温度检测及报 警系统

温度检测及报 警系统
温度检测及报 警系统

目录

一、选题背景及研究意义

二、总体设计

2.1控制部分

2.2测量部分

2.3显示部分

2.4报警部分

三、硬件设计

四、软件设计

五、总结与展望

一、选题背景及研究意义

温度是一种最基本的环境参数,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。

温度是一个十分重要的物理量,对它的测量与控制有十分重要的意义。随着现代工农业技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温度:如大气及空调房中温度的高低,直接影响着人们的身体健康;粮仓温度的检测,防止粮食发霉,最大限度地保持粮食原有新鲜品质,达到粮食保质保鲜的目的;工业易燃品的存放。

测温技术在生产过程中,在产品质量控制和监测以及节约能源等方面发挥了着重要作用。本实验设计实现了工业测温基本功能,同时,在设计实验过程中,运用到单片机、模电、数电、传感器和C++程序设计等知识,这既能加强我们的理论知识与实践的结合,也能够提高我们应用交叉学科知识进行综合设计的能力。

二、总体设计

总体设计框图:

2.1控制部分

控制部分是采用单片机STC89C52。

2.1.1 STC89C52简介

STC89C52是一种带8K字节闪烁可编程可檫除只读存储器的低电压,高性能COMOS8的微处理器,俗称单片机。该器件采用ATMEL搞密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

单片机总控制电路如下图4—1:

2.1.2 复位操作

复位操作有上电自动复位相按键手动复位两种方式。

上电自动复位是通过外部复位电路的电容充电来实现的,其电路如图4-2(a)所示。这佯,只要电源Vcc的上升时间不超过1ms,就可以实现自动上电复位,即接通电源就成了系统的复位初始化。

按键手动复位有电平方式和脉冲方式两种。其中,按键电平复位是通过使复位端经电阻与Vcc电源接通而实现的,其电路如图4-2(b)所示;而按键脉冲复位则是利用RC微分电路产生的正脉冲来实现的,

其电路如图4-2(c)所示:

(a)上电复位(b)按键电平复位(c)按键脉冲复位

图4-2复位电路

上述电路图中的电阻、电容参数适用于6MHz晶振,能保证复位信号高电平持续时间大于2个机器周期。

本系统的复位电路采用图4-2(b)上电复位方式。

2.1.3 STC89C52具体介绍如下:

①主电源引脚(2根)

VCC(Pin40):电源输入,接+5V电源

GND(Pin20):接地线

②外接晶振引脚(2根)

XTAL1(Pin19):片内振荡电路的输入端

XTAL2(Pin20):片内振荡电路的输出端

③控制引脚(4根)

RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。

ALE/PROG(Pin30):地址锁存允许信号

PSEN(Pin29):外部存储器读选通信号

EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令。

④可编程输入/输出引脚(32根)

STC89C52单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根。

PO口(Pin39~Pin32):8位双向I/O口线,名称为P0.0~P0.7

P1口(Pin1~Pin8):8位准双向I/O口线,名称为P1.0~P1.7

P2口(Pin21~Pin28):8位准双向I/O口线,名称为P2.0~P2.7

P3口(Pin10~Pin17):8位准双向I/O口线,名称为P3.0~P3.7

2.1.4 STC89C52主要功能,如下表所示。

STC89C52主要功能

器中断

2个串行中断可编程UART串行通道

2个外部中断源共6个中断源

2个读写中断口线3级加密位

低功耗空闲和掉电模式软件设置睡眠和唤醒功能

2.2测量部分

测量部分我们采用美国DALLAS公司生产的DS18B20温度传感器。

2.2.1 DS18B20简介

DS18B20数字温度传感器,该产品采用美国DALLAS公司生产的DS18B20可组网数字温度传感器芯片封装而成,具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。

2.2.2封装及接线说明:

DS18B20芯片封装结构:

特点:独特的一线接口,只需要一条口线通信多点能力,简化了分布式温度传感应用无需外部元件可用数据总线供电,电压范围为 3.0V至 5.5V无需备用电源测量温度范围为-55 °C至+125 ℃。华氏相当于是-67 °F到257华氏度 -10 °C至+85 °C 范围内精度为±0.5 °C

2.2.3 DS18B20控制方法

DS18B20有六条控制命令:

温度转换 44H:启动DS18B20进行温度转换

读暂存器 BEH:读暂存器9个字节内容

写暂存器 4EH:将数据写入暂存器的TH、TL字节

复制暂存器 48H:把暂存器的TH、TL字节写到E2RAM中

读电源供电方式 B4H:启动DS18B20发送电源供电方式的信号给主CPU

2.2.4 DS18B20的初始化

2.2.5 DS18B20的写操作

2.2.6 DS18B20的读操作

2.3显示部分

显示部分是用LCD1602液晶显示

2.3.1 LCD1602引脚说明

2.4报警部分

见下面报警流程图模块及程序。

三、硬件设计

电路原理图如下:

DS18B20与单片机之间用单总线传输;DS18B20的数据口与单片机的P1^7相连;液晶LCD1602的RS、R/W和E分别于单片机的P^4、P2^5、P2^6相连;

四、软件设计

系统软件程序基于Keil uvsion3开发平台,采用C51语言编写。本程序采用模块化程序方法,主要分为以下三个模块:

◆LCD初始化显示模块

◆DS18B20数据采集模块

◆温度报警上下限设置模块程序流程图:

源程序:

#include

#define uchar unsigned char

#define uint unsigned int

sbit DQ=P1^7; //ds18b20与单片机连接口sbit RS=P2^4;

sbit RW=P2^5;

sbit EN=P2^6;

sbit K1=P2^0;

sbit K2=P2^1;

sbit K3=P2^2;

sbit LED=P1^0;

sbit beep=P1^5;

unsigned char code str1[]={"temperature is:"};

unsigned char code str2[]={" "};

uchar code LCD10[10]={"0123456789"};

uchar data disdata[16]={0x00,0x00,0x00,0x2E,0x00,0xDF,0x20, 0x48,0x3D,0x00,0x00,0x20,0x4C,0x3D,0x00,0x00};

uint tvalue; //温度值

uchar tflag; //温度正负标志

uchar flat,upnum,downnum,temp;

/**********************LCD显示模块***********************/ void delay1ms(unsigned int ms)//延时1毫秒

{unsigned int i,j;

for(i=0;i

for(j=0;j<100;j++);

}

void delay1(uint z)

{

uint x,y;

for(x=z;x>0;x--)

for(y=110;y>0;y--);

}

void wr_com(unsigned char com)//写指令//

{ delay1ms(1);

RS=0;

RW=0;

EN=0;

P0=com; /*-----------LCD数据传送口---------- */

delay1ms(1);

EN=1;

delay1ms(1);

EN=0;

}

void wr_dat(unsigned char dat)//写数据//

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

温度监测报警系统设计报告

目录 一、设计任务与设计要求 (1) 二、设计原理 (1) 2.1 主要硬件介绍 (1) 2.1.1 DS18B20数字温度传感器 (1) 2.1.2 AT89C51单片机芯片 (3) 2.2 系统原理结构 (3) 三、设计方案 (4) 3.1 硬件部分 (4) 3.1.1 温度测量模块 (4) 3.1.2 LED数码管显示模块 (4) 3.1.3 按键模块 (5) 3.1.4 系统整体结构仿真图 (5) 3.2 软件部分 (5) 3.2.1DS18B20传感器程序 (5) 3.2.2键盘读取及确认程序 (7) 3.2.3DS18B20操作流程图 (8) 四、调试与性能分析 (9) 4.1 proteus仿真结果 (9) 4.2实物测试 (9) 4.2.1正常情况 (9) 4.2.2报警状态 (10) 五、心得体会 (10) 六、成品展示 (11) 七、附录部分 (12) 附件一、电路设计原理图 (12) 附件二、系统设计原始代码程序 (13)

一、设计任务与设计要求 本设计主要利用单片机AT89C51 芯片和以美国MAXIM/DALLAS半导体公司的单总线温度传感器DS18B20相结合来实现装置周围温度的采集,其中以单片机AT89C51 芯片为核心,辅以温度传感器DS18B20和LED数码管及必要的外围电路,构成一个结构简单、测温准确、具有一定控制功能的温度监视警报装系统。 功能要求: 添加温度报警功能,通过4个按键来设置温度的上下限值,当用DS18B20 测得的温度不在所设置的温度范围内,蜂鸣器开始鸣报。 二、设计原理 2.1 主要硬件介绍 2.1.1 DS18B20数字温度传感器 DS18B20 数字温度传感器提供9~12 位摄氏温度的测量,拥有非易失性用户可编程最高与最低触发点告警功能。DS18B20 通过单总线实现通信,单总线通常是DS18B20连接到中央微控制器的一条数据线(和地)。它能够感应温度的范围为-55℃~+125℃,在-10℃~+85℃的测量的精度是±0.5℃,而且DS18B20 可以直接从数据线上获取供电(寄生电源)而不需要一个额外的外部电源。 DS18B20 使用DALLAS 独有的单总线(1—wire)协议使得总线通信只需要一根控制线,控制线需要一个较小的上拉电阻,因为所有的期间都是通过三态或开路端口连接在总线上的(DS18B20 是这种情况)。在这种总线系统中,微控制器(主器件)识别和寻址挂接在总线上具有独特64 位序列号的器件。因为每个器件拥有独特的序列号,因此挂接到总线上的器件在理论上是不受限制的,单总线(1-wire)协议包括指令的详细解释和“时隙”。这个数据表包含在单总线系统(1-WIRE BUS SYSTEM)部分。DS18B20 的另外一个特征是能够在没有外部供电的情况下工作。当总线为高的时候,电源有上拉电阻通过DQ 引脚提供,高总线信号给内部电容(Cpp)充电,这就使得总线为的时候给器件提供电源,这种从单总线上移除电源的方法跟寄生电源有关,作为一种选择,DS8B20 也可以采用引脚VDD 通过外部电源给器件供电。 DS18B20 引脚定义: (1) GND为电源地; (2) DQ为数字信号输入/输出端; (3)VDD 为外接供电电源输入端(在寄生电源接线方式时接地) 图2.1.1 DS18B20 引脚排列图

幼儿园大班科学活动:测量温度(说课稿)

教学资料参考范本 幼儿园大班科学活动:测量温度(说课稿) 撰写人:__________________ 部门:__________________ 时间:__________________

一、说教材:《测量温度》是一节科学活动课,选自大班上学期 第八个主题《冬天的故事》中。在我们的生活中,温度计被广泛地运 用在人们的生活、劳动和工作中,幼儿虽然见过温度计,但缺乏具体 的观察和较深入的了解,也没有亲自使用温度计测量温度的经验。在 这次活动中,我让幼儿通过自身的观察、操作,从而获得有关温度计 的粗浅知识,初步掌握使用温度计测量、记录温度的方法,激发幼儿 对科学活动的兴趣,体验科学探索活动的乐趣。 二、说活动目标: 根据大班幼儿的年龄特点和实际情况,我制定了以下三个方面的 目标: 1、知识性目标:初步认识常见的温度计,知道温度计是测量温度 的工具。 2、能力和技能目标:帮助幼儿获取温度计指示温度的粗浅经验, 初步掌握正确使用温度计及测量、记录的简单技能。 3、情感和社会性:初步感知热胀冷缩现象,对测量温度感兴趣, 激发幼儿的求知欲和探索精神,使幼儿在活动中感到快乐。 三、活动重难点 根据目标,我把本次活动的重点预设为:认识温度计,学习认读、记录温度。 把学习使用温度计进行简单测量、记录温度的方法作为本次活动 的难点。 四、说活动准备: 为顺利完成教学目标,我做了如下准备: 教具:1、几种常见的温度计:水温计、气温计、体温计若干;

2、电脑课件:flash温度计。 学具:1、幼儿人手一份水温计,记录卡,笔; 2、每组提供冷水、热水人手一份。 五、说教法、学法 为了更好地完成教学任务,我将主要采用:直观教学法、观察指导法、讲解演示法来组织教学活动。另外我打算向幼儿采用:操作法、 记录法、体验交流法、游戏法等学习方法,让幼儿在做一做、说一说 的轻松气氛中,掌握学习的重难点。 六、说活动过程: 围绕教学目标,突出重点、突破难点,我设计了以下活动过程: 环节一、导入活动:请幼儿通过观察、触摸,比较两杯水的温度。 1、第一次比较:一杯冷水和一杯热水。 引导幼儿看一看、摸一摸,从而发现热水杯和冷水杯摸上去能明 显感觉到冷热不同,且热水杯口冒有热气; 2、第二次比较:两杯温水。 教师在两个杯中分别交错加入冷、热水,使其水温接近,再请幼 儿比较。引导幼儿发现,两杯温水无法通过观察和触摸准确比较出它 们温度的不同。 自然引出温度计这一课题,为后面的探究活动奠定了基础。 环节二、引导幼儿认识水温计,观察它的结构,并学习认读、记 录温度。(重点) 1、讨论:有没有一种工具,可以帮助我们测量出两杯水的确切温度?通过讨论,引出水温计,并知道它可以测量水的温度。

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

温度检测和报警系统方案

目录 一、选题背景及研究意义 二、总体设计 2.1控制部分 2.2测量部分 2.3显示部分 2.4报警部分 三、硬件设计 四、软件设计 五、总结与展望

一、选题背景及研究意义 温度是一种最基本的环境参数,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 温度是一个十分重要的物理量,对它的测量与控制有十分重要的意义。随着现代工农业技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温度:如大气及空调房中温度的高低,直接影响着人们的身体健康;粮仓温度的检测,防止粮食发霉,最大限度地保持粮食原有新鲜品质,达到粮食保质保鲜的目的;工业易燃品的存放。 测温技术在生产过程中,在产品质量控制和监测以及节约能源等方面发挥了着重要作用。本实验设计实现了工业测温基本功能,同时,在设计实验过程中,运用到单片机、模电、数电、传感器和C++程序设计等知识,这既能加强我们的理论知识与实践的结合,也能够提高我们应用交叉学科知识进行综合设计的能力。 二、总体设计

总体设计框图: 2.1控制部分 控制部分是采用单片机STC89C52。 2.1.1 STC89C52简介 STC89C52是一种带8K字节闪烁可编程可檫除只读存储器的低电压,高性能COMOS8的微处理器,俗称单片机。该器件采用ATMEL搞密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。 单片机总控制电路如下图4—1:

2.1.2 复位操作 复位操作有上电自动复位相按键手动复位两种方式。 上电自动复位是通过外部复位电路的电容充电来实现的,其电路如图4-2(a)所示。这佯,只要电源Vcc的上升时间不超过1ms,就可以实现自动上电复位,即接通电源就成了系统的复位初始化。 按键手动复位有电平方式和脉冲方式两种。其中,按键电平复位是通过使复位端经电阻与Vcc电源接通而实现的,其电路如图4-2(b)所示;而按键脉冲复位则是利用RC微分电路产生的正脉冲来实现的, 其电路如图4-2(c)所示:

大班科学活动:测量温度说课稿

大班科学活动:测量温度(说课稿)一、说教材:《测量温度》是一节科学活动课,选自大班上学期第八个主题《冬天的故事》中。在我们的生活中,温度计被广泛地运用在人们的生活、劳动和工作中,幼儿虽然见过温度计,但缺乏具体的观察和较深入的了解,也没有亲自使用温度计测量温度的经验。在这次活动中,我让幼儿通过自身的观察、操作,从而获得有关温度计的粗浅知识,初步掌握使用温度计测量、记录温度的方法,激发幼儿对科学活动的兴趣,体验科学探索活动的乐趣。 二、说活动目标: 根据大班幼儿的年龄特点和实际情况,我制定了以下三个方面的目标: 1、知识性目标:初步认识常见的温度计,知道温度计是测量温度的工具。 2、能力和技能目标:帮助幼儿获取温度计指示温度的粗浅经验,初步掌握正确使用温度计及测量、记录的简单技能。 3、情感和社会性:初步感知热胀冷缩现象,对测量温度感兴趣,激发幼儿的求知欲和探索精神,使幼儿在活动中感到快乐。 三、活动重难点 根据目标,我把本次活动的重点预设为:认识温度计,

学习认读、记录温度。 把学习使用温度计进行简单测量、记录温度的方法作为本次活动的难点。 四、说活动准备: 为顺利完成教学目标,我做了如下准备: 教具:1、几种常见的温度计:水温计、气温计、体温计若干; 2、电脑课件:flash温度计。 学具:1、幼儿人手一份水温计,记录卡,笔; 2、每组提供冷水、热水人手一份。 五、说教法、学法 为了更好地完成教学任务,我将主要采用:直观教学法、观察指导法、讲解演示法来组织教学活动。另外我打算向幼儿采用:操作法、记录法、体验交流法、游戏法等学习方法,让幼儿在做一做、说一说的轻松气氛中,掌握学习的重难点。 六、说活动过程: 围绕教学目标,突出重点、突破难点,我设计了以下活动过程: 环节一、导入活动:请幼儿通过观察、触摸,比较两杯水的温度。 1、第一次比较:一杯冷水和一杯热水。 引导幼儿看一看、摸一摸,从而发现热水杯和冷水杯摸

温度控制系统测试.

温度控制系统测试 实验目的 1.在自动控制理论实验基础上,控制实际的模拟对象,加深对理论的理解; 2.掌握闭环控制系统的参数调节对系统动态性能的影响。 实验设备 1.自动控制理论及计算机控制技术实验装置; 2.数字式万用表、示波器(自备); 3.温度对象、控制对象。 实验原理 图 1 温度控制系统框图如图1所示,由给定、PID调节器、可控硅调制(使用全隔离单相交流调压模块)、加温室(采用经高速风扇吹出热风)、温度变送器(PT100输入0-100°输出2-10V电压)和输出电压反馈等部分组成。在参数给定的情况下,经过PID运算产生相应的控制量,使加温室里的温度稳定在给定值。 给定Ug由自动控制理论及计算机控制技术的实验面板单元U3的O1提供,电压变化范围为1.3V~10V。 PID调节器的输出作为可控硅调制的输入信号,经控制电压改变可控硅导通角从而改变输出电压的大小,作为对加温室里电热丝的加热信号。 温度测量采用PT100热敏电阻,经温度变送器转换成电压反馈量,温度输入范围为0~100℃,温度变送器的输出电压范围为DC2~10V。 根据实际的设计要求,调节反馈系数β,从而调节输出电压。

实验电路原理图 实验电路由自动控制理论及计算机控制技术实验板上的运放和备用元件搭建而成,实验参考参数如下:R0=R1=R2=100KΩ,R3=100KΩ,R4=10M,C1=10uF,R5=430K。Rf/Ri=1; 具体的实验步骤如下: 1.先将自动控制理论及计算机控制技术面板上的电源船形开关均放在“OFF”状态。 2.利用实验板上的单元电路U9、U13和U15,设计并连接如图2所示的闭环系统。 图2 在进行实验连线之前,先将U9单元两个输入端的100K可调电阻均逆时针旋转到底(即调至最小),使电阻R0、R1均为100K; 将U15单元输入端的100K可调电阻逆时针旋转到底(即调至最小),使输入电阻R3的总阻值为100K;C1在U15单元模块上。R4取元件库单元上的10M电阻。R5取元件库单元上的的430K电阻; U13单元作为反相器单元,将U13单元输入端的100K可调电阻均顺时针旋转到底(即调至最大),使电阻Ri为200K;保证反馈系数为1。 注明:所有运放单元的+端所接的100K电阻均已经内部接好,实验时不需外接。 (1)将数据采集系统U3单元的O1接到Ug; (2)给定输出接PID调节器的输入,这里参考电路中Kd=0,R4的作用是提高PI调节器的动态特性。 (3)经过PID运算调节器输出(0~10V)接到温度的检测和控制单元的脉宽调制的

电池管理系统自检测试报告

管理编号: 文件编号:JS20151120-01 产品名称:电池管理系统(BMS) 文档版本:V1.0 技术部 2015年 11 月日

目录 一、概述 (3) 二、引用标准 (3) 三、术语与定义 (3) 四、测试设备 (3) 五、测试对象 (3) 六、测试项目 (4) 七、电池故障诊断及保护测试 (4) 八、测试方法与结论 (4) 1、BMS基本性能 (4) 1.1 欠电压运行测试 (4) 1.2 过电压运行测试) (5) 1.3 耐电源反接运行测试 (5) 1.4 单体电压采集精度测试 (5) 1.5 总电压采集精度测试 (6) 1.6 电流采集精度测试 (7) 1.7 温度采集精度测试 (7) 1.8 SOC计算精度测试 (8) 1.9 绝缘电阻计算精度测试 (8) 1.10 电池故障诊断及保护测试 (8) 2、BMS环境测试 (9) 2.1 高温运行测试 (9) 2.2 低温运行测试 (9) 2.3 耐高温性能测试 (10) 2.4 耐低温性能测试 (10) 2.5 耐温度变化性能测试 (11) 2.6 耐湿热性能测试 (11) 2.7 耐振动性能测试 (11) 3、电气安全性测试 (12) 3.1 绝缘电阻测试 (12) 3.2 绝缘耐压测试 (13) 九、附录部分试验现场图片 (13)

一、概述 本文描述BMS16产品自检测试过程,包含产品测试标准、测试环境以及测试结果。 二、引用标准 QC/T897-2011 电动汽车用电池管理系统技术条件 GB/T 19596 有电池电子部件和电池控制单元组成的电子装置 GBT 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db:交变湿热(12h +12h循环) 三、术语与定义 BMS 电池管理系统 BCU 电池控制单元 BMU电池管理单元 四、测试设备 五、测试对象

简单多点温度测量系统课程设计

课程设计报告(2010 —2011 年度第2学期) 题目:基于DS18B20的多点温度测量系统 院系: 姓名: 学号: 专业: 指导老师: 2011年5 月22 日

目录 1设计要求…………………………………………………………………………2设计的作用、目的………………………………………………………………3设计的具体实现…………………………………………………………………. 3.1系统概述……………………………………………………………………. 3.2单元电路设计与分析……………………………………………………… 3.3电路的安装与调试…………………………………………………………4心得体会及建议………………………………………………………………… 4.1心得体会…………………………………………………………………… 4.2建议…………………………………………………………………………5附录………………………………………………………………………………6参考文献…………………………………………………………………………

基于DS12B20的多点温度测量系统设计报告 1设计要求 运用DS12B20温度测量芯片实现一个多点温度测量系统,要求如下: (1).测量点为两点。 (2).测量的温度为-40~+40°C (3).温度测量的精度为±0.5°C (4).测量系统的响应时间要小于1S。 (5).温度数据的传输方式采用串行数据传送的方式。 2 设计的作用、目的 通过本设计可以进一步了解熟悉单片机的控制原理以及外设与单片机的数据通信方法,尤其是串行通信方法以及单片机与外设间的接口问题。 本设计旨在提高学生的实际应用系统开发能力,增长学生动手实践经验,激起学生学以致用的兴趣。 3设计的具体实现 3.1系统概述 本系统分为温度采集模块、核心处理模块、控制模块和显示模块。温度采集模块由DS18B20温度测量芯片构成,它负责测量温度后将温度量转化为数字信号,传输到数据处理模块;核心处理模块由AT89S52单片机组成,它负责与温度采集模块进行数据通信、对数据进行操作处理已经对各种外设的响应与控制;控制模块由几个按键组成,实现对测量点的选择以及电路复位的操作;显示模块由一块四位的八段译码显示管和驱动芯片组成,它的作用是显示测量的温度值。 系统模块组成图:

温度测量与报警系统设计.

课程设计说明书 题目:温度测量与报警系统设计 姓名: 学号: 指导教师: 专业年级: 所在学院和系: 完成日期: 课程名称:机电一体系统设计

目录 1绪论 (1) 1.1 背景 (1) 1.1 设计要求 (1) 1.3 设计任务 (1) 2系统总体方案设计 (2) 2.1 设计思想 (2) 2.2 方案论证 (2) 2.2.1 电源模块 (2) 2.2.2 温度检测模块 (3) 2.2.3 控制模块 (3) 2.2.4 显示模块 (3) 2.2.5 报警模块 (4) 2.2.6 按键模块 (4) 2.3 芯片选择 (4) 2.3.1电源模块 (4) 2.3.2 温度检测模块 (4) 2.3.3 控制模块 (5) 2.3.4 显示模块 (5) 3系统硬件设计 (6) 3.1 单片机最小系统 (6) 3.2 传感检测电路 (6) 3.3 显示模块 (7) 3.4 报警模块 (8) 3.5 按键模块 (8) 3.6 总电路 (8) 3.6.1 绘图软件简介 (8)

3.6.2 电路原理图 (9) 3.6.3 电路PCB图 (10) 4系统软件设计 (12) 4.1 程序设计思路 (12) 4.2 主程序流程图 (12) 4.3 获取温度程序流程图 (13) 4.4 报警程序流程图 (14) 4.5 显示程序流程图 (15) 4.6 数据处理程序流程图 (15) 4.7 编程软件简介 (16) 5总结 (17) 参考文献 (18) 附录A (19) 附录B (20) 附录C (21)

1绪论 1.1 背景 温度温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量;同时,温度超过了系统工作正常范围将直接影响系统的寿命,甚至损坏系统;甚至可以说任何一个系统都必须工作在一定的温度范围内,因而设计一种较为理想的温度控制系统是非常有价值的。 自18世纪工业革命以来,工业的飞速发展离不开温度参量在控制系统中的应用。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%的工业部门都不得不考虑着温度的因素。在工业生产中人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制,常用的控制电路根据应用场合和所要求的性能指标有所不同, 在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。 1.1 设计要求 设计要求:实现温度的测量与控制。 测温范围:0~1000C;测量精度:0.10C; 设有上、下限报警温度;数码显示; 1.3 设计任务 设计任务:硬件设计(元器件选择、电路原理图与电路板图绘制等)、软件设计。

智能型温度测量控制系统

河北农业大学 毕业论文﹙设计﹚开题报告 题目智能型温度测量控制系统-开题报告 学生姓名学号 所在院(系)信息工程学院 专业班级通信工程2010140 指导教师 2014年02月23日

题目基于单片机的温度控制系统设计 一、选题的目的及研究意义 温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用,是工业对象中主要的被控参数之一。在单片机温度测量系统中的关键是测量温度、控制温度和保持温度。在日常生活中,也可广泛实用于地热、空调器、电加热器等各种家庭室温测量及工业设备温度测量场合。随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。这次毕业设计选题的目的主要是让生活在信息时代的我们,将所学知识应用于生产生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。通过对温度控制通信系统的设计、制作、了解信息采集测试、控制的全过程,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。培养研发能力,通过对电子电路的设计,初步掌握在给定条件和要求的情况下,如何达到以最经济实用的方法、巧妙合理地去设计工程系统中的某一部分电路,并将其连接到系统中去。提高查阅资料、语言表达能力和理论联系实际的技能。 当今社会温度的测量与控制系统在生产与生活的各个领域中扮着越来越重要的角色,大到工业冶炼,物质分离,环境检测,电力机房,冷冻库,粮仓,医疗卫生等方面,小到家庭冰箱,空调,电饭煲,太阳能热水器等方面都得到了广泛的应用,温度控制系统的广泛应用也使得这方面研究意义非常的重要。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。应用领域非常的广泛,①冷冻库,粮仓,储罐,电信机房,电力机房,电缆线槽等测温和控制领域。 ②轴瓦,缸体,纺机,空调等狭小空间工业设备测温和控制。③汽车空调,冰箱,冷柜以及中低温干燥箱等。④太阳能供热,制冷管道热量计量,中央空调分户热能计量等。温度是一种最基本的环

BMS电池管理系统测试解决方案

BMS电池管理系统测试解决方案 北京群菱充分利用自己在蓄电池测试领域多年的经验积累,研发出了专门应用于BMS电池管理系统检测的专业系统平台。该平台满足各类BMS系统的工作状态模拟、测量参数校准、SOC、均衡充电能力检测、工程验收、型式试验等,是国内乃至国际上最专业的电池管理系统的检验测试工具。 BMS,全称电池管理系统(BATTERY MANAGEMENT SYSTEM)是电池与用户之间的纽带。主要为了能够提高电池的利用率,均衡电池电量保持电池的一致性,延长电池的使用寿命,对蓄电池容量进行精确评估及蓄电池的监控等。主要应用领域包括电动汽车、分布式储能电站、微网储能等。因此BMS系统的优劣将直接影响到上述设备大安全及可靠性。我司专业致力于BMS系统仿真检测平台的研究,经过多年的实践打造的BMS检测平台,可实现对BMS系统工作状态的全方位真实仿真模拟。为BMS系统的安全可靠性评估提供准确的科学依据,可应用于BMS生产厂家、性能检测、BMS管理系统的研发等领域。 平台描述 1)平台由13个检测设备共同组成一个全自动检测系统。 2)通过CAN总线通讯功能、监听通讯信号,测试BMS的控制模式和 会话内容。

3)通过CAN总线实现和充电机及其他设备的信号控制对接。 4)设备的参数设置和数据显示,都在电脑上实现。由电脑管理各个模块 的工作。 5)可以对车载蓄电池管理系统BMS 进行全面的评测,可以模拟电压、 电流、温度信号及异常事件的产生,可以捕捉BMS对异常型号的反应。 6)用于评估BMS 在SOC或SOH状态下的估算精度。 7)应用于:BMS的数据校准、性能检测、BMS管理系统的研发等领 域。 可以实现以下测试 1、电池管理系统测量精度的检测及校正,主要包括电压测量精度、电流测量精度、温度检测精度、单体电压测量精度。 2、BMS管理系统安全保护功能测试,目的是校验BMS保护动作的可靠性和灵敏度。 3、电池充放电功能测试。 4、BMS算法验证:验证SCO估算精度。 产品外观图如下:

(完整版)基于stm32的温度测量系统

基于STM32的温度测量系统 梁栋 (德州学院物理与电子信息学院,山东德州253023) 摘要:温度是日常生活和农业生产中的一个重要参数,传统的温度计有反应缓慢,测量精度不高的和读数不方便等缺点,此外,通常需要人工去观测温度,比较繁琐,因而采用电子技术的温度测量就显得很有意义了。 面对电子信息技术的进步,生成了各种形式的温度测量系统。本文设计了一个基于以STM32为核心的温度测量与无线传送的系统,温度信息采集使用数字化温度传感器DS18B20,无线传输使用ATK-HC05蓝牙模块的智能测温系统。 关键词 STM32; DS18B20; TFTLCD;智能测温系统 1 绪论 在现代社会的生产生活中,人们对于产品的精度要求越来越高,而温度是人们在生产生活中十分关注的参数,因此,对温度的测量以及监控就显得十分重要。在某些行业中对温度的要求较高,由于工作环境温度的偏差进而引发事故。如化工业中做酶的发酵,必须时刻了解所发酵酶的温度才可以得到所需酶;文物的保护同样也离不开温度的采集,不仅在考古文物的出土时间上,还是在档案馆和纪念馆中,温度的控制也是藏品保存关键,所以温度的检测对其也是具有重要意义的;另外大型机房的温度的采集,超出此范围会影响服务器或系统的正常工作等等。传统方式监控温度往往很耗费人力,而且实时性差。本文就设计了一个基于STM32的温度测量系统,在测量温度的同时能实现无线传输与控制。 STM32RBT6具有较低的价格、较高的测量精度、便捷的操作,同时在编程方面STM32也具有和其他单片机的优势之处,如51要求从基层编程,而STM32所有的初始化和一些驱动的程序都是以模板的形式提供给开发者,在此开发者只需要了些其他的模块功能和工作方式和少量的语法知识便可以进行编程,此优势不但节约了时间,也为STM32的发展做出了强有力的铺垫,而且STM32目前是刚刚被作为主流开发的单片机,所以其前景是无可估量的,这次毕业设计也是看好了其优越的发展趋势来选择的。 无线传输采用蓝牙技术,将采集的温度传输至终端,以此实现远程监控。利用“蓝牙”技术,能够在10米的半径范围内实现单点对多点的无线数据传输,其数据传输带宽可达1Mbps。综合考虑,在设计硬件时选择的软件是Altium Designer,该软件集成了电路仿真、原理图设计、信号完整性设计、分析等诸多功能,使用起来很方便。通过原理图的绘制,

温度监测报警系统

温度监测报警系统

目录 毕业论文(设计)任务书.................................................................................................... - 1 - 摘要.................................................................................................................................... - 6 - 关键词.................................................................................................................................... - 7 - 第一章绪论 (1) 1.1 课题背景 (1) 1.2 课题研究的目的和意义 (1) 1.3 温度检测系统在国内外状况 (1) 第二章硬件系统的总体设计方案 (3) 2.1 总体设计方案 (3) 2.2 温度检测及参数 (3) 2.2.1 温度检测 (3) 2.2.2 温度参数 (4) 2.3 A/D转换模块 (4) 2.4 传感器 (5) 2.4.1传感器的简介 (5) 2.4.2 AD590性能特点与内部结构 (5) 2.5 温度显示电路 (8) 2.6 单片机简介 (9) 2.6.1 AT89C51特性 (9) 2.6.2 引脚图 (10) 2.6.3 管脚说明 (10) 2.6.4 复位键控制模块 (12) 2.7 报警电路 (12) 第三章软件设计 (13) 第四章系统的仿真与实现 (15) 4.1 概述 (15) 4.2 功能特点 (15) 4.3 电路功能仿真 (16)

基于NTC热敏电阻的温度测量与控制系统设计(论文)

题目名称:基于NTC热敏电阻的温度测量与控 制系统设计 摘要:本系统由TL431精密基准电压,NTC热敏电阻(MF-55)的温度采集,A/D和D/A转换,单片机STC89C51为核心的最小控制系统,LCD1602的显示电路等构成。温度值的线性转换通过软件的插值方法实现。该系统能够测量范围为0~100℃,测量精度±1℃,并且能够记录24小时内每间隔30分钟温度值,并能够回调选定时刻的温度值,能计算并实时显示24小时内的平均温度、温度最大值、最小值、最大温差,且有越限报警功能。由于采用两个水泥电阻作为控温元件,更有效的增加了温度控制功能。 关键词: NTC TL431 温度线性转换 Abstract: The system is composed of TL431 as precise voltage,the temperature acauisition circuit with NTC thermistors (MF-55), the transform circuit of A/D and D/A, the core of the minimum control system with STC89C51, 1the display circuit usingLCD1602, etc. Get the temperature of the linear transformation by the software method. The range of the measure system is 0 ~ 100 ℃, measurement accuracy + 1 ℃.It can record 24 hours of each interval temperature by per 30 minutes selected of temperature.The time can be calculated and real-time display within 24 hours of the average temperature, maximum temperature and minimum temperature, maximum value, and each temperature sensor has more all the way limit alarm function. Due to the two cement resistance as temperature control components, the more effective increase the temperature control function. Keyword: NTC TL431 temperature linear conversion

蓄电池监测管理系统

蓄电池监测管理系统(TLKS-BRM)是深圳特力康科技有限公司经过长期研发出来的一款产品。此蓄电池监测管理系统主要用于蓄电池的监测和管理。在电力变电站、电信机房、移动基站还是在UPS系统中,蓄电池组是重要的储能设备,它可保证通信设备及动力设备的不间断供电。但如果不能妥善地管理使用蓄电池组,发生过充电、过放电及电池老化等现象,都会导致电池损坏或电池容量急剧下降,从而影响设备的正常供电。电池组的巡回检测,对于维护通信系统设备的正常运转具有十分重要的意义。 随着近年来我国电力和电信事业的快速发展,变电站和蓄电池组的数量每年以超过10%的速度增长,同时变电站与供电公司管理单位的距离越来越远,因此如何管理和及时维护蓄电池组已成为电力和电信系统的棘手问题。我公司采用美国最新科技技术,研发了一种新型的基于移动公网传输的蓄电池组远程在线监测系统,在满足蓄电池组日常运行维护要求的同时,大大提高了运行维护的质量 和效率。

蓄电池监测管理系统包括两个部分,一是蓄电池组在线监测系统终端,负责实现现场蓄电池组实时数据采集和传输;二蓄电池组在线监测系统的中心软件,实现远程实时数据的管理和分析,在运行监测状态下,对每节电池电压、电池组充放电电流、温度进行判断,对超出设定的电压,温度阀值的电池予以报警。 蓄电池监测管理系统的主要功能: 1.电压测量 对于损坏的单体电池,充电时通常表现为电压过高或过低,严重影响整组电池的容量及寿命,我公司产品可以监测4-24节单体电池电压,并适用于不同电压类型的蓄电池。 2.电流测量 充放电电流测量:监测电池组的充放电电流,根据充放电电流的大小可准确判断故障 3.电池环境温度监测 电池浮充电压随环境温度变化应进行温度补偿,因此,监测电池房环境温度对于合理调节浮充电压具有参考意义 4.远程数据通讯 配备MODEM完成远程通信,所有数据可在远端监控中心软件上,显示并记录,绘成曲线或打印形成报表。可实现多台主机与监控中心相联,组成监测网络,监控中心上可显示多组电池参数。最多可挂接999台电池监测主机,也可以根据 要求定制。

基于某PT100的温度测量系统

前言 传感器技术在信息采集、信息传输和信息处理中,属于前沿尖端产品,尤其是温度传感器技术,在各个领域广泛应用,比如在工农业生产中需要实时测量温度等等。因此研究温度的测量方法和装置具有重要的意义。 为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。本文利用单片机结合温度传感器技术而开发设计了这一温度测量系统。文中将传感器理论与单片机实际应用有机结合,详细地讲述了利用热电阻作为温度传感器来测量实时的温度,以及实现热电转换的原理过程。 本设计应用性比较强,设计系统可以作为温度测量显示系统,如果稍微改装可以做热水器温度调节系统、生产温度监控系统等等。本课题主要任务是完成环境性强等优点。 课程设计任务 本设计系统包括温度传感器,信号放大电路,A/D转换模块,时钟模块,数据处理与控制模块,温度、时间显示模块六个部分。文中对每个部分功能、实现过程作了详细介绍。整个系统的核心是进行温度测量与显示,完成了课题所有要求。 摘要:

本文采用AT89S51单片机,TLC2543 A/D转换器,DS1302时钟芯片,AD620放大器,铂电阻PT100及8位数码管组成系统,编写了相应的软件程序,使其实现温度的实时显示。该系统的特点是:使用简便;测量精确、稳定、可靠;测量围大;使用对象广。 关键词:PT100 单片机温度测量DS1302 Abstract: The system contains SCM(AT89S51), analog to digital convert department (TLC2543), DS1302 chip, AD620 amplifier, PT100 platinum, LED Digital tube with six, write the corresponding software program to achieve real-time temperature display. The system is simple , accurate , stable and wide range. Keywords: PT100 SCM Temperature Measures DS1302 一方案设计与论证 1.1 传感器的选择 由于本设计的任务是要求测量的围为0℃~100℃,测量的分辨率为±0.1℃,综合价格以及后续的电路,决定采用线性度相对较好的PT100作为本课题的温度传感器,具体的型号为WZP型铂电阻,该传感器的测温围从-200℃~+650

相关文档
最新文档