智能型温度测量控制系统

合集下载

MCGS高级教程实例

MCGS高级教程实例

MCGS高级教程实例MCGS(Machine Control Graphics System)是一种用于机器自动控制的软件系统,它可以实现对自动化设备的图形化监控与控制。

本文将介绍MCGS的高级教程实例。

1.实时监控温度控制系统假设有一个温度控制系统,系统中有一个传感器用于测量温度,并通过控制器来调整加热器的功率以控制温度。

使用MCGS可以实时监控温度变化,并将温度数据以曲线图的形式显示出来。

同时,可以通过调节控制器参数来实现温度的控制。

这个实例可以帮助用户了解MCGS的图形监控与曲线绘制功能,并学习如何通过修改控制器参数实现温度控制。

2.数据采集与分析系统假设有一个工厂中有多个生产线,每个生产线上有多个传感器,用于测量不同的参数。

使用MCGS可以实时采集传感器数据,并对数据进行分析与处理。

比如,可以统计每个生产线的工作效率、故障率等指标,并生成报表或图表展示。

这个实例可以帮助用户了解MCGS的数据采集与处理功能,以及如何使用数据分析工具进行数据处理与展示。

3.智能家居控制系统假设用户想要实现对家中智能设备的远程控制和监控。

使用MCGS可以通过网络连接智能设备,并实现对其的远程控制和状态监控。

比如,用户可以通过手机App或网页登录MCGS系统,实时监控家中各个智能设备的状态,并远程控制设备的开关、亮度等参数。

这个实例可以帮助用户了解MCGS的网络通讯与远程控制功能,以及如何通过手机App或网页实现对设备的控制与监控。

4.机器人控制与路径规划假设用户有一个机器人平台,想要实现对机器人的控制和路径规划。

使用MCGS可以实现对机器人的运动控制,并通过路径规划算法确定机器人的运动轨迹。

比如,用户可以通过MCGS系统向机器人发送指令,控制其前进、后退、旋转等动作,并通过设置目标点和障碍物位置,实现对机器人的路径规划。

这个实例可以帮助用户了解MCGS的运动控制和路径规划功能,以及如何通过指令控制和路径规划算法实现机器人的自主运动。

基于fpga的智能温度控制系统的设计

基于fpga的智能温度控制系统的设计

基于fpga的智能温度控制系统的设计随着科技的发展,智能控制系统被广泛应用于工业领域和智能家居中,其中智能温度控制系统是其中的一种。

智能温度控制系统能够根据环境温度变化自动控制加热或制冷设备,从而保证环境温度始终在设定值范围内,提高生产效率和舒适度。

本文将介绍一种基于FPGA的智能温度控制系统设计方案。

1. 系统设计该系统由传感器、FPGA、驱动器以及显示器组成。

传感器用于检测环境温度变化,FPGA用于对传感器信号进行处理,驱动器用于控制加热或制冷设备,显示器用于显示系统状态。

系统设计流程如下:1.1 传感器传感器可以选择温度传感器、热敏电阻传感器或热电偶传感器等。

本系统选用温度传感器,将传感器输出的模拟信号转化为FPGA可读的数字信号,从而实现数字信号化。

1.2 数字信号化将模拟信号数字化是实现控制系统的关键所在。

数字信号化是通过模数转换器(ADC)将模拟信号转化为数字信号的过程。

本系统将模拟信号转化为12位数字信号。

1.3 FPGA处理FPGA芯片(Field-Programmable Gate Array)是一种可编程逻辑器件,它能够快速地对数字信号进行处理。

FPGA芯片是本系统的核心处理器,它被用来对传感器信号进行处理,根据环境温度的变化决定加热还是制冷,从而保持环境温度在设定范围内。

具体的处理流程如下:(1)读取温度传感器数据。

(2)将传感器输出的模拟信号转变为数字信号。

(3)将数字信号与设定的环境温度范围进行比较,以决定是否需要进行加热或制冷。

(4)对加热或制冷设备进行控制。

1.4 驱动器设计由于加热或制冷设备的控制电源电平和FPGA的电平不一致,需要通过驱动器进行转换。

本系统使用驱动器将FPGA输出的信号转化成能够控制加热或制冷设备的继电器信号。

1.5 显示器设计本系统使用7段LED数码管作为显示器,用于显示当前环境温度以及系统状态。

系统状态包括温度过高、温度过低、正常等状态,以告知用户系统运行情况。

XMTD-2000智能型数字显示温度控制器使用说明书

XMTD-2000智能型数字显示温度控制器使用说明书

XMTD-2000智能型数字显示温度控制器使用说明书概述XMTD-2000智能数字显示温控仪表是我厂新推出的新一代温控仪表。

本产品采用性能优异的单片微机作为主控部件,具有精度高、数字显示、轻触键盘操作、停电数据保存永久、抗干扰性能强、外形美观等特点。

XMTD-2000温控仪可广泛应用于轻工机械层压机,包装、印刷、纺织、造纸、等行业。

选用时靖仔细确认是否符合您的要选的型号XMT□—□□-□-□传感器分度号测量范围 F:0~10000CK:0~4000CE:0~3000C输入代码:1:热电隅外形尺寸:E:72*72技术参数及安装1安装注意事项:仪表安装环境要求:①大气压力:86—106Kpa。

②环境温度:0—500C。

③相对湿度:45—85RH%。

安装时注意以下情况:①环境温度的急变可能引起的结露。

②腐蚀性及易燃气体的有可能侵害。

③直接震动或冲击机的主体。

④水、油、化学器、烟雾或蒸气的污染等。

⑤过多的尘埃、盐雾或其它的金属粉末等。

⑥空调的直吹。

⑦阳光的直射。

⑧热辐射的积聚之处等。

2安装过程⑴按照盘面的开孔尺寸在盘面上开出来安装仪表的方孔,如多个仪表安装时请将左右两只仪表的距离大于25mm,上下两只仪表的距离应大于30㎜。

⑵将仪表嵌入盘面的开孔内,⑶将仪表安装槽内插入安装支架。

⑷推紧安装支架,使仪表与盘面结合牢固,再拧紧螺钉。

3主要技术性能①测量精度:0.5%±1dig;②电源电压:220VAC;③环境温度:0—500C;④应用模糊PID技术控制;⑤开孔尺寸(㎜):KCY-E型为:68*68接线方式1接线的注意事项:⑴热电隅输入,应该使用对应的补偿导线。

⑵输入信号线应远离仪表的电源线、动力电源线、负荷线。

以避免产品信号的干扰。

2、接线端子图:XMTD-2000的仪表接线1、各功能的调出顺序:◇仪表通电后,上排显示INP,下排显示分度号,表示输入类型;经4秒后,上排显示量程上限,下排显示量程下限,表示测量范围;再经4秒,上排显示测量值,下排显示设定值,此时仪表进入正常工作状态。

XMTD-2000智能型数字显示温度控制器使用说明书

XMTD-2000智能型数字显示温度控制器使用说明书

XMTD-2000智能型数字显示温度控制器使用说明书概述XMTD-2000智能数字显示温控仪表是我厂新推出的新一代温控仪表。

本产品采用性能优异的单片微机作为主控部件,具有精度高、数字显示、轻触键盘操作、停电数据保存永久、抗干扰性能强、外形美观等特点。

XMTD-2000温控仪可广泛应用于轻工机械层压机,包装、印刷、纺织、造纸、等行业。

选用时靖仔细确认是否符合您的要选的型号XMT□—□□-□-□传感器分度号测量范围 F:0~10000CK:0~4000CE:0~3000C输入代码:1:热电隅外形尺寸:E:72*72技术参数及安装1安装注意事项:仪表安装环境要求:①大气压力:86—106Kpa。

②环境温度:0—500C。

③相对湿度:45—85RH%。

安装时注意以下情况:①环境温度的急变可能引起的结露。

②腐蚀性及易燃气体的有可能侵害。

③直接震动或冲击机的主体。

④水、油、化学器、烟雾或蒸气的污染等。

⑤过多的尘埃、盐雾或其它的金属粉末等。

⑥空调的直吹。

⑦阳光的直射。

⑧热辐射的积聚之处等。

2安装过程⑴按照盘面的开孔尺寸在盘面上开出来安装仪表的方孔,如多个仪表安装时请将左右两只仪表的距离大于25mm,上下两只仪表的距离应大于30㎜。

⑵将仪表嵌入盘面的开孔内,⑶将仪表安装槽内插入安装支架。

⑷推紧安装支架,使仪表与盘面结合牢固,再拧紧螺钉。

3主要技术性能①测量精度:0.5%±1dig;②电源电压:220VAC;③环境温度:0—500C;④应用模糊PID技术控制;⑤开孔尺寸(㎜):KCY-E型为:68*68接线方式1接线的注意事项:⑴热电隅输入,应该使用对应的补偿导线。

⑵输入信号线应远离仪表的电源线、动力电源线、负荷线。

以避免产品信号的干扰。

2、接线端子图:XMTD-2000的仪表接线1、各功能的调出顺序:◇仪表通电后,上排显示INP,下排显示分度号,表示输入类型;经4秒后,上排显示量程上限,下排显示量程下限,表示测量范围;再经4秒,上排显示测量值,下排显示设定值,此时仪表进入正常工作状态。

基于单片机的智能体温检测系统设计

基于单片机的智能体温检测系统设计

基于单片机的智能体温检测系统设计摘要:由于新冠疫情的爆发给大众的生活带来了巨大变化,为了满足疫情条件下对温度快速测量的需求,采用无接触式测温既有效规避病毒传染风险,又可以第一时间检测疑似病例。

在此基础上添加口罩识别功能极大减轻了工作人员人工识别的负担,为防疫工作提供保障。

目前市场现有系统存在价格高以及不易携带的问题,并且目前市场应用的大部分装置都是单独的口罩识别或是无接触测温系统。

与之相比该系统将两种功能结合在同一系统中,具有体积小、便携、易操作等优点,为操作人员提供了极大便利。

此装置适用于学校、工厂、商场等人流密集场所,可以为进出人员提供检测服务。

人机交互式装置在疫情防控中发挥重要作用,节省人力物力,并且其效率远高于人工检测。

关键词:单片机;智能体温;检测系统;设计引言患新冠肺炎的主要症状是发热,因此体温检测是疫情防控的第一道防线。

以当今人流密集场所疫情防控情况为背景,设计并实现了一款基于STM32单片机的非接触式体温测量与身份识别系统。

该系统利用OPENMV对目标人脸进行快速检测,精准识别目标身份信息和口罩佩戴情况,利用MLX90614准确测量目标体表温度,实时将测量信息通过显示屏直观地展示并通过蓝牙发送到手机App上,实现系统逻辑结构的完整性与任务完成的效率最优解。

1系统的组成及其工作原理1.1系统的组成以单片机作为系统控制基础,利用传感器测量温度,通过通信和控制技术,形成温度测量控制系统。

具体可分为基于MLX90614红外测温传感器的温度检测模块、LCD12864液晶屏显示模块、4X4矩阵键盘模块、电源模块、复位模块、晶振模块、报警模块、继电器控制模块和震动传感器模块。

1.2系统工作原理该系统基于STC12C5A60S2单片机进行设计,包括电源电路、复位电路、晶振电路、红外测温传感器、震动传感器、LCD显示电路、蜂鸣器报警电路、键盘输入电路和继电器控制电路,通过MLX90614红外温度传感器实现温度数据的处理。

YK-88智能PID控制仪

YK-88智能PID控制仪

一、概述本系列产品采用表面封装模块化工艺,大大提高了仪表的抗干扰能力,具有显示、控制、变送、通讯、万能信号输入等功能,适用于温度、湿度、压力、液位、瞬时流量、速度等多种物理量检测信号的显示及控制,并能对各种非线性输入信号进行高精度的线性校正。

可广泛用于电力、冶金、化工、石化、造纸印染、酿造、烟草、航天基地等领域。

采用最新无跳线技术,使输入端口具备万能信号输入功能,只需通过改变内部参数,即可实现多种输入信号(各种热电偶、热电阻、远传压力、mV、标准电压/标准电流信号)之间的轻松切换。

线路板经过优化设计及生产工艺不断完善,降低了温度漂移,提高了抗干扰性能确保产品在长期工作中的稳定性的稳定性和可靠性。

采用高亮度LED数码显示和高分辨率光柱显示(比例显示),使测量/控制值的显示更为清晰直观。

输出回路均采用光电隔离, 抗干扰能力强。

可带串行通讯接口,可与各种带串行接口的设备进行双向通讯,组成网络控制系统。

具备多种标准外形尺寸,能适用各种测量控制场合。

整机采用卡入式结构,安装十分简便。

●适用范围YK-88智能PID调节仪是智能型、高精度的数显温度、压力、液位、测力、扭矩等物理量控制测量仪表,与温度、压力、液位、测力、扭矩传感器及变送器配接可构成各种量程和规格的温度、压力、液位测力、扭矩测控系统。

(可以测量电压、电流、转速、频率等各种参数,可与PLC变频器配接构成各种测量系统。

可以带峰值,谷值。

订货请来电说明。

)●功能特点万能输入功能自动校准和人工校准功能多重保护、隔离设计、抗干扰能力强、可靠性高良好的软件平台,具备二次开发能力,以满足特殊的功能先进的模块化结构,配合功能强大的仪表芯片,功能组合、系统升级非常方便二、功能特点万能输入功能自动校准和人工校准功能手动/自动无扰动切换功能可选择适应加热或制冷的正/反作用控制输出信号限幅采用模糊控制理论和传统PID控制相结合的方式,具备高精度的自整定功能,使控制过程具有响应快、超调小、稳态精度高的优点,对常规PID难以控制的大纯滞后对象有明显的控制效果三、主要技术指标基本误差:0.2%FS,14位A/D转换器(最大18位A/D转换器,订货时注明)。

智能型数字显示温度控制器 使用说明书-REX RKC

智能型数字显示温度控制器 使用说明书-REX RKC

表一表二、输入类型代码2、接线图(以仪表本身标贴的接线图为准)四、型号定义产品识别REX-C□00 □ □ □ - □ □ * □ □① ② ③ ④ ⑤ ⑥ ⑦ ⑧①外型尺寸(见表一)②设计序号③控制类型F:PID动作及自动演算(逆动作)D: PlD动作及自动演算(正动作)④输入类型:见附表⑤范围代码:见附表⑥第一控制输出(OUTI)(加热侧)M:继电器接点输出 8:电流输出(DC4~20mA)V:电压脉冲输出 G:闸流控制管驱动触发输出T:闸流控制管输出⑦第二控制输出(OUT2)(制冷侧)*1无记号:当控制动作是F或D时M:继电器接点输出8:电流输出(DC4~20mA)V:电压脉冲输出T:阑流控制管输出⑧第一报警(ALMl)⑨第二报警(ALM2)N:未设报警 A:上限偏差报警B:下限偏差报警C:上.下限偏差报警D:范围内报警E:附待机上限偏差报警F:附待机下限偏差报警 G:附待机上下限偏差报警H:上限输入值报警J:下限输入值报警K:附待机上限输入值报警 L:附待机下限输入值报警注意:订货时依据上述内容填写五、面板及各部位功能PV:测量值/模式显示值SV:设定值/模式内容显示值AT:PID自动演算指示灯OUT1:输出I指示灯OUT2:输出2指示灯ALM1:报警l指示灯ALM2:报警2指示灯SET:设定,模式键<R/S:位移键∧:增加键∨:减少键一、概述:REX系列智能控制仪是我公司最近开发的新一代工控产品,采用专用微处理器、开关电源和表面贴装技术,使仪表精致小巧,性能可靠,特有的自诊断,自整定和智能控制等功能。

可广泛应用于温度、压力、流量,液位等参数的显示和控制。

二、主要技术指标:1、输入:各种热电偶(TC),热电阻(RTD)标准电流、电压信号等2、显示:过程值(PV),设定值(SV):-1999~+9999输出(OUT1,OUT2)报警(ALM1,ALM2)自整定(AT)状态显示:LED3、控制方式:(1) PID控制(包括ON/OFF,位式PID和连续PID)(2) 自整定控制4、精度测量精度:±0.5 %FS冷端补偿误差:±2℃(0~50℃范围内软件可调)分辨率:14bit采样周期:0.5 Sec5、设定值范围:设定值(SV):同量程(PV)比例带(P):0~全量程(设0时.为ON/OFF控制)积分时间(1):0~3600Sec(设O时无积分作用)微分时间(D):0~3600Sec(设O时无微分作用)比例周期:1~100Sec位式控制输出滞环宽度:1 ~100℃(或其它PV单位)6、控制输出:(1)电流输出:DC 0~lOmA,4~20mA (RL<500Ω)(2)电压输出:DC 0~5V,1~5V (RL>10K)(3)继电器输出:触点容量250V AC 3A(阻性负载)(4)电压脉冲输出:0~12V(适用于因态继电器SSR)(5)可控硅SCR输出:过零触发或移相触发(阻性负载)(6)报警功能输出:最多二组输出,12种模式输出触点容量250VAC 3A7、其它参数(1)绝缘电阻:>50 MΩ(500VDC)(2)绝缘强度:1500VAC历时一分钟(3)功耗:<10VA(4)使用环境:湿度不超过30~85%RH,温度不超过0~50℃,无腐蚀性气体的场合(5)重量:约(0.5Kg)(C900型)三、外型、安装开孔及接线1、外型及开孔尺寸外型尺寸盘面开孔A B C D E F G HC1OO 48 48 10 100 45 45 80 80C410 96 48 10 100 92 45 116 800400 48 96 10 100 45 92 80 116C700 72 72 10 100 68 68 96 96C900 96 96 10 100 92 62 116 116显示 K j L E N T U R S B w P jP PT W热电偶(TC) RTD输入类型 K J L E N T U R S BW5ReW26RePLIIJPT100PT100电压(电流) REX 系列智能控制仪使用说明书AGREX-C700 面板说明(REX-C700)六、仪表操作流程1、开机流程开启电源显示输入类型(自动变换)显示输入范围(自动变换)SV/PV显示模式PV I NPOC KSVPV1372SV见表二见表三图一图二表三、输入类型及范围代码表传感器类型 代码输入范围代码输入范围代码 输入范围 K01 0-200℃ K02 0-400℃ K03 0-600℃ K04 0-800℃ K05 0-1000℃ K06 0-1200℃ KK07 0-137.2℃ K13 0-100℃ K14 0-300℃ J01 0-200℃ J02 0-400℃ J03 0-600℃ JJ04 0-800℃J05 0-1000℃ J06 0-1200℃ R *1 R01 0-1600℃ R02 0-1769℃ R03 0-1350℃ S *1 S01 0-1600℃ S02 0-1769℃ B *1 B01 100-1800℃ B02 0-1769℃ E E01 0-800℃ E02 0-1000℃ N N01 0-1200℃ N02 0-1300℃ T01 0-350℃ T02 -199.9-100℃ T03 -199.9-200℃ 热电偶T *2T04 -199.9-400℃D01 -199.9-649.0D02 -199.9-200.0℃D03 -199.9-50.0℃D04 -100.0-100.0D05 -100.0-200.0℃D06 -100.0-50.0℃D07 0.0-100.0℃ D08 0.0-200.0℃ D09 0.0-300.0℃ PT100D10 0.0-500.0℃P01 -199.9-649.0P02 -199.9-200.0℃P03 -199.9-50.0℃P04 -100.0-100.0P05 -100.0-200.0℃P06 -100.0-50.0℃P07 0.0-100.0℃ P08 0.0-200.0℃ P09 0.0-300.0℃ 热电阻 JPT100P10 0.0-500.0℃0-5V 401 0.0-100.0℃ 电压 0-1V 601 0.0-100.0℃ 0-20mA 701 0.0-100.0℃ 电流 4-20mA 801 0.0-100.0℃注: *1、0-399℃范围内不能保证精度*2、-199.9-100℃范围内不能保证精度2、SV 设定模式在SV/PV 正常显示状态下,按一下“SET ”键,使SV 显示处于闪烁状态,通过按“<R/S”键,找到所需设定温度的位数,再按上升或下降键,设定到所需温度值,设定完毕后,在按一下“SET ”键,使仪表转到SV/PV 正常显示状态。

XMT-6000 智能型数字显示温度控制器说明书

XMT-6000 智能型数字显示温度控制器说明书

XMT-6000智能型数字显示温度控制器 使用说明书此产品使用前,请仔细阅读说明书,以便正确使用,并妥善保存,以便随时参考。

操作注意断电后方可清洗仪表。

清除显示器上污渍请用软布或棉纸。

显示器易被划伤,禁止用硬物擦拭或触及。

禁止用螺丝刀或书写笔等硬物体操作面板按键,否则会损坏或划伤按键。

1. 产品确认本产品适用于注塑、挤出、吹瓶、食品、包装、印刷等机械设备;恒温干澡、金属热处理等设备的温度控制。

本产品的PID 参数可以自动整定,是一种智能化的仪表,使用十分方便,是指针式电子调节器、模拟式数显温控仪的最佳更新换代产品。

本产品符合Q/SQG01-1999智能型数字显示调节仪标准的要求。

请参照下列代码表确认送达产品是否和您选定的型号完全一致。

XMT□-□□□□ □ □ □—□① ②③④⑤ ⑥ ⑦ ⑧ ⑨①面板尺寸(mm ) ⑤输入类型 D:96×96 1:热电偶信号 E:72×72 2:热电阻信号F:96×48(竖式);F(H):48×96(横式) ⑥输出类型G:48×48 空:继电器(最大1A) ②显示方式 V:逻辑电平输出用于SSR 6:双排显示(经济型) B: 继电器(最大10A)③控制类型 G: 可控硅输出(直接带300W 以下负载) 0:位式动作 ⑦分度号 3:时间比例动作 ⑧量程下限4:两位PID 7:单相过零脉冲PID 0:无报警1:上限报警(XMTD、XMTF 过零脉冲输出、逻辑 电平输出,以及XMTG 的各型号不能带上限报警)*报警常闭需注明2. 安装2.1 注意事项 (5)推紧安装支架,使仪表与盘面结合牢固,收紧螺钉。

(1)仪表安装于以下环境大气压力:86~106kPa。

2.3 尺寸环境温度:0~相对湿度:45~ 腐蚀性、易燃气体。

过多的灰尘、盐份或金属粉末。

2.2 安装过程(1)按照盘面开孔尺寸在盘面上打出用来安装仪表的矩形方孔。

智能仪器智能温度测试仪的设计

智能仪器智能温度测试仪的设计

智能仪器智能温度测试仪的设计智能仪器智能温度测试仪的设计1.引言1.1 目的本文档旨在介绍智能仪器智能温度测试仪的设计。

该仪器采用智能化技术,能够准确测量温度并进行数据分析和记录,以满足各种温度测试需求。

1.2 背景随着科技的发展,温度测试在工业、医疗、农业等领域中的重要性越来越被重视。

传统的温度测试仪器存在准确性、操作复杂等问题。

为了解决这些问题,本设计旨在开发一款智能化的温度测试仪器。

2.系统设计2.1 系统概述智能温度测试仪由硬件模块和软件模块组成。

硬件模块包括传感器、数据采集模块、数据分析处理模块和显示屏等部分;软件模块包括数据管理系统、用户界面和远程控制等部分。

2.2 硬件设计①传感器本设计采用高精度温度传感器,能够实时测量温度,并输出数字信号给数据采集模块。

②数据采集模块数据采集模块负责采集传感器输出的温度数据,并进行模数转换。

采集的数据将通过总线传输给数据处理模块。

③数据处理模块数据处理模块对采集到的温度数据进行处理和分析,并将结果保存到内部存储器中,以备后续查询和分析。

④显示屏显示屏用于展示实时温度、历史数据以及系统状态等信息,并提供用户操作界面。

2.3 软件设计①数据管理系统数据管理系统用于存储、查询和管理温度测试仪采集到的数据。

它提供了数据导入、导出、删除、备份等功能。

②用户界面用户界面提供给用户进行温度测试的操作界面和数据展示界面。

用户可以通过界面设定温度范围、采样频率等参数。

③远程控制远程控制功能使用户可以通过远程连接的方式,对温度测试仪进行远程控制和数据查询。

3.性能要求3.1 测量精度温度测试仪的测量精度要达到±0.1℃以内,以满足不同行业对温度测试的精度要求。

3.2 响应时间温度测试仪的响应时间应小于1秒,以便快速响应用户的操作并实现实时数据显示。

3.3 数据存储容量温度测试仪的数据存储容量应达到最少1000条数据,以满足长时间的数据记录需求。

4.法律名词及注释●智能温度测试仪: 一种具备智能化功能的温度测试设备,能够准确测量温度并进行数据分析和记录。

基于FPGA的智能温度控制系统的设计

基于FPGA的智能温度控制系统的设计

基于FPGA的智能温度控制系统的设计智能温度控制系统是一种基于FPGA(现场可编程门阵列)的系统,旨在实现对温度的精确控制和自动调节。

随着科技的进步和人们对舒适生活的不断追求,温度控制在日常生活和工业生产中变得越来越重要。

传统的温度控制方法常常需要人工干预和手动调节,效率低下且容易产生误差。

因此,开发一种智能温度控制系统来解决这些问题变得至关重要。

本文的目的是设计一种基于FPGA的智能温度控制系统,通过使用FPGA的高度可编程性和强大的实时处理能力,实现对温度的准确测量、控制和调节。

同时,系统将具备智能化的特点,能够根据预设的温度范围和环境条件,自动调节温度并保持在合适的水平。

通过该系统的应用,可以提高温度控制的精确性和效率,提供更加舒适和节能的环境。

本文的框架将按照以下顺序展开:首先,介绍智能温度控制系统的基本原理和架构;然后,详细阐述FPGA在温度控制系统中的应用;接着,说明设计过程中的关键问题和解决方法;最后,对系统进行性能测试和实验验证,并对结果进行分析和讨论。

通过这些内容的阐述,旨在为读者提供有关基于FPGA的智能温度控制系统设计的全面参考,为今后的研究和应用奠定基础。

本文所提出的基于FPGA的智能温度控制系统设计具有一定的创新性和实用性,有望在温度控制领域产生积极的影响。

本文详细描述了基于FPGA的智能温度控制系统的设计过程,包括硬件和软件设计。

硬件设计硬件设计是构建基于FPGA的智能温度控制系统的关键步骤。

以下是硬件设计的主要内容:温度传感器:选择合适的温度传感器,例如热敏电阻或数字温度传感器。

将温度传感器与FPGA连接,以实时获取温度数据。

温度控制器:设计一个可调节的温度控制系统,可以根据测量到的温度对输出进行调整。

使用FPGA内部逻辑和外部元件(如开关和继电器)来实现温度控制功能。

显示界面:设计一个用户友好的显示界面,用于显示当前的温度和控制系统的状态。

可以使用液晶显示屏或LED显示器等显示设备。

智能温度测控仪课程设计

智能温度测控仪课程设计

智能温度测控仪课程设计一、课程目标知识目标:1. 理解智能温度测控仪的基本原理,掌握温度传感器的工作方式和测量范围。

2. 学习智能温度测控仪的电路组成和功能,了解各组成部分的作用及相互关系。

3. 掌握编程方法,实现对温度数据的采集、处理和显示。

技能目标:1. 能够正确连接智能温度测控仪的电路,进行简单的故障排查和维修。

2. 能够运用所学编程知识,编写程序实现对温度的实时监控和控制。

3. 培养动手实践能力,通过实际操作,熟练使用智能温度测控仪。

情感态度价值观目标:1. 培养学生对智能硬件的兴趣和热情,激发创新精神和探究欲望。

2. 增强学生的团队协作意识,培养合作解决问题的能力。

3. 培养学生关注环境保护,认识到智能温度测控仪在节能降耗方面的作用。

课程性质:本课程属于电子技术实践课程,注重理论联系实际,培养学生的动手能力和创新能力。

学生特点:学生具备一定的电子技术基础知识,对智能硬件有一定的好奇心,喜欢动手实践。

教学要求:教师应充分调动学生的积极性,注重启发式教学,引导学生主动探究,提高学生的实践能力。

同时,关注学生的情感态度价值观的培养,使学生在掌握知识技能的同时,形成正确的价值观。

通过分解课程目标为具体的学习成果,为后续的教学设计和评估提供明确依据。

二、教学内容1. 理论知识:- 温度传感器原理与分类,重点讲解热敏电阻、热电偶等常见温度传感器的原理和应用。

- 智能温度测控仪电路组成,包括传感器、信号处理电路、微控制器、显示模块等部分的功能和连接方式。

- 编程基础,介绍C语言或Python语言在温度测控中的应用,涉及数据类型、运算符、控制结构等。

2. 实践操作:- 智能温度测控仪电路搭建,指导学生根据电路图正确连接各部分组件。

- 程序编写与调试,引导学生学习编程软件的使用,编写温度采集程序,并进行调试和优化。

- 系统测试与优化,通过实际测试,观察温度测控效果,针对问题进行排查和优化。

3. 教学大纲安排:- 第一课时:导入新课,介绍智能温度测控仪的应用,明确学习目标。

智能温度测量装置组成和工作原理

智能温度测量装置组成和工作原理

第1章智能温度测量装置组成和工作原理第1.1节智能温度测量装置的组成智能温度测量系统以单总线数字温度传感器DS18B20为测量器件、以DM-162液晶显示模块为显示器件,89C2051微处理器为控制核心,构成了温度实时测量装置,系统框图如图1.1所示。

图1.1 智能温度测量系统第1.2节智能温度测量装置的工作原理附图1为智能温度测量装置的工作原理图,其工作原理是:单总线数字温度传感DS18B20测得环境的温度,在单片机的控制下以串行数字形式经单片机的89C2051的第6脚读入。

单片机在程序的控制下,严格按照DS18B20的要求的工作时序进行读写控制,读入信号后,对数字信号进运算,然后经DM-162液晶显示模块进行显示。

DS18B20外围引脚有三个,分别是VCC接+5V的电源,GND接地,DQ数据线接到微处器的第6脚,图中的4.7K的电阻为上拉上阻,实现数据传送。

89C2051的外围电路很简单,89C2051的+5V电源由20脚引入,第10脚接地,第4脚和第5脚间由12MHz的晶振及两个20pF的无极性电路组成一个振荡电路;同时在第一脚引出一个22uF的电容和一个2K的电阻接+5V的电源组成一个复位电路。

VSS脚接地,同时在液晶显示模块VDD脚接一个+5V电源。

在液晶显示模块的VDD引脚和VSS引脚间接一个10K的可调电阻,其作用是给V0端口提供一个控制电压。

液晶显示模块所要的数字信号从89C2051的P1.0-P1.7口引出,分别对应的接DM-162的D0-D7端口,完成数据传输,液晶显示模块的控制引脚RS、RW、E分别接到89C2051的P3.5、P3.6、P3.7口,以实现微处理器对液晶显示模块的控制。

第2章电路设计第2.1节单总线数字温度传感器DS18B202.1.1 DS18B20引脚分布DS18B20温度传感器引脚排列如图2.1所示。

DS1820数字温度传感器是DALLAS 半导体公司生产的世界上第一片支持“一线总线”接口的温度传感器。

智能温度控制系统

智能温度控制系统

智能温度控制系统【摘要】智能温度控制系统是利用温度传感器DS18B20采集温度,用LED数码管显示采集的温度和设定的温度,通过对比采集的温度和与设定温度来控制继电器工作,从而实现加热或降温。

采用简易键盘设定温度值,当实际温度值大于等于设定温度值时,蜂鸣器报警。

1. 引言此温度控制器不仅可以用来控制水温,还可以改造成测室温或CPU的温度,并达到控制的目的。

此系统测量精度高,电路简单,改变程序就可以升级温度控制器。

它可用于测热带鱼鱼缸内的水温,并控制它达到热带鱼苛刻的生存环境。

2.方案论证智能温度控制器主要的是温度的采集和温度的控制两部分。

温度的采集要用到温度传感器,现在的市场上的温度传感器很多,主要有热电阻,热电偶,半导体温度传感器和集成温度传感器。

热电阻线形度不好,精度不高;热电偶价格都比较高,测量范围广;半导体线形都好,测量范围窄;集成温度传感器集成度高,外部电路简单。

本设计中采用经常用到的并有很高精度的集成温度传感器DS18B20。

微型处理器采用可以在线擦写的89C51芯片。

输出部分采用比较经济实惠的电阻丝加热。

显示部分采用动态显示。

3.总体方案此方案采用89C51单片机系统实现,键盘输入温度设定值,用现在最新的集成温度传感器DS18B20采集准确的温度,数码管显示设定值和温度实测值,加热控制采用模拟PWM输出控制加热器,并采用光电隔离,使系统更加稳定。

总体框图如图3-1所示。

图 3-1温度控制器系统框图4.元器件选型及电路设计4.1元器件选型4.1.1温度传感器温度传感器选用DS18B20芯片。

DS18B20数字温度计是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。

因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。

(1) DS18B20产品的特点①、只要求一个端口即可实现通信。

②、在DS18B20中的每个器件上都有独一无二的序列号。

YL-—-7-□--系列智能型温度控制器使用说明书

YL-—-7-□--系列智能型温度控制器使用说明书

YL —7 □系列智能型温度控制器使用说明书★使用此产品前,请仔细阅读“使用说明书”,才能操作无误;并请妥善保存,以便随时参考。

XX生产的YL— 7□系列智能型温控仪表,生产流程严格按欧盟CE标准控制,仪表线路板插件、贴片元件焊接后,需经过低温老化(-20℃)→高温老化(+75℃)→常规通电老化→专用检测仪表功能校验→实际负载功能检测等五道程序,从而确保产品硬件具有抗谐波干扰范围广,以及在高温或低温环境条件下,仪表的元件参数临界点稳定性能好、工作寿命长等优点。

YL— 7□系列智能型温控仪表的控温软件运用模糊专家精算技术,采用“双曲线伺服控制”方法,使仪表已建立的P、I、D值主控曲线,在普遍状况下能广泛适应各种“常规”控温环境,快速跟踪、锁定温度设定点和修正偏差点;同时对一些因加热器功率偏大或偏小、升降温速率偏快或偏慢、散热系数偏高或偏低、同一加热部件多炉分布且因不同的控温点而产生的热效应串扰现象等“较特殊”的控温环境,通过激活仪表的“自整定”功能,仪表能快速地调取出一组适用新控温环境的最优化P、I、D参数,从而有效地抑制温度上冲和快速止跌,达到最佳控温效果,满足不同环境的控温要求。

广泛适用于注塑、挤出、吹膜、吹瓶、封切、烫金、包装、印刷、食品等机械设备;以及恒温干燥、金属热处理、锅炉等设备的温度控制。

本系列产品已通过欧盟CE认证。

产品特点:* 一键式启动自整定功能,不需进入仪表菜单,直按“*快速自整定,AT* 热电偶、热电阻、模拟量等多种标准信号自由输入,量程自由设置。

* 零位偏差用户可自较正,软件调零满度,冷端单独测温,放大器自稳零,显示精度可达±0.2%FS。

* 主控输出可选:“R”—继电器触点(标准AC220V)驱动交流接触器;“S”— DC12V脉冲电平触发驱动单、三相固态继电器“I”— 4-20mA模拟量连续电流驱动单、三相移相调压模块;“U”— DC0-5V模拟量连续电压驱动单、三相移相调压模块。

智能化测控系统的设计与实现

智能化测控系统的设计与实现

智能化测控系统的设计与实现在当今科技飞速发展的时代,智能化测控系统在各个领域的应用日益广泛,从工业生产到航空航天,从医疗设备到智能家居,都离不开智能化测控系统的支持。

智能化测控系统能够实现对各种物理量的精确测量、实时控制和智能化处理,大大提高了生产效率和产品质量,改善了人们的生活品质。

那么,如何设计和实现一个高效、稳定、智能化的测控系统呢?一、智能化测控系统的概述智能化测控系统是一种集测量、控制、数据处理和通信等功能于一体的综合性系统。

它通过传感器获取被测量对象的相关信息,经过信号调理和转换后,将其传输给控制器进行处理和分析。

控制器根据预设的算法和控制策略,生成控制指令,驱动执行机构对被测量对象进行调节和控制,从而实现对系统的精确测控。

同时,智能化测控系统还具备数据存储、显示、通信等功能,能够将测量数据和控制结果及时反馈给用户,并与其他系统进行交互和协同工作。

二、智能化测控系统的设计要求1、高精度和高可靠性智能化测控系统需要对被测量对象进行精确测量和控制,因此必须具备高精度和高可靠性。

这就要求在系统设计中,选择高精度的传感器、合理的信号调理电路和先进的控制算法,同时要考虑系统的抗干扰能力和容错能力,确保系统在恶劣环境下能够稳定可靠地工作。

2、实时性和快速响应在许多应用场景中,智能化测控系统需要对被测量对象的变化做出实时响应,以保证系统的性能和安全。

因此,系统的采样频率、数据处理速度和控制指令输出速度都要满足实时性要求,能够在短时间内完成测量、计算和控制操作。

3、智能化和自适应性随着科技的不断进步,智能化和自适应性成为了智能化测控系统的重要发展方向。

系统应具备自动检测、诊断和修复故障的能力,能够根据环境变化和工作条件的不同,自动调整控制参数和策略,以达到最佳的测控效果。

4、开放性和可扩展性为了适应不同的应用需求和技术发展,智能化测控系统应具备良好的开放性和可扩展性。

系统应支持多种通信协议和接口标准,便于与其他设备和系统进行集成和互联;同时,系统的硬件和软件应采用模块化设计,便于功能的扩展和升级。

智能温度控制系统设计

智能温度控制系统设计

智能温度控制系统设计摘要:在日常生活中,温度和温差对我们的生活都有非常大的影响。

目前在大城市许多的高档公寓已经实现自动控温,然而在普通公寓并没有实现此类控温系统,因此同高档公寓形成了对比,为实现更多的地方使用自动控温系统,本设计通过单片机实现对温度的恒定控制,更廉价,更方便,适用于普及大多数家庭的使用。

对我们的生活会有很大的帮助。

智能自动控温全面实现全自动化、无人化,都可减少可控因素带来的损失.设计智能自动控温系统,利用温度感应器、报警器、LED显示器通过对单片机的控制实现智能自动控温,解决由于温度不稳定而带来的一系列问题。

本次设计主要以AT89C51单片机为主控核心,与LED显示器、键盘、报警模块等相关电路结合。

利用单片机为设计主核心,外接电路连接LED显示器、键盘、报警模块。

预定温室内部温度,当温室内部温度有所升高或降低时,此时通过外接电路连接的报警模块发出警报,通过电加热器来调节温室内部温度从而达到温室内部温度恒定。

关键词:单片机,温度传感器,键盘,LED显示器,电加热器Designof aTemperature-Control SystemAbstractIn everyday life ,the temperature andthe temperature difference to our lives have a very bigimpact.Currently manyof the luxury apartments in big cities have automatic temperature control,however,didnot materialize in apartments such temp erature controlsystem , thus forming a contrastwiththehigh—endapartments , to achieve more places to use automatic temp erature controlsystem , thedesign byMCU constant controloftemperature, cheaper,more convenient,suitable f or universal use in most families。

智能温度控制系统实验报告

智能温度控制系统实验报告

上海电子信息职业技术学院《计算机控制系统实现与调试》课程实训报告系部:电子工程系专业:计算机控制技术班级:学号:姓名:小组:指导教师:日期:2014年5月一、系统概述1.系统原理图2.参数说明和设置低值报警AL=高值报警AH=输出下限值OL=输出上限值OH=输入类型LN=9。

工作方式(恒值控制、PI控制、加热、无冷端补偿、报警、报警)OP=3.操作步骤二、恒值控制1.要求(包括参数的设定值):设定值:60o C,水量一半;(在实验中有同学的温度按照实际实验时的值更正)比例系数P1= ;积分参数P2= ;控制周期P3=1;OF超调限定值= ;每30S记录一次测量温度,共记3个波峰3个波谷。

2.目的:观察恒值控制的控制效果。

3.现象:5.曲线图(指出系统的超调量、上升时间和稳态误差)6.实验结论(实验中的问题记录、产生问题的原因,如何解决这些问题、建议等)三.带有扰动的恒值控制(加冷水、重新设定温度)1.要求(包括参数的设定值)设定值:60o C,水量一半;(在实验中有同学的温度按照实际实验时的值更正)Op参数的设定:恒值控制、PI控制、加热、无冷端补偿、低值报警、高值报警;每20S记录一次测量温度,共记3个波峰3个波谷。

2.目的:观察带有扰动的恒值控制效果。

3.现象:4.得到的数据:(用表格列写数据)5.曲线图(指出系统的超调量、上升时间和稳态误差)6.实验结论(实验中的问题记录、产生问题的原因,如何解决这些问题、建议等)四、PI控制参数整定1.要求:设定值:60o C,水量一半;(在实验中有同学的温度按照实际实验时的值更正)用试凑法整定Pk和Ti参数,直至得到良好的控制曲线。

每20S记录一次测量温度和OU值,共记6个波峰6个波谷。

2.目的:掌握整定PI参数的方法,通过实验理解PI参数对控制性能的影响。

3.具体设定参数如下:(在实验过程中,每次获得的曲线所对应的Pk和Ti)表Pk和Ti参数整定记录表4.现象:5.得到的数据:(用表格列写数据)6.曲线图(指出系统的超调量、上升时间和稳态误差)7.试验结论(实验中的问题记录、产生问题的原因,如何解决这些问题、建议等)五、带扰动的PI控制参数整定(加入冷水或重新设置SV)1.要求:设定值:60o C,水量一半;(在实验中有同学的温度按照实际实验时的值更正)每20S记录一次测量温度、OU值,共记3个波峰3个波谷,然后加入()ml 的冷水或把设定值改为70o C,再记3个波峰3个波谷。

智能温度测量系统设计

智能温度测量系统设计

智能温度测量系统设计李晓磊【期刊名称】《《电脑与电信》》【年(卷),期】2019(000)006【总页数】5页(P29-33)【关键词】单片机AT89C52; 温度传感器; LCD1602【作者】李晓磊【作者单位】中北大学信息商务学院山西晋中030600【正文语种】中文【中图分类】TP368.11 引言温度测量无论是在工业生产过程中,还是在日常生活中都起着非常重要的作用。

而当今,我国农村的锅炉取暖大多数都没有温度监控系统,部分厂矿、企业还一直沿用简单的温度检测设备和纸质数据记录仪,无法实现温度数据的测量与控制[1]。

随着社会经济的高速发展,越来越多的生产部门和生产环节对温度测量精度的可靠性和稳定性等有了更高的要求。

传统的温度测量器测量精度普遍不高,不能满足对温度要求较为苛刻的生产环节,因而设计一种较为理想的温度测量系统显得尤为重要。

针对这些问题,本文提出了基于单片机的智能温度测量系统设计。

相对于传统的温度采集方法而言,基于单片机的温度测量系统具有更多的优势,例如,读数更简单直观,测量所用时间更短,测量准确度更高,能记忆而且可设定上下限温度蜂鸣提示。

2 系统硬件设计在该系统中,DS18B20温度传感器负责采集温度,将采集的温度信号传给单片机AT89C52,然后输出信号传送到数码管显示电路,如果超过预定值时,单片机会给报警电路发出信号,蜂鸣器会发出警报。

按键电路(甚至按钮)与主控制器相连。

其中,基于单片机的智能温度测量系统原理框图如图1所示。

图1 系统原理框图2.1 AT89C52芯片作为智能温度测量系统的核心部分,单片机承载着处理温度信息、输出显示温度和报警等多个任务。

因此,本系统采用的单片机是ATMEL公司开发的AT89C52单片机。

它是一种低电压、高性能CMOS8 位的微控制器,兼容工业标准MCS-51系列的所有指令,程序语言丰富,成本低廉[2-4]。

与同系列的AT89C51单片机相比,它具有更大的存储空间和中断源、应用范围也更广。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北农业大学毕业论文﹙设计﹚开题报告题目智能型温度测量控制系统-开题报告学生姓名学号所在院(系)信息工程学院专业班级通信工程2010140指导教师2014年02月23日题目基于单片机的温度控制系统设计一、选题的目的及研究意义温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用,是工业对象中主要的被控参数之一。

在单片机温度测量系统中的关键是测量温度、控制温度和保持温度。

在日常生活中,也可广泛实用于地热、空调器、电加热器等各种家庭室温测量及工业设备温度测量场合。

随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。

近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。

这次毕业设计选题的目的主要是让生活在信息时代的我们,将所学知识应用于生产生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。

通过对温度控制通信系统的设计、制作、了解信息采集测试、控制的全过程,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。

培养研发能力,通过对电子电路的设计,初步掌握在给定条件和要求的情况下,如何达到以最经济实用的方法、巧妙合理地去设计工程系统中的某一部分电路,并将其连接到系统中去。

提高查阅资料、语言表达能力和理论联系实际的技能。

当今社会温度的测量与控制系统在生产与生活的各个领域中扮着越来越重要的角色,大到工业冶炼,物质分离,环境检测,电力机房,冷冻库,粮仓,医疗卫生等方面,小到家庭冰箱,空调,电饭煲,太阳能热水器等方面都得到了广泛的应用,温度控制系统的广泛应用也使得这方面研究意义非常的重要。

二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等国外对温度控制技术研究较早,始于20世纪70年代。

先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。

80年代末出现了分布式控制系统。

目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。

现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。

我国对于温度测控技术的研究较晚,始于20世纪80年代。

我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。

我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。

在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。

我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。

在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。

应用领域非常的广泛,①冷冻库,粮仓,储罐,电信机房,电力机房,电缆线槽等测温和控制领域。

②轴瓦,缸体,纺机,空调等狭小空间工业设备测温和控制。

③汽车空调,冰箱,冷柜以及中低温干燥箱等。

④太阳能供热,制冷管道热量计量,中央空调分户热能计量等。

温度是一种最基本的环境参数,对于我们来说,不仅仅是一个量的反映,更能直接影响作用到我们的生活中,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。

测量温度的关键是温度传感器。

随着科技的发展,技术要求的重视,温度测量的精度也越来越被看重。

所以高精度温度测量系统的研究就非常有意义。

本文主要着重于对水温的测量和控制的研究,在工厂锅炉、农业生产中都可得到广泛的应用。

测量温度的方法很多,按照测量体是否与被测介质接触,可分为接触式测温法和非接触式测温法两大类。

温度测量应用中有多种类型的传感器,其中有热敏电阻、热电偶等。

热敏电阻由于体积小,重复性好,测量方法简单,所以在一般的测量系统中广泛应用,但是热敏电阻作为传感器的测温系统需要A/D转换,信号放大与处理,并且测量精度不高,这也是热敏电阻的缺点、不足。

另一种热电偶传感器,能够检测更宽的温度范围,还具有较高的性价比。

而且热电偶的鲁棒性、可靠性和快速响应时间使其成为各种工作环境下的首要考虑。

但是,热电偶传感器也存在一些缺陷,比如线性特性较差,信号电平很低,常常需要放大或高分辨率数据转换器进行处理。

随着科学技术的快速发展,特别是现代仪器的发展,微型化、集成化、数字化成为传感器发展的一个重要方向,本文所采用的DALLAS公司生产的一种新型温度传感器DS18B20,其优点急温度测量、A/D转换于一体,测量范围宽-55℃~+125℃,精度高达0.0625℃。

它采用单总线协议,即与微机接口仅需要占用一个I/O端口,不需要任何外部原件,DS18B20能代替模拟温度传感器和信号处理单元,直接测量温度并以数字信号输出(9位数字码串行输出)极大的简化了整体电路,可使整个系统更加小型化、低功耗。

由于DS18B20直接输出数字量,并直接与单片机连接,所以控制简单,它的单总线特性使其便于扩展,可以在一根总线上接挂多个DS18B20来扩展系统,组建测量网络。

综上所述,采用DS18B20与单片机所组成的系统,结构简单,抗干扰能力强,适合于恶劣的测量环境,也适用于日常生活和工农业生产中,有很高的应用前景。

温度是一种最基本的环境参数,对于我们来说,不仅仅是一个量的反映,更能直接影响作用到我们的生活中,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。

测量温度的关键是温度传感器。

随着科技的发展,技术要求的重视,温度测量的精度也越来越被看重。

所以高精度温度测量系统的研究就非常有意义。

本文主要着重于对水温的测量和控制的研究,在工厂锅炉、农业生产中都可得到广泛的应用。

测量温度的方法很多,按照测量体是否与被测介质接触,可分为接触式测温法和非接触式测温法两大类。

温度测量应用中有多种类型的传感器,其中有热敏电阻、热电偶等。

热敏电阻由于体积小,重复性好,测量方法简单,所以在一般的测量系统中广泛应用,但是热敏电阻作为传感器的测温系统需要A/D转换,信号放大与处理,并且测量精度不高,这也是热敏电阻的缺点、不足。

另一种热电偶传感器,能够检测更宽的温度范围,还具有较高的性价比。

而且热电偶的鲁棒性、可靠性和快速响应时间使其成为各种工作环境下的首要考虑。

但是,热电偶传感器也存在一些缺陷,比如线性特性较差,信号电平很低,常常需要放大或高分辨率数据转换器进行处理。

随着科学技术的快速发展,特别是现代仪器的发展,微型化、集成化、数字化成为传感器发展的一个重要方向,本文所采用的DALLAS公司生产的一种新型温度传感器DS18B20,其优点急温度测量、A/D转换于一体,测量范围宽-55℃~+125℃,精度高达0.0625℃。

它采用单总线协议,即与微机接口仅需要占用一个I/O端口,不需要任何外部原件,DS18B20能代替模拟温度传感器和信号处理单元,直接测量温度并以数字信号输出(9位数字码串行输出)极大的简化了整体电路,可使整个系统更加小型化、低功耗。

由于DS18B20直接输出数字量,并直接与单片机连接,所以控制简单,它的单总线特性使其便于扩展,可以在一根总线上接挂多个DS18B20来扩展系统,组建测量网络。

综上所述,采用DS18B20与单片机所组成的系统,结构简单,抗干扰能力强,适合于恶劣的测量环境,也适用于日常生活和工农业生产中,有很高的应用前景。

在设计中,对于水温的测量和控制,采用了单总线数字式温度传感器DS18B20,和单片机组成的系统,单片机采用AT89S51。

整个系统只有一根信号线与单片机相连接,温度传感器又可直接输出数字信号,故系统电路简单可靠,功耗小,抗干扰能力强,又由于DS18B20精度高,且单片机AT89S51系统价格低廉,结构可靠,所以此系统在人们日常生活、工业生产和科学研究中可以得到广泛推广和应用。

本设计所介绍的水温测量的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,用4位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。

本课题主要是通过51系列单片机设计一个最小实验系统,通过实验研究使同学们能将自己所学的理论知识与实践工程设计联系起来掌握protel、keil、proteus 等软件的基本使用方法,学会设计和制作电路板,掌握基本的电路焊接技术,掌握实验板的调试。

三、对本课题将要解决的主要问题及解决问题的思路与方法、拟采用的研究方法(技术路线)或设计(实验)方案进行说明,论文要写出相应的写作提纲解决的主要问题是温度自动控制问题,使得在一定的区间内,在自动控制系统的控制下,温度始终在人们要求的范围之内。

解决问题的思路与方法有:本设计[1]是基于AT89C52为核心的单片机温度控制系统,温度信号由18B20温度传感器进行采集,然后经过转换成数字信号后传入单片机,由单片机对数字信号进行相应的处理,从而得到温度控制的目的,然后输出在数码管上进行显示。

首先要解决的是对18B20数字温度传感器本身的属性,它的用法,各个性能参数,内部功能有一个很好的掌握,还要对51单片机[2]的用法,外围电路(温度检测电路,温度控制电路,单片机串口通信的电路,复位电路,数码管显示电路[3])的设计接法进行进一步的掌握,最后就是软件编写部分了,软件部分需要解决的问题有18B20初始化模块,18B20对温度的获取并转换模块,温度数据的处理模块,温度数据显示模块,超高(低)温控制模块,串口初始化模块。

温度检测元件和变送器的类型选择与被控温度的范围和精度等级有关。

镍铬/镍铝热电偶适用于0℃-1000℃的温度检测范围,相应输出电压为0mV-41.32mV。

变送器由毫伏变送器和电流/电压变送器组成:毫伏变送器用于把热电偶输出的0mV-41.32mV变换成4mA-20mA的电流;电流/电压变送器用于把毫伏变送器输出的4mA-20mA电四、检索与本课题有关参考文献资料的简要说明参考文献[1]郭天祥.新概念51单片机C语言教程.北京:电子工业出版社,2009.P342-P354[2]李建忠.单片机原理与应用.西安:西安电子科技大学出版社,2009.P16-P50[3]阎实.数字电子技术基础.北京:高等教育出版社,1983.P178-P182[4]谭浩强.C语言程序设计(第三版).北京:清华大学出版社,2005.P49-P86[5]陈杰,黄鸿.传感器监测与技术.北京:高等教育出版社,2002.P15-P50[6]张红润,张亚凡,邓洪.传感器原理与应用.北京:清华大学出版社,2008.P35-P38[7]童师白,华成英.模拟电子技术基础.北京:高等教育出版社,1980.[8]朱清慧,张凤蕊.proteus教程.北京:清华大学出版社,2008.五、毕业论文(设计)进程安排3月8日——4月16日:查阅资料,完成初步设计方案和开题报告。

相关文档
最新文档