1线性规划
1.线性规划

通常是求最大值或 最小值;
2.解决问题的约束条件是一组多个决策变量的线性不
等式或等式。
【例1.2】某商场决定:营业员每周连续工作5天后连续休息2天, 轮流休息。根据统计,商场每天至少需要的营业员如表1.2所示。
表1.2 营业员需要量统计表
min f (x), s.t. x∈.
约束条件
可行解域
线性规划(Linear Programming,缩写为LP) 是运筹学的重要分支之一,在实际中应用得较广 泛,其方法也较成熟,借助计算机,使得计算更方便, 应用领域更广泛和深入。 线性规划通常研究资源的最优利用、设备最佳运 行等问题。例如,当任务或目标确定后,如何统筹兼 顾,合理安排,用最少的资源(如资金、设备、原标 材料、人工、时间等)去完成确定的任务或目标;企 业在一定的资源条件限制下,如何组织安排生产获得 最好的经济效益(如产品量最多 、利润最大)。
运筹学的主要内容
数 学 规 划 组 合 优 化 随 机 优 化
线性规划 非线性规划 整数规划 动态规划 多目标规划 双层规划 最优计数问题 网络优化 排序问题 统筹图 对策论 排队论 库存论 决策分析 可靠性分析
学 科
内
容
许多生产计划与管理问题都可以归纳为最优 化问题, 最优化模型是数学建模中应用最广泛的 模型之一,其内容包括线性规划、整数线性规划、 非线性规划、动态规划、变分法、最优控制等. 近几年来的全国大学生数学建模竞赛中,几 乎每次都有一道题要用到此方法. 此类问题的一般形式为: 目标函数
星 期 需要 人数 星 期 需要 人数
一
二 三 四
300
300 350 400
第1章 线性规划

1.1 线性规划问题及其数学模型
线性规划
该公司想达到的目标为:投资 风险最小,每年红利至少为6.5万 元,最低平均增长率为12%,最低 平均信用度为7。请用线性规划方 法求解该问题。
1.1 线性规划问题及其数学模型
解:
(1)决策变量
线性规划
本问题的决策变量是在每种投资项目上的投 资 额 。 设 xi 为 项 目 i 的 投 资 额 ( 万 元 ) ( i=1,2,,6)
(2)目标函数
本问题的目标为总投资风险最小,即
Min z 0.18x1 0.06x2 0.10x3 0.04x4 0.12x5 0.08x6
线性规划
运筹学
线性规划
线性规划
本章内容要点
线性规划问题及其数学模型;
线性规划的电子表格建模; 线性规划的多解分析。
线性规划
本章内容
1.1 线性规划问题及其数学模型
1.2 线性规划问题的图解法
1.3 用Excel“规划求解”功能求解线性规划问题
1.4 线性规划问题求解的几种可能结果
本章主要内容框架图
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解 无穷多解 无解 可行域无界(目标值不收敛)
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解
线性规划问题具有 唯一解是指该规划 问题有且仅有一个 既在可行域内、又 使目标值达到最优 的解。例1.1就是一 个具有唯一解的规 划问题
(1-1)
(一)线性规划

(一)线性规划
案例分析1
例1.10飞乐公司经营一个回收中心,专门混合三种废弃原材料C、P和h,以生产三
种不同规格的产品abd。
根据混合过程中各种材料的比例,产品可分为不同等级(见表
1.12)。
尽管混合不同等级的产品时允许一定的流动性,各等级产品中各种材料的最大值
和最小值必须符合下列质量标准的规定(最大值和最小值根据材料重量占该等级产品总重
量的比例确定)。
在两种更高级的产品中,一种特定材料的比例是固定的。
规格要求、单价、原材料数量、每天可供原材料单价见表1.12、表1.13。
工厂应该如何安排生产以实
现利润最大化?表1.12
产品名称abd
本规范要求原料C不小于50%,原料P不大于25%,原料C不小于25%,原料P不大于50%
不限
单价(元/公斤)
503525
回收中心可以定期从某些渠道收集所需的固体废物,从而获得处理能力,保持稳定运行。
表1.13显示了中心每天可以收集的每种材料的数量和单价。
表1.13
原料名称
cph
最大日供应量(千克)
10010060
单价(元/公斤)
652535
飞乐公司是格陵兰组织的全资子公司,格陵兰组织是一家专门从事环境相关业务的组织。
管理层决定在表1.12和表1.13所列的限制范围内,有效地向各级产品分配各种材料,以使每周的总利润最大化。
《运筹学》课件 第一章 线性规划

10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0
1-线性规划基本概念

aij x j y j = bi
=
yi 0是非负的松驰变量
若约束条件是“”不等式
n
aij x j z j = bi
=
zi 0是非负的松驰变量
3.若约束条件右面的某一常数项 bi<0; 这时只要在bi相对应的约束方程两边乘
上-1。
4.若变量 xj无非负限制
引进两个非负变量xj xj 0 令xj= xj- xj(可正可负)
x2=生产椅子的数量 2.确定目标函数:家具厂的目标是销售收入最大
max z=50x1+30x2 3.确定约束条件:
4x1+3x2120(木工工时限制) 2x1+x2 50 (油漆工工时限制) 4.变量取值限制: 一般情况,决策变量只取正值(非负值) x1 0, x2 0
数学模型
max z=50x1+30x2
桌子售价50元/个,椅子销售价格30元/个, 生产桌子和椅子要求需要木工和油漆工两种 工种。生产一个桌子需要木工4小时,油漆工 2小时。生产一个椅子需要木工3小时,油漆 工1小时。该厂每个月可用木工工时为120小 时,油漆工工时为50小时。问该厂如何组织 生产才能使每月的销售收入最大?
解:将一个实际问题转化为线性规划模型有以下几 个步骤: 1.确定决策变量:x1=生产桌子的数量
•确定性假定:线性规划问题中的所有参数都是确定 的参数。线性规划问题不包含随机因素。
练习
某公司通过市场调研,决定生产高中档新型拉杆箱。某分 销商决定买进该公司3个月内的全部产品。拉杆箱生产需经过 原材料剪裁、缝合、定型、检验和包装4过程。
通过分析生产过程,得出:生产中档拉杆箱需要用7/10小 时剪裁、5/10小时缝合、1小时定型、1/10小时检验包装;生产 高档拉杆箱则需用1小时剪裁、5/6小时缝合、2/3小时定型、 1/4小时检验包装。由于公司生产能力有限,3月内各部的最大 生产时间为剪裁部630小时、缝合部600小时、定型部708小时、 检验包装部135小时。
第一章 线性规划

第1章线性规划Chapter 1 Linear Programming本章内容提要线性规划是运筹学的重要内容。
本章介绍线性规划数学模型、线性规划的基本概念以及求解线性规划数学模型的基本算法——单纯形法。
学习本章要求掌握以下内容:⏹线性规划模型的结构⏹线性规划的标准形式,非标准形式转化为标准形式⏹线性规划的图解以及相应的概念。
包括:约束直线,可行半空间,可行解,可行域,凸集,极点,目标函数等值线,最优解⏹线性规划的基本概念。
包括:基,基础解,基础可行解,基变量,非基变量,进基变量,离基变量,基变换⏹单纯形法原理。
包括:基变量和目标函数用非基变量表出,检验数,选择进基变量的原则,确定离基变量的方法,主元,旋转运算⏹单纯形表。
包括初始单纯形表的构成,单纯形表运算方法⏹初始基础可行解,两阶段法⏹退化的基础可行解§1.1 运筹学和线性规划1.1.1 运筹学运筹学(Operations Research)是二十世纪三十年代二次大战期间由于战争的需要发展起来的一门学科。
当时,英国组织了一批自然科学和工程科学的学者,和军队指挥员一起,研究大规模战争提出的一些问题。
如轰炸战术的评价和改进、反潜艇作战研究等,研究结果在战争实践中取得了明显得效果。
这些研究当时在英国称为Operational Research,直译为作战研究。
战争结束以后,这些研究方法不断发展完善,并逐步形成学科理论体系,其中一些主要的理论和方法包括:线性规划,网络流,整数规划,动态规划,非线性规划,排队论,决策分析,对策论,计算机模拟等。
这些理论和方法在经济管理领域也得到了广泛应用,Operations Research也转义成为“作业研究”。
我国将Operations Research译成“运筹学”,非常贴切地将Operations Research这一英文术语所包含的作战研究和作业研究两方面的涵义都体现了出来。
现在,运筹学已经成为管理科学重要的基础理论和应用方法,是管理科学专业基本的必修课程之一。
运筹学第1章-线性规划

下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
第1章 线性规划基本性质

1. X1≥0, X2 ≥0 2. 2X1 + 3X2 ≤ 100 3. 4X1 + 2X2 ≤ 120
所有约束条件的的交集为R.
A B R
10 60
现在,问题变为在R内找一点, O 使目标函数值最大.如何找?…
C
20 30 40 50
X1
§1.2 线性规划的图解法
X2
(三)目标函数的图形表示 Z = 6X1 + 4X2 将上式改写: X2 =-3X1/2 + Z/4 令Z为参量,使其取不同 的值,则得到以-3/2为斜率的 一族平行等值线. 如令: 60, 则经过点(10,0)和(0,15); Z=0, 则经过原点; Z=120,则经过点(20,0)和(0,30);
0.8X1 + X2≥1.6 X1 X2 ≤2 ≤1.4
X1 ≥0, X2 ≥0
§1.1 线性规划的一般模型
所谓线性规划问题: 就是求一组变量 ( x1 , x2 , , xn ) 的值,它们 在满足一组线性等式或不等式的限制条件下,使某 一线性函数的值达到极大或极小。而线性规划就是 研究并解决这类问题的一门理论和方法。 请问在企业中有哪些问题属于线性规划问题?
§1.2 线性规划的图解法
maxZ = 6X1 + 4X2 2X1 + 3X2 ≤ 100 --① 4X1 + 2X2 ≤ 120 --② X1≥0, X2 ≥0 (一)建立坐标系 (二)约束条件的图形表示
X2
60 50 40 30 20 10
两个概念:
1.可行解:满足约束条件的点. 2.可行域:全部可行解的集合, 即区域OABCO,用R表示.
X1 ≥0, X2 ≥0
§1.1 线性规划的一般模型
运筹学-1、线性规划

则:
x1 x2 100
x1 ( x3 ) x4 x2 2
设x3为第二年新的投资; x4为第二年的保留资金;
则:
18
•设x5为第三年新的投资;x6为第三年的保留资金;
则:
x3 ( x5 ) x6 x4 2 x1 2
•设x7为第四年新的投资;第四年的保留资金为x8;
max Z 2 x7 x9 x1 x2 100 x 2x 2x 2x 0 2 3 4 1 4 x1 x3 2 x4 2 x5 2 x6 0 s.t 4 x3 x5 2 x6 2 x7 2 x8 0 4 x5 x7 2 x 8 2 x9 0 x 0, j 1, 2, , 9 j
13
例3:(运输问题)设有两个砖厂A1 、A2 ,产 量分别为23万块、27万块,现将其产品联合供应三 个施工现场B1 、 B2 、 B3 ,其需要量分别为17万 块、18万块、15万块。各产地到各施工现场的单位 运价如下表: 现场 砖厂 B1 B2 B3
A1 A2
5 6
14 18
7 9
问如何调运才能使总运费最省?
20
例5:(下料问题) 某一机床需要用甲、乙、 丙三种规格的钢轴各一根,这些轴的规格分别是 2.9,2.1, 1.5(m),这些钢轴需要用同一种圆钢来做,圆 钢长度为7.4m。现在要制造100台机床,最少要用多 少根圆钢来生产这些钢轴?
解:第一步:设一根圆钢切割成甲、乙、丙三 种钢轴的根数分别为y1,y2,y3,则切割方式可用不等 式2.9y1+2.1y2+1.5y3≤7.4 表示,求这个不等式的有实 际意义的非负整数解共有8组,也就是有8种不同的 下料方式,如下表所示:
1-1线性规划问题及模型

西安邮电大学 现代邮政学院
Xi'an post and telecommunications university modern post College
第一章 线性规划与单纯形法
1.1线性规划问题及模型 运 筹 学
主要内容
01 线性规划问题
运
02 线性规划模型及特征
筹
学
一 线性规划问题
二 线性规划模型
2.线性规划模型的一般形式
运 筹 学
二 线性规划模型
简写式
运 筹 学
n
max(或 min)Z c j x j j 1
s.t.
n
aij x j
(或 ,)bi
j1
xj 0
i 1,,m j 1,, n
二 线性规划模型
运向量式 筹 学
max(或 min ) Z CX
星期 需要人数 星期 需要人数
运
一
300
五
480
筹
二
300
六
600
学
三
350
日
550
四
400
应如何安排每天的上班人数,使商场总的营业员最少。
一 线性规划问题
在上班 周 周 周 周 周 周 周 一二三四五六日
开始上班
周一
周二
运
周三
筹
周四
学
周五 周六
周日
一 线性规划问题
解:设xj(j=1,2,…,7)为休息2天后星期一到星
期日开始上班的营业员,则这个问题的线性规划模型为
min Z x1 x2 x3 x4 x5 x6 x7
x1 x4 x5 x6 x7 300
x1
《管理运筹学》02-1线性规划的数学模型及相关概念

03 线性规划的求解方法
单纯形法
1
单纯形法是一种求解线性规划问题的经典算法, 其基本思想是通过不断迭代来寻找最优解。
2
单纯形法的基本步骤包括:建立初始单纯形表格、 确定主元、进行基变换、更新单纯形表格和判断 是否达到最优解。
3
单纯形法在处理大规模线性规划问题时,由于其 迭代次数与问题规模呈指数关系,因此计算量较 大。
06 线性规划的案例分析
生产计划问题
总结词
生产计划问题是一个常见的线性规划应用场景,通过合理安排生产计划,企业可以优化资源利用,降低成本并提 高利润。
详细描述
生产计划问题通常涉及确定不同产品组合、生产数量、生产批次等,以满足市场需求、资源限制和利润目标。线 性规划模型可以帮助企业找到最优的生产计划,使得总成本最低或总利润最大。
最优性条件由单纯形法推导得出,是判断线性规划问题是否达到最优解的 重要依据。
解的稳定性
解的稳定性是指最优解在参数变化时保持相对稳定的能力。
在实际应用中,由于数据的不确定性或误差,参数可能会发生变化。因此,解的稳 定性对于线性规划问题的实际应用非常重要。
解的稳定性取决于目标函数和约束条件的性质,以及求解算法的鲁棒性。在某些情 况下,可以通过敏感性分析来评估解对参数变化的敏感性。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
目标函数是需要最大或最小化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是问题中给定的限制条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$ 或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
第1章 线性规划

第1章线性规划本章介绍了什么是线性规划,线性规划数学模型的概念及其建立数学模型方法;阐述了线性规划的图解法、解的概念及解的形式;详细介绍了普通单纯形法、人工变量单纯形法及单纯形法计算公式。
1.考核知识点(1) 基本概念:数学模型、决策变量、目标函数、约束条件、标准型、图解法、基矩阵、基变量、非基变量、可行解、基解、基可行解、最优解、基最优解、唯一解、多重解、无界解、无可行解、单纯形法、最小比值、入基变量、出基变量、解的判断、大M法、两阶段法、改进单纯形法。
(2) 建立简单的线性规划数学模型。
(3) 求解线性规划的图解法。
(4) 基、可行基及最优基的定义。
(5) 可行解、基本解、基可行解、最优解、基本最优解的定义及其相互关系。
(6) 有唯一解、有无穷多解、无界解、无可行解的判断。
(7) 求解线性规划的单纯形法。
(8) 求解线性规划的人工变量法。
(9) 单纯形法中的5个计算公式。
2.学习要求(1) 深刻领会线性规划的各种基与解的基本概念,它们之间的相互关系。
(2)掌握图解法的计算步骤,注意怎样将目标函数表达成一条直线,这条直线如何平移使得目标函数值上升或下降。
(3) 熟练掌握单纯形法计算的全过程,特别应注意如何列出单纯形表,如何由一个基可行解换到另一个基可行解,基可行解是最优解、无界解或多重解的判断准则。
(4) 理解在什么情况下加入人工变量,人工变量起何作用,用大M法计算时目标函数的变化,两阶段法计算时目标函数的构成,掌握这两种计算方法的全过程,在什么情形下线性规划无可行解。
(5) 理解用矩阵形式代替单纯形表,并用矩阵公式求解线性规划。
3.重点建立线性规划数学模型,有关线性规划解的概念、解的形式,单纯形法计算、大M法、两阶段法。
4.难点解析(1)建立线性规划数学模型建立数学模型是学习线性规划的第一步也是关键的一步。
建立正确的数学模型要掌握3个要素:研究的问题是求什么,即设置决策变量;问题要达到的目标是什么即建立目标函数,目标函数一定是决策变量的线性函数并且求最大值或求最小值;限制达到目标的条件是什么,即建立约束条件。
第1章 线性规划问题

7连续加工问题
一工厂在第一车间用一单位M可加工成3单位产品 A,2单位产品B,A可以按每单位售价8元出售, 也可以在第二车间继续加工,每单位生产费用增 加6元,加工后每单位售价为16元;B可以按每 单位售价7元出售,也可以在第三车间继续加工, 每单位生产费用增加4元,加工后每单位售价为 12元.原料M的单位购入价为2元。上述生产费用 不包括工资在内.三个车间每月最多有20万工时, 每工时工资0.5元.每加工一单位M需1.5工时,如 A继续加工,每单位需3工时;如B继续加工,每 单位需1工时。每月最多能得到的原料M为10万 单位。问如何安排生产,使工厂获利最大?
23
管
理
运
筹
学
三、线性规划标准型及解的概念
• 线性规划的一般形式 max (min) z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2
xj 0
x j ; j 1,2,...,n
c (c1 , c 2 , , c n )
( j 1,2, , n)
为待定的决策变量,
为价值向量, c j ; j 1, 2,...,n 为价值系数,
b ( b1 , b 2 ,...,b m ) 为右端向量,
矩阵
a 11 a 21 A a m1 a 12 a 22 am2 a mn a1n a 2n
线性规划理论与模型应用
授课人 葛金辉
第1章_线性规划

2x1 3x2 5x3 300
x1 0,x2 0,x3 0
产品 甲 乙 丙 资源
设备 A 3 1 2 设备 B 2 2 4 材料 C 4 5 1 材料 D 2 3 5 利润(元/件)40 30 50
现有 资源
200 200 360 300
最优解X=(50,30,10);Z=3400
第1章 线性规划
10
§1.1 线性规划的数学模型 Mathematical Model of LP
小结
1、定义?所谓线性规划就是求一个线性函数在一组线性约 束条件下极值的问题。
2、构成?线性规划的数学模型由决策变量 (Decision variables)、目标函数(Objective function)及约束条 件(Constraints)构成。称为三个要素。
例1.10
max Z=x1+2x2
x1 3x2 6 3x1x1x2x246 x1 0、x2 0
无界解(无最优解)
4
6
x1
第1章 线性规划
20
x2
50 40
30 20
10
§1.2 图解法 The Graphical Method
例1.11
max Z=10x1+4x2
2.线性规划数学模型的组成及其特征 3.线性规划数学模型的一般表达式。
作业:教材P31 T 2,3,4,5,6
下一节:图解法
2020-03-11
第1章 线性规划
14
Chapter1 线性规划
§1.2 图解法
Graphical Method
一、图解法的含义 二、图解法的步骤 三、图解法的几种可能结果 四、图解法的几何意义
第一章 线性规划

第一章 线性规划
(Linear Programming, LP)
概述
• 线性规划问题的提出最早是1939年由前苏联 数学家康托洛维奇在研究铁路运输的组织问题、 工业生产的管理问题时提出来的。
(5)若bi < 0,则-bi > 0
举例: 化下列线性规划为标准形
max z=2x1+2x2-4x3 x1 + 3x2-3x3 ≥30 x1 + 2x2-4x3≤80 x1、x2≥0,x3无限制
max z=2x1+2x2-4x3’+4x3” x1 + 3x2-3x3’+3x3” –x4 = 30 x1 + 2x2-4x3+ 4x3” + x5 = 80 x1、x2 、x3’、x3” 、x4、x5 ≥0
称X0为该线性规划对应与基B的一个基本解。
同样,在A中任选m个线性无关的列向量都可以组成一个基, 对应基一个基本解。对于一个LP最多有多少呢?从n个中 选m个进行组合,即:
Cnm=n!/[(n-m)!m!] 因此,基本解是有限的。
举例:找出下列LP所有的基及其对应的基本解 max z=6x1+4x2 2x1 + 3x2≤100 4x1 + 2x2≤120 x1、x2≥0
资源
产品
甲
乙 资源限制
A
1
B
2
C
0
单位产品利润(元/件) 50
1
300kg
1
400kg
1
250kg
100
• 决策变量:x1、x2——分别代表甲、乙两
第一章:线性规划基础

表1.5 效率表
工作 A 人员 甲 乙 丙 丁 X11 0.6 X21 0.7 X31 0.8 X41 0.7 X42 0.7 X32 1.0 X43 0.5 X22 0.4 X33 0.7 X44 0.4 B X12 0.2 X23 0.3 X34 0.3
s.t.
C X13 0.3
D X14 0.1 X24 0.2
6
三、合理下料问题建模:寻求最佳下料方式, 使余料最少. 合理下料问题建模:寻求最佳下料方式, 使余料最少. 有一批长度为180公分的钢管,需截成70 52和35公分三种管料 180公分的钢管 70、 公分三种管料。 例 有一批长度为180公分的钢管,需截成70、52和35公分三种管料。它们的需求量应分别不少于 100、150和100个 问应如何下料才能使钢管的余料为最少? 100、150和100个。问应如何下料才能使钢管的余料为最少? 解:
s.t.
5
二、人员分派问题建模: 合理分派人员, 使总效率最大. 人员分派问题建模: 合理分派人员, 使总效率最大. 设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 例:设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少) 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少)。 表示各人对各项工作所具有的工作效率。 表1.5表示各人对各项工作所具有的工作效率。
⑤
k •
ο •h • ο a ④ ③ 3 ο ② X1 ⑤
四、L.P. 的一般形式
Max(Min) Z = c1 · x1 + c2 · x2 + --- + cn · xn a11 · x1 + a12 · x2 + --- + a1n · xn ≤(≥, =) b1 a21 · x1 + a22 · x2 + --- + a2n · xn ≤(≥, =) b2 s.t. ------------------------------------------ ---- --am1 · x1 + am2 · x2 + --- + amn · xn ≤(≥, =) bm xj ≥ 0 , j=1, ~, n
第01-03章线性规划(1)

s.t.
x1+x2+x3≤7
x1-x2+x3≥2
-3x1+x2+2x3=5
x1,x2≥0
24
(3)
Min z = -3 x1 + 5 x2 + 8 x3 - 7 x4 s.t. 2 x1 - 3 x2 + 5 x3 + 6 x4 ≤ 28 4 x1 + 2 x2 + 3 x3 - 9 x4 ≥ 39 6 x2 + 2 x3 + 3 x4 ≤ - 58 x1 , x3 , x4 ≥ 0 解:首先,将目标函数转换成极大化: 令 z’ = -z = 3x1–5x2–8x3+7x4 ; 其次考虑约束,有3个不等式约束,引进松弛变 量x5 ,x6 ,x7 ≥0 ; 由于x2无非负限制,可令x2=x2’-x2”,其中x2’≥0 , x2”≥0 ; 由于第3个约束右端项系数为-58,于是把该式两 端乘以-1 。 25
矩阵,一般有0<m<n
A=[aij]m×n i=1,2,..,m;j=1,2,…,n是约束条件方程的系数
X=(x1,x2,…,xn)T b= (b1,b2,…,bn)T
17
二、标准形式
1.标准型的描写形式
繁写形式
Max z = c1x1 + c2x2 + … + cnxn
s.t. a11x1 + a12x2 + … + a1nxn = b1 a21x1 + a22x2 + … + a2nxn = b2 . . . am1x1 + am2x2 + … + amnxn = bm x1 ,x2 ,… ,xn