤包括:确定可 行域、找出最优解、验证最优解。
图解法适用于求解线性规划问题
D
的特殊情况,如线性规划问题的
约束条件为线性等式或不等式。
单纯形法
基本思想: 通过迭代求 解线性规划 问题的最优

步骤:确定初 始基,计算目 标函数值,更 新基,重复以 上步骤直到找
线性规划的优缺点
优点: 缺点:
适用于解决线性 问题
计算速度快,易 于实现
结果精确,易于 解释
只能解决线性问 题,不适用于非
线性问题
计算复杂度高, 对于大规模问题
可能难以求解
结果可能不唯一, 需要进一步分析 才能得到最优解
图解法
A
图解法是一种直观、形象的求解 线性规划问题的方法。
图解法通过画图,将线性规划问
划问题
迭代求解:通过 迭代公式,更新
当前点
重复步骤b-d, 直到找到最优解
生产计划
线性规划在生产计划中 的应用
线性规划可以帮助确定 最优的生产方案
线性规划可以优化生产 成本和生产效率
线性规划可以帮助解决 生产过程中的约束问题
资源分配
线性规划在 资源分配中
的应用
线性规划的 目标函数和
约束条件
线性规划的 求解方法和

线性规划和最优解

线性规划和最优解

线性规划和最优解线性规划是一种在数学和运筹学领域常见的问题求解方法,可以应用于各种现实生活中的决策问题。

它是通过一系列线性等式和不等式来建模,并在满足特定约束条件下求解使目标函数取得最优值的变量值。

线性规划的最优解能够帮助我们做出高效的决策,下面将详细介绍线性规划的原理和求解方法。

一、线性规划的基本概念线性规划中,我们首先需要明确问题的目标,并将其表示为一个线性函数,也被称为目标函数。

目标函数可以是最大化或最小化的,具体取决于问题的需求。

其次,我们需要确定一组变量,这些变量的取值将会对目标函数产生影响。

接下来,我们还需要列举出一系列约束条件,这些约束条件通常来自于问题的实际情况,例如资源限制、技术要求等。

最后,我们需要确定这些变量的取值范围,这也是约束条件的一部分。

二、线性规划的数学建模在线性规划中,我们可以通过以下步骤进行数学建模:1. 确定目标函数:根据问题的要求,我们可以定义一个线性函数作为目标函数。

例如,如果我们要最大化某个产品的利润,那么利润就可以是目标函数。

2. 列举约束条件:根据问题的实际情况,我们需要列举出一系列约束条件。

这些约束条件可以是线性等式或不等式,并且通常包含了变量的取值范围。

3. 确定变量的取值范围:根据问题的实际情况,我们需要确定变量的取值范围。

例如,如果某个变量代表一个产品的产量,那么它的取值范围可能是非负数。

4. 构建数学模型:根据目标函数、约束条件和变量的取值范围,我们可以构建一个数学模型,将问题转化为线性规划模型。

三、线性规划的最优解求解方法线性规划的最优解可以通过以下方法求解:1. 图形法:对于只有两个变量的简单线性规划问题,我们可以通过绘制变量的可行域图形,并计算目标函数在图形上的最优解点来求解问题。

2. 单纯形法:单纯形法是一种常用的求解线性规划问题的算法。

它通过逐步迭代改进解向量,从而逼近最优解。

这个方法通常适用于复杂的线性规划问题,可以在较短的时间内得到比较好的结果。

第一 线性规划(共188张PPT)

第一 线性规划(共188张PPT)
个要求表述为
x1 ≥0, x2 ≥0
• 综上所述,该问题的数学模型表示为
maxZ= 3x1 +5 x2
x1
≤8
2x2 ≤12
3x1 +4 x2 ≤36
x1 ≥0, x2 ≥0
5
第一节 线性规划一般模型
• 例2. 运输问题 某名牌饮料在国内有三个生产厂,分布在城市A1、 A2、A3,其一级承销商有4个,分布在城市B1、B2、B3、 B4,已知各厂的产量、各承销商的销售量及从Ai到Bj 的每吨饮料运费为Cij,为发挥集团优势,公司要统 一筹划运销问题,求运费最小的调运方案。
(3)约束条件。产量之和等于销量之和,故要满足:
▪ 供应平衡条件
x11+x12+x13+x14=5 x21+x22+x23+x24=2 x31+x32+x33+x34 =3
§ 销售平衡条件
x11+x21+x31=2 x12+x22+x32=3 x13+x23+x33=1 x14+x24+x34=4
§ 非负性约束
29
第三节 线性规划的标准型
§ 标准化2
minZ= x1 +2 (x2′-x 2〃) +3 x3′
函数。可能是最大化,也可能是最小化。 • 线性规划一般模型的代数式 为:
max(min)Z=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn ≤(≥,=)b1 a21x1+a22x2+…+a2nxn ≤(≥,=)b2 …………… am1x1+am2x2+…+amnxn≤(≥,=)bm x1,x2,…,xn ≥(≤)0

第一章:线性规划基础

第一章:线性规划基础

表1.5 效率表
工作 A 人员 甲 乙 丙 丁 X11 0.6 X21 0.7 X31 0.8 X41 0.7 X42 0.7 X32 1.0 X43 0.5 X22 0.4 X33 0.7 X44 0.4 B X12 0.2 X23 0.3 X34 0.3
s.t.
C X13 0.3
D X14 0.1 X24 0.2
6
三、合理下料问题建模:寻求最佳下料方式, 使余料最少. 合理下料问题建模:寻求最佳下料方式, 使余料最少. 有一批长度为180公分的钢管,需截成70 52和35公分三种管料 180公分的钢管 70、 公分三种管料。 例 有一批长度为180公分的钢管,需截成70、52和35公分三种管料。它们的需求量应分别不少于 100、150和100个 问应如何下料才能使钢管的余料为最少? 100、150和100个。问应如何下料才能使钢管的余料为最少? 解:
s.t.
5
二、人员分派问题建模: 合理分派人员, 使总效率最大. 人员分派问题建模: 合理分派人员, 使总效率最大. 设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 例:设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少) 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少)。 表示各人对各项工作所具有的工作效率。 表1.5表示各人对各项工作所具有的工作效率。

k •
ο •h • ο a ④ ③ 3 ο ② X1 ⑤
四、L.P. 的一般形式
Max(Min) Z = c1 · x1 + c2 · x2 + --- + cn · xn a11 · x1 + a12 · x2 + --- + a1n · xn ≤(≥, =) b1 a21 · x1 + a22 · x2 + --- + a2n · xn ≤(≥, =) b2 s.t. ------------------------------------------ ---- --am1 · x1 + am2 · x2 + --- + amn · xn ≤(≥, =) bm xj ≥ 0 , j=1, ~, n

运筹学第一章

运筹学第一章

第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。

取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。

目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。

2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。

线性规划知识点

线性规划知识点

线性规划知识点引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在经济学、工程学、管理学等领域得到广泛应用。

本文将介绍线性规划的基本概念、模型建立、求解方法以及应用领域。

一、线性规划的基本概念1.1 目标函数:线性规划的目标函数是要最大化或最小化的数学表达式。

它通常是一组决策变量的线性组合。

1.2 约束条件:线性规划的约束条件是对决策变量的限制条件,可以是等式或不等式。

约束条件限制了决策变量的取值范围。

1.3 可行解:满足所有约束条件的决策变量取值组合称为可行解。

线性规划的目标是找到最优的可行解。

二、线性规划模型建立2.1 决策变量的定义:线性规划中,需要定义决策变量,表示问题中需要优化的变量。

2.2 目标函数的构建:根据问题的具体要求,将目标转化为数学表达式,并构建目标函数。

2.3 约束条件的建立:根据问题的约束条件,将其转化为数学表达式,并建立约束条件。

三、线性规划的求解方法3.1 图形法:对于二维线性规划问题,可以通过绘制目标函数和约束条件的图形来找到最优解。

3.2 单纯形法:单纯形法是一种高效的求解线性规划问题的方法。

它通过迭代计算,逐步优化目标函数的值,直到找到最优解。

3.3 整数线性规划:当决策变量需要取整数值时,可以使用整数线性规划方法求解。

这种方法在实际问题中具有重要应用价值。

四、线性规划的应用领域4.1 生产计划:线性规划可以用于优化生产计划,使得生产成本最低或产量最高。

4.2 资源分配:线性规划可以用于优化资源分配,使得资源利用效率最大化。

4.3 运输问题:线性规划可以用于解决运输问题,确定最佳的运输方案,以降低运输成本。

结论:线性规划是一种重要的数学优化方法,它通过建立数学模型,求解最优解,解决了许多实际问题。

了解线性规划的基本概念、模型建立、求解方法以及应用领域,对于提高问题解决能力和决策水平具有重要意义。

数学建模第1章线性规划

数学建模第1章线性规划

数学
建模
例 1.6
min{max
xi
yi
|
ei
|},其中e i
=
xi -
yi 。
取v
=
max yi
|
e
i
|,这样,上面的问题就变换成
min v,
s.t.
ìïïíïïî
x1 y1
-
y1 ? x1 ?
v,L , xn v,L , yn
yn ? v, n ? v.
25/39
基础部数学教研室
数学 建模
2x1 - 5x2 + x3 ? 10, x1 + 3x2 + x3 ? 12, x1, x2 , x3 ³ 0.
11/39
基础部数学教研室
数学 建模
解 (1)化成 Matlab 标准型
min w = - 2x1 - 3x2 + 5x3,
s.t.
轾 犏- 2 犏 臌1
5 3
-1 1
轾 犏x1 犏 犏x2 犏 臌x3
a=1 -1 -1 1 1 -1 1 -3 1 -1 -2 3;
enddata
min=@sum(col:c*@abs(x));
@for(row(i):@sum(col(j):a(i,j)*x(j))<b(i));
@for(col:@free(x)); !x的分量可正可负;
end
24/39
基础部数学教研室
@for(row(i):@sum(col(j):a(i,j)*x(j))<b(i));
@sum(col:x)=7;
14/39
end
基础部数学教研室
数学 建模
例 1.2 求解下列线性规划问题 max z = 2x1 + 3x2 - 5x3, s.t. x1 + x2 + x3 = 7, 2x1 - 5x2 + x3 ? 10, x1 + 3x2 + x3 ? 12, x1, x2 , x3 ³ 0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1节 数学模型
例2: 解:设Ⅰ、Ⅱ两种产品在计划期内的产量分别为x1、x2 z =2x1+3x2→max 2x1+2x2≤12 x1+2x2≤8 满足 4x1≤16 4x2≤12 x1,x2≥0
第1节 数学模型
特征 (1)决策变量 (2)约束条件 (3)目标函数

第1节 数学模型
二、线性规划问题 特征(三要素) (1)决策变量:问题中的未知量 (2)目标函数:问题要达到的目标(最大或最 小),表示为决策变量的线性函数 (3)约束条件:表示为含决策变量的一组互不矛 盾的线性等式或线性不等式的函数约束和决策 变量的非负约束
第一章 绪论
第一章 绪论
一、运筹学的定义 运用科学的方法研究管理和工程中各种决策问题, 为决策者提供科学的决策依据的学科。 二、运筹学的研究方法 将实际问题定量化和模型化,运用数学、统计学、 计算机科学和工程等学科的原理和技术研究各 种组织系统的管理问题和生产经营活动,以求 得到一个合理的运用资源的最优方案,达到系 统效益的最优化。
x2 0
第1节 数学模型
三、线性规划数学模型的标准形式(标准型)
max z c j x j
j 1 n
n 2, ,m aij x j bi,i 1, j 1 x 0,j 1, 2, ,n j



目标函数求最大值 函数约束条件全为等式 决策变量全为非负 函数约束条件右端项全为非负
第1节 数学模型
一、规划问题 含义:如何合理地利用有限的人力、物力、 财力等资源,以便得到最好的经济效果。
第1节 数学模型
例1:用一块边长为a的正方形铁皮做一个 容器,应该如何裁剪,使做成的容器的容 积最大(如下图所示)。
x
a
第1节 数学模型
例1: 解:设在铁皮四个角上剪去四个边长各为x 的正方形 V=(a-2x)· (a-2x)·x→max 满足 x≤a/2 x≥0
运筹学
管理科学与工程学院 电子商第四章 第五章 第六章 绪论 线性规划(Linear Programming) 对偶理论(Dual Theory) 运输问题(Transportation Problem) 整数规划(Integer Programming) 图论(Graph Theory)
第1节 数学模型
线性规划问题数学模型的形式 (1)一般形式

max(min) z c1 x1 c2 x2
cn xn
a11 x1 a12 x2 a1n xn (, )b1 a x a x a x (, )b 21 1 22 2 2n n 2 a x a x a x (, )b mn n m m1 1 m 2 2 x1 , x2 , xn 0
第一章 绪论
三、运筹学的工作步骤 提出问题,并根据需要收集有关数据信息 建立模型,引入决策变量,确定目标函数(约 束条件) 模型求解,获得‘最优’或‘次优’解 检验模型和解的合理性,必要时修正 根据最优方案提出管理建议 帮助实施管理决策
第二章 线性规划
Linear Programming
第1节 数学模型
(2)简写形式
max(min) z c j x j
j 1 n
n aij x j (, )bi , i 1, 2, j 1 x 0, j 1, 2, , n j
,m
(3)向量形式
max(min) z CX n Pj x j (, )b j 1 X 0
第1节 数学模型
例2:某企业计划生产Ⅰ、Ⅱ两种产品,都要分 别在A,B,C,D四种不同设备上加工。按工 艺资料规定,生产每件产品Ⅰ需占用各设备分 别为2,1,4,0(小时),生产每件产品Ⅱ 需占用各设备分别为2,2,0,4(小时)。 已知各设备计划期内用于生产这两种产品的能 力分别为12,8,16,12(小时),又知每生 产一件产品Ⅰ,企业能获利2元,每生产一件 产品Ⅱ ,企业能获利3元。问:该企业应如何 安排生产两种产品各多少件,使企业的利润收 入最大。
(4)矩阵形式
max(min) z CX AX (, )b X 0
第1节 数学模型
例2: 一般形式 矩阵形式 x1 max z =2x1+3x2 max z 2 3 x2 2x1+2x2≤12 2 2 12 x1+2x2≤8 x 1 2 1 8 4x1≤16 4 0 x2 16 4x2≤12 12 0 4 x 0 x1,x2≥0 1
第1节 数学模型
要求:将下列线性规划问题转化为标准型。 例3:min z =x1+2x2+3x3 -2x1+x2+x3≤9 -3x1+x2+2x3≥4 3x1-2x2-3x3=-6 x1≤0,x2≥0,x3取值无约束
第1节 数学模型
例3: 解:令 x1 x1 , x3 x3 x3 , z z max z′=x1′-2x2-3x3′+3x3〞+0x4+0x5 2x1′+x2+x3′-x3〞+x4=9 3x1′+x2+2x3′-2x3〞-x5=4 3x1′+2x2+3x3′-3x3〞=6 x1′,x2,x3′,x3〞,x4,x5≥0
第1节 数学模型
四、线性规划的非标准型如何转化为标准型 目标函数求最小值:令z′=-z 函数约束条件为不等式: ‘≤’:在函数约束条件左端加非负的松弛变量 ‘≥’:在函数约束条件左端减非负的松弛变量 松弛变量在目标函数中的系数全为‘0’ 决策变量为负值:令xj′=-xj, xj′≥0 决策变量取值无约束: 令xj =xj′- xj〞,xj′≥0, xj〞≥0 函数约束条件右端项(bi)为负值:函数约束条件两 端同乘‘-1’
相关文档
最新文档